Electronic Colloguium on Computational Complexity, Report No. 36 (2009) Eode

The Power of Depth 2 Circuits over Algebras

Chandan Saha* Ramprasad Saptharishi’ Nitin Saxenat

Abstract

We study the problem of polynomial identity testing (PIT) for depth 2 arithmetic circuits
over matrix algebra. We show that identity testing of depth 3 (XIIX) arithmetic circuits over a
field F is polynomial time equivalent to identity testing of depth 2 (IIX) arithmetic circuits over
Us(FF), the algebra of upper-triangular 2 x 2 matrices with entries from F. Such a connection is
a bit surprising since we also show that, as computational models, IIY circuits over Us(F) are
strictly ‘weaker’ than XII circuits over F.

The equivalence further shows that PIT of depth 3 arithmetic circuits reduces to PIT of
width-2 planar commutative Algebraic Branching Programs(ABP). Thus, identity testing for
commutative ABPs is interesting even in the case of width-2.

Further, we give a deterministic polynomial time identity testing algorithm for a II¥ circuit
over any constant dimensional commutative algebra over F. While over commutative algebras
of polynomial dimension, identity testing is at least as hard as that of XIIX circuits over F.

1 Introduction

Polynomial identity testing (PIT) is a fundamental problem in theoretical computer science. Over
the last decade this problem has drawn significant attention from many leading researchers owing
to its role in designing efficient algorithms and in proving circuit lower bounds. Identity testing is
the following problem:

Problem 1.1. Given an arithmetic circuit C with input variables x1,...,x, and constants taken
from a field F, check if the polynomial computed by C' is identically zero.

Besides being a natural problem in algebraic computation, identity testing appears in important
complexity theory results such as, IP = PSPACE [Sha9()] and the PCP theorem [ALMT98]. It also
plays a promising role in proving super-polynomial circuit lower bound for permanent [KI03) [Agr05].
Moreover, algorithms for problems like primality testing [AKS04], graph matching [Lov79] and
multivariate polynomial interpolation [CDGK9T] also involve identity testing.

The first randomized polynomial time algorithm for identity testing was given by Schwartz and
Zippel [Sch80) [Zip79]. Several other efficient randomized algorithms [CK97, [LVIS, [AB99), [KSOT]
came up subsequently, resulting in a significant improvement in the number of random bits used.
However, despite many attempts a deterministic polynomial time algorithm has remained elusive.
Nevertheless, important progress has been made both in the designing of deterministic algorithms
for special circuits, and in the understanding of why a general deterministic solution could be hard

*Indian Institute of Technology, Kanpur 208016, India. Email - csaha@cse.iitk.ac.in

fChennai Mathematical Institute, Chennai 603103, India. Supported by MSR India PhD Fellowship. Email -
ramprasad@cmi.ac.in

tHausdorff Center for Mathematics, Bonn 53115, Germany. Email - ns@hcm.uni-bonn.de

ISSN 1433-8092

to get.

Without loss of generality, we can assume that a circuit C' has alternate layers of addition and
multiplication gates. A layer of addition gates is denoted by ¥ and that of multiplication gates
is denoted by II. Kayal and Saxena [KS07] gave a deterministic polynomial time identity testing
algorithm for depth 3 (XIIX) circuits with constant top fan-in. As such, no other general poly-
nomial time result is known for depth 3 circuits. A justification behind the hardness of PIT even
for small depth circuits was provided recently by Agrawal and Vinay [AV0S]. They showed that a
deterministic black box identity test for depth 4 (XIIXII) circuits would imply a quasi-polynomial
time deterministic PIT algorithm for any circuit computing a polynomial of low degreeﬁ.

Thus we see that the non-trivial case for identity testing starts with depth 3 circuits; whereas
circuits of depth 4 are almost the general case. It is therefore natural to ask as to what is the
complexity of the PIT problem for depth 2 (IIX) circuits if we allow the constants of the circuit to
come from an algebra H R, which is not a field, and has dimension over F, dimp (R) > 1. We can
make the reasonable assumption that the algebra R is given in basis form i.e. we know an F-basis
{e1,...,er} of R and we also know how e;e; can be expressed in terms of the basis elements, for
all 7 and j. Therefore, the problem at hand is the following,

Problem 1.2. Given an expression,

P

(AiO + Aillﬂl + ...+ Aml‘n)
1

d
1=

where A;; € R, an algebra over F given in basis form, check if P is zero.

How hard is the above problem? At first sight, this problem might look deceptively simple. For
instance, if R is field or even a division algebra (say, the real quaternion algebra) then it is trivial
to check if P = 0 using polynomial number of F-operations. However, in general this is far from
what might be the case.

Since elements of a finite dimensional algebra, given in basis form, can be expressed as matrices
over F we can equivalently write the above problem as,
Problem 1.3. Given an expression,

P =

(2

d
(AZ'O + Az + ...+ Amxn) (1)

=1

where A;; € My(IF), the algebra of k x k matrices over F, check if P is zero using poly(knd) number

of F-operations.

In order to avoid confusion we would use the following convention in this paper:

Convention - Whenever we say ‘arithmetic circuit’ or ‘arithmetic formula’ without any extra
qualification, we would mean a circuit or a formula over a field. Otherwise, we would explicitly
mention ‘arithmetic circuit (or formula) over some algebra’ to mean that the constants of the circuit
are taken from ‘that’ algebra.

1A polynomial is said to have low degree if its degree is less than the size of the circuit
2In this paper we always mean a finite dimensional associative algebra with unity.

