
Toward a Model for Backtracking and Dynamic Programming

Michael Alekhnovich∗ Allan Borodin† Joshua Buresh-Oppenheim‡

Russell Impagliazzo§¶ Avner Magen† Toniann Pitassi†¶

October 6, 2007

Abstract

We propose a model called priority branching trees (pBT) for backtracking and dynamic
programming algorithms. Our model generalizes both the priority model of Borodin, Nielson
and Rackoff, as well as a simple dynamic programming model due to Woeginger, and hence
spans a wide spectrum of algorithms. After witnessing the strength of the model, we then
show its limitations by providing lower bounds for algorithms in this model for several classical
problems such as Interval Scheduling, Knapsack and Satisfiability.

1 Introduction

The “Design and Analysis of Algorithms” is a basic component of the Computer Scienc Curriculum.
Courses and texts for this topic are often organized around a toolkit of algorithmic paradigms
or meta-algorithms such as greedy algorithms, divide and conquer, dynamic programming, local
search, etc. Surprisingly (as this is often the main “theory course”), these algorithmic paradigms
are rarely, if ever, precisely defined. Instead, we provide informal definitional statements followed
by (hopefully) well chosen illustrative examples. Our informality in algorithm design should be
compared to computability theory where we have a well accepted formalization for the concept of
an algorithm, namely that provided by Turing machines and its many equivalent computational
models (i.e. consider the almost universal acceptance of the Church-Turing thesis). While quantum
computation may challenge the concept of “efficient algorithm”, the benefit of having a well defined
concept of an algorithm and a computational step is well appreciated.

In contrast, consider the following repesentative informal definition of a greedy algorithm in one
of the standard texts [14]: “Algorithms for optimization problems typically go through a sequence
of steps, with a set of choices at each step. ... A greedy algorithm always makes the choice that looks
best at the moment.” For pedagogical purposes this informal approach allows most students to
understand the relevant concepts and it may well be that any attempt to provide precise definitions
would be counter-productive. But what if we wanted to provably understand the extent to which
(say) greedy algorithms or dynamic programming can efficiently and optimally solve problems such
as weighted interval scheduling and maximum matching in a bipartite graph? Clearly to prove

∗Institute for Advanced Study, Princeton, US. Supported by CCR grant NCCR-0324906.
†Department of Computer Science, University of Toronto, bo r,avner,toni@cs.toronto.edu.
‡Computing Science Department, Simon Fraser Univ ersity, jburesho@cs.sfu.ca. Research partially supported by

a grant from the PIMS Institute.
§CSE Department, University of California, San Diego, russell@cs.ucsd.edu.
¶Some of this research was performed at the Institute for Advanced Study in Princeton, NJ supported by the

State of New Jersey.

1

any limitations of a particular algorithmic approach we must have a precise definition. While
it is probably not possible to achieve the universality of a Church-Turing thesis for say greedy
algorithms, we can certainly try to provide models that capture many if not most examples that
we have in mind.

This reserach direction has a substantial (albeit perhaps not that influential) history as well as
being the subject of some recent attention. We will review some of the relevant work in sections
2 and 3. We continue this line of research by presenting a model for backtracking algorithms as
applied to combinatorial search and optimization problems. Informally, in the priority branching
tree (pBT) model an algorithm creates a tree of solutions, where each branch of the tree gradually
builds a solution one item at a time. We classify such algorithms according to the manner in which
items are considered resulting in fixed, adaptive and strongly adaptive pBT algorithms. For fixed
and adaptive order pBT algorithms, the item order is the same on each branch, where for adaptive
pBT the item order depends on the actual set of input items. In strongly adaptive pBT algorithms
the ordering can be different on each branch. We formally define the pBT model and its variants in
section 3. Many well-known algorithms and algorithmic techniques can be simulated within these
models, both those that are usually considered backtracking (using the strongly adaptive model)
and some that would normally be classified as greedy or “simple” dynamic programming (using
even the fixed order model) as in the teminology of Woeginger [36]. We prove several upper and
lower bounds on the capabilities of algorithms in our models in some cases proving that the known
algorithms are essentially the best possible within the model.

Our results The computational problems we consider are all well-studied; namely, Interval
Scheduling, Knapsack and Satisfiability. For m-machine Interval Scheduling we show a tight Ω(nm)-
width lower bound (for optimality) in the adaptive-order pBT model, an inapproximability result in
the fixed-order pBT model, and an approximability separation between width-1 pBT and width-
2 pBT in the adaptive-order model. For Knapsack, we show an exponential lower bound (for
optimality) on the width of adaptive-order pBT algorithms, and for achieving an FPTAS in the
adaptive-order model we show upper and lower bounds polynomial in 1/ε. Knapsack also exhibits a
separation between width-1 and width-2 adaptive-order pBT : a width-1 pBT cannot approximate
Knapsack better than a factor of n−1/4, while a standard 1/2-approximation falls into width-2
pBT . For SAT, we show that 2-SAT is solved by a linear-width adaptive-order pBT , but needs
exponential width for any fixed-order pBT , and also that MAX2SAT cannot be efficiently approx-
imated by any fixed-order pBT algorithm. (Using a similar argument we show an inapproximation
result for Vertex Cover with respect to fixed-order pBT algorithms.) We then show that 3-SAT
requires exponential width and exponential depth first size in the fully-adaptive-order pBT model.
A small extension to this width lower bound in turn gives us an exponential bound on the width
of fully-adaptive-order pBT algorithms for Knapsack using a “pBT reduction.”

2 Brief History of Related Work

We briefly mention some relevant work in the spirit of our results. Our pBT model and the negative
results we derive for the knapsack problem are very similar to the results of Chvátal [12] who proves
an exponential lower bound for Knapsack in an algorithmic model that involves elements of branch-
and-bound and dynamic programming (DP). In section 3.1 we will relate the branch and bound
model to our model. Karp and Held [29] introduced a formal language approach for defining
“decomposable” combinatorial optimization problems and derived a formalism (based on finite
automata) for dynamic programming within this context. Helman and Rosenthal [25] and Helman

2

[24] extended the Karp and Held approach to a non assocative analogue of regular expressions. In
this approach, the concantenation operation represents the concatenation of partial solutions while
the + operation represents the union of partial solutions. A main goal of [25] was to model “non-
serial” DP applications for computing optimal parenthesizations as in the matrix chain problem and
constructing binary search trees. (See, for example, the text by Cormen, et al [14] for the definition
of these problems and the well-known DP algorithms that achieve optimal solutions.) Moreover, by
separating the syntax and the semantics (for a particular application), the formalism in [25] exposes
an equivalence between these two well known applications. In terms of complexity results, Helman
and Rosenthal show that the well known algorithms minimize complexity for oblvious programs
(in terms of both the concatenation and + operations) where oblivious programs are essentially
circuits where the opertations executed do not depend on the data. Hence such oblivious programs
do not distinguish between the Θ(n3) complexity bound for the basic DP algorithms in contrast
to Knuth’s [31] Θ(n2) DP algorithm for computing an optimal binary search tree. Helman [24]
extends the formalism in [25] so as to be able to provide a formalism capable of modelling both
branch and bound and DP algorithms. The complexity results here are also restricted to oblivious
programs (applied to the acyclic stage graph problem). A further distinction is made in terms
of “data-based” programs which are meant to model more “realistic” programs. These formal
language approaches provide very expressive formalisms but it is not clear to what extent one can
derive significant lower bounds within these formalisms. More recently, Khanna, Motwani, Sudan
and Vazirani [30] formalize various types of local search paradigms, and in doing so, provide a more
precise understanding of local search algorithms. Woeginger [36] defines a class of simple dynamic
programming algorithms and provides conditions for when a dynamic programming solution can
be used to derive a FPTAS for an optimization problem. As stated befofe, these simple dynamic
programming algorithms can be modelled within our fixed order pBT model. Achlioptas and Sorkin
[1] define myopic algorithms for the purpose of analyzing the satisfiability of random 3CNF formulas.
Borodin, Nielsen and Rackoff [9] introduce priority algorithms as a model of greedy-like algorithms.
We will swee that myopic SAT algorithms are (for the most part) priority algorithms or small width
pBT algorithms. Arora, Bollobás, Lovász and Tourlakis [7] study wide classes of LP formulations,
and prove integrality gaps for Vertex Cover within these classes. The most popular methods for
solving SAT are DPLL algorithms—a family of backtracking algorithms whose complexity has been
characterized in terms of resolution proof complexity (see for example [15, 16, 13, 21]). The pBT
model encompasses DPLL in many situations where access to the input is limited to some extent.

3 The pBT Model and its Relatives

We begin with some motivation and an informal description of priority branching trees (pBT). The
starting point for the pBT model is the priority algorithm model of [9]. We assume that the input
is represented as a set of data items, where each data item is a small piece of information about the
problem; it may be a time interval representing a job to be scheduled, a vertex with its list of the
neighbours in a graph, a propositional variable 1 with all clauses containing it in a CNF formula.
Priority algorithms consider one item at a time and maintain a single partial solution (based on
the items considered thus far) that it continues to extend. What is the order in which items are
considered? A fixed-order algorithm initially orders the items according to some criteria (e.g., in

1We note that by using this input representation for a CNF formula, myopic algorithms [1] can be viewed as
priority algorithms (when only one variable is set) or as constant-width pBT algorithms when a constant number of
variables are set in a “free move” of the algorithm. In hindsight, we see that the myopic requirement of iteratively and
irrevocably setting propositional variables (in their context of satisfying low density CNF formulas) further motivates
the general priority framework for making myopic decisions about input items.

