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Abstract

We present a Fourier-analytic approach to list-decoding Reed-Muller codes over
arbitrary finite fields. We prove that the list-decoding radius for quadratic polynomials
equals 1−2/q over any field Fq where q > 2. This confirms a conjecture due to Gopalan,
Klivans and Zuckerman [GKZ08] for degree 2. Previously, tight bounds for quadratic
polynomials were known only for q = 2, 3; the best bound known for other fields was
the Johnson radius which is roughly 1 − 1/

√
q.

We say that a polynomial over Fq is k-dimensional if it can be expressed as a
function of k linear functions. We reduce the Reed-Muller list-decoding problem to
list-decoding low-dimensional polynomials and present a new Fourier-based algorithm
for the low-dimensional case. The list-decoding radius achieved by this approach for
degree 3 and higher depends on questions regarding the weight-distribution of the
Reed-Muller code. We propose a conjecture in this regard, which if true, improves on
the best known bounds for the list-decoding radius for all d and q. The conjecture
holds true for F2, giving an alternate proof of the main result of [GKZ08].

Departing from previous work on Reed-Muller decoding which relies on some form
of self-corrector [GRS00, AS03, STV01, GKZ08], our work applies ideas from Fourier
analysis of Boolean functions to low-degree polynomials over finite fields. We believe
that the techniques used here could find other applications, we present applications to
testing and learning.
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1 Introduction

Traditional algorithms to decode error-correcting codes require that the received word is
within less than half the minimum distance of a codeword, so that the codeword can be
uniquely recovered. In the 1950s, Elias [Eli57] and Wozencraft [Woz58] introduced the
notion of list-decoding in order to decode beyond this barrier. Rather than returning a
single codeword, a list-decoding algorithm outputs all codewords within a specified radius
of a received word. It took over thirty years before Goldreich and Levin [GL89] and Sudan
[Sud97] gave efficient list-decoding algorithms for Hadamard codes and Reed-Solomon codes,
respectively. Since these breakthroughs, there has been much progress in devising list-
decoders for various codes [Gur04, Gur06, Sud00]. Indeed, list-decoding algorithms are the
only tools that we have for solving the nearest codeword problem beyond half the minimum
distance in the adversarial error model.

Algorithms for list-decoding error-correcting codes have proved tremendously useful in
computer science (see [Gur04, Chapter 12]), with applications ranging from hardness am-
plification for weakly hard functions [STV01, Tre03], constructions of hard-core predicates
from any one-way function [GL89, AGS03], constructions of extractors and pseudorandom
generators [TSZS01, SU05] and the average-case hardness of the permanent [Lip89]. Despite
the considerable progress in this area, for several natural and well-studied families of codes
including Reed-Solomon and Reed-Muller codes, the list-decoding radius, or the largest error
radius up to which the list-decoding problem is tractable is as yet unknown. This problem
for Reed-Muller codes is the focus of our paper.

Reed-Muller codes were discovered by Muller in 1954. The message space of the code
RMq(n, d) consists of all degree d polynomials in n variables over Fq, the codewords are
the evaluations of these polynomials at all points in F

n
q . Let δq(d) denote the normalized

minimum distance of RMq(n, d). If d = a(q − 1) + b where 0 6 b 6 q − 1, then

δq(d) =
1

qa

(

1 − b

q

)

. (1)

The case when d < q is the famous Schwartz-Zippel lemma.

Reed-Muller codes are one of the most well-studied families of error-correcting codes in
coding theory [MS77, Ass92]. They are also ubiquitous in computer science, indeed several
of the aforementioned applications of list-decoding [Lip89, GL89, STV01, TSZS01, SU05]
use Reed-Muller codes. A closely related problem is that of low-degree testing, where we are
given a function and asked to test if it is close to a codeword in the Reed-Muller code. This
is a problem that has been studied extensively in computer science [BLR93, AS03, AKK+05,
JPRZ04, KR04, Sam07], and plays in a key role in the original proof of the celebrated PCP
theorem [ALM+98, AS98].

For most applications above, the model of interest is the local-decoding model where
we are given an oracle for the received word R : Fn

q → Fq that can be queried at chosen
points. The goal is to devise an algorithm whose running time is polynomial in the size of
the message rather than the size of the codeword. The message being a degree d polynomial
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(d will be constant) in n variables over Fq, our goal is to run in time poly(n). So we are
interested in the settings where the list-size is a constant, or at worst poly(n). Our running
times are typically polynomial in q.

1.1 Previous Work

For (a family of) codes C ⊂ [q]n, let `(C, η) denote the maximum list-size at radius η (radius
η ∈ [0, 1] denotes normalized Hamming distance). LDR(C) is the largest η for which `(C, η−ε)
can be bounded by a function of ε (independent of n) for every ε > 0.

The study of list-decoding algorithms for Reed-Muller codes was initiated by the semi-
nal work of Goldreich and Levin on list-decoding Hadamard codes over F2 or equivalently
RM2(n, 1) codes [GL89]. They showed that LDR(RM2(n, 1)) = 1/2. Goldreich, Rubinfeld and
Sudan generalized this to Hadamard codes over Fq, showing that LDR(RMq(n, 1)) = 1− 1/q
[GRS00]. An important development was the discovery of powerful algorithms for list-
decoding univariate polynomials over Fq, due to Sudan [Sud97] and Guruswami and Sudan
[GS99]. Sudan, Trevisan and Vadhan used these algorithms to devise a list-decoder that
works up to radius 1 −

√

2d/q for [STV01], improving on work by Arora and Sudan [AS03]
and Goldreich et al. [GRS00] (see also[PW04]).

All of the aforementioned decoding algorithms reach a coding theoretic bound known
as the Johnson bound [Joh62, Joh63]. The Johnson bound guarantees that for any code of
minimum distance δ over Fq, LDR(C) > Jq(δ) = (1 − 1/q)(1 −

√

1 − qδ/(q − 1)). Since the
Johnson bound is oblivious to the structure of the code apart from its minimum distance,
one does not expect it to be tight for every code, yet examples of codes decodeable beyond
the Johnson bound are relatively few and recent (see the discussion in[DGKS08, GKZ08]). A
tantalizing open problem in this area is whether the Johnson bound is tight for Reed-Solomon
codes, this is precisely the radius achieved by the Guruswami-Sudan algorithm [GS99].

Recently, Gopalan, Klivans and Zuckerman (GKZ) considered the problem of list-decoding
Reed-Muller codes over F2 [GKZ08]. They showed that LDR(RM2(n, d)) = 2−d which for
d > 2 is much better than the Johnson bound. The GKZ algorithm is a generalization of
the Goldreich-Levin algorithm: we assume that we have the correct value of the polynomial
given as advice on a small random subspace A. This advice allows us to self-correct the
values at randomly chosen shifts of A, using a unique decoding algorithm. As pointed out in
GKZ, this relies crucially on the coincidence that the ratio of minimum distance to unique
decoding radius equals the field size (which is 2), and does not seem to extend to other fields
(see Appendix C). They propose the following conjecture:

Conjecture 1. [GKZ08] For any constants q, d, LDR(RMq(n, d)) = δq(d).

It is easy to show that LDR(RMq(n, d)) 6 δq(d), the crux of the conjecture is the matching
lower bound. GKZ show that once we bound `(RMq(n, d), η), (a suitable modification of)
the [STV01] algorithm can be used to recover the list of polynomials within radius η. Thus
the the algorithmic problem reduces to the combinatorial problem of bounding the list-
size. GKZ showed that LDR(RMq(n, d)) >

1
2
δq(d − 1); by Equation 4 this establishes the
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conjecture whenever d ≡ 0 mod q−1. This bound beats the Johnson bound for d sufficiently
large. However when d = 2, Conjecture 1 states that agreement exceeding 2/q guarantees
a small list, the Johnson bound guarantees a small list for agreement Ω(1/

√
q) whereas the

GKZ bound requires agreement exceeding 1/2. Indeed, we believe that the hard(est) case
of Conjecture 1 is when d is small, this precisely is where the gap between δq(d) and known
bounds is largest.

2 Our Results

We present a Fourier-analytic approach to Reed-Muller decoding, using a reduction to de-
coding low-dimensional polynomials. A k-dimensional function is one that can be expressed
as a k-junta (a function of at most k variables) under a suitable change of basis for Fn

q .