1.1 The depth 2 model of computation

A depth 2 circuit C over matrices, as in Equation [l naturally defines a computational model.
Assuming R = M(FF), for some k, a polynomial P € Rlz1,...,z,] outputted by C' can be viewed
as a k x k matrix of polynomials in F[z,...,2,]. We say that a polynomial f € Flxy,...,z,] is
computed by C' if one of the k? polynomials in P is f. Sometimes we would abuse terminology a
bit and say that P computes f to mean the same.

In the following discussion, we would denote the algebra of upper-triangular k x k matrices by
Uk(F). The algebra Us(FF) is the smallest noncommutative algebra with unity over F, in the sense
that dimp Uo(F) = 3 whereas any algebra with unity of dimension less than 3 is commutative. We
show in this paper that already Us(F) captures an open case of identity testing.

Ben-Or and Cleve [BC88] showed that a polynomial computed by an arithmetic formula E of
depth d, and fan-in (of every gate) bounded by 2, can also be computed by a straight-line program
of length at most 4% using only 3 registers. The following fact can be readily derived from their
result (see Theorem [A)): From an arithmetic formula E of depth d and fan-in bounded by 2, we
can efficiently compute the expression,

m
P = H (Aio + Ajnzy + ... + Aipy)
i=1
where m < 4% and A;; € M3(F) such that P computes the polynomial that E does. Thus solving
Problem [[3 in polynomial time even for 3 x 3 matrices yields a polynomial time algorithm for PIT
of constant depth circuits, in particular depth 4 circuits. There is another way of arguing that the
choice of R as M3(F) is almost the general case.

For an arithmetic circuit of size s, computing a low degree polynomial, we can use the depth-
reduction result by Allender, Jiao, Mahajan and Vinay [AJMVOS] (see also [VSBR&3]) to get an
equivalent bounded fan-in formula of size s?(1°8%) and depth O(log? 5). From this formula we can
obtain a depth 2 circuit over M3(F) of size 4O(log®s) — O(logs) (using Ben-Or and Cleve’s result)
that computes the same polynomial as the formula. Thus, PIT for depth 2 circuits over 3 x 3
matrices is almost the general case since a derandomization yields a quasi-polynomial time PIT
algorithm for any circuit computing a low degree polynomial. This means, in essence a depth 2
circuit over M3(IF) plays the role of a depth 4 circuit over F (using Agrawal and Vinay’s result).

What is natural to ask is how the complexity of PIT for depth 2 circuits over Ma(IF) relates
to PIT for arithmetic circuits. In this paper, we provide an answer to this. We show a surprising
connection between PIT of depth 2 circuits over Us(F) and PIT of depth 3 circuits. The reason this
is a bit surprising is because we also show that, a depth 2 circuit over Uy(F) is not even powerful
enough to compute a simple polynomial like, 2129 + 2324 + T56!

Known related models

Polynomial identity testing and circuit lower bounds have been studied for different algebraic
models. Nisan [Nis91] showed an exponential lower bound on the size of any arithmetic formula
computing the determinant of a matrix in the non-commutative free algebra model. The result
was later generalized by Chien and Sinclair [CS04] to a large class of non-commutative algebras
satisfying polynomial identities, called Pl-algebras. Identity testing has also been studied for the
non-commutative model by Raz and Shpilka [RS04], Bogdanov and Wee [BWO05], and Arvind,
Mukhopadhyay and Srinivasan [AMS08]. But unlike this model where the variables do not com-
mute, in our setting the variables always commute but the constants are taken from an algebra R.

The motivation for studying this later model is not only because it is a natural generalization of
commutative circuits over fields but also because it gives a different perspective to the complexity
of the classical PIT problem in terms of the dimension of the underlying algebra R. It seems to
‘pack’ the combinatorial nature of the circuit into a larger base algebra and hence opens up the
possibility of using algebra structure results. The simplest nontrivial circuit in this model is a depth
2 circuit over the smallest non-commutative algebra which is R = Uy(IF).

1.2 Our Results

The results we give are of two types. Some are related to identity testing while the rest are related
to the weakness of the depth 2 computational model over Uy (F) and My (IF).

Identity testing

We fill in the missing information about the complexity of identity testing for depth 2 circuits over
2 x 2 matrices by showing the following result.

Theorem 1.4. Identity testing for depth 2 (1IX) circuits over U (F) is polynomial time equivalent
to identity testing for depth 3 (X1IX) circuits.

The above result has an interesting consequence on identity testing for Algebraic Branching Pro-
gram (ABP) [Nis9I] (see Definition Z2). It is known that identity testing for non-commutative
ABP can be done in deterministic polynomial time (a result due to Raz and Shpilka [RS04]). But no
interesting result is known for identity testing of even width-2 commutative ABP’s. The following
result explains why this is the case.

Corollary 1.5. Identity testing of depth 3 circuits reduces to identity testing of width-2 planar
ABPs.

Further, we give a deterministic polynomial time identity testing algorithm for depth 2 circuits
over any constant dimensional commutative algebra given in basis form. Recall that an algebra
R is given in basis form if we know an F-basis {e1,...,e;} of R and we also know how e;e; can
be expressed in terms of the basis elements, for all ¢ and j. Our result can be formally stated as
follows.

Theorem 1.6. Given an expression,

P

(AiO + Aillﬂl + ...+ Amﬂj‘n)
1

d
1=
where A;j € R, a commutative algebra of constant dimension over F that is given in basis form,
there is a deterministic polynomial time algorithm to test if P is zero.