3

the case of Knapsack, sort the items by their weight to value ratio). A more general (adaptive
order) approach would be to change the ordering according to the items seen so far. For example,
in the greedy set cover algorithm, in every iteration we order the sets according to the number of yet
uncovered elements. (The distinction between fixed and adaptive orderings has also been studied
in [19].) Rather than imposing complexity constraints on the allowable orders, we require them to
be “localized”.2 By introducing branching, a priority branching tree (pBT) can pursue a number
of different partial solutions. Given a specific input, a pBT algorithm then induces a computation
tree. Of course, it is possible to solve any properly formulated search or optimization problem in
this manner: simply branch on every possible decision for every input item. In other words, there is
a tradeoff between the quality of a solution and the complexity of the pBT -algorithm. We view the
maximum width of a pBT program as the number of partial solutions that need to be maintained
in parallel in the worst case. As we will see, this extension allows us to model the simple dynamic
programming framework of Woeginger [36]. This branching extension can be applied to either the
fixed or adaptive order (fixed-order pBT and adaptive-order pBT) and in either case each branch
(corresponding to a partial solution) considers the items in the same order. For example, various
DP based optimal and approximate algorithms for the Knapsack problem can be seen as fixed- or
adaptive-order pBT algorithms. In order to model the power of backtracking programs (say as in
DPLL algorithms for SAT)3 we need to extend the model further. In a fully-adaptive-order pBT
we allow each branch to choose its own ordering of input items. Furthermore, we need to allow
algorithms to prioritize (using a depth first traversal of the induced computation tree) the order
in which the different partial solutions are pursued. In this setting, we can consider the number of
nodes traversed in the computation tree before a solution is found (which may be smaller than the
tree’s width).

We now formalize these concepts. Let D be an arbitrary data domain that contains objects Di

called data items. Let H be a set, representing the set of allowable decisions for a data item.
For example, for the Knapsack problem, a natural choice for D would be the set of all pairs (x, p)
where x is a weight and p is a profit; the natural choice for H is {0, 1} where 0 is the decision to
reject an item and 1 is the decision to accept an item.

A search/optimization problem P is specified by a pair (DP , fP) where DP is the underlying
data domain, and fP is a family of objective functions, fn

P : (D1, . . . ,Dn, a1, . . . , an) 7→ R, where
a1, ..., an is a set of variables that range over H, and D1, . . . ,Dn is a set of variables that range
over D. On input I = D1, . . . ,Dn ∈ D, the goal is to assign each ai a value in H so as to maximize
(or minimize) fn

P . A search problem is a special case where fn
P outputs either 1 or 0.

For any domain S we write O(S) for the set of all orderings of elements of S. We are now ready
to define pBT algorithms.

Definition 1. A priority branching tree (pBT) algorithm A for problem P = (D, {fn
P }) consists

of the ordering functions
rk
A : Dk ×Hk 7→ O(D)

and the choice functions
ck
A : Dk+1 ×Hk 7→ O(H ∪ {⊥}).4

2The precise sense in which we restrict the allowable orders to be localized will be formalized in Definition 1. We
note that, in hindsight, our fixed orders are those satisfying Arrow’s “independence of irrelevant alternatives” axiom,
as used in social choice theory [8].

3The pBT model encompasses DPLL in many situations where access to the input is limited. If access is unlimited,
then proving superpolynomial lower bounds for DPLL amounts to proving P 6= NP .

4All of our lower bound results will apply to non-uniform pBT algorithms that know n, the number of input
items, and hence more formally, the ordering and choice functions should be denoted as r

n,k
A and c

n,k
A . A discussion

regarding “precomputed” information can be found in [9].

4

We separate the following three classes of pBT algorithms

• Fixed-Order algorithms: rk
A does not depend upon k or any of its arguments.

• Adaptive-Order algorithms: rk
A depends on D1,D2, ...,Dk but not on a1, ..., ak.

• Fully-Adaptive-Order algorithms: rk
A depends on both D1,D2, ...,Dk and a1, ..., ak.

The idea of the above specification of A is as follows. Initially, the set of actual data items
is some unknown set I of items from D. At each point in time, a subset of actual data items,
D1, . . . ,Dk ⊆ S has been revealed, and decisions a1, . . . , ak have been made about each of these
items in turn. At the next step, the backtrack algorithm (possibly) re-orders the set of all possible
data items as specified by rk

A. Then as long as there are still items from I left to be discovered,
another data item from I is revealed with the property that the one revealed next will be the first
item in I, according to the ordering rk

A, that has not already been revealed. When this new item,
Dk+1 ∈ I has been revealed, a set of possibilities are explored on this item, as specified by ck

A.
Namely, the algorithm can try any subset of choices from H on this new data item, including the
choice to abort (⊥). This is described more formally by the notion of a computation tree of program
A on input I, as defined below. We say that a rooted tree is oriented if it has an ordering on its
leaves from the left to the right.

Definition 2. Assume that P is a search/optimization problem and A is a pBT algorithm for P .
For any instance I = (D1, ...,Dn), Di ∈ DP we define the computation tree TA(I) as an oriented
rooted tree in the following recursive way.

• Each node v of depth k in the tree is labelled by a tuple < Dv
1 , ...Dv

k , av
1, ...a

v
k >.

• The root node has the empty label.

• For every node v of depth k < n with a label < ~Dv,~av >, let Dv
k+1 be the data item in I \

{Dv
1 , ...,Dv

k} that goes first in the list rk
A(

~Dv,~av). Assume that the output ck
A(

~Dv,Dv
k+1,~a

v) has
the form (c1, ..., cd,⊥, cd+1, . . .), where ci ∈ H. If d = 0 then v has no children. Otherwise it
has d child nodes v1, ..., vd that go from left to right and have labels (Dvi

1 , ...,Dvi
k+1, a

vi
1 , ..., avi

k+1) =
(Dv

1 , ...,Dv
k ,Dv

k+1, a
v
1, ..., a

v
k , ci) resp.

Each leaf node t of depth n contains a permuted sequence of the data items I (permuted by
the ordering functions rk

A used on the path ending at t) with the corresponding decisions in H
(determined by the choice functions on this path). For a search problem we say that a leaf is a
solution for I = (D1, ...,Dn) iff fP (D

t
1, ...,D

t
n, at

1, ..., a
t
n) = 1 where at

k is the decision for Dt
k. For

an optimization problem every leaf determines a solution and a value for the objective function on
the instance I.

We can define the semantics so that the value of the objective function is −∞ for a maximization
problem and∞ for a minimization problem if the solution is not feasible. Similarly, if I is not a well-
formed instance of the problem, then every solution should attain the same value in the objective
function.

Definition 3. We say that A is a correct algorithm for a pBT search problem P iff for any
YES instance I, TA(I) contains at least one solution. For an optimization problem, the value of
A(I) is the value of the leaf that optimally or best approximates the value of the objective function
on the instance I.

5

• For an algorithm A we define the width of the computation WA(I) as the maximum of
the number of nodes over all depth levels of TA(I).

• We define the depth first search size Sdf
A (I) as the number of tree nodes that lie to the left

of the leftmost solution of TA(I).

Proposition 4. For any A and I Sdf
A (I) ≤ nWA(I).

Definition 5. For any A and any n, define WA(n), the width of A on instances of size n as

max{WA(I) : |I| = n}. Define Sdf
A (n) analogously.

The size Sdf
A (I) corresponds to the running time of the depth first search algorithm on TA(I). We

will be mainly interested in the width of TA(I) for two reasons. First, it has a natural combinatorial
meaning: the maximum number of partial solutions that we maintain simultaneously during the
execution. As such, the width is a measure of space complexity (for a level by level implementation
of the algorithm). Second, the width provides a universal upper bound on the running time of any
search style.

While the fixed- and adaptive-order models are ostensibly less powerful than fully-adaptive-
order algorithms, they remain quite powerful. For example, the width 1 algorithms in these classes
are precisely the fixed- and adaptive-order priority algorithms, respectively, that capture many well
known greedy algorithms. In addition, we will see that they can simulate large classes of dynamic
programming algorithms; for example, fixed-order pBT algorithms can simulate Woeginger’s DP-
simple algorithms ([36]).

The reader may notice some similarities between the pBT model and the online setting. Like
online algorithms, the input is not known to the algorithm in advance, but is viewed as an input
stream. However, there are two notable differences: First, the ordering is given here by the algo-
rithm and not by the adversary, and secondly, pBT algorithms are allowed to branch, or try more
than one possibility.5

A note on computational complexity: We do not impose any restrictions on the functions
rk
A and ck

A such as computability in polynomial time. This is because all lower bounds in this model
come from information theoretic constraints and hold for any (even non-computable) rk

A and ck
A.

However, if these functions are polytime computable then there exists an efficient algorithm B that
solves the problem6 in time Sdf

A (I)n
O(1). In particular, all upper bounds presented in this paper

correspond to algorithms which are efficiently computable. Another curious aspect is that one has
to choose the representation model carefully in order to limit the information in each data item,
because once a pBT algorithm has seen all of the input (or can infer it), it can immediately solve
the problem. Hence, we should emphasize that there are unreasonable (or at least non-standard)
input models that will render the model useless; for example if a node in a graph contains the
information about its neighbours and their neighbours, then it contains enough information that
(using exponential time) the ordering function can summon the largest clique as its first items,
making an NP-hard problem solvable by a width-1 pBT algorithm. In our discussion, we use input
representations which seem to us the most natural.

5A version of the online model in which many partial solutions may be constructed was studied by Halldorsson,
et al [22]. Their online model is a special case of a fixed-order pBT algorithm.

6In this regard, the depth first search measure has to be further clarified for the approximation of optimization
problems. Namely, in contrast to a search problem, it may not be known that (say) a c-approximate solution has been
found. One way to retain the claim that polynomial time functions rk

A and ck
A provide a polynomial time algorithm is

by imposing a polynomial time constructible complexity bound. That is, let T (n) be a constructible polynomial time
complexity bound. We can then define the output of a T (n) time bounded pBT algorithm to be the best solution
found within the first T (n) nodes of the depth first search of the pBT tree.