Definition 1. The dimension of F : Fn
q → Fq denoted dim(F ) is the smallest k for which

there exist linear functions α1, . . . , αk : Fn
q → Fq such that F can be expressed as a function

of α1, . . . , αk.

Our approach for bounding the list-size consists of two steps:

1. Bound the number of low-dimensional codewords that are close to any received word.
We do this by designing a new Fourier-based algorithm for list-decoding low-dimensional
polynomials. This algorithm and its analysis are the principal contributions of this
work.

2. Show that the low-weight codewords in the Reed-Muller codes stem from low-dimensional
codewords, and without these codewords the minimum distance improves to δh

q (d) >
δq(d). Invoking the deletion lemma [GKZ08, GGR09], this allows us to apply the John-
son bound for distance δh

q (d) to bound the number of high-dimensional polynomials in
the list.

Our algorithm for low-dimensional polynomials suffices to show that the number of low-
dimensional polynomials that lie within radius δq(d) is bounded independent of n. Formally,
let RMk

q (n, d) be the subcode of RMq(n, d) consisting of all polynomials of dimension at most
k (where k is constant).

Theorem 2.1. For all q, k and d it holds that LDR(RMk
q (n, d)) = δq(d).

In the case of quadratic forms, our notion of dimension coincides with the classical notion
of the rank of a quadratic form. It is well known that as the rank of a quadratic form increases,
the distribution of its values approaches the uniform distribution over Fq [LN97]. We use
this to prove:

Theorem 2.2. For all q, it holds that LDR(RMq(n, 2)) = δq(2). Further, for any q and
ε > 0, we have `(RMq(n, 2), δq(2) − ε) = poly(q, ε−1).
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This proves the GKZ conjecture for d = 2. In fact their conjecture was only for constant
q, whereas our bound is reasonable even for q = poly(n). Thus there is an efficient algorithm
to recover all quadratic polynomials that have agreement 2/q + ε. This improves on both
the Johnson bound, which requires agreement (1 +

√
q − 1)/q > 1/

√
q and the GKZ bound

which requires (q + 1)/2q > 1/2. Concretely, for q = 256, Theorem 2.2 guarantees constant
list-size for agreement exceeding 1/128, whereas Johnson and GKZ require agreement more
than 1/16 and 1/2 respectively.

For cubic forms and higher, the effectiveness of the method depends on how much the
distance improves in Step (2) by deleting all low-dimensional polynomials. To formalize this,
we define δh

q (d) which is the smallest weight at which codewords of unbounded dimension
appear. Let

δk
q (d) = min{wt(P ) : P s.t. deg(P ) 6 d, dim(P ) = k}; δh

q (d) = lim inf
k→∞

δk
q (d). (2)

While it is a priori unclear if δh
q (d) > δq(d), we conjecture that it is in fact substantially

larger.

Conjecture 2. For all d and q it holds that δh
q (d) > δq(d − 1).

Conjecture 2 fits within the framework of the structure versus randomness dichotomy
[Tao07]. For d < q, a multivariate degree d polynomial over Fq vanishes with probability
at most d/q, by the Schwartz-Zippel lemma. Though this bound is tight, a random degree
d polynomial is very likely to vanish with probability roughly 1/q, and polynomials that
vanish with much higher probability must have special structure. Indeed, Green and Tao
[GT07] (see also [KL08]) prove that if a degree d polynomial P vanishes with probability
exceeding 1/q, then it can be expressed as a function of a constant number of polynomials
of degree d− 1 polynomials. Similarly, Conjecture 2 asserts that a degree d polynomial that
vanishes with probability exceeding 1 − δq(d − 1) is a function of constantly many degree 1
polynomials.

Conjecture 2 is easy to verify for quadratic forms over any field. In the case of F2, it is
implied by classical results of Kasami and Tokura [KT70]. This allows us to give an alternate
proof of the GKZ result that LDR(RM2(n, d)) = 2−d using the following theorem:

Theorem 2.3. For all d and q it holds that LDR(RMq(n, d)) > min(Jq(δ
h
q (d)), δq(d)).

If Conjecture 2 holds, then Theorem 2.3 gives

LDR(RM(n, d)) > min(Jq(δq(d − 1)), δq(d))

which improves on the bound of max(1
2
δq(d − 1), Jq(δq(d))) from GKZ for all d and q where

their bound is less than δq(d). However, it falls short of proving Conjecture 1 for all d, q.
Nevertheless we feel that Conjecture 2 is natural and merits study in its own right; it captures
the intuition that restricting to high-dimensional polynomial improves the distance of Reed-
Muller codes. In section 5.3 we present some bounds on δh

q (d), and discuss the relation
between Conjectures 1 and 2.
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2.1 Our Techniques

All previous work on Reed-Muller decoding [GRS00, AS03, STV01, GKZ08] relies on the
notion of a self-corrector. Starting the correct values at some point(s) as advice, the algorithm
self-corrects the values of the polynomial along some low-dimensional subspace. Our work
departs entirely from the self-correction paradigm and draws on ideas from Fourier analysis
of Boolean functions; notably (a generalization of) the notion of influence of a variable.

Fourier analytic methods are extensively used in learning, typically for concept classes
such as halfspaces [KOS02, KKMS05] or decision trees [KM93] whose Fourier spectra show
good concentration. Reed-Muller decoding is equivalent to (agnostically) learning low-degree
polynomials over Fq. It is not at all clear that Fourier analysis ought to be useful even for d =
2, since quadratic forms over F2 are the canonical examples of bent functions whose Fourier
spectrum is maximally anti-concentrated [MS77]. However, the deletion lemma allows us
to focus on low-degree polynomials which are additionally low-dimensional (dimension at
most 6 for quadratic forms). The Fourier spectrum of a k-dimensional polynomial P is
supported on a k-dimensional subspace Spec(P ). Our key insight is that within Spec(P ), the
Fourier mass is anti-concentrated, which makes it possible to identify Spec(P ) via Hadamard
decoding, even after the adversary has corrupted the codeword. We outline the main ideas
underlying the proof of this statement below:

1. Finding Spec(P ): Fix q = 2 for simplicity. The Fourier mass of a k-dimensional
polynomial P lies entirely on the subspace Spec(P ) of dimension k. It is easy to recover
P if we know Spec(P ). Our goal is to show for any received word F where ∆(F, P ) 6

δq(d), the large Fourier coefficients of F contain a basis for Spec(P ). Equivalently,
the large Fourier coefficients α of F that lie in Spec(P ) should not all fall in a low-
dimensional subspace B ⊂ Spec(P ) satisfying an additional equation b · α = 0. One
can try and prove this using the Fourier expression for `2 distance, but this approach
fails; owing to counterexamples which are real-valued functions.

2. The Influence of a Direction: Given a function F , the Fourier mass that lies in
the set Sb = {α : b · α 6= 0} captures the influence of direction b, which is defined as
Prx∈F

n
2
[F (x) 6= F (x + b)]. This generalizes the notion of the influence of a variable

[KKL88]. Influences in low-degree polynomials P show a dichotomy: they are 0 over
a subspace Inv(P ) = Spec(P )⊥, and large for all other b. We use this to show that
if ∆(F, P ) 6 δq(d), and if b is influential in P , then it has noticeable influence on F .
Hence, a noticeable fraction of the Fourier mass of F lies in the set Sb. But it falls
short of the claim we really wish to prove, which is that there is noticeable Fourier
mass lying in Spec(P ) ∩ Sb, since F (unlike P ) need not be low-dimensional.

3. Folding the Received word: The crucial step of our analysis is to go from F to a
randomized function F, obtained by folding F over the subspace Inv(P ) = Spec(P )⊥.
While we defer the formal definition of folding, the following example is illustrative: if P
depends only on X1, . . . , Xk, then so does F; for each setting of x1, . . . , xk, F(x1, . . . , xk)
equals F (x1, . . . , xn) where xk+1, . . . , xn are set randomly. From the viewpoint of P ,

5



F is a received word where the noise added at each point is randomized. The crucial
observation is that the noise rate stays the same, so ∆(F, P ) 6 δq(d). Hence every
influential direction b of P still has influence on F. But since F is obtained by folding F
over Inv(P ), the Fourier spectrum of F if just that of F projected on to Spec(P ). Thus
we conclude that F (and hence F ) has noticeable Fourier mass lying in Spec(P ) ∩ Sb.
Note that folding is just introduced for the sake of analysis, it plays no role in the
algorithm.