In a way, this result establishes the fact that the power of depth 2 (IIX) circuits over constant di-
mensional algebras is primarily derived from the non-commutative nature of the algebra. However,
things can be very different for commutative algebras of polynomial dimension over F.

Theorem 1.7. Identity testing of a depth 3 (XIIX) circuit C' reduces to identity testing of a depth
2 (IIX) circuit over a commutative algebra of dimension polynomial in the size of C.

It would be apparent from the proof of Theorem [C4l that our argument is simple in nature.
Perhaps the reason why such a connection was overlooked before is that, unlike a depth 2 circuit
over M3(F), we do not always have the privilege of ezactly computing a polynomial over F using a
depth 2 circuit over Ug(FF). Showing this weakness of the latter computational model constitutes
the other part of our results.

Weakness of the depth 2 model over Uy(F) and My(F)

Although Theorem [shows an equivalence of depth 3 circuits and depth 2 circuits over Us(F) with
respect to PIT, the computational powers of these two models are very different. The following
result shows that a depth 2 circuit over Uy(F) is computationally strictly weaker than depth 3
circuits.

Theorem 1.8. Let f € Flxy,...,x,] be a polynomial such that there are no two linear functions
l1 and ly (with 1 & (l1,12), the ideal generated by ly and ly) which make f mod (l1,13) also a linear
function. Then f is not computable by a depth 2 circuit over Us(F).

It can be shown that even a simple polynomial like z1x2 + x3x4 + T52¢ Satisfies the condition
stated in the above theorem (see Corollary EJl), and hence it is not computable by any depth 2
circuit over Uz(F), no matter how large! This contrast makes Theorem [[4 surprising as it estab-
lishes an equivalence of identity testing in two models of different computational strengths.

At this point, it is natural to investigate the computational power of depth 2 circuits if we
graduate from Ug(F) to My(F). The following result hints that even such a model is severely
restrictive in nature.

A depth 2 circuit over My () gives as output a polynomial P = Hle (Ao + Ajzr + ... + Aipy),
with A;; € Ma(FF). Let P, denote the partial product P, = H?:e (Aio + Ajnxy + ... + Ajpxy,) where
¢ <d.

Definition 1.9. A polynomial f € Flxq,...,xy,] is computed by a depth 2 circuit over Ma(IF) under
a degree restriction of m if the degree of each of the partial products Py is bounded by m.

Theorem 1.10. There exists a class of polynomials of degree n that cannot be computed by a depth
2 circuit over Mao(FF), under a degree restriction of n.

The motivation for imposing a condition like degree restriction comes very naturally from depth
2 circuits over M3(FF). Given a polynomial f =). m;, where m;’s are the monomials of f, it is easy
to construct a depth 2 circuit over M3(IF) that literally forms these monomials and adds then one by
one. This computation is degree restricted, if we extend our definition of degree restriction to Ms(FF).
However, the above theorem suggests that no such scheme to compute f would succeed over My(F).

Remark- By transferring the complexity of an arithmetic circuit from its depth to the dimension
of the underlying algebras while fixing the depth to 2, our results provide some evidence that
identity testing for depth 3 circuits appears to be mathematically more tractable than depth 4
circuits. Besides, it might be possible to exploit the properties of these underlying algebras to say
something useful about identity testing. A glimpse of this indeed appears in our identity testing
algorithm over commutative algebras of constant dimension over F.

1.3 Organization

The results on identity testing are given in sections B and Bl while those on the weakness of the
depth 2 model are given in section Hl. In section Bl we prove the equivalence of identity testing
between depth 3 circuits and depth 2 circuits over Uy(FF) (Theorem [4), and show how it connects
to width-2 ABPs (Corollary [[H). The deterministic polynomial time identity testing algorithm
over commutative algebra of constant dimension is presented in section Bl (Theorem [[H]). In the
same section it is also shown that commutative algebras of polynomial dimensions are powerful
enough to capture PIT of depth 3 (XIIX) circuits (Theorem [[7)). Finally, in section Bl we show the
weakness of the depth 2 model over Us(F) and My(F) (Theorem [CR and [CI0).

2 Identity testing over My(F)

In this section, we show that PIT of depth 2 circuits over My(F) is at least as hard as PIT of depth
3 circuits, and this further implies that PIT of a width-2 commutative ABP is also at least as hard
as PIT of depth 3 circuits.

2.1 [Equivalence with depth 3 identity testing

We will now prove Theorem [[4l Given a depth 3 circuit we can assume, without loss of generality,
that the fan-in of the multiplication gates are the same. This multiplicative fan-in will be referred
to as the degree of the depth 3 circuit. The following lemma is the crux of our argument. For
convenience, we will call a matrix with linear functions as entries, a linear matrix.

Lemma 2.1. Let f € Flxy,...,x,] be a polynomial computed by a depth 3 circuit C' of degree d
and top level fan-in s. Given circuit C, it is possible to construct in polynomial time a depth 2
circuit over U (F) of size O((d +n)s?) that computes a polynomial p = L - f, where L is a product
of non-zero linear functions.

Proof. A depth 2 circuit over Us(F) is simply a product sequence of 2 x 2 upper-triangular linear
matrices. We now show that there exists such a sequence of length O((d + n)s?) such that the
product 2 x 2 matrix has L - f as one of its entries.

Since f is computed by a depth 3 circuit, we can write f = > 7 ;| P;, where each summand
P = Hj l;; is a product of linear functions. Observe that we can compute a single P; using a
product sequence of length d as:

K L E S CE T

where L' = lil s li(d—l)-
l
1

DRI AR

These will be the only type of non-diagonal matrices that would appear in the sequence.