6

3.1 pBT as an Extension of Dynamic Programming and other Algorithm Mod-

els

How does our model compare to other models? As noted above, the width 1 pBT algorithms are
exactly the priority algorithms, so many greedy algorithms fit within the framework. Examples
include Kruskal or Prim’s algorithms for spanning tree, Dijkstra’s shortest path algorithm, and
Johnson’s greedy 2-approximation for Vertex Cover.

Secondly, which is also one of the main motivations of this work, the fixed-order model cap-
tures an important class of dynamic programming algorithms defined by Woeginger [36] as simple
dynamic-programming or DP-simple. Many (but certainly not all) algorithms we call “DP algo-
rithms” follow the schema formalized by Woeginger: Given an ordering of the input items, in the
k-th phase the algorithm considers the k-th input item Xk, and produces a set Sk of solutions to
the problem with input {X1, . . . ,Xk}. Every solution in Sk must extend a solution in Sk−1. Knap-
sack (with small integer input parameters), and Interval Scheduling with m machines, are two well
studied problems which have well known DP-simple algorithms. The standard DP algorithm for
the string edit distance problem can also be viewed as a DP-simple algorithm.

The simulation of these algorithms by a fixed-order pBT algorithm is straightforward once one
makes the following observation. Since all parallel runs of a fixed- or adaptive-order pBT algorithm
view the same input, each run can simulate all other runs. Thus, width w(n)-algorithms in both of
these models are equivalent to sequential algorithms that maintain a set Tk of at most w(n) partial
solutions for the partial instance (representing each of the up to w(n) active runs at this level) with
the following restriction. Since the solution found must extend one of the partial solutions for the
runs, any solution in Tk+1 must extend a solution in Sk. For concreteness, consider the simulation
of a well known DP algorithm to solve Interval Scheduling on one machine. This algorithm orders
intervals by their ending time (earliest first). It then calculates T [j] = the intervals among the first
j which give maximal profit and which schedule the j’th interval; of course T [j] extends T [i] for
some i < j. We can now think of a pBT algorithm which in the j-th level has partial-solutions
corresponding to T [0], T [1], . . . , T [j]. To calculate the partial solutions for the first j + 1 intervals
we take T [j + 1] extending one of the T [i]’s and also take T [0], T [1], . . . , T [j] so as to extend the
corresponding partial solutions with a ’reject’ decision on the j + 1st interval.

Note that for many dynamic programming algorithms, the size of the number of solutions
maintained is determined by an array where each axis has length at most n. Thus, the size of Tk

typically grows as some polynomial nd. In this case, we call d the dimension of the algorithm.
Note that we have d = logw(n)/ log n, so a lower bound on width yields a lower bound on this
dimension.

While powerful, there are also some restrictions of the model that seem to indicate that we can-
not simulate all (intuitively understood as) back-tracking or branch-and-bound algorithms. That is,
our decision to abort a run can only depend (although in an arbitrary way) on the partial instance,
whereas many branch-and-bound methods use a global prunning criterion such as the value of an
LP relaxation. These types of algorithms are incomparable with our model. Since locality is the
only restriction we put on computation, it seems difficult to come up with a meaningful relaxation
to include branch and bound that does not trivialize our model.

3.2 General Lower bound strategy

Since most of our lower bounds are for the fixed- and adaptive-order models, we present a general
framework for achieving these lower bounds. The fully-adaptive-order lower bound for SAT (which
yields the fully-adaptive-order Knapsack lower bound by reduction) is more specialized.

7

Below is a 2-player game for proving these lower bounds for adaptive-order pBT. This is similar
to the lower bound techniques for priority algorithms from [9, 17]. The main difference is that
there is a set of partial solutions rather than a single partial solution. We will later describe how
to simplify the game for fixed-order pBT.

The game is between the Solver and the Adversary. Initially, the Adversary presents to the
Solver some finite set of possible input items, P0. Initially, partial instance PI0 is empty, and T0

is the set consisting of the null partial solution. The game consists of a series of phases. At any
phase i, there is a set of possible data items Pi , a partial instance PIi and a set Ti of partial
solutions for PIi. In phase i, i ≥ 1, the Solver picks any data item a ∈ Pi−1, adds a to obtain
PIi = PIi−1 ∪ {a}, and chooses a set Ti of partial solutions, each of which must extend a solution
in Ti−1. The Adversary then removes a and some further items to obtain Pi.

Let n be the first point where Pn is empty. The Solver wins if |Ti| ≤ w(n) for all 1 ≤ i ≤ n, and
there is a PSn ∈ Tn that is a valid solution, optimal solution, or approximately optimal solution
for PIn (if we are trying for a search algorithm, exact optimization algorithm, or approximation
algorithm, respectively). Otherwise, the Adversary wins. Note that if PIn is not a well-formed
instance for any reason (for example, if we are dealing with a node model for graphs and the item
for node j claims that k is a neighbor, but the item for node k does not list j as a neighbor), then it
is easy for the Solver to achieve a good solution since the optimization function will always return
some default value. Any pBT algorithm of width w(n) gives a strategy for the Solver in the above
game. Thus, a strategy for the Adversary gives a lower bound on pBT algorithms.

Our Adversary strategies will usually have the following form. The number of rounds, n, will be
fixed in advance. We will maintain the following invariant: For many partial solutions PS to PIi,
there is an extension of PIi to an instance A ⊆ PIi ∪ Pi so that all valid/optimal/ approximately
optimal solutions to A contain PS. We’ll call such a partial solution indispensable, since if PS 6∈ Ti,
the Adversary can set Pi so that PIi ∪ Pi = A, ensuring victory. Hence the Solver must keep all
indispensable partial solutions in Ti, which results in large width.

For the fixed-order pBT game, the Solver must order all items before the game starts. The
Solver must pick the first item in Pi in this ordering as its next data item. Other than that, the
game is identical.

4 Interval Scheduling

Interval selection is the classical problem of selecting, among a set of intervals each associated with
a profit, a subset of pairwise disjoint intervals so as to maximize their total profits. This can be
thought of as scheduling a set of jobs with time-intervals on one machine. When there is more than
one machine the task is to schedule jobs to machines so that the jobs scheduled on any particular
machine are disjoint; here too, the goal is to maximize the overall profit of the scheduled jobs.

In terms of our formal pBT definitions in section 3, the m machine weighted intervlal selection
problem can be represented as follows. A domain or input item Di = (si, fi, wi) where si (respec-
tively, fi, wi) is the start time (respectively, finishing time, profit) of the ith input item. A decision
ai ∈ H = {0, 1, 2, . . . ,m} ∪ {0} indicates the machine j ≥ 1 on which interval i is to be scheduled
or that the interval is not to be schedule denoted by ai = 0. The objective function fn

P sums the
profits of scheduled intrevals; that is, fn

P =
∑

i:ai 6=0 wi if the scheduled jobs constitute a feasible
schedule and −∞ if not feasible where a solution is feasible if ∀j ≥ 1[ai = ak = j implies i = k or
[si, fi) ∩ [sk, fk) = ∅. 7

7For a < b < c, we do not consider [a, b) to intersect with [b, c).

8

When all the profits are the same, a straight-forward greedy algorithm (in the sense of [9])
solves the problem. For arbitrary profits the problem is solvable by a simple dynamic programming
algorithm of dimension m, and hence runtime O(nm). The way to do this is to order intervals
in increasing order of their finishing points, and then compute an m-dimensional table T where
T [i1, i2, i3, . . . , im] is the maximum profit possible when no intervals later (in the ordering) than ij
are scheduled to machine j; it is not hard to see that entries in this table can be computed by a
simple function of the previous entries.

As mentioned earlier, such an algorithm gives rise to an O(nm)-width, fixed-order pBT al-
gorithm. A completely different approach that uses min cost flows achieves a running time of
O(n2 log n) ([6]). An obvious question, then, is whether Dynamic Programming, which might seem
like the natural approach, is really inferior to other approaches. Perhaps it is the case that there is
a more sophisticated way to get a Dynamic Programming algorithm that achieves a running time
which is at least as good as the flow algorithm. In this section we prove that there is no better
simple Dynamic Programming algorithm than the obvious one, and, however elegant, the simple
DP approach is inferior here.

It has been shown in [9] that there is no constant approximation ratio to the general problem
using priority algorithms. Our main result in this section is proving that any adaptive-order pBT ,
even for the special case of proportional profit (i.e. profit = length of interval) Interval Scheduling,
requires width Ω(nm); thus in particular any simple-DP algorithm requires at least m dimensions.
We will first present lower bounds in the fixed-order model where we have constant inapproxima-
bility results, and then we will prove a lower bound for the adaptive case, which is considerably
more involved.

4.1 Interval Scheduling in the Fixed-Order Model

Theorem 6. A width γ <
(n−3

2

m

)

fixed-order pBT for interval scheduling with proportional profit
on m machines and n intervals cannot achieve a better approximation ratio than 1− 1

2m(2γ1/m+1)
.

Proof. We begin with the special case of m = 1. The set of possible inputs are intervals in [0, 1]
of the form [a/W, b/W) or [b/W, 1] where a < b < W are integers and W is a function of γ
which will be fixed later. More specifically, the set of intervals will be the union L ∪M ∪R where
L = {[0, q)|q < 1

2},M = {[q, s)|q < 1
2 < s} and R = {[s, , 1)} where q, s are of the form a/W as

above.
A set of three intervals of the form [0, q), [q, s), [s, 1], 0 < q ≤ s < 1, is called a complete triplet.

An interval of the form [0, q) is called a zero interval, and an interval of the form [s, 1] is called a
one interval. We say that a set of complete triplets is unsettled with respect to an ordering of all
of the underlying intervals if either all zero-intervals are before all one-intervals, or vice versa.