4. Fourier analysis over Fq: Implementing the above scheme over Fq is fairly chal-
lenging, since it is unclear what the Fourier expansion of F : Fn

q → Fq should mean.
Our main technical innovation is to associate q−1 Fourier polynomials with every such
F , this allows us to exactly arithmetize Hamming distance over Fq and handle ran-
domized functions which is crucial in our setting. We believe that this machinery will
find other applications. We use it to prove an equivalence between learning parity with
worst-case noise and weaker noise models over Fq, extending a result of [FGKP06] for
F2. We present a Fourier-based analysis of linearity testing over arbitrary finite fields
Fq, extending the analysis of Hastad and Wigderson for prime fields [BCH+96, HW03].

Organization: We present Fourier-analytic preliminaries in Section 3, the proofs for this
section are deferred to Appendix B. The decoding algorithm for low-dimensional polynomials
and its analysis are in Section 4. We present reductions to the low-dimensional case in
Section 5, together with some discussion of Conjectures 1 and 2. We present applications to
Learning and Testing in Appendix A. We discuss the relation between our work and that of
[GKZ08, GGR09] in more detail in Appendix C.

3 Low-Dimensional Functions, Folding and Influences

The proofs for all claims in this Section are in Appendix B.

Fourier analysis

Let p = char(q) and let q = ph. Let ω be a primitive pth root of unity. Given a random
variable Z taking values in Fq, we define the quantities zc = EZ [ωTr(cZ)], which we call the
(un-normalized) Fourier coefficients of Z. For two such random variables Y, Z, let SD(Y, Z)
denote their statistical distance. The following relation to the Fourier transform is folklore:

Fact 3.1. For two random variables Y, Z taking values in Fq, we have

SD(Y, Z) 6
1

2





∑

c∈F?
q

|yc − zc|2




1

2

.
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Let Tr(x) =
∑h−1

i=0 xpi

denote the trace map from Fq to Fp. The set of all linear functions

Fq → Fp is given by {Tr(cx)}c∈Fq
. The character group F̂q

n
of Fn

q of all homomorphisms

χ : Fn
q → C comprises all functions of the form χα(x) = ωTr(α(x)) where α : Fn

q → Fq is a
linear function. It is easy to show that the functions χα form an orthonormal basis for all
functions f : Fn

q → C under the inner-product 〈f, g〉 = Ex∈Fn
q
f(x)g(x). Thus every such f

has a Fourier expansion given by

f(x) =
∑

α∈F̂q
n

f̂(α)χα(x).

We also have ‖f‖2 = 〈f, f〉 =
∑

α |f̂(α)|2. Given a polynomial F : Fn
q → Fq, we associate it

with q − 1 Fourier polynomials mapping Fn
q → C, one for every c ∈ F?

q , given by

f c(x) := ωTr(cF (x)) =
∑

α∈F̂q
n

f̂ c(α)χα(x).

Using q − 1 polynomials lets us exactly arithmetize agreement and Hamming distance, this
is crucial in some of our applications in Section A.

Fact 3.2. Given functions F, G that map Fn
q → Fq,

Ag(F, G) =
1

q
(1 +

∑

c∈F?
q

〈f c, gc〉) =
1

q
(1 +

∑

c∈F?
q

∑

α

f̂ c(α)ĝc(α)) (3)

∆(F, G) =
1

2q

∑

c∈F?
q

‖f c − gc‖2
2 =

1

2q

∑

c∈F?
q

∑

α∈F̂q
n

|f̂ c(α) − ĝc(α)|2 (4)

Randomized Functions

We consider randomized functions F : Fn
q → Fq, where each F(x) is a random variable taking

values in Fq. We define the Fourier polynomials associated with F:

Definition 2. Given a randomized function F : Fn
q → Fq, for each c ∈ F?

q, we define the
polynomial f c : Fn

q → C by

f c(x) = EF[ωTr(cF(x))] =
∑

α∈F̂q
n

f̂ c(α)χα(x).

Note that f c is a (deterministic) function from Fn
q → C and the values {f c(x)}c∈F ?

q
give us

the Fourier transform of F(x). Given two randomized functions F,G : Fn
q → Fq, we define

d(F,G) = Ex∈Fn
q
[SD(F(x),G(x))]

generalizing the definitions for deterministic functions.
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Fact 3.3. Given randomized functions F,G that map F
n
q → Fq,

d(F,G) 6
1

2





∑

c∈F?
q

Ex[|f c(x) − gc(x)|2]





1

2

=
1

2





∑

c∈F?
q

∑

α∈F̂q
n

|f̂ c(α) − ĝc(α)|2




1

2

. (5)

Low-Dimensional Functions

We first define low-dimensional randomized functions.

Definition 3. A randomized function F : Fn
q → Fq is k dimensional if there exist k linear

forms α1, . . . , αk : Fn
q → Fq such that knowing α1(x), . . . , αk(x) fixes the distribution of F(x).

Hence F is a (randomized) function of α1, . . . , αk, generalizing Definition 1. Facts 3.4
and 3.5 below are proved in [GKS07, GOS+09] for deterministic functions.

Fact 3.4. For each c ∈ F?
q, let Supp(f c) ⊆ F̂q

n
denote the set of non-zero Fourier coefficients

of f c(x). Let Spec(F) = Span(∪c∈F?
q
Supp(f c)). Then dim(F) = dim(Spec(F)).

Alternatively, low-dimensional functions can be defined via invariant subspaces.

Definition 4. Given h ∈ Fn
q , if F : Fn

q → Fq satisfies

SD(F(x + λh),F(x)) = 0 ∀ x ∈ F
n
q , λ ∈ Fq

we say that F is h-invariant. We define Inv(F) = {h : F is h-invariant}.

Inv(F) is clearly a subspace of Fn
q , and is in fact dual to Spec(F).

Fact 3.5. We have Spec(F) = Inv(F)⊥. Hence dim(F) = codim(Inv(F)).

Folding

Folding over subspaces was introduced in [FGKP06] (in the F2 case). Folding maps high-
dimensional functions to lower-dimensional randomized functions.

Definition 5. Let H be a subspace of Fn
q and let F : Fn

q → Fq. Define the randomized
function F(x) = F (x+h) where h ∈ H is chosen randomly. We call F the folding of F over
H.

Given an oracle for F , we can simulate an oracle for F: on query x, choose a random
point x + h in the coset x + H and return F (x + H). Thus F is invariant on H . In fact, its
Fourier spectrum is obtained by projecting the spectrum of F onto H⊥.

Lemma 3.6. [FGKP06] Let F be the folding of F over H. For any c ∈ F?
q, we have

f̂ c(α) = f̂ c(α) if α ∈ H⊥ and f̂ c(α) = 0 otherwise.
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The Influence of a Direction

We define the influence of a direction, which is a generalization of the notion of influence of
a variable. Given a vector b ∈ Fn

q \ {0n}, we partition Fn
q into lines along the direction b,

which are the equivalence classes for the relation x ∼ y if x − y = λb for some λ ∈ Fq. This
partition is just Fn

q /{b}, and it is isomorphic to Fn−1
q .

Definition 6. (Influence of a direction) Given b ∈ Fn
q , and a function F : Fn

q → Fq we define

Infb(F ) = Pr
x∈Fn

q ,λ∈Fq

[F (x) 6= F (x + λb)].

One can relate Infb(F ) to the Fourier mass lying outside the subspace of F̂q
n

given by
b · α = 0.

Fact 3.7. Given b ∈ Fn
q , we have

Infb(F ) =
1

q

∑

c

∑

α: b·α6=0

|f̂ c(α)|2 (6)

We extend the notion of influences to randomized functions (generalizing the above no-
tion). To compute the influence of b for a deterministic function, we pick sample two points
on a line (in the direction b) and compute their Hamming distance. For randomized function,
we sample two points and compute their statistical distance.

Definition 7. Given a randomized function F : Fn
q → Fq and b ∈ Fn

q , we define Infb(F) as

Infb(F) = Ex∈Fn
q ,λ∈Fq

[SD(F(x),F(x + λb)].

One can again bound the influence in terms of the Fourier mass that lies outside the
subspace b · α = 0.

Lemma 3.8. Given b ∈ Fn
q , we have

Infb(F) 6
1√
2





∑

c∈F?
q

∑

α: b·α6=0

|f̂ c(α)|2




1

2

.