Each matrix of the form [1] , where | = ap +) a;x;, can be further expanded as,

The proof will proceed by induction where Equation B serves as the induction basis. A generic
Ly Lag

Ls
functions and g is a partial summand of P;’s. We shall inductively double the number of summands
in g at each step.

intermediate matrix would look like where each L; is a product of non-zero linear

At the i-th iteration let us assume that we have the matrices [L Lag] and [My Moh },

Ls Mg
each computed by a sequence of n; linear matrices. We now want a sequence that computes a
polynomial of the form L - (g + h). Consider the following sequence,

|: 14 ng :| |: A :| |: My Msh :| |: AL1M1 ALlMgh—I-BLQMgg :| (3)
B =

Ls Ms |~ BL3Ms

where A, B are products of linear functions. By setting A = LoM3 and B = L1 My we get the
desired sequence,

L1 Laog A My, Msh | | LiLaM{Msz LiLyMyMs(g+ h)
Ls B Ms | LyL3Msy M3

This way, we have doubled the number of summands in g+h. The length of the sequence computing
Log and Msh is n;, hence each L; and M; is a product of n; many linear functions. Therefore, both

. . . A .
A and B are products of at most 2n; linear functions and the matrix p | can be written

as a product of at most 2n; diagonal linear matrices. The total length of the sequence given in
Equation Blis hence bounded by 4n;.

The number of summands in f is s and the above process needs to be repeated at most log s+ 1
times. The final sequence length is hence bounded by (d + n) - 4°8% = (d + n)s?. O

Proof of Theorem [T} It follows from Lemma 1] that, given a depth 3 circuit C' computing f we

. . . L L-
can efficiently construct a depth 2 circuit over Uy(F) that outputs a matrix, [! I /], where
2

0

L is a product of non-zero linear functions. Multiplying this matrix by [0

[00 } to the right yields another depth 2 circuit D that outputs [0 L-f

} to the left and

1 0
an identically zero polynomial over Uy(F) if and only if C' computes an identically zero polynomial.
This shows that PIT for depth 3 circuits reduces to PIT of depth 2 circuits over Ug(F).

The other direction, that is PIT for depth 2 circuits over Uy(F) reduces to PIT for depth 3
circuits, is trivial to observe. The diagonal entries of the output 2 x 2 matrix is just a product
of linear functions whereas the off-diagonal entry is a sum of at most d’ many products of linear
functions, where d’ is the multiplicative fan-in of the depth 2 circuit over Uy(IF). O

} . Thus D computes

2.2 Width-2 algebraic branching programs

Algebraic Branching Program (ABP) is a model of computation defined by Nisan [Nis91]. Formally,
an ABP is defined as follows.

Definition 2.2. (Nisan [Nis91]) An algebraic branching program (ABP) is a directed acyclic graph
with one source and one sink. The vertices of this graph are partitioned into levels labelled 0 to d,

where edges may go from level i to level i+ 1. The parameter d is called the degree of the ABP. The
source is the only vertex at level 0 and the sink is the only vertex at level d. Each edge is labelled
with a homogeneous linear function of x1,...,x, (i.e. a function of the form Y, ¢;x;). The width
of the ABP is the maximum number of vertices in any level, and the size is the total number of
vertices.

An ABP computes a function in the obvious way; sum over all paths from source to sink, the
product of all linear functions by which the edges of the path are labelled.

An ABP is said to be planar if the underlying graph is planar.

The following argument shows how Corollary follows easily from Theorem [L4

Proof of Corollary [Theorem [constructs a depth 2 circuit D that computes P = [] j (Ajo+
Ajizy + ...+ Ajpzy), where each Aj; € Uy(F). We can make D homogeneous by introducing
an extra variable z, such that P = Hj(Ajoz + Ajizy + ... + Ajpxy,). This means, the product
sequence considered in Lemma EZT], is such that all the linear matrices have homogeneous linear

functions as entries and the only non-diagonal linear matrices are of the form [“ Cji] . It is now

straightforward to construct a width-2 ABP by making the j* linear matrix in the sequence act as
the adjacency matrix between level j and j + 1 of the ABP. The ABP constructed is planar since
it has layers only of the following two kinds:

l
[] 1 [] [] ——%9- []
\mj
l
[] 2 [] [] -—-—-—-?—)- []
where [y. [5 are homogeneous linear functions. O

As a matter of fact, the above argument actually shows that PIT of depth 2 circuits over My(TF)
reduces to PIT of width-2 ABPs.

3 Identity testing over commutative algebras

We would now prove Theorem The main idea behind this proof is a structure theorem for
finite dimensional commutative algebras over a field. To state the theorem we need the following
definition.

Definition 3.1. A ring R is local if it has a unique mazximal ideal.

An element v in a ring R is said to be a unit if there exist an element v’ such that uu' = 1,
where 1 is the identity element of R. An element m € R is nilpotent if there exist a positive integer
n with m™ = 0. In a local ring the unique maximal ideal consists of all non-units in R.

The following theorem shows how a commutative algebra decomposes into local sub-algebras.
The theorem is quite well known in the theory of commutative algebras. But since we need an
effective version of this theorem, we present the proof here for the sake of completion and clarity.

Theorem 3.2. A finite dimensional commutative algebra R overF is isomorphic to a direct product
of local rings i.e.
RERID... DRy

where each R; is a local ring contained in R and any non-unit in R; is nilpotent.