We claim that for any ordering of the above intervals and for every t such that W ≥ 2(2t− 1),
there is a set of t complete triplets which is unsettled. Let S be the sequence induced by the
ordering on L∪R. Each of L and R has size at least 2t− 1. If we look at the first 2t− 1 elements
of S, say the majority of them are (without loss of generality) from L. Select t of these L-intervals
and select t R-intervals from the last 2t− 1 elements of S and match the two sets. This matching,
along with the t distinct middle intervals needed to connect each pair of the matching, constitutes
a set of t unsettled complete triplets.

Now, consider a pBT program of width γ < (n− 1)/2 and let W = 2(2γ+1) so as to guarantee
there are γ + 1 unsettled complete triplets. Throw out all intervals not involved in these triplets.
Assume, without loss of generality, that all of the zero-intervals come before the one-intervals.
Since no two zero-intervals can be accepted simultaneously, and since the width is γ, there is

9

a zero-interval that is not accepted on any path. The adversary will remove all one intervals
except the one belonging to the same triplet as the missing zero-interval. We then have exactly
n = 2(γ + 1) + 1 intervals in the actual set of inputs; that is γ = n−3

2 . With this input it is easy
to get a solution with profit 1 by simply picking the complete triplet. But with the decisions made
thus far it is obviously impossible to get such a profit, and since the next best solution has profit
at most 1− 1/W , we can bound the approximation ratio.

The same approach as above works for m > 1 machines. That is, if W is large enough so that
we have t unsettled triplets, then γ must be at least

(t
m

)

in order to get optimality. Therefore,

given width γ, let t be minimal such that γ <
(

t
m

)

. Then we achieve profit at most m− 1/W and

our approximation ratio is at most m−1/W
m ≤ 1− 1/(2m(2t + 1)) ∼ 1− 1/2m(2γ

1

m + 1).

Remark 1. Certain known algorithms (see [20, 26]), which could intuitively be called greedy, allow
semi-revocable decisions. We can consider this additional strength in the context of pBT algo-
rithms. This means that at any point we can revoke previous accept decisions. We insist only that
any partial solution is feasible (e.g. for the Interval Scheduling problem, we do not accept over-
lapping intervals). This extension applies only to packing problems; that is, where changing accept
decisions to rejections does not make a feasible solution infeasible. In contrast to the priority model
(with irrevocable decisions), there is a 1

4-approximation width 1 algorithm when acceptances can
be revoked. The proof of Theorem 6 immediately applies to the model with revocable acceptances.
Setting γ = 1 and m = 1 in Theorem 6 slightly improves an inapproximation bound of [26] although
the bound in [26] applies to adaptive orderings.

4.2 Interval Scheduling in the Adaptive Model

Theorem 7. The width of an optimal adaptive pBT for interval scheduling with proportional profits

on m machines and n intervals is
(Ω(n/m2)

m

)

.

Proof. We set a parameter N = 4n/m. The initial set of data items are the intervals 8 of size less
than 1/2N in [0, 1] with endpoints i/W where W = 5mN2. We associate a directed acyclic graph
G(I) with a set of intervals I in the following way: the vertices of the graph are the endpoints of
I ∈ I and there is an edge from node s to node t if [s, t) ∈ I for t < 1 or [s, t] ∈ I for t = 1. We
say that a point s is zero connected if there is a path from 0 to s, and similarly s is one connected
if there is a path from s to 1. Notice that s is zero connected if and only if there is a set of disjoint
intervals whose union is [0, s]. An interval with endpoints in (0, 1) is called an internal interval.

In the first n phases the adversary applies the following two elimination rules (for eliminating
future intervals).

1. Cancel all internal intervals both of whose endpoints are endpoints of previous intervals.
(For example, if [0, .3), [.2, .3) and [.21, .23) were revealed, then the intervals [.2, .21), [.2, .23),
[.21, .3) and [.23, .3) must be cancelled, but [0, .2) and [.2, .35) should not. Note that this rule
guarantees that the graph G(I) associated with the intervals after n phases has the property
that any undirected cycle must contain either 0 or 1.

2. Cancel all intervals ending (starting) at r if r ∈ (0, 1/3) (r ∈ (2/3, 1)) and there are m
intervals ending (starting) in r.

Our goal now is to show that after N intervals are observed, there must be many indispensable
classes of solutions. We let P be the set of N intervals that have been revealed so far. Let J be

8As in Theorem 6 our intervals are of the form [s, t) for t < 1 or of the form [s, 1].

10

an interval that is not overlapping any of the intervals in P. Since there are N intervals of length
at most 1/2N in P, there must be such intervals. We now claim that there are at least half of the
intervals in P that are contained in [0, 2/3) and are left of J or that are contained in (1/3, 1] and
are right of J . If J is contained in (1/3, 2/3) then taking (by majority) either the intervals to the
left or to the right of J will do. Otherwise there must be uncovered intervals in both [0, 1/3] as
well as [2/3, 1] (recall their total lengths amount to 1/2). Now, there are at least as many as N/2
intervals contained in [0, 2/3) or that are contained in (1/3, 1], and these intervals will do. We now
may assume, without loss of generality, the existance of a subset P ′ of P with N/2 intervals that
are contained in [0, 2/3) and that are to the left of an uncovered interval J . The following lemma
guarantees certain useful combinatorial guarantees about G(P ′).
Lemma 8. At least one of the following holds

I. There are N/5m vertices of G(P ′) in (0, 2/3) with left dgeree (i.e. indegree) at least 1.

II. There are Ω(N) vertices of G(P ′) with indegree 0 and that have an immediate successor which
is not 0 connected.

Proof. Assume that the first case doesn’t hold. Let G be the set of intervals in P ′ whose right
endpoints are in (0, 1/3), and let |G| = g. Similarly let H be the set of intervals in P ′ whose right
endpoints are in [1/3, 2/3), and let |H| = h. Denote by degL(v) the left degree of v. Then because
of elimination rule 2, we have:

g =
∑

r∈(0,1/3]

degL(r) ≤ m · |{r ∈ (0, 1/3] : degL(r) > 0}| ≤ m ·N/5m = N/5.

Now, since g+h = |P ′| ≥ N/2 it follows that h ≥ N/2−N/5 = 3N/10. Now because of elimination
rule 1, there are at least 3N/10 distinct vertices mentioned in the intervals in H. Call these vertices
V (H).

Let VL(H) ⊂ V (H) be those vertices in V (H) that have indegree 0. First, we observe that
the size of VL(H) is at least Ω(n), since if is not, then there are too many vertices in G(P ′) with
indegree at least 1, violating our assumption that the first case doesn’t hold. Notice that all vertices
in VL(H) must be left endpoints of some interval in H. It is left to argue that for each v ∈ VL(H),
right(v) cannot be zero connected, where right(v) is the matching right endpoint of v in H. To
see this, recall that for each v ∈ VL(H), right(v) is in (1/3, 2/3). Thus in order for right(v) to be
0 connected, there would need to be a path from 0 to right(v); but this would involve more than n
intervals that have indegree at least 1, thus again violating the fact that the first case doesn’t hold.

Hence we have shown that whenever case (I) doesn’t hold, case (II) must.

We now show that in any of the cases guaranteed by the lemma, the algorithm must maintain
a large set of solutions in order to allow for an optimal (complete) solution.

Case I. We define a projection function π from partial solutions (namely, an assignment of the
first n intervals to the different machines or to none) into subsets of R as follows.

r ∈ π(PS) iff there is a machine M such that r is the rightmost location assigned to M

(Notice that by definition |π(PS)| ≤ m). Call the set of points with positive indegree S. Let PS be
the set of all partial solutions after the first N intervals are revealed. We claim that any algorithm
must maintain

(S
m

)

partial solutions, one corresponding to every subset of S of size m. Specifically,

11

for every subset {u1, u2, . . . , um} of S, a partial solution in which the rightmost points covered by
the m machines are {u1, u2, . . . , um} must be considered.

To prove this, fix a particular subset {u1, u2, . . . , um} of S. We create the following remaining
input Q. For each j we create a path γj connecting uj to 1 using intervals of length ≥ 1/3N .
Further, the points p that are endpoints in the paths are disjoint except for the point 1. (It is
important to note that the fact that uj /∈ (2/3, 1) is used here as otherwise elimination rule 2 may
have removed intervals that are essential to the construction.)

For each uj, j ∈ [1,m], let vj be a left neighbour of uj . Our goal is now to connect each vj to
0 by m disjoint paths δ1, . . . , δm, possibly using additional valid intervals that will be part of Q.
We now need the simple fact that there is a way to add intervals to P so that the following two
conditions hold.

• First, all vj will be connected to 0 (in order to have a complete solution).

• Secondly, if a point had m left neighbours in P , then no left neighbours will be added by the
new intervals. This second condition is necessary in order to be consistent with elimination
rule 2.

To see that the above two conditions can be satisfied, we simply consider an extension of all vj

to the left, using existing intervals from P as much as possible. This is done until we managed to
connect all vj to 0. Notice that if a point vj has left degree m in G(P ′), then we never need to add
more intervals ending in vj even if all paths need to go through this point. This explains why we
should insist on having degree bound m and not less.

It is left to show that there is no complete solution other than this one (modulo permutations of
the machines). First, notice that γ1, γ2, . . . , γm must all be used in order to get a complete solution
as otherwise the interval J would not be covered m times.