4 List-decoding low-dimensional polynomials

In this section, we prove Theorem 2.1. Assume that we have an efficient procedure Had for
finding large Fourier coefficients over Fn

q . Given oracle access to f : Fn
q → C and a parameter

µ, Had(f, µ) returns all α ∈ F̂q

n
so that |f̂(α)|2 > µ. The list-size is bounded by ‖f‖2

2/µ.
Such algorithms are given by [Man95, GGI+02, AGS03]. Theorem 2.1 is proved by arguing
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that the polynomial P will be in the list of polynomials that is returned by the following
algorithm.

Algorithm 1. List-Decoding low-dimensional polynomials

Input: d, k, ε, oracle for F : Fn
q → Fq.

Output: All P : Fn
q → Fq s.t. deg(P ) 6 d, dim(P ) 6 k and ∆(P, F ) 6

δq(d)(1 − ε).

1. Set µ = ε4δq(d)2/(8qk+1).
2. Run Had(f c, µ) for all c ∈ F?

q.

3. Let L be the list of all linear functions α returned.

4. Pick α1, . . . , αk from L.
5. Return all P (α1, . . . , αk) s.t. deg(P ) 6 d and ∆(P, F ) 6 δq(d)(1 − ε).

4.1 Correctness of the Algorithm

Fix a polynomial P with deg(P ) 6 d, dim(P ) 6 k and ∆(F, P ) = η 6 δq(d)(1 − ε). Our
goal is to prove that the list L contains a basis for Spec(P ), which implies that P one of
the polynomials returned by our algorithm. For the analysis, we work with the randomized
function F obtained by folding F over Inv(P ). Folding over Inv(P ) projects the Fourier
spectrum of F on to Spec(P ), which is a small subspace with only qk vectors in it. Our main
lemma states that all directions that were influential in P continue to have some influence
even in F.

Lemma 4.1. (Main) For the function F defined above and any b 6∈ Inv(P ),

Infb(F) >
ε2

4
δq(d).

Proof. Consider the vector space V = F
n
q /Inv(P ) ∼ F

k
q . We can view P as a function

P : V → Fq. Similarly, we can view F as a randomized function F : V → Fq, obtained by
adding random noise of rate η to P . Formally, for each y ∈ V , define the noise rate

η(y) = Pr
F

[F(y) 6= P (y)] = Pr
x∈y+Inv(P )

[F (x) 6= P (y)]

and note that

Ey∈V η(y) = Pr
y∈V,x∈y+Inv(P )

[F (x) 6= P (y)] = Pr
x∈Fn

q

[F (x) 6= P (x)] = η.

Our goal is to show that any b 6∈ Inv(P ) has non-negligible influence on F. Recall that
for a randomized function F : Fn

q → Fq and b ∈ Fn
q , we defined Infb(F) as

Infb(F) = Ex∈Fn
q ,λ∈Fq

[SD(F(x),F(x + λb))].

10



Since F is invariant on Inv(P ), this is equivalent to

Infb(F) = Ey∈V,λ∈Fq
[SD(F(y),F(y + λb))]. (7)

Consider V/{b}, the partition of V into lines along b. We can rewrite Equation 7 as

Infb(F) = EL∈V/{b}
x,y∈L

[SD(F(x),F(y))]. (8)

Let us fix a basis containing the vector b for V : call it {a1, . . . , ak−1, b}. Every vector
y ∈ V can be written in this basis as y =

∑k−1
i=1 aiyi + byk. The polynomial P can we written

as P (y1, . . . , yk) of degree d. Assume that yk occurs with degree d2 6 q − 1 (this might
depend on the choice of basis). So we can write

P (y1, . . . , yk) = Q(y1, . . . , yk−1)y
d2

k +
∑

e<d2

Qe(y1, . . . , yk−1)y
e
k.

for some Q such that deg(Q) = d1 6 d − d2. Fixing values for (y1, . . . , yk−1) specifies a line
in V/{b}, while fixing yk specifies a point on that line. Thus we have

Infb(F) = E
y1,...,yk−1,yk,y′

k

[SD(F(y1, . . . , yk−1, yk),F(y1, . . . , yk−1, y
′
k))]. (9)

We say that a line ` = (y1, . . . , yk−1) ∈ V/{b} is good if Q(y1, . . . , yk−1) 6= 0. Since
deg(Q) 6 d1, Pr`[` is good] > δq(d1). Conditioning on the event that ` is good, P |` is a
univariate polynomial of degree d2. Hence, it takes on any particular value in Fq no more
than d2 times. In contrast, if ` is bad, then P |` is constant.

Define the noise rate η(`) for a line as η(`) = Ey∈`[η(y)]. We have E`∈V/{b}[η(`)] = η. We
say that a good line is quiet if the noise rate along the line is low:

η(`) 6

(

1 − d2

q

)

(

1 − ε

2

)

.

We claim that at least ε/2 fraction of good lines are quiet; else we have

E`[η(`)] > δq(d1)
(

1 − ε

2

)

(

1 − d2

q

)

(

1 − ε

2

)

> δq(d1)

(

1 − d2

q

)

(1 − ε) > δq(d)(1 − ε).

where the last inequality follows from the following property of δq(d):

δq(d) 6 δq(d1)

(

1 − d2

q

)

for all d1, d2 s.t. d1 + d2 6 d, 0 6 d2 6 q − 1.

This is easy to verify from Equation 1. Now fix a quiet line `. We have a polynomial
P |` : ` → Fq of degree d2 6 q − 1 and a randomized received word F|` such that

d(P |`,F|`) = Ex∈`[SD(P (x),F(x))] = Ex∈`[η(x)] 6 δq(d2) − ε′

where δq(d2) = 1− d2

q
and ε′ = 1

2
δq(d2)ε. The final piece of the argument is to show that for

every quiet line, Infb(F) is high, which is essentially a claim about univariate polynomials.
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Claim 4.2. For a quiet line `, we have Ex,y∈`[SD(F(x),F(y))] > ε′.

Let us defer the proof of this claim and finish the proof of Lemma 4.1. We have argued
that

Pr
`∈V/{b}

[` is quiet] >
1

2
εδq(d1) (10)

Conditioned on the event that ` is quiet, we have proved that

E
x,y∈`

[SD(F(x),F(y))] >
1

2
εδq(d2) (11)

Plugging this into Equation 8 gives

Infb(F) = E`∈V/{b}
x,y∈`

[SD(F(x),F(y))] >
ε2

4
δq(d1)δq(d2) >

ε2

4
δq(d) (12)

which completes the proof of Lemma 4.1.

Proof of Claim 4.2. For the purposes of this claim, we use P and F to denote P |` and F|`
respectively. Similarly d(·, ·) will denote distance between randomized functions on the line
`.

For every distribution D on Fq, we can define the (constant) randomized function Dq :
` → Fq where Dq(x) = D for every x ∈ `. We claim that d(P,Dq) > δq(d2) for every such
distribution D. In the case where D = Dy is concentrated at a single point y ∈ Fq, this holds
since P (x) is a univariate polynomial with deg(P ) = d2 and so Prx[P (x) = y] 6 d2/q. More
generally, we have

d(P,Dq) = Ex[SD(P (x),D)] =
∑

x∈Fq

1

q
(1 −D(P (x)) =

∑

y∈Fq

Pr[P (x) = y](1 −D(y))

=
∑

y∈Fq

Pr[P (x) = y] −
∑

y∈Fq

Pr[P (x) = y]D(y) > 1 − d2

q

where the last inequality uses Prx[P (x) = y] 6 d2/q as deg(P ) 6 d2. By the triangle
inequality

d(F,Dq) > d(P,Dq) − d(F, P ) > δq(d2) − (δq(d2) − ε′) = ε′.

We compute Ex,y∈`[SD(F(x),F(y))] by first sampling x ∈ ` and then computing the
distance between F and the distribution Dq where D = F(x).

Ex,y∈`[SD(F(x),F(y))] = Ex∈`[Ey∈`[SD(F(x),F(y))]] = Ex∈`[d(F(x)q,F)] > ε′.

This finishes the proof of Claim 4.2.

With the Main lemma in hand, Theorem 2.1 follows easily by the following claim:

12



Lemma 4.3. The list L returned contains a basis for Spec(P ).