Proof. If all non-units in R are nilpotents then R is a local ring and the set of nilpotents forms the
unique maximal ideal. Therefore, suppose that there is a non-nilpotent zero-divisor z in R. (Any
non-unit z in a finite dimensional algebra is a zero-divisor i.e. 3y € R and y # 0 such that yz = 0.)
We would argue that using z we can find an idempotent v ¢ {0,1} in R i.e. v2 = v.

Assume that we do have a non-trivial idempotent v € R. Let Rv be the sub-algebra of R gen-
erated by multiplying elements of R with v. Since any a = av+ a(l —v) and RvNR(1 —v) = {0},
we get R = Rv @ R(1—v) as a non-trivial decomposition of R. (Note that R is a direct sum of the
two sub-algebras because for any a € Rv and b € R(1 —v), a-b = 0. This is the place where we
use commutativity of R.) By repeating the splitting process on the sub-algebras we can eventually

prove the theorem. We now show how to find an idempotent from the zero-divisor z.

An element a € R can be expressed equivalently as a matrix in Mg (FF), where k = dimp(R), by
treating a as the linear transformation on R that takes b € R to a-b. Therefore, z is a zero-divisor
if and only if z as a matrix is singular. Consider the Jordan normal form of z. Since it is merely
a change of basis we would assume, without loss of generality, that z is already in Jordan normal
form. (We won’t compute the Jordan normal form in our algorithm, it is used only for the sake of

argument.) Let,
A0
““lo N

where A, N are block diagonal matrices and A is non-singular and N is nilpotent. Therefore there
exits a positive integer ¢ < k such that,

w—zt—BO
7 1000

where B = A! is non-singular. The claim is, there is an identity element in the sub-algebra Rw
which can be taken to be the idempotent that splits R. To see this first observe that the minimum
polynomial of w over F is m(z) = = - m/(x), where m’(x) is the minimum polynomial of B. Also if
m(z) = Zle a;z' then o # 0 as it is the constant term of m/(x) and B is non-singular. Therefore,
there exists an a € R such that w - (aw — 1) = 0. We can take v = aw as the identity element in
the sub-algebra Rw. This v ¢ {0,1} is the required idempotent in R. O

We are now ready to prove Theorem

Theorem (restated.) Given an expression,

P

(AiO + Ailiﬂl 4+ ...+ Aml‘n)

d
=1

(2

where A;; € R, a commutative algebra of constant dimension over [that is given in basis form,
there is a deterministic polynomial time algorithm to test if P is zero.

Proof. Suppose, the elements eq, ..., e, form a basis of R over F. Since any element in R can be
equivalently expressed as a k x k matrix over ' (by treating it as a linear transformation), we will
assume that A;; € Mg(F), for all ¢ and j. Further, since R is given in basis form, we can find these
matrix representations of A;;’s efficiently.

If every A;; is non-singular, then surely P # 0. (This can be argued by fixing an ordering
r1 > Tg9 > ... = x, among the variables. The coefficient of the leading monomial of P, with
respect to this ordering, is a product of invertible matrices and hence P # 0.) Therefore, assume
that JA;; = z such that z is a zero-divisor i.e. singular. From the proof of Theorem it follows
that there exists a t < k such that the sub-algebra Rw, where w = z!, contains an identity element
v which is an idempotent. To find the right w we can simply go through all 1 < ¢ < k. We now
argue that for the correct choice of w, v can be found by solving a system of linear equations over
F. Let by,...,b, be a basis of Rw, which we can find easily from the elements ejw, ..., e w. In
order to solve for v write it as,

v=1u1b1 + ...+ by

where v; € F are unknowns. Since v is an identity in Rw we have the following equations,
(Vlbl +...+ I/k/bk/) b =b; forl1<i< K.

Expressing each b; in terms of eq, ..., e, we get a set of linear equations in v;’s. Thus for the right
choice of w (i.e. for the right choice of t) there is a solution for v. On the other hand, a solution
for v for any w gives us an idempotent, which is all that we need.

Since R = Rv®R(1—v) we can now split the identity testing problem into two similar problems,
i.e. P is zero if and only if,

Pv = (Aiov—l—AilU':El—F...—l—AmU'ZEn) and

—.

@
Il
—

P(l—v) = (Aio(l—v)—I—Ail(l—’u)-:El—l—...—l-Am(l—U)':En)

—

@
Il
—

are both zero. What we just did with P € R we can repeat for Pv € Rv and P(1 —v) € R(1 —v).
By decomposing the algebra each time an A;; is a non-nilpotent zero-divisor, we have reduced the
problem to the following easier problem of checking if

d
P =] (Ao + Anz1 + ... + Ainy)

=1

is zero, where the coefficients A;;’s are either nilpotent or invertible matrices.

Let T; = (Aio + Anz1 + ... + Ajpxy,) be a term such that the coefficient of x; in Tj, i.e. Ay
is invertible. And suppose @) be the product of all terms other than 7;. Then P = T; - @ (since
R is commutative). Fix an ordering among the variables so that x; gets the highest priority. The
leading coefficient of P, under this ordering, is A;; times the leading coefficient of (). Since A;;
is invertible this implies that P = 0 if and only if @ = 0. (If A;y is invertible, we can arrive at
the same conclusion by arguing with the coefficients of the least monomials of P and) under
some ordering.) In other words, P = 0 if and only if the product of all those terms for which
all the coefficients are nilpotent matrices is zero. But this is easy to check since the dimension of
the algebra, k is a constant. (In fact, this is the only step where we use that k is a constant.) If
number of such terms is greater than k then P is automatically zero (this follows easily from the

10

fact that the commuting nilpotent matrices can be simultaneously triangularized with zeroes in
the diagonal). Otherwise, simply multiply those terms and check if it is zero. This takes O(n*)
operations over F. O

It is clear from the above discussion that identity testing of depth 2 (IIX) circuits over commutative
algebras reduces in polynomial time to that over local rings. As long as the dimensions of these
local rings are constant we are through. But what happens for nonconstant dimensions? The
following result justifies the hardness of this problem.