It remains to show that in any complete solution that extends γ1, . . . , γm, the intervals [vj , uj],
j ∈ [1,m], together with δ1, . . . , δm, must be used. If it were the case that for each point ui, no
new intervals of the form [r, ui] were added, then it would be clear that the intervals [vj , uj] must
be used, and this would then imply that the intervals δj must be used as well, in order to form a
complete solution. However, it may be the case that for some uj > ui, such an interval [r, ui] was
added in order to connect uj to 0. (For example, it might be that [ui, uj] is part of P ′, and then some
interval [r, ui] would have to be added in order to connect uj to 0.) When this happens, we say that
uj dominates ui. Recall that in order to get a complete solution ui must be connected to zero and
no intervals in P ′ to the right of ui may be used. As mentioned above, if no ui is dominated, then
there are no new intervals ending at ui that were added, and so any solution in which ui /∈ π(PS)
cannot be made complete. For the general case we consider um first (assuming without loss of
generality that u1 < u2 . . . < um). Since um is not dominated it follows that a complete solution
must connect um to zero, so that the interval ending at um is in P ′. Therefore if P ′S is to be
completed to a complete solution it must satisfy um ∈ π(PS). An important observation is that if
um dominates some ui, then the interval [r, ui] ∈ δm must be used to connect um to zero. Thus, we
may consider only u1, . . . , um−1 and we may ignore the dominance relation involving um. Therefore
we may continue arguing this way by downward induction, to show that ui ∈ π(PS) for all i.

Case II. Let L be the set of points as is guaranteed in case 2. For each pi ∈ L pick some interval
with pi as the left endpoint, and qi as the right endpoint, where qi is not zero connected. Call the
produced set of intervals I. We now argue that for any subset J = {[pj , qj]}j=1,...m, the solution
containing these intervals on the m machines (one per machine) and nothing else, is indispensible.
For each j we connect pj to zero and qj to 1 using intervals of length at least 1/3N ; we call this

12

set of intervals Fj . We additionally require that the endpoints of Fj avoid all edgepoints of I and
of F1, . . . , Fj−1 (except for pj and qj). This is possible as long as W as large enough. Notice that
there are at most 3mN intervals used in F = ∪jFj and so if W = 5mN this requirement can be
satisfied.

If we accept exactly [pj, qj] and Fj on machine j, we get a complete solution. We next show
that there is no complete solution other than this one (modulo permutations of the machines) over
P ′∪F . Consider the graph G(P ′∪F). Then there is a complete solution to all m machines exactly
when there are m edge-disjoint paths from 0 to 1. Our goal is therefore to show that the existence
of such paths implies that all edges [pj, qj] are used. As we observed in the previous case, the
only way to get m disjoint paths crossing over the gap J is to pick all edges corresponding to the
connections in F from the qis to 1. Therefore a complete solution must contain m disjoint paths
from 0 to q1, . . . , qm.

None of the qj’s is connected to 0 in G(P ′), hence in connecting all of them to 0 we must
use the only points that were made zero connected when adding Fj ’s, namely p1, . . . , pm. It is
left to show that this requires using the intervals [pj, qj]. There is one subtle point that is left to
argue. Suppose that the intervals I are [p1, q1] and [p2, q2], but that in the graph G(P ′), there are
edges (p1, q1), (p1, q2), (p2, q1), (p2, q2). We need to argue that any complete solution must use the
intervals [p1, q1], [p2, q2] (and not the intervals [p2, q1], [p1, q2].) In order to argue this, suppose for
sake of contradiction that there is a second matching between the pi’s and the qi’s that allows us
to obtain a complete solution. Then the union of the two matchings forms an undirected cycle in
G(P ′). But this is not possible since it violates elimination rule 1.

5 The Knapsack and Subset-Sum problems

The Knapsack problem takes as input n non-negative integer pairs denoting the weight and profit
of n items, {(x1, p1), . . . , (xn, pn)} and another number N , and returns a subset S ⊆ [n] that
maximizes

∑

i∈S pi subject to
∑

i∈S xi ≤ N . This is a well known NP-hard problem which, on the
positive side, has an FPTAS. In this section we study the width-approximation tradeoff for pBT
algorithms for the problem.

Narrow pBT algorithms As a warmup, we start by observing that width-1 and width-2 pBT
algorithms for Knapsack behave dramtically differently. Recall the simple 1/2-approximation algo-
rithm that either accepts or rejects the highest profit item, and then greedily chooses items when
ordered by their decreasing profit to weight ratio. This algorithm can be clearly captured by an
adaptive order width 2 pBT that orders the highest profit item first, and orders the rest by their
profit to weight ratio as above9 .

We next show an n1/4 inapproximability result for Knapsack for width-1 pBT (ie, priority
algorithms), where n is the number of items.10 The initial input contains big items of weight 1 and
profit 1, medium items of weight 1/n and profit n−1/2 and small items of weight 1/n2 and profit
1/n. Each appears n times. We let N = 1. The adversary waits until either an item is accepted
or n − n3/4 items are rejected. If a big item was accepted then the adversary leaves only medium

9At the expense of introducing yet another term, we might call such an algorithm “weakly adaptive” in that the
ordering function rk

A depends on k but not on the arguments of rk
A as defined in Defintion 1. We could also modify

the definition of fixed-order priority and pBT algorithms to allow such dependence on k but that would seem to
violate the spirit of the intended definition.

10We note, however, that there is an adaptive-order width-1 pBT with revocable acceptances that achieves a 1/2
approximation.

13

items. The algorithm then achieves profit 1, while the optimum is at least n3/4 · n−1/2 = n1/4. If a
medium or small item was chosen, the adversary leaves only big items. Now the algorithm achieves
at most n−1/2 profit while the optimum is 1. In the case where n − n3/4 items were rejected, the
adversary will leave only small items. The algorithm can then get at most n3/4/n = n−1/4 while
optimum is attained by accepting all items totalling to a profit of at least 1.

Wide pBT algorithms We now move to the other side of the spectrum of the width-approximation
tradeoff, ie, we consider the width needed for exact solution or for a very good approximation of
the problem. There are well-known simple-DP algorithms solving the Knapsack problem in time
polynomial in n and N , or in time polynomial in n and Π = maxn

i=1 pi. Therefore, with that much
width the problem is solvable by a pBT .

We prove that it is not possible to solve the problem with an adaptive-order pBT algorithm
that is subexponential in n (and does not depend on N or Π). Further, we provide an almost tight
bound for the width needed for an adaptive-order pBT that approximates the optimum to within
1− ε. We present an upper bound (due to Marchetti-Spaccamela) of (1/ε)2 based on a modification
of the algorithms of Ibarra and Kim [27] and Lawler [32] that uses dynamic programming and a
lower bound of Ω((1/ε)1/3.17). We notice that both our lower bounds in this section hold for the
Subset-Sum problem, the proportional profit variant of the Knapsack problem where for each item
the profit is equal to its weight.

Theorem 9. The width of an optimal adaptive-order pBT for the Subset-Sum problem is at least
(n/2
n/4

)

= Ω(2n/2/
√

n).

Proof. We are tempted to try to argue that having seen only part of the input, all possible subsets
of the current input must be maintained as partial solutions or else an adversary has the power to
present remaining input items that will lead to an optimal solution with a solution the algorithm
failed to maintain. For an online algorithm, when the order is adversarial, such a simple argument
can be easily made to work. However, the ordering (and more so the adaptive ordering) power of
the algorithm requires a more subtle approach.

Let N be some large number which will be fixed later. (Since a simple DP of size poly(n,N)
exists, it is clear that N must be exponential in n.) Our initial set of items are integers in I =
[0, 8

3 ·N/n]. Take the first n/2 items, and following each one, apply the following “general-position”
rule to remove certain items from future consideration: remove all items that are the difference of
the sums of two subsets already seen; also remove all items that complete any subset to exactly N
(ie all items with value N −∑

i∈S ai where a1, a2, . . . are the numbers revealed so far, and S is any
subset). These rules guarantee that at any point, no two subsets will generate the same sum, and
that no subset will sum to N . Also notice that this eliminates at most 3n/2 numbers so we never
exhaust the range from which we can pick the next input provided that 3n/2 << N .

Call the set of numbers seen so far P and consider any subset Q contained in P of size n/4.
Our goal is to show that Q is indispensable; that is, we want to construct a set R = RQ of size n/2
consisting of numbers in the feasible input with the following properties.

1. P ∪R does not contain two subsets that have the same sum.

2.
∑

i∈Q ai +
∑

i∈R ai = N

The above properties indeed imply that Q is indispensable since obviously there is a unique solution
with optimal valueN and, in order to get it, Q is the subset that must be chosen among the elements

14

of P . We thus get a lower bound on the width which is the number of subsets of size n/4 in P ;

namely
(n/2
n/4

)

= Ω(2n/2/
√

n).

How do we construct the set R? We need it to sum to N −∑

i∈Q ai, while preserving property
1. The elements in R must be among the numbers in I that were not eliminated thus far. If R is
to sum to N −∑

i∈Q ai, then the average of the numbers in R should be a = 2
n · (N −∑

i∈Q ai).

Since 0 ≤ ∑

i∈Q ai ≤ (n/4)(8N/3n) = 2N/3, we get 2
3N/n ≤ a ≤ 2N/n. This is good news since

the average is not close to the extreme values of I, owing to the fact that the cardinality of R is
bigger than that of Q. We now need to worry about avoiding all the points that were eliminated
in the past and the ones that must be eliminated from now on to maintain property 1. The total
number of such points, U , is at most the number of ways of choosing two disjoint subsets out of a
set of n elements, namely U ≤ 3n.

Let J = [a−U, a+U]. We later make sure that J ⊂ I. We first pick n/2−2 elements in J that (i)
avoid all points that need to be eliminated, and (ii) sum to a number w so that |w−a·(n/2−2)| ≤ U .
This can be done by iteratively picking numbers bigger/smaller than a according to whether they
average to below/above a. To complete we need to pick two points b1, b2 ∈ I that sum to v = n

2 a−w
and so that b1, b2, b1 − b2 are not the difference of sums of two subsets of the n − 2 items picked
so far. Assume for simplicity that v/2 is an integer. Of the 2U + 1 pairs (v/2 − i, v/2 + i), where
i = 1 . . . 2U + 1, at least one pair b1, b2 will have all the above conditions. All that is left to check
is that we never violated the range condition, ie we always chose items in [0, 8

3 ·N/n]. We can see
that the smallest number we could possibly pick is a− U − (2U + 1) ≥ 2

3N/n − 3U − 1. Similarly
the biggest number we might take is a+3U +1 ≤ 2N/n+3U +1. These numbers are in the valid
range as long as 2

3N/n ≥ 3U + 1. Since U ≤ 3n we get that N = 5n3n suffices.