Proof. Assume that the Fourier coefficients in L∩Spec(P ) do not span all of Spec(P ), rather
they span a subspace B of it that satisfies the additional constraint b ·α = 0 for b ∈6∈ Inv(P ).
We have

1√
2





∑

c∈F?
q

∑

α:b·α6=0

|f̂ c(α)|2




1

2

> Infb(F) >
1

4
ε2δq(d) (13)

where the first inequality is from Lemma 3.8 and the second from Lemma 4.1. Applying
Lemma 3.6 to the function F which is F folded over Inv(P ), we get f̂ c(α) = f̂ c(α) for
α ∈ Spec(P ) and f̂ c(α) = 0 otherwise. Combining these equations, we get

∑

c∈F?
q

∑

α∈Spec(P )\B

|f̂ c(α)|2 >
1

8
ε4δq(d)2

Since we sum over (qk − qk−1)(q − 1) < qk+1 Fourier coefficients on the LHS, at least one of
them is as large as the average. Thus, there exist c ∈ F

?
q and α ∈ Spec(P ) \ B so that

|f̂ c(α)|2 >
1

8

ε4δq(d)2

qk+1
.

This coefficient α must belong to the list L, which contradicts the assumption that L ∩
Spec(P ) is contained within B.

A simple calculation which we omit gives the following bound on the list-size for RMk
q (n, d)

(we have not attempted to optimize this bound). There exists a constant c > 0 such that

`(RMk
q (n, d), δq(d)(1 − ε)) 6

ckqkd+k2+2k

ε4kδq(d)2k
. (14)

The running time of Algorithm 1 is polynomial in nd, q and the list-size.

5 Reductions to the low-dimensional case.

We use the [GGR09] version of the deletion lemma from [GKZ08].

Lemma 5.1. [GKZ08, GGR09] (Deletion Lemma) Let C ⊂ F
n
q be a linear code over Fq. Let

C′ ⊆ C be a (possibly non-linear) subset of codewords so that c′ ∈ C′ iff −c′ ∈ C′, and every
codeword c ∈ C \C′ has wt(c) > δh. Let η = Jq(δ

h)−γ for γ > 0. Then `(C, η) 6 γ−2`(C′, η).
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5.1 Quadratic Forms

For quadratic forms Q : F
n
q → Fq, dim(Q) coincides with the well-studied notion of the

rank of a quadratic form. Theorems 6.26, 6.27 and 6.32 from Chapter 6 of [LN97] give the
following bound:

Lemma 5.2. Let Q : F
n
q → Fq be a quadratic form such that dim(P ) = k. Then

wt(Q) > 1 − 1

q
− 1

qk/2
.

We use this to complete the proof of Theorem 2.2.

Proof of of Theorem 2.2. By Lemma 5.2, if dim(Q) > 6, then we have

wt(Q) > 1 − 1

q
− 1

q3
; Jq

(

1 − 1

q
− 1

q3

)

> 1 − 2

q
.

Hence we can apply Lemma 5.1 with C′ = RM6
q(n, 2) to conclude that there exists C so that

`(RMq(n, 2), δq(2) − ε) 6
1

ε2
`(RM6

q(n, 2), δq(2) − ε) 6 C
q84

ε26
.

5.2 The F2 case revisited

Using our techniques, we can give an alternate proof of the GKZ result that LDR(RM2(n, d) =
2−d. A classical result of Kasami and Tokura allows us to bound the rank of any codeword
of RM2(n, d) which has dimension less than 2δ2(d).

Lemma 5.3. [KT70] Let d > 2. Let P : Fn
2 → F2 with deg(P ) 6 d and wt(P ) < 2δ2(d).

Then P is of one of the following two types:

1. P (α1, . . . , αd+t) = α1 · · ·αd−t(αd−t+1 · · ·αd + αd+1 · · ·αd+t) 3 6 t < d.
2. P (α1, . . . , αd+2t−2) = α1 · · ·αd−2(αd−1αd + αd+1αd+2 + · · · + αd+2t−3αd+2t−2).

where the αis are independent linear forms.

Strictly speaking, the αis are affine rather linear, but we can safely ignore this issue.

Corollary 5.4. Let P : F
n
2 → F2 be a degree d polynomial with dim(P ) = k > 2d. Then

wt(P ) > 2δ2(d) − 2−(k+d)/2.

Proof. Assume that wt(P ) < 2δ2(d), else the claim is trivial. Now applying Lemma 5.3,
P must be of type (2), since polynomials of type (1) have dimension less than 2d. A
simple calculation shows that for polynomials of type (2), if dim(P ) = k, then wt(P ) >

2δ2(d) − 2−(k+d)/2.
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We can now reprove the main result from [GKZ08]. Our dependence is polynomial in
ε−r, though the exact bound is inferior to GKZ, who also showed a lower bound of ε−Ω(r).

Theorem 5.5. [GKZ08] For all d > 1, it holds that LDR(RM2(n, d)) = 2−d.

Proof. Pick k = 3d. Take C′ = RMk
2(n, d). By Equation 14, we have

`(C′, δ2(d) − ε) 6 Cε−12d

for some constant C = C(d) that depends on d. By Corollary 5.4, if dim(P ) > 3d,

wt(P ) > 2 · 2−d − 2−2d; J2(2 · 2−d − 2−2d) > 2−d.

Hence applying Lemma 5.1, we get

`(RM2(n, d), δ2(d) − ε) 6 Cε−(12d+2)

which completes the proof.

5.3 The Case of arbitrary d and q.

In Equation 2 defining δk
q (d), we minimize over the infinite set of all degree d polynomials

P with dim(P ) = k, the number of variables n could be arbitrary. But since dim(P ) = k,
we may assume that P is on exactly k variables. Thus we are in effect minimizing over the
finite set of P : Fk

q → Fq s.t. deg(P ) = d and dim(P ) = k, so δk
q (d) is well-defined.

Combining the deletion lemma with Theorem 2.1 lets us complete the proof of Theorem
2.3.

Proof of Theorem 2.3. Let η = min(δq(d), Jq(δ
h
q (d))) − ε. Our goal is to show that for any

ε > 0, `(RMq(n, d), η) which is the list-size at radius η can be bounded independent of n.

Since η 6 δq(d) − ε, by Theorem 2.1

`(RMk
q (n, d), η) 6 `(d, k, q, ε) =

ckqkd+k2+2k

ε4kδq(d)2k
.

Choose k large enough so that

1. δk′

q (d) > δk
q (d) for all k′ > k.

2. Jq(δ
k
q (d)) > Jq(δ

h
q (d)) − ε/2.

The second condition implies that

η 6 Jq(δ
h
q (d)) − ε 6 Jq(δ

k
q (d)) − ε/2.
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Every codeword outside of RMk
q (n, d) has dim(P ) > k, and hence wt(P ) > δk

q (d). Thus

we can invoke Lemma 5.1 with C′ = RMk
q (n, d) to conclude that

`(RMq(n, d), η) 6
4

ε2
`(d, k, q, ε) = `′(d, k, q, ε).

This shows that the list-size at radius min(δq(d), Jq(δ
h
q (d)))− ε is bounded independent of n

for every ε > 0, which proves the claim.

If Conjecture 2 holds true, then Theorem 2.3 implies that

LDR(RMq(n, d)) > min(Jq(δq(d − 1)), δq(d)).

This would improve on both the GKZ and the Johnson bound by the following claim:

Claim 5.6. For all d and q, it holds that

min(Jq(δq(d − 1)), δq(d)) > max

(

Jq(δq(d)),
1

2
δq(d − 1)

)

.

The inequality is strict except when d = 1 and d ≡ 0 mod q − 1, and in both those cases the
RHS equals δq(d).

Proof. Note that for all η ∈ [0, 1 − 1/q], we have

η/2 6 Jq(η) 6 η

with Jq(η) = η iff η = 1 − 1
q

and Jq(η) = η/2 iff η = 0. Also J(η) increase monotonically
with η.

Further, if d = a(q − 1) + b for 1 6 b 6 q − 1,

δq(d − 1) = δq(d)

(

1 +
1

q − b

)

⇒ q

q − 1
δq(d) 6 δq(d − 1) 6 2δq(d).

The former is tight when d ≡ 1 mod (q − 1), the latter when d ≡ q − 1 mod (q − 1).

We now prove the above claim. Firstly, note that from the above inequalities, we have

Jq(δq(d − 1)) >
1

2
δq(d − 1) and Jq(δq(d − 1)) > Jq(δq).

Secondly, we also have

δq(d) >
1

2
δq(d − 1) and δq(d) > Jq(δq(d)).