Theorem [[7 (restated.) Given a depth 3 (XIIX) circuit C' of degree d and top level fan-in s, it
is possible to construct in polynomial time a depth 2 (ITX) circuit C over a local ring of dimension
s(d — 1) + 2 over F such that C computes a zero polynomial if and only if C' does so.

Proof. The proof is relatively straightforward. Consider a depth 3 (XIIX) circuit computing a poly-
nomial f =37, H;lzl lij, where l;;’s are linear functions. Consider the ring R = Fly1,...,vs]/Z,
where 7 is an ideal generated by the elements {y;y; }1<i<j<s and {y¢ —y4}1<i<s. Observe that R is a
local ring, as y?ﬂ =0forall 1 <i<s. Alsotheelements {1,y1,... ,y‘f,yg, . ,yg_l, e Ysy eyt
form an F-basis of R. Now notice that the polynomial,

d
P = [+ +Lisys)
j=1

= f-yf

is zero if and only if f is zero. Polynomial P can indeed be computed by a depth 2 (IIX) circuit
over R. U

4 Weakness of the depth 2 model

In Lemma Tl we saw that the depth 2 circuit over Uy(F) computes L- f instead of f. Is it possible
to drop the factor L and simply compute f7 In this section, we show that in many cases it is
impossible to find a depth 2 circuit over Us(FF) that computes f.

4.1 Depth 2 model over Uy(F)

We will now prove Theorem In the following discussion we use the notation (I1,l3) to mean
the ideal generated by two linear functions /; and ly. Further, we say that [; is independent of Iy

if 1¢ (Ih,lo).

Theorem (restated.) Let f € Fx1,...,xy] be a polynomial such that there are no two linear
functions l; and ly (with 1 ¢ (l1,12)) which make f mod (l1,1l3) also a linear function. Then f is
not computable by a depth 2 circuit over Us(IF).

Proof. Assume on the contrary that f can be computed by a depth 2 circuit over Uy (F). In other
words, there is a product sequence M - - - M; of 2 x 2 upper-triangular linear matrices such that f

appears as the top-right entry of the final product. Let M; = [i ;ZQ], then
i3

f=[1 o][“l 22“121 Zz][lﬂ ZiH?] (4)

11

Case 1: Not all the [;1’s are constants.

Let k£ be the least index such that l;; is not a constant and l;;1 = ¢; for all i < k. To simplify

Equation H, let
B 0
[L] = Mk+1"'Mt|:1:|
[di Di] = [1 0] -Mi--- M,

Observe that L is just a product of linear functions, and for all 1 < i < k, we have the following
relations.

diq1 = H c;j
j=1
D1 = dilip +1i3D;

Hence, Equation B simplifies as

TSICEAI

lis
= dpli B+ (dilka + Lz Dy) L

Suppose there is some factor [of L with 1 & (lg1,1). Then f = 0mod (lx1,!), which is not
possible. Hence, L must be a constant modulo ;1. For appropriate constants «, (3, we have

f = algs + Blrs Dy (mod lkl) (5)

We argue that the above equation cannot be true by inducting on k. If [;3 was independent of
lk1, then f = alge mod (Ig1,lx3) which is not possible. Therefore, lx3 must be a constant modulo
lk1. We then have the following (reusing o and [to denote appropriate constants):

f = alyp+ 8Dy (mod lx)
= adpo + B (dr—1lgg—1y2 + lp—1)3Dk—1) (mod 1)
— [= (alka+ Bde—1lg—1)2) + Blge—1)3Dr—1 (mod lxy)
The last equation can be rewritten in the form of Equation B with 33Dy replaced by B(;_1y3Dg—1-

Notice that the expression (Oélkg + ﬁdk_ll(k_l)g) is linear just like algs. Hence by using the argu-
ment iteratively we eventually get a contradiction at D;.

Case 2: All the l;1’s are constants.
In this case, Equation Bl can be rewritten as

SN

I3
= dlyp + li3Dy

The last equation is again of the form in Equation Bl (without the mod term) and hence the same
argument can be repeated here as well to give the desired contradiction. O

12

The following corollary provides some explicit examples of functions that cannot be computed.

Corollary 4.1. A depth 2 circuit over Ug(F) cannot compute the polynomial x1x9 + x324 + T576.
Other examples include well known functions like det,, and perm,,, the determinant and permanent
polynomials, for n > 3.

Proof. 1t suffices to show that f = x1x9 + x324 + T526 satisfy the requirement in Theorem

To obtain a contradiction, let us assume that there does exist two linear functions [and I
(with 1 ¢ (I3,13)) such that f mod (l,l2) is linear. We can evaluate f mod (l1,l2) by substituting a
pair of the variables in f by linear functions in the rest of the variables (as dictated by the equations
l1 =1l =0). By the symmetry of f, we can assume that the pair is either {z1, 22} or {x1,x3}.

If zy = I} and xz3 = I} are the substitutions, then ljxs + l524 can never contribute a term to
cancel off z5z¢ and hence f mod (l1,l2) cannot be linear.