A more careful analysis of the preceding proof yields the following width-approximability trade-
off.

Theorem 10. For any ε, Knapsack can be (1 − ε)-approximated by a width (1/ε)2 adaptive-order
pBT algorithm. For any ε ≥ 2−δn for some universal constant δ, Knapsack cannot be (1 − ε)-
approximated by any such algorithm of width less than (1/ε)1/3.17. The lower bound holds even for
the Subset-Sum problem.

Proof. Lower Bound. We take the existing lower bound for the exact problem and convert it to
a width lower bound for getting a 1 − ε approximation. Recall that the resolution parameter N
in that proof had to be 5n3n for getting a width lower bound of 2n/2/

√
n. For a given width γ,

we might hope to lower the necessary resolution in order to achieve an inapproximability result.
We consider a Knapsack instance with u items that require exponential width (as is implied by
Theorem 9), and set N , the parameter for the range of the numbers to 5u3u. If u is such that
γ < 2u/2/

√
u then this problem cannot be solved optimally by a width-γ pBT algorithm. Recall,

the optimum is N , and the next best is N − 1, and so the best possible approximation we can get
is

(N − 1)/N ∼ 1− 1/(5u3u) ∼ 1− Õ(γ−2 log2 3).

Therefore Ω((1/ε)1/3.17) width is required to get a 1− ε approximation. To make the lower bound
work for any number of items, we simply add n− u 0-items to the adversarial input.

Upper Bound (Marchetti-Spaccamela). We first sketch Lawler’s algorithm (built upon
that of Ibarra and Kim) to approximate Knapsack. We call the solution that takes items by
nonincreasing order of their profit/weight as long as possible “the canonical solution”. Given
parameters K and T : Round all items of profit at least T down to the closest multiple of K. Let
τ be the optimum and τ(T) be the optimum restricted to items of profit at least T . For each

15

one of the possible τ(T)/K different profits, find the lowest weight bundle of large-profit items
attaining it using dynamic programming. Now supplement each such solution with the canonical
solution for the remaining items (with the remaining size of Knapsack). Simple calculations done
in [32] show that the additive error in this solution is at most Kτ/T + T . This would have been
enough, if only the algorithm knew a good estimator τ ′ to τ(T) in advance. Specifically, suppose
τ(T)/2 ≤ τ ′ ≤ τ(T), then we can set K = ε2τ ′/4 and T = ετ ′/2 to get an additive error of at
most ετ(T) ≤ ετ . We now show that an adaptive-order pBT algorithm can achieve this balance of
parameters using width 8/ε2: Start with τ ′ = maxi pi; set K = ε2τ ′/4 and T = ετ ′/2. As long as
there are items with profit at least T take them (in any order) and keep solutions for all possible
profits up to 2τ ′ in multiples of K. If there is a solution that is at least 2τ ′ update τ ′ = 2τ ′. Set K,T
again by the above relation to τ ′. Notice that since the scaling factors double when we reset them,
we are halving the resolution and removing possible items from the first stage of the algorithm.
This means that whatever partial solutions we were maintaining before the parameter adjustment
encompass those we want to maintain afterwards. We continue until all items have profit at most
T . At this point we have maintained all solutions of the high-profit items in resolution K (notice
the invariant τ(T) ≤ 2τ ′). From this point on, each one of the 2τ ′/K = 8/ε2 partial solutions is
completed greedily with items of profit smaller than T .

Remark 2. We can extend the proof of theorems 9 and 10 so as to allow revocable acceptances (see
remark 1) with slightly worse parameters. Recall that in Theorem 9 we look at n/2 elements in the
range [0, N/2] and then show that all n/4 size subsets are indispensable. We can modify the proof
so that this range is [aN/n, bN/n] for suitable constants a, b > 2; we look at the first n/2 items and
similar to the arguments in Theorem 9, show that all subsets of size n/(2b) are indispensable. In the

semi-revocable model it is no longer the case that this supplies a width lower bound of
(n/2
n/(2b)

)

, but

instead we should look for a family of feasible sets F such that any of the indespensible sets of size
n/(2b) is contained in some F ∈ F . But, and this is the crucial point, feasible sets must be of size

≤ n/a, and so every f ∈ F contains at most
(n/a
n/(2b)

)

sets, and a counting argument immediately

shows that |F| ≥
(n/2
n/(2b)

)

/
(n/a
n/(2b)

)

= 2Ω(n).

6 Satisfiability

The search problem associated with SAT is as follows: given a boolean conjunctive-normal-form
formula, f(x1, . . . , xn), output a satisfying assignment if one exists. There are several ways to
represent data items for the SAT problems, differing on the amount of information contained in
data items. The simplest weak data item contains a variable name together with the names of
the clauses in which it appears, and whether the variable occurs positively or negatively in the
clause. For example, the data item < xi, (j,+), (k,−) > means that xi occurs positively in clause
Cj, and negatively in clause Ck, and these are the only occurrences of xi in the formula. The
decision is whether to set xi to 0 or to 1. We also define a strong model in which a data item
fully specifies all clauses that contain a given variable. Thus Di =< xi, C1, C2, ..., Ck >, where the
C1, ..., Ck are a complete description of the the clauses containing xi. Note that, unlike the Interval
Scheduling and Knapsack data items, the various types of SAT data items (and the node data
items for graphs which we mention later in this section) are not independent of one another. For
example, in a well-formed instance of 2SAT in the weak data item model, there better not be three
different variables that all assert that they appear in a given clause. Such considerations constrain
a successful adversary in a lower bound argument.

In general we would like to prove upper bounds for the weak data type, and lower bounds for

16

the strong data type. We will show that 2SAT (for the strong data type) requires exponential time
in the fixed-order pBT model, but has a simple linear time algorithm in the adaptive-order pBT
model (for the weak data type). Thus, we obtain an exponential separation between the fixed- and
adaptive-order pBT models. Next, we give exponential lower bounds in the fully-adaptive-order
model for 3SAT (strong data type).

6.1 2-Satisfiability in the Fixed-Order Model

In this section we show that the fixed-order pBT model cannot efficiently solve 2SAT (or c-
approximate MAX2SAT for c > 21/22).

Theorem 11. For sufficiently large n, any fixed-order pBT algorithm for solving 2SAT on n
variables requires width 2Ω(n). This lower bound holds for the strong data type for SAT.

Proof. Consider a set of variables x1, . . . , xn. Each variable xi gives rise to many possible items,
each of which will describe exactly two equations that hold for xi. In the end, we will select one
item from either (1) or (2) for each xi:
(1) For some choice of j 6= k ∈ [n] \ {i}, xj = xi = xk, or xj = xi 6= xk or xj 6= xi = xk,
(2) For some choice of j ∈ [n] \ {i}, 0 = xi = xj or xj = xi = 1.
Of course, each of these constraints must be represented by a small constant (at most 4) number
of clauses.

Call two items disjoint if they mention disjoint sets of variables. An r-chain is a chain of
equations of the form

0 = y1 = y2
?
= . . .

?
=yr−1 = yr = 1,

where y1, . . . , yr ∈ {x1, . . . , xn} and ?
= is either = or 6=.

Consider any ordering of the initial set of input items. Let M be the first m = bn/11c disjoint
(1)-items in the ordering. Suppose these items are called yi

6, i ≤ bn/11c, and let yi
5

?
=yi

6
?
=yi

7 be the
content of these items. This triple will form the middle of an 11-chain. For each i, choose eight
remaining variables in order to extend the chain to an 11-chain. That is, partition the remaining
variables into bn/11c disjoint sets (with possibly some items leftover if n is not divisible by 11), each
of size 8, so that for each i, we have an 11-chain involving the sequence of variables: yi

1, y
i
2, . . . , y

i
11.

The adversary removes items to be consistent with the following 11-chains for each i:

0 = yi
1 = yi

2
∗
=yi

3 = yi
4 = yi

5
?
=yi

6
?
=yi

7 = yi
8 = yi

9
∗
=yi

10 = yi
11 = 1.

That is, the adversary specifies (by removal of items) all equations in the chain (in particular, those
involving yi

6 are consistent with M) except those relating yi
2 to yi

3 and yi
9 to yi

10.
The adversary stops the game after phase q, the phase where we see the last item of M . Note

that at phase q, for each i: (i) the item yi
6 has been revealed (so one of the three possibilities has

been revealed for the inequalities on either side of yi
6); (ii) the items yi

2, yi
3, yi

9 and yi
10 have not

yet been revealed; and (iii) all other items in the 11-chain may or may not be revealed, but if they
have been revealed, they are consistent with the equalities written above. Let P denote the set of
revealed items after q phases of the game.

We want to show that each of the 2bn/11c assignments to the yi
6 variables must be maintained

by the algorithm at level q of the game. More formally, we partition the set of all decisions on P
into equivalence classes, where two partial solutions ρ1 and ρ2 are equivalent if they are identical
over the yi

6 variables. We will show that the set of all such equivalence classes is indispensable.
Consider one such equivalence class, and let α be the underlying assignment to the yi

6 variables.
If the algorithm does not maintain a partial solution consistent with α, then the adversary can

17

further specify each of the 11-chains so that at least one chain will be left unsatisfied. Consider
chain i: there are several cases depending on the actual inequalities that are in P on the left and
right of yi

6. The first case is when yi
5 = yi

6 = yi
7 is in P . If α(yi

6) = 0, then the algorithm throws
away all future inputs on the chain i except those consistent with the following picture:

0 = yi
1 = yi

2 = yi
3 = yi

4 = yi
5 = yi

6 = yi
7 = yi

i = yi
9 6= yi

10 = yi
11 = 1

Otherwise, if α(yi
6) = 1, the algorithm throws away all future inputs on chain i except those

consistent with:

0 = yi
1 = yi

2 6= yi
3 = yi

4 = yi
5 = yi

6 = yi
7 = yi

8 = yi
9 = yi

10 = yi
11 = 1.