The first inequality is strict, except when d ≡ q − 1 mod (q − 1). In this case, the GKZ
bound is already tight. Similarly, the second inequality is strict except when δq(d) = 1 − 1

q
,

which holds when d = 1 or Hadamard codes, in which case the Johnson bound is tight.
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Note that conjecture 2 holds if d = 2 and q is arbitrary, or if q = 2 and d is arbitrary.
The quadratic case follows from Lemma 5.2 while the F2 case follows from Corollary 5.4.
Indeed, in both cases δq(d − 1) = δh

q (d) = limk→∞ δk
q (d).

Assuming the truth of Conjecture 2, one could ask how close it gets us to proving Con-
jecture 1. This depends on how Jq(δq(d − 1)) compares to δq(d). When d = 2, we have
Jq(δq(1)) > δq(2). But for d = 3 and larger, assuming q is a large constant, we have

Jq(δq(d − 1)) ≈ 1 −
√

d − 1

q
< 1 − d

q
= δq(d).

Hence the minimum of the two quantities is Jq(δq(d−1)). As d gets larger, δq(d−1) decreases
towards 0, hence Jq(δq(d − 1)) ≈ 1

2
δq(d − 1). So our approach approaches the GKZ bound.

5.4 An upper bound on δh
q (d).

We now present an upper bound on δh
q (d).

Lemma 5.7. For all d > 3 and q, we have

δh
q (d) 6 δq(d − 2)

(

1 − 1

q

)

. (15)

Proof. Let k be odd. Define Q : F
k
q → Fq to be a dimension k quadratic form which is

completely unbiased. For instance, we can take

Q(Y1, . . . , Yk) =
∑

i6bk/2c

Y2iY2i+1 + Yk.

Take R(Z1, . . . , Z`) to be a minimum weight codeword on degree d − 2, this requires
` = dd−2

q
e. Now set P = QR, so that P : F

k+`
q → Fq, deg(P ) = d, dim(P ) = k + ` and

wt(P ) = δq(d − 2)

(

1 − 1

q

)

.

Thus by taking k sufficiently large, we can construct polynomials of the desired weight whose
dimension grows unbounded.

Let us compare this upper bound with the lower bound of δq(d − 1) claimed in our
conjecture. Let d − 1 = a(q − 1) + b, where 1 6 b 6 q − 1.

δq(d − 1) =
1

qa

(

1 − b

q

)

,

δq(d − 2)

(

1 − 1

q

)

=
1

qa

(

1 − b − 1

q

) (

1 − 1

q

)

= δq(d − 1)

(

1 +
1

q − b

) (

1 − 1

q

)

.

Thus the ratio between the bounds grows from 1 when b = 1 to 2(1 − 1
q
) when b = q − 1.
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Conclusions

We feel that Theorem 2.1 is an important step towards identifying the right list-decoding
radius for Reed-Muller codes. The tight examples of configurations with large list-size at
radius δq(d) stem from low-dimensional polynomials [GKZ08]. Theorem 2.1 shows that
low-dimensional polynomials are not an obstacle to the GKZ conjecture, which might be
considered as evidence in its favor. The weakness of our argument is in applying the Johnson
bound for the high-dimensional case. Indeed, we believe that the quantity δh

q (d) itself might
have a significant role to play in identifying the right list-decoding radius and (dis)proving
the GKZ conjecture. We propose determining its precise value and resolving Conjecture 2
as natural open problems.
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A Applications to Learning and Testing

The machinery of Fourier analysis over Fq developed in previous sections allows to extend
results which were previously only known to hold over Fp or sometimes F2 to arbitrary fields,
we present examples from learning and testing.

Noisy Parity over all fields

We consider the problem of learning noisy parity over various fields under the uniform
distribution. The Noisy Parity problem is a central problem in learning theory [BKW03,
FGKP06], with connections to coding and cryptography. There are cryptosystems whose
security is based on the assumption that learning parity with random noise is hard over
large fields (see [Pei09] and references therein). Feldman et al. show that many of the
central open problems in uniform distribution learning reduce to the noisy party problem
over F2 [FGKP06].

Feldman et al. [FGKP06] gave a reduction from learning parity with adversarial noise to
learning parity with random noise over F2. No such result was known for any other field.
Unlike the F2 case, there are many possible models for random noise over Fq of varying
sophistication [LN98]. We present a reduction to the Discrete Memoryless Channel DMC

model. This is a well-studied noise model lying in between the adversarial model and the
additive random noise model. The idea, as in the [FGKP06] reduction is to fold F over a
random subspace H . We show that with reasonable probability, the resulting randomized
function is a parity function with random noise. To prove this, we need to simultaneously
work with all q − 1 Fourier polynomials, as opposed to a single polynomial in [FGKP06].

Linearity Testing

The linearity testing problem is perhaps the most basic problem in all of property testing.
Given a function F : Fn

q → Fq, we are asked to test if it is close to a linear function. This
test was proposed and first analyzed in the seminal work of [BLR93]. A tight Fourier based
analysis was presented in the case of F2 by Bellare et al. [BCH+96] and for prime fields Fp

by Hastad and Wigderson [HW03]. We provide the first Fourier based analysis of the BLR
test over arbitrary finite fields. Our bound matches that obtained by [BCH+96, HW03].
Further, since we work with q − 1 polynomials, we do not need to assume that the function
over Fq which we are testing is folded [HW03].
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A.1 Learning Parity with Noise over Arbitrary Fields

For simplicity, we consider the problem as learning affine functions, it is easy to see that
this is equivalent to learning linear functions. We use η for the (non-trivial) agreement rate
rather than the noise rate.

Adversarial Channel: We are given examples 〈x,F(x)〉 from some randomized function
F : Fn

q → Fq where x ∈ Fn
q is drawn uniformly at random and asked to find a linear function

L : Fn
q → Fq so that Ag(F, L) >

1
q

+ η, if one exists.

Discrete Memoryless Channel (DMC): In this model, we are required to learn some
linear function L : Fn

q → Fq, from samples of the form 〈x, L(x)〉, The noise is modeled by
a q × q stochastic matrix W , where wij = Pr[F(x) = j | L(x) = i]. Thus the noise added
may depend on L(x) but not on x itself, unlike the adversarial model. But the DMC model
is stronger than the additive noise model where the noise added is a random variable that is
independent of the label.

However, the matrix W is not known to the algorithm, the guarantee that we are given
is that

Pr
x∈Fn

q

[F(x) = L(x)] >
1

q
+ η.

The adversarial channel model seems harder, being a generalization of the DMC model.
In the adversarial setting there could a list of up to 1

η2 whereas in the DMC model, the

affine shifts of α(x) are the only functions with the desired agreement. So in this model, we
require an algorithm to just return α(x), it is easy to then figure out which shifts give good
agreement.

Fix α ∈ Fn
q \ 0n. Let G = G(α) be the randomized function obtained by folding F over

α⊥. By the definition of G, for every c ∈ F?
q we have

ĝc(β) =

{

f̂ c(β) if β = dα for d ∈ Fq,

0 otherwise.

We claim that G preserves the agreement between F and every affine shift of α(x).

Lemma A.1. Let L(x) = α(x) + e for e ∈ Fq be an affine shift of α(x). Then Ag(G, L) =
Ag(F, L).

Proof. Partition Fn
q into cosets Cb where L(x) = b. Then

Ag(F, L) = Pr
x∈Fn

q

[F(x) = L(x)] = Pr
b∈Fq

Pr
x∈Cb

[F(x) = b].

However, for any x′ ∈ Cb we have G(x′) = F(x) where x ∈ Cb is chosen at random. Thus

Ag(F, L) = Pr
b∈Fq

Pr
x∈Cb

[G(x) = b] = Pr
x∈Fn

q

[G(x) = L(x)] = Ag(G, L).
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Of course, to sample from G, we need to fold over α⊥, and the aim of the algorithm
is to find α (equivalently α⊥). We circumvent this by showing that folding over a random
subspace of suitable dimension gives a function that is close to G with reasonable probability.
We begin with the following lemma which is an Fq analogue of Lemma 3 in [FGKP06].

Lemma A.2. Fix any α ∈ Fn
q \ {0n}. Pick h1, . . . , hk ∈ Fn

q randomly and let H =
Span(h1, . . . , hk). Let H be the function obtained by folding f over H. Then

Pr
H

[d(G,H) 6 q−(k−1)/2] >
1

2qk
.

Proof. We will show that with probability 1
2qk , the following two events hold:

1. α ∈ H⊥.