Otherwise, let 21 = I{ and x5 = I} be the substitutions. If f mod (I1,l2) = I}l5 + z324 + 576
is linear, there cannot be a common x; with non-zero coefficient in both I} and ;. Without loss of
generality, assume that [} involves z3 and x5 and I} involves x4 and z¢. But then the product I}l
would involve terms like x3xg that cannot be cancelled, contradicting linearity again. O

4.2 Depth 2 model over My(F)

In this section we show that the power of depth 2 circuits is very restrictive even if we take the
underlying algebra to be Ma(F) instead of Ug(F). In the following discussion, we will refer to a
homogeneous linear function as a linear form.

Definition 4.2. A polynomial f of degree n is said to be r-robust if f does not belong to any ideal
generated by r linear forms.

For instance, it can be checked that det,, and perm,,, the symbolic determinant and permanent of
an n x n matrix, are (n — 1)-robust polynomials. For any polynomial f, we will denote the d'*
homogeneous part of f by [f]4. And let (hq,--- , hy) denote the ideal generated by hq,--- , hy. For
the following theorem recall the definition of degree restriction (Definition [[LJ) given in Section [II

Theorem 4.3. A polynomial f of degree n, such that [f], is 5-robust, cannot be computed by a
depth 2 circuit over Mao(IF) under a degree restriction of n.

We prove this with the help of the following lemma, which basically applies Gaussian column
operations to simplify matrices.

Lemma 4.4. Let f1 be a polynomial of degree m such that [fi], is 4-robust. Suppose there is a
linear matriz M and polynomials f2, g1, g2 of degree at most n satisfying

fi } [9]
=M
[f2 92
Then, there is an appropriate invertible column operation A such that

M-A:[l 2]
c3 hy+cy

where c3,cq are constants and hg, hy are linear forms.

We will defer the proof of this lemma to the end of this section, and shall use it to prove Theorem L3

13

Proof of Theorem [{.3 Assume, on the contrary, that we do have such a sequence of matrices
computing f. Since only one entry is of interest to us, we shall assume that the first matrix is a
row vector and the last matrix is a column vector. Let the sequence of minimum length computing
f be the following:

fZ@'Mle"'Md'w

Using Lemma 4] we shall repeatedly transform the above sequence by replacing M;M;.1 by
(M; A)(A~1 M, 1) for an appropriate invertible column transformation A. Since A would consist of
just constant entries, M;A and A_lMZ-H continue to be linear matrices.

To begin, let v = [l1, l3] for two linear functions Iy and lo. And let [f, fg]T = My --- Maw. Then

we have,
[A } [o ¢] [f]
0 0 0 fa

Hence, by Lemma E4l, we can assume v = [1, h] and hence f = fi; + hf;. By the minimality of the
sequence, h # 0. This forces f; to be 4-robust and the degree restriction makes [fs],, = 0.

Let [g1,92]7 = My--- Mgw. The goal is to translate the properties that [fi], is 4-robust and
[f2]n = 0 to the polynomials g; and g,. Translating these properties would show each M; is of the
form described in Lemma B4l Thus, inducting on the length of the sequence, we would arrive at
the required contradiction. In general, we have an equation of the form

]l

Since [f1], is 4-robust, using Lemma F4] again, we can assume that

EEENIH
f2 c3 ca+hy 92
by reusing the variables g, g2 and others. Observe that in the above equation if hy = 0 then

M;_1 M; still continues to be a linear matrix (since, by induction, M;_; is of the form as dictated
by Lemma E4l) and that would contradict the minimality of the sequence. Therefore hy # 0.

Claim: c3 = 0 (by comparing the n'” homogeneous parts of f; and g;, as explained below).

Proof: As hy # 0, the degree restriction forces deggs < n. And since deg fo < n, we have the
relation c3[g1]n = —halg2]n—1. If c3 # 0, we have [¢1], € (h4), contradicting robustness of [f1], as
then [fi]n = [g1]n + h2[g2]n—1 € (h2, h4). O

BN

fa] 10 cathy g2

with hy # 0. Also, since [fa]p+1 = [fe]n = O this implies that [g2], = [g2)n—1 = 0. Hence,
[91]n = [f1]n is 4-robust. This argument can be extended now to g; and go. Notice that the degree
of g1 remains n. However, since there are only finitely many matrices in the sequence, there must
come a point when this degree drops below n. At this point we get a contradiction as [g1], = 0
(reusing symbol) which contradicts robustness. O

Therefore Equation Bl gives,

We only need to finish the proof of Lemma EZl

14

Proof of Lemma[{.4} Suppose we have an equation of the form

|: .}1 :| |: hl C1 h2 C2 :| |: g1 :| (7)
72 hg + C3 h4 + (&} g2
On comparing degree n+1 lerms, we have

hilgiln + holg2]ln = 0
h3(giln + halge]n =

If hg and hy4 (a similar reasoning holds for h; and hy) were not proportional (i.e. not multiple of
each other), then the above equation would imply [g1]n, [g2]n € (hs3, hs). Then,

[filn = h1[g1)n—1 + h2[g2]n—1 + cilg1]n + c2[92]n € (h1, ho, h3, ha)

contradicting the robustness of [f1],. Thus, hs and h4 (as well as h; and hy) are proportional, in
the same ratio as [—go], and [g1],. Using an appropriate column operation, Equation [simplifies

|:f1:|:|:cl h2+02}[91]

f2 c3 hy+ey 92

If ¢; = 0, then together with [g2],, = 0 we get [f1], = ha[g2]n—1 contradicting robustness. Therefore
c1 # 0 and another column transformation would get it to the form claimed. O

5 Concluding remarks

We give a new perspective to identity testing of depth 3 arithmetic circuits by showing an equiva-
lence to identity testing of depth 2 circuits over Us(FF). The reduction implies that identity testing
of a width-2 algebraic branching program is at least as hard as identity testing of depth 3 circuits.