The other two cases (when yi
5 6= yi

6 = yi
7, and when yi

5 = yi
6 6= yi

7) are handled similarly.
Thus we have shown that under this adversary strategy, the algorithm must consider at least

2bn/11c assignments.

We can also consider the associated optimization problem MAXSAT: find an assignment to the
variables of a CNF that maximizes the number of satisfied clauses. We remind the reader that pBT
inapproximation results are incomparable with complexity-theoretic hardness of approximation
results since pBT algorithms are incomparable with, say, polytime algorithms. It is a curious
coincidence that the inapproximation ratio (21/22) that we establish for pBT algorithms matches
the best known NP -hardness of approximation result for MAX2SAT [23]. This NP -hardness
result is proven for instances of exact-MAX2SAT, where every clause has exactly two literals,
while the hard examples we give in our lower bound contain some clauses with only one literal.
We can use a similar technique to establish a slightly weaker inapproximation result for exact-
MAX2SAT; namely, 27/28. On the positive side, we note that the well-known derandomization
of the naive randomized algorithm (see, for example, [33, 35]) for exact-MAX2SAT (respectively,
MAX2SAT) achieves approximation ratio 3/4 (respectively, 1/2) and can be implemented as a
fixed-order priority algorithm (width-1 pBT).

Theorem 12. For any ε > 0, there exists a δ > 0 such that for all sufficiently large n, any fixed-
order pBT algorithm for solving MAX2SAT on n variables requires width 2δn to achieve a 21

22 + ε
approximation. Again, this lower bound holds for the strong data type for SAT.

Proof. The game is played exactly as in the proof of Theorem 11. Notice that, when the algorithm
does not cover a certain equivalence class with partial assignment α, the adversary forces at least
one 11-chain to be unsatisfied. In particular, 2 out of the 22 clauses representing the 11-chain are
unsatisfied (one associated with yi

2
∗
=yi

3 and one with yi
9
∗
=yi

10). Now fix ε > 0 and let δ = (log e)11ε2.
If the algorithm maintains k < 2δn partial solutions at phase q, then it can cover at most k of
the α-equivalence classes. The probability that a random α-assignment agrees with a fixed α-
assignment on more than a (1/2 + 11ε)-fraction of the m = bn/11c variables that α sets is at most
e−(11ε)2m = e−11ε2n. If the algorithm maintains fewer than k α-assignments, then the adversary
can find an assignment α∗ that agrees with each of the k α-assignments on at most a (1/2 + 11ε)-
fraction. Hence, in a (1/2−11ε)-fraction of the 11-chains, 1/11 of the clauses are unsatisfied by any
of the algorithm’s partial solutions, so the algorithm leaves a (1/22 − ε)-fraction of all the clauses
unsatisfied.

6.2 Vertex Cover

We note that Johnson’s greedy 2-approximation for vertex cover can be implemented as a fixed-
order priority algorithm (i.e. a width-1 pBT). Here the items are vertices with their adjacency lists

18

and (using any ordering) each vertex is accepted (included in the vertex cover) iff it is an end-point
of a maximal matching that is being constructed. A similar idea to the 2SAT inapproximation can
be used to show a constant inapproximation ratio for exponential-width fixed-order pBT algorithms
computing Vertex Cover (with the same input representation). Again note the incomparability with
NP-hardness of approximation results.

Theorem 13. For any ε > 0, there exists a δ > 0 such that for all sufficiently large n, any fixed-
order pBT algorithm for solving Vertex Cover on n vertices requires width 2δn to achieve a 13

12 − ε
approximation.

Proof. (sketch) Each node xi gives rise to two types of items
(1) For some j 6= k ∈ [n] \ {i}, xj − xi − xk (that is, xi has neighbors xj and xk).
(2) For some j ∈ [n] \ {i}, xj − xi.
Let M be the first m = bn/13c disjoint (1)-items in the ordering: {yi

6 − yi
7 − yi

8}mi=1. Partition the
vertices into m groups of size 13 so that each contains an item from M . When the algorithm has
seen every item in M , the adversary selects one of the two following configurations for each group:

yi
1 − yi

2 − yi
3 − yi

4 − yi
5 − yi

6 − yi
7 − yi

8 − yi
9 − yi

10 − yi
11 − yi

12 − yi
13,

or
yi
1 − yi

2 − yi
4 − yi

5 − yi
6 − yi

7 − yi
8 − yi

9 − yi
10 − yi

3 − yi
11 − yi

12 − yi
13.

If the algorithm has included yi
7 in the vertex cover and the adversary chooses the first config-

uration, then the algorithm is forced to cover the 13-chain with 7 vertices when 6 would have been
enough; likewise if the algorithm has excluded yi

7 and the adversary chooses the second configu-
ration. Note again that the algorithm cannot predict the adversary’s choices when it is deciding
about vertices in M because vertices yi

2, y
i
3, y

i
4, y

i
10, y

i
11 are all clouded in obscurity since they are

the centerpoints of (1)-items disjoint from M .
Again, if the algorithm maintains only 2δn assignments to {yi

7}mi=1 for δ being a sufficiently
small constant, then the adversary can choose an assignment such that 1/2 − ε′ of the groups are
non-optimal (for some ε′), giving an approximation no better than (1/2 + ε′)1 + (1/2 − ε′)7/6 =
13/12 − ε.

6.3 2-Satisfiability in the Adaptive-Order Model

In this section, we show that allowing adaptive ordering avoids the exponential blow up in the
number of possible assignments that need to be maintained. Specifically, we give a linear width
pBT algorithm for 2SAT in the adaptive-order model.

Theorem 14. There is a width-O(n) adaptive-order pBT algorithm for 2SAT on n variables.
Further, this upper bound holds for the weak data type for SAT.

Proof. Consider the standard digraph associated with a 2SAT instance. Recall that the standard
algorithm for the problem goes via finding the strongly connected components of this graph. This
does not fit immediately into the pBT model since, here, whenever we observe a variable we
must extend partial solutions by determining its value. The algorithm we present uses the simple
observation that a path of literals in the digraph, such as l1 → l2 → l3 → . . . → lm, has only linearly
many potentially satisfying assignments; namely the literals along the path must be set to 0 up to
a certain point, and to 1 from that point on, which means at most m+1 possible valid assignments
to the literals involved. Since the algorithm will adaptively explore only simple paths, essentially
using DFS, it will never be maintaining more than a linear number of assignments. The pBT tree

19

that we generate, however, will not correspond to a DFS tree. Instead, think of each branch of the
pBT tree as conducting the same DFS search in parallel, with each branch maintaining one of the
linearly many assignments mentioned above.

Using an adaptive ordering we can “grow” a path of literals as follows. Start with an arbitrary
variable item x1 and let l1 be a literal corresponding to x1. Having viewed the item for x1, we now
know the names of the clauses that l1 and ¬l1 appear in. The algorithm then chooses a new (that
is, unseen so far) variable x2 (if there is one) such that there is an edge l1 → l2 for some literal l2
corresponding to x2 (that is, build an ordering that prefers variables x2 that appear in clauses of
the form (¬l1 ∨ x2) or (¬l1 ∨ ¬x2)). Then, it continues to look for a path l1 → l2 → l3 and so on.
Each time we see a literal corresponding to a new variable such as l3, we extend each branch of the
pBT tree as follows: on a branch that set l2 = 1, set l3 = 1; on a branch that set l2 = 0, create two
new branches setting l3 to 0 and 1, respectively. As long as this is possible we need to maintain
only a linear number of solutions.

When the path l1 → · · · → li is no longer extendable in this fashion, it must mean that (i) the
only outneighbors of li are literals corresponding to already-seen variables, or (ii) li has outdegree 0.
Case (i), has two subcases: if there is an edge li → l, where l = ¬lj for some j < i, then terminate
all branches of the pBT tree that set lj = 1 and continue growing the path from l (that is, each
surviving branch of the pBT tree continues with the common ordering that prefers new variables
corresponding to literals that are outneighbors of l). Otherwise, if the only out-edges are li → l
for l = lj , then terminate all branches of the pBT tree that don’t set li = lj and continue growing
the path from li−1. Finally, in case (ii), terminate all branches of the pBT tree that set li = 0 and
continue growing the path from li−1. When we have explored all literals reachable from l1, all such
literals (and hence their underlying variables) will have a fixed value. We then start over with a
new variable, if there is one (making sure, on each branch of the pBT tree, to respect the settings
to the variables reachable from l1, should we encounter them).

6.4 3-Satisfiability in the Fully Adaptive-Order Model

So far we have proven lower bounds for fixed- and adaptive-order pBT algorithms. Here we use
3SAT to give the first width lower bound for a fully-adaptive-order pBT algorithm. The same
lower bound also holds for the depth-first complexity measure and hence applies to a large class of
backtracking algorithms for SAT, commonly known as DPLL algorithms. In particular, this lower
bound can be seen to extend the lower bound of [3] against myopic DPLL algorithms to a more
general model.

Theorem 15. Any fully-adaptive-order pBT algorithm for 3SAT on n variables requires width
2Ω(n) and depth-first size 2Ω(n). This lower bound holds for the strong data type for SAT.

The lower bound uses formulas that encode a full rank linear system Ax = b over GF2. These
formulas are efficiently solvable by Gaussian elimination, thus they separate our model of dynamic
programming and backtracking from algebraic methods.