2.
∑

β∈Fn
q \Span(α) ĥ

c(β)2 6 2q−(k−1) for every c ∈ F?
q.

We have α ∈ H⊥ if α(hi) = 0 for every i ∈ [k], this happens with probability q−k.
Conditioning on this event, for any β ∈ Fn

q \ Span(α), we have PrH [β ∈ H⊥] = q−k as the
events α ∈ H⊥ and β ∈ H⊥ are pairwise independent. Fix any c ∈ F?

q. Note that

ĥc(β) =

{

f̂ c(β) for β ∈ H⊥

0 otherwise.
⇒

∑

β∈Fn
q \Span(α)

ĥc(β)2 =
∑

β∈H⊥\Span(α)

|f̂ c(β)|2

Hence we have

EH





∑

β∈Fn
q \Span(α)

ĥc(β)2



 = EH





∑

β∈Fn
q \Span(α)

|f̂ c(β)|2I(β ∈ H⊥)





=
∑

β∈Fn
q \Span(α)

|f̂ c(β)|2q−k
6 q−k.

So by Markov’s inequality,

Pr
H





∑

β∈Fn
q \Span(α)

ĥc(β)2
>

2

qk−1



 6
1

2q
by Markov’s inequality.

Taking the union bound over all c ∈ F?
q, this holds for every c with probability 1

2
.

Thus both conditions (1) and (2) hold with probability 1
2qk . Assuming this happens, by

Equation 5, we have

d(G,H) 6
1

2





∑

c∈F?
q

∑

β∈Fn
q

|ĝc(β) − ĥc(β)|2




1

2

6
1

2





∑

β∈Fn
q \Span(α)

ĥc(β)2





1

2

6 q−(k−1)/2.
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We are now ready to prove our main theorem:

Theorem A.3. Assume there is an algorithm A that solves the noisy parity problem over
Fq in the DMC model in time T (η, n) using S(η, n) 6 T (η, n) samples. Then there is an
algorithm B that solves the noisy parity problem over Fq in the adversarial noise model in
time poly(q, T (η, n)).

Proof. Fix α ∈ Fq
n \ {0n} so that Ag(F, L) > 1

q
+ η for L(x) = α(x) + c for some c ∈ Fq.

Assume that the algorithm A uses S = S(η, n) examples, time T = T (η, n), and returns α(x)
with probability 3

4
. Pick k so that q−(k−1)/2 < 1

4S
. We pick a random subspace H and let

H be the function obtained by folding f over H . Assume that d(G,H) 6 q−(k−1)/2. which
happens with probability at least 1

2qk , by Lemma A.2.

Let HS denote the distribution {〈x1,H(x1)〉, . . . , 〈xS,H(xS)〉}, where the xi ∈R F
n
q s are

independent, define GS similarly. By the natural coupling between 〈x,G(x)〉 and 〈x,H(x)〉,
we have

SD(〈x,G(x)〉, 〈x,H(x)〉) 6 Ex[SD(G(x),H(x))] = d(G,H) 6 q−(k−1)/2,

Hence SD(GS,HS) 6 Sq−(k−1)/2
6

1

4
.

Secondly, it is easy to simulate random examples from H: following [FGKP06] draw a
random example 〈x,F(x)〉 and return 〈x + h,F(x)〉. We sample from HS and run algorithm
A on the samples. Since A returns α(x) with probability 3/4 when run on GS, it will now
return α(x) with probability at least 3/4− 1/10 > 1/2. Thus the probability of finding α(x)
is at least 1

2qk . We repeat this experiment O(qk) = O((qS)2) times to improve the probability
of success to a constant.

A.2 Linearity Testing for all fields

We analyze the following natural generalization of the BLR [BLR93] test:

1. Pick x, y ∈ Fn
q , λ ∈ F ?

q at random.

2. Test if F (x) + λF (y) = F (x + λy).

A Fourier-based analysis over F2 was given by [BCH+96], it was extended to prime fields by
Hastad and Wigderson [HW03]. Our analysis matches their parameters over arbitrary fields.
It is clear that the test is complete, the non-trivial part is the soundness.

Theorem A.4. If F : Fn
q → Fq passes the linearity test with probability 1

q
+ η, there is a

linear function α : F
n
q → Fq so that Ag(F, α) >

1
q

+ η.
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Proof. Firstly, we claim that for any linear function α : F
n
q → Fq,

Ag(F, α) =
1

q
(1 +

∑

c∈F?
q

f̂ c(cα)) (16)

which follows from Equation 3 and the observation that the cth Fourier polynomial corre-
sponding to α is χcα(x). We can arithmetize the acceptance probability as

Pr
x,y,λ

[Test accepts] =
1

q
Ex,y,λ[1 +

∑

c∈F?
q

ωTr(c(F (x)+λF (y)−F (x+λy)))]

=
1

q
Ex,y,λ[1 +

∑

c∈F?
q

ωTr(c(F (x)))ωTr(cλF (y))ω−Tr(cF (x+λy))]

=
1

q
Ex,y,λ[1 +

∑

c∈F?
q

f c(x)fλc(y)f c(x + λy)]

=
1

q
Ex,y,λ[1 +

∑

c∈F?
q

∑

α,β,γ

f̂ c(α)f̂λc(β)f̂ c(γ)χα(x)χβ(y)χγ(x + λy)]

=
1

q
Ex,y,λ[1 +

∑

c∈F?
q

∑

α,β,γ

f̂ c(α)f̂λc(β)f̂ c(γ)χα(x)χβ(y)χγ(x)χλγ(y)]

=
1

q
(1 +

∑

c∈F?
q

∑

α

|f̂ c(α)|2 Eλ[f̂
λc(λα)])

Now assume that the test accepts with probability (exactly) 1
q

+ η. So we get

∑

c∈F?
q

∑

α

|f̂ c(α)|2 Eλ[f̂
λc(λα)] = qη ⇒

∑

c∈F?
q

∑

α

1

q − 1
|f̂ c(α)|2

∑

λ

f̂λc(λα) = qη

Define a distribution D on pairs (c, α) where we sample c ∈ F?
q at random, and then pick α

with probability |f̂ c(α)2|. Then we get

E(c,α)←D

[

∑

λ

f̂λc(λα)

]

= qη

So there exists some c ∈ F?
q , α ∈ Fn

q so that
∑

λ f̂λc(λα) = qη. Writing c′ = λc, and

α′ = c−1α, we get
∑

c′∈F?
q
f̂ c′(c′α′) = qη. But by Equation 16, this implies that

Ag(F, α′) =
1

q
(1 + qη) =

1

q
+ η
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B Proofs from Section 3

Proof of Fact 3.1. Let f, g : Fq → R denote the p.d.f.s of Y, Z respectively. We use the
inner-product

〈f, g〉 = Ex∈Fq
f(x)g(x)

for which the function ωTr(cx) are an orthonormal basis. Then we have

f(x) =
∑

c∈Fq

f̂(c)ωTr(cx)

Under this inner product, we have the Fourier coefficients f̂(c) = 〈f, ωTr(cx)〉 and hence

Ex[|f(x) − g(x)|] 6 (Ex[|f(x) − g(x)|2]) 1

2 =





∑

c∈F?
q

|f̂(c) − ĝ(c)|2




1

2

(17)

where in the last line, we use the fact that f̂(φ) = ĝ(φ) = 1
q

since f, g are p.d.f.s over Fq.

Observe that

Ex[|f(x) − g(x)|] =
1

q

∑

x∈Fq

|f(x) − g(x)| =
2

q
SD(Y, Z) (18)

and that for every c ∈ F?
q . Finally, we rewrite f̂(c) and ĝ(c) in terms of yc and zc.

f̂(c) =
1

q

∑

x∈Fq

f(x)ω−Tr(cx) =
1

q

∑

x∈Fq

f(x)ωTr(−cx) =
1

q
E[ωTr(−cY )] =

1

q
y−c (19)

where we use −Tr(c) = Tr(−c) which holds because Tr is Fp-linear. Plugging equations 18
and 19 into Equation 17 we get

2

q
SD(Y, Z) 6

1

q





∑

c∈F?
q

|yc − zc|2




1

2

⇒ SD(Y, Z) 6
1

2





∑

c∈F?
q

|yc − zc|2




1

2

(20)

Proof of Fact 3.2.