We also give a deterministic polynomial time identity testing algorithm for depth 2 circuits over
any constant dimensional commutative algebra. Our algorithm crucially exploits an interesting
structural result involving local rings. This naturally poses the following question - Can we use
more algebraic insight on non-commutative algebras to solve the general problem? The solution for
the commutative case does not seem to give any interesting insight into the non-commutative case.
But we have a very specific non-commutative case at hand. The question is - Is it possible to use
properties very specific to the ring of 2 x 2 matrices to solve identity testing for depth 3 circuits?

Acknowledgement

This work was started when the first author visited Hausdorff Center for Mathematics, Bonn.
We thank Marek Karpinski for the generous hospitality and several discussions. We also thank
Manindra Agrawal for several insightful discussions on this work. And finally thanks to V Vinay
for many useful comments on the first draft of this paper.

References

[AB99] Manindra Agrawal and Somenath Biswas. Primality and Identity Testing via Chinese
Remaindering. In FOCS, pages 202-209, 1999.

15

[Agr05]

[AJMVOS]

[AKS04]

[ALMT98]

[AMS08]

[AVO0S]

[BCSS]

[BWO5]

[CDGKO1]

[CK97]

[CS04]

[K103]

[KS01]

[KS07]

[LovT79]

[LVOS8]

Manindra Agrawal. Proving Lower Bounds Via Pseudo-random Generators. In
ESTTCS, pages 92-105, 2005.

FEric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arithmetic
Circuits: Depth Reduction and Size Lower Bounds. Theor. Comput. Sci., 209(1-2):47—
86, 1998.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. of Math,
160(2):781-793, 2004.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof Verification and the Hardness of Approximation Problems. Journal of the ACM,
45(3):501-555, 1998.

Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on
noncommutative and commutative polynomial identity testing. In IEEE Conference on
Computational Complexity, pages 268-279, 2008.

Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In FOCS,
pages 6775, 2008.

Michael Ben-Or and Richard Cleve. Computing Algebraic Formulas Using a Constant
Number of Registers. In STOC, pages 254-257, 1988.

Andrej Bogdanov and Hoeteck Wee. More on noncommutative polynomial identity
testing. In TEEE Conference on Computational Complezity, pages 92-99, 2005.

Michael Clausen, Andreas W. M. Dress, Johannes Grabmeier, and Marek Karpinski.
On Zero-Testing and Interpolation of k-Sparse Multivariate Polynomials Over Finite
Fields. Theor. Comput. Sci., 84(2):151-164, 1991.

Zhi-Zhong Chen and Ming-Yang Kao. Reducing Randomness via Irrational Numbers.
In STOC, pages 200-209, 1997.

Steve Chien and Alistair Sinclair. Algebras with polynomial identities and computing
the determinant. In FOCS, pages 352-361, 2004.

Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. In STOC, pages 355-364, 2003.

Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multi-
variate polynomials. In STOC, pages 216223, 2001.

Neeraj Kayal and Nitin Saxena. Polynomial Identity Testing for Depth 3 Circuits.
Computational Complexity, 16(2), 2007.

Laszlé Lovasz. On determinants, matchings, and random algorithms. In FCT, pages
565-574, 1979.

Daniel Lewin and Salil P. Vadhan. Checking Polynomial Identities over any Field:
Towards a Derandomization? In STOC, pages 438-447, 1998.

16

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In STOC, pages 410
418, 1991.

[RS04] Ran Raz and Amir Shpilka. Deterministic Polynomial Identity Testing in Non-
Commutative Models. In IEEE Conference on Computational Complexity, pages 215—
222, 2004.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Iden-
tities. J. ACM, 27(4):701-717, 1980.

[Sha90] Adi Shamir. IP=PSPACE. In FOCS, pages 11-15, 1990.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel com-
putation of polynomials using few processors. SIAM J. Comput., 12(4):641-644, 1983.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. EUROSAM, pages
216—226, 1979.

A Appendix

For the sake of completeness, we provide a proof of the result by Ben-Or and Cleve [BCSS].

Theorem A.l. [BC8Y] Let E be an arithmetic formula of depth d with fan-in (of every gate)
bounded by 2. Then, there exists a sequence of 3 X 3 matrices, whose entries are either variables or
constants, of length at most 4% such that one of the entries of their product is E.

Proof. The proof is by induction on the structure of £. The base case when E = c¢- z; is computed
as,

1
c-x; 1

Suppose E = f1 4+ fo and that we have inductively constructed sequences computing f; and fs.
Then the following equation gives a sequence for F.

1 1 1
1 1 = 1

fi 1 f2 1 fit fo 1

If E = f1- fs, then the following sequence computes E
1 1 1 1 1
—f2 1 1 fo 1 1 = 1
1 il 1 -fi 1 fife 1
Applying the above two equations inductively, it is clear that E can be computed by a sequence of
length at most 49, O
Eccc ISSN 1433-8092
17

http://eccc.hpi-web.de/

	Introduction
	The depth 2 model of computation
	Our Results
	Organization

	Identity testing over M2(F)
	Equivalence with depth 3 identity testing
	Width-2 algebraic branching programs

	Identity testing over commutative algebras
	Weakness of the depth 2 model
	Depth 2 model over U2(F)
	Depth 2 model over M2(F)

	Concluding remarks
	Appendix