Ag(F, G) = Ex[
1

q

∑

c∈Fq

ωTr(c(F (x)−G(x)))] =
1

q
(1 +

∑

c∈F?
q

Ex[f
c(x)gc(x)])

=
1

q
(1 +

∑

c∈F?
q

〈f c, gc〉) =
1

q
(1 +

∑

c∈F?
q

∑

α

f̂ c
αĝc

α).
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By symmetry, we also have

Ag(F, G) =
1

q
(1 +

∑

c∈F?
q

〈gc, f c〉) =
1

q
(1 +

∑

c∈F?
q

∑

α

f̂ c
αĝc

α).

Similarly, we can write Hamming distance between F and G as

∆(F, G) = 1 − Ag(F, G) =
1

2q



2(q − 1) −
∑

c∈F?
q

〈f c, gc〉 + 〈gc, f c〉





=
1

2q

∑

c∈F?
q

‖f c − gc‖2
2 Since ‖f c‖2 = ‖gc‖2 = 1.

=
1

2q

∑

c∈F?
q

∑

α∈F̂q
n

|f̂ c
α − ĝc

α|2

Proof of Fact 3.3. We have

d(F,G) = Ex∈Fn
q
[SD(F(x),G(x))]

6 Ex∈Fn
q







1

2





∑

c∈F?
q

|f c(x) − gc(x)|2




1

2






by Fact 3.1

6
1

2





∑

c∈F?
q

Ex∈Fn
q
[|f c(x) − gc(x)|2]





1

2

by Cauchy-Schwartz

=
1

2





∑

c∈F?
q

∑

α∈Fn
q

[|f̂ c(α) − ĝc(α)|2]





1

2

.

Proof of Fact 3.4. Consider f c(x) = EF[ωTr(cF(x))]. Since F(x) is a function of α1(x), . . . , αk(x),
so is f c(x). Thus, the Fourier spectrum of f c is supported on Span(α1, . . . , αk) for every c,
so Spec(F) ⊆ Span(α1, . . . , αk). Hence dim(Spec(F)) 6 dim(F).

In the other direction, fix any basis (α1, . . . , αk) for Spec(F). Then knowing α1(x), . . . , α(x)
fixes f c(x) for all c ∈ F

?
q. But knowing the Fourier coefficients of the random variables F(x)

allows us to determine the distribution of F(x). Thus dim(F) 6 dim(Spec(F)).

Proof of Fact 3.5. For every h ∈ Inv(F), we have for any λ ∈ Fq,

f c(x) = f c(x + λh) =
∑

α

f̂ c(α)χα(x)χα(λh).
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By the uniqueness of the Fourier expansion of every function f : F
n
q → R, it follows that

for every α ∈ Spec(F) and λ ∈ Fq we have χα(λh) = 1. But note that

χα(λh) = ωTr(α(λh)) = ωTr(λ·α(h)).

Thus Tr(λ · α(h)) = 0 for all λ ∈ Fq, which implies α(h) = α · h = 0. Thus the Fourier
spectrum is supported entirely on Inv(F)⊥, implying that Spec(F) ⊆ Inv(F)⊥.

In the other direction, take a basis (α1, . . . , αk) for Spec(F). For any h ∈ Spec(F)⊥ and
λ ∈ Fq, we have αi(x + λh) = αi(x). But since F(x) is a function of (α1, . . . , αk), we have
F(x) = F(x + λh), showing that Spec(F)⊥ ⊆ Inv(F) hence Inv(F)⊥ ⊆ Spec(F).

Proof of Lemma 3.6. We have

f c(x) = EF[ωTr(cF(x))] = Eh∈H [ωTr(cF (x+h))] = Eh∈H [f c(x + h)]

= Eh∈H [
∑

α∈F̂q
n

f̂ c(α)χα(x + h)]

=
∑

α∈F̂q
n

f̂ c(α)χα(x) Eh∈H [χα(h)].

To analyze this last term, note that if α ∈ H⊥, then α(h) = 0 for every h ∈ H , so
Eh∈H [χα(h)] = 1. On the other hand, when α 6∈ H⊥ the variable α(h) is uniformly dis-
tributed over Fq, hence Eh∈H [χα(h)] = 0. Thus we have

f c(x) =
∑

α∈H⊥

f̂ c(α)χα(x).

Proof of Fact 3.7. If we define the function Gλ(x) = F (x + λb) then we have

gc
λ(x) =

∑

α∈F̂q
n

f̂ c(α)χα(x + λb) =
∑

α∈F̂q
n

f̂ c(α)χα(x)ωTr(λα(b))

We have

Infb(F ) = Eλ∈Fq
[∆(F, Gλ)]

= Eλ∈Fq
[
1

2q

∑

c∈F?
q

∑

α∈F̂q
n

|f̂ c(α) − ĝc
λ(α)|2]

= Eλ∈Fq
[
1

2q

∑

c∈F?
q

∑

α:α(b)6=0

|f̂ c(α)(1 − ωTr(λα(b)))|2]

=
1

2q

∑

c∈F?
q

∑

α:α(b)6=0

|f̂ c(α)|2 · Eλ∈Fq
[|1 − ωTr(λα(b))|2]

=
1

q

∑

c∈F?
q

∑

α:b·α6=0

|f̂ c(α)|2 (21)

29



Proof of Lemma 3.8. We have

Infb(F) = Ex∈Fn
q ,λ∈Fq

[SD(F(x),F(x + λb))] = Eλ∈Fq
d(F(x),F(x + λb))

We set G(x) = F(x + λb) and compute its Fourier polynomials. We have

gc(x) =
∑

α∈Fn
q

f̂ c(α)χα(x)ωTr(λα(b)).

where the last line uses the linearity of Tr. By Equation 5, we get

Infb(F) = Eλ∈Fq







1

2





∑

c∈F?
q

∑

α:α(b)6=0

|f̂ c(α)(1 − ωTr(λα(b)))|2]





1

2







6
1

2



Eλ∈Fq





∑

c∈F?
q

∑

α:α(b)6=0

|f̂ c(α)(1 − ωTr(λα(b)))|2








1

2

Since E[X] 6 E[X2]
1

2

=
1

2





∑

c∈F?
q

∑

α:α(b)6=0

|f̂ c(α)|2 Eλ∈Fq
[|1 − ωTr(λα(b))|2]





1

2

=
1√
2





∑

c∈F?
q

∑

α:α(b)6=0

|f̂ c(α)|2




1

2

Since Eλ[|1 − ωTr(λ)|2] = 2

C Relation to the work of [GKZ08] and [GGR09]

It is interesting to contrast our approach to that of [GKZ08]. While their bound also involves
a dimension reduction step, the term refers to restricting the received word to a random low-
dimensional subspace, which is very different from what we do. The GKZ algorithm is based
on a self-corrector that works correctly given the right advice. The self-correction argument
already shows that LDR(RM2(n, d)) = 2−d. More precisely, it proves that `(RM2(n, d), 2−d−ε)
is quasi-polynomial in ε−1. The deletion lemma is used only to improve the bounds to
polynomial in ε−1. Indeed the self-corrector is crucial to their combinatorial bound as we
describe below.

Assume we are trying to decode RM2(n, d) from error rates approaching 2−d. Fix a
codeword P from the list. If we know the polynomial P correctly on a subspace A, then we
can try to self-correct the value at a random shift b + A using unique decoding, since the
error rate on the combined subspace containing both A and b + A drops by a factor of 1

2
.

The right advice string can be found by enumerating over all possibilities which would give
a quasi-polynomial bound in ε−1, while the deletion lemma gives a polynomial bound in ε−1.
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If we try to use this argument over Fq, the error rate only drops by a factor of q−1
q

. If we
begin with error-rates approaching δ, this is insufficient to bring the error-rate within the
unique-decoding radius. This appears to be a serious bottleneck in using a self-corrector over
larger fields. This is especially true when d is much smaller than q, since now the error rate
is very close to 1. Hence a self-corrector that requires more than one point is very unlikely
to ever get noise-free examples.

Our approach is inspired by the list-decoding algorithms of [GGR09] for list-decoding
linear transformations (and more generally, interleaved codes). As in their work, we use
the deletion lemma to reduce the decoding problem to the low-dimensional case. In their
setting, codewords are matrices and dimension refers to the rank of these matrices. However,
bounding the number of low-dimensional codewords is much easier in their setting, and is
done via simple combinatorial arguments. In contrast, in our setting, handling the low-
dimensional case seems much harder and this is where the machinery of Fourier analysis is
utilized.
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