6.4.1 Linear systems over expanders

Let A be an m× n 0/1 matrix, x be an n × 1 vector of variables and b an m× 1 vector over 0/1.
Given a fixed A, the Ax = b problem on instance b is to find a 0/1 assignment (if there is one) to
the variables in x such that Ax = b where all arithmetic is performed modulo 2. More precisely,
given that A is fixed, each item is of the form 〈xj , bj1 , ..., bjK

〉, where j1, ..., jK denote the indices
of the rows of A such that there is a 1 in the jth column. The decisions about items are 0 and 1,

20

corresponding to the value assigned to the variable in question. If A has, say, at most three 1’s in
each row, then it is easy to see that a width-w fully-adaptive-order (depth-first) pBT algorithm for
3SAT gives a width-w fully-adaptive-order (depth-first) pBT algorithm for the Ax = b problem.
Hence, we will concentrate on the latter problem.

As usual, such a matrix A encodes a bipartite graph from m rows to n columns where the edge
(i, j) is present if and only if Aij = 1. For I ⊂ [m], let ΓA(I) (or just Γ(I)) denote the set of
neighbors of the rows I. We will often view A as a bipartite graph from equations in the linear
system Ax = b to variables in x, where each equation is connected to the variables it contains.
Hence, we sometimes write V ars(I) instead of Γ(I).

We will need a matrix A such that the bipartite graph described above is a good expander. In
fact, we will use two notions of expanders: expanders and boundary expanders. The latter notion
is stronger as it requires the existence of unique neighbors. However, every strong expander is also
a good boundary expander.

Definition 16. We say that A is an (r, s, c)-expander if

1. Each row of A contains at most s 1’s, and

2. ∀I ⊆ [m] (|I| ≤ r ⇒ |Γ(I)| ≥ c · |I|).

For a set of rows I ⊆ [m] of an m× n matrix A, we define its boundary ∂AI (or just ∂I) as the
set of all j ∈ [n] (called boundary elements) such that there exists exactly one row i ∈ I where
Aij = 1. Matrix A is an (r, s, c)-boundary expander if condition 2 is replaced by

2′. ∀I ⊆ [m] (|I| ≤ r ⇒ |∂I| ≥ c · |I|).

We will not explicitly mention the notion of boundary expansion until we prove the depth-first
lower bound in Section 6.4.3, but we note that it is needed in the proof of Lemma 22. In general,
it is not hard to see that very good expanders are also boundary expanders: any (r, s, c)-expander
is an (r, s, 2c − s)-boundary expander.

The following lemma provides the existence of good expander matrices that have full rank over
GF2. It is an improvement upon the construction of full rank expanders in [3] and is likely to be
of independent interest. The proof appears in the appendix.

Lemma 17. For any constant c < 2 there exists a constants ε > 0 and K > 0 and a family An of
n× n matrices such that

• An has full rank.

• An is (εn, 3, c)-expander.

• Every column of An contains at most K ones.

6.4.2 The Width Lower Bound

Fix n, let δ > 0 be a sufficiently small constant and let A be a full-rank n × n matrix and an
(r, 3, c = 2 − δ)-expander that has at most K ones in each column, as guaranteed by Lemma 17.
Here r is Ω(n) and K is a constant that depends on c and r/n. Hence the items in this problem
can be described by the name of a variable, say, xj, and (up to) K 0/1 values, say, q1, ..., qK which
represent values for each bi where Aij = 1. Let A be any fully-adaptive-order pBT algorithm for
the Ax = b problem.

21

Consider the following Solver-Adversary game that operates in rounds. In each round:
(1) The Solver proposes a possible item D = 〈xj, q1, ..., qK〉.
(2) The Adversary reveals values for bj1, ..., bjK

, where j1, ..., jK are the rows of A that have a 1 in
the jth column. The Adversary must remain consistent with its previous answers.
(3) If the q values match the b values, the Solver chooses a set S ⊆ {0, 1}; otherwise the round ends
and a new round begins.
(4) The Adversary selects an element from S (if there is one).
The game ends when the Solver has proposed an item and chosen a subset for every variable or
when the Solver chooses ∅ in step (3).

It is not hard to see that A gives a strategy for the Solver in the above game against any
Adversary. In fact, the Solver in the game has a major advantage over the algorithm: whenever
it proposes an item that is not present in the input, it gets to see the corresponding item that is
present. Let TA be the tree that represents A’s strategy against all adversaries. This tree will have
branch points for the Adversary’s decisions in step (2)—call these b-nodes—and for the Adversary’s
decisions in step (4)—call these x-nodes. Each b-node will have at most 2K children and each x-
node will have at most 2 children. Furthermore, each b-node will have exactly one child that is an
x-node and all other children will be b-nodes.

But how does TA relate to the pBT trees created by A on individual instances of the problem?
Consider a fixed b ∈ {0, 1}n. Let T b

A be the subtree of TA consisting of all paths that are consistent
with b at the b-nodes. Every path in T b

A will have a corresponding path in the pBT tree of A on
instance Ax = b. Hence, our strategy for the lower bound will be to analyze TA and show that it
must contain many paths that are all consistent with some fixed b.

Definition 18. For a path π in TA, let χ(π) be the (partial) assignment to the variables x =
(x1, ..., xn) corresponding to the branches of x-nodes that π follows, and let β(π) be the values of
b = (b1, ..., bn) that have been revealed according to the branches of b-nodes that π follows.

Lemma 19. For any w ∈ {0, 1}n, there must be a path πw in TA such that χ(π) = w.

Proof. If there weren’t, set b = Aw and run A on the instance Ax = b. A does not solve the
problem on that instance.

Definition 20. Let r′ = r/4. A partial path π is a path in TA that starts at the root and stops
at the first point such that β(π) reveals at least r′ components of b. Notice this means that β(π)
reveals less than r′ +K components of b. A partial path π is called good if χ(π) assigns values to
at least γr′ variables in x, for a sufficiently small constant γ > 0. Otherwise, it is called bad. For
w ∈ {0, 1}n, we say that a partial path π finds w if there is an extension π′ of π such that χ(π′) = w
and β(π′) = Aw.

Note that no partial path can contain more than r′ + K x-nodes. If one did, consider the
submatrix of A consisting of the columns corresponding to the variables set on that partial path;
such a submatrix has at most r′+K nonzero rows, so it cannot have full column rank and therefore
A would not have full rank. In what follows, for the sake of simplicity, we will disregard the extra
term of K when discussing the maximum number of bits of b revealed or the maximum number of
x-nodes along any partial path.

Lemma 21. No partial path in TA can find more than 2n−r′ assignments in {0, 1}n.

Proof. By definition, a partial path π gives values to r′ components of b. For any extension π′ of
π, certainly β(π′) is an extension of β(π). There are 2n−r′ such extensions. If π finds w, then it
must be the case that w = A−1b for some extension b to β(π). Hence there are at most 2n−r′ such
w’s (here we are, of course, using the fact that A is full rank).

22

To proceed, we will need the following technical lemma:

Lemma 22 ([3]). Assume that an m × n matrix A is an (r, 3, c)-expander for 17
9 < c < 2. Let

x = {x1, . . . , xn} be a set of variables, x̂ ⊆ x, b ∈ {0, 1}m, and let L = {`1, . . . , `k} be a tuple of
linear equations from the system Ax = b. Assume further that |x̂| ≤ r and |L| ≤ r. Denote by
L the set of assignments to the variables in x̂ that can be extended on x to satisfy L. If L is not

empty then it is an affine subspace of {0, 1}|x̂| of dimension greater than |x̂|
(

1
2 −

14−7c
2(2c−3)

)

.

Moreover, because of the linear algebraic structure of L, we can say that each partial assignment
in L can be extended to the same number of satisfying assignments for L.

Lemma 23. No good partial path in TA can find more than 2n−qr′ assignments in {0, 1}n where q
is a constant strictly bigger than 1.

Proof. Each good partial path π assigns values to at least γr′ variables in x (via χ(π)). Let this
set of variables be x̂. Also, let L be the set of equations corresponding to β(π). We assume that
χ(π) can be extended to satisfy L, since otherwise π finds no assignments and we are done. There
are at most 2n−r′ assignments to x that satisfy L. We can partition this set of assignments based
on the partial assignments they give to x̂. Applying Lemma 22 with δ = 2 − c, there are at least

2(1
2
− 7δ

2−4δ
)γr′ ≥ 2(1

2
−7δ)γr′ (for δ sufficiently small) partitions each of equal size. Let q = 1+(1

2−7δ)γ.

Then there are at most 2n−qr′ extensions to χ(π) that satisfy L, so certainly π finds at most 2n−qr′

assignments.

Lemma 24. There are at most 2εr′ bad partial paths in TA, where ε is a constant strictly smaller
than 1.

Proof. Each bad partial path can be specified by two sequences. Let B be a sequence of r′ bits,
denoting the values of each new component of b revealed along the partial path in the order they
are revealed (when multiple bits of b are revealed at a single b-node, put some arbitrary order on
them). Let X be a sequence of a = γr′ bits, denoting the values of the variables set along the
partial path (in the order they are set). Not all such sequences are valid, however. Consider a
particular placement of the bits of X (in order) among the bits of B. For each occurrence of a bit
from X, the preceeding bit of B is fixed (it is possible that more than one bit before the bit from X
is fixed). This is because that bit of B is used to specify the single child of a particular b-node that
is an x-node. Let BX be the bits of B immediately preceeding the bits from X. Now look at the
remainder of B, B \BX . Each consecutive subsequence of size 2K in B \BX has at most 22K − 1
possible values. This is because these bits are either fixed or are used specify children of b-nodes
that are not x-nodes. Let z = (r′ − a)/2K. Given a particular X and a particular placement of
X among the r′ bits of B, there are at most (22K − 1)z possible values of B. Therefore, the total
number of bad paths is at most

(r′

a

)

2a
(

22K − 1
)z

= 2a22Kz
(r′

a

) (

1− 1
22K

)z

≤ 2r′
(

er′

a

)a
e−z/22K

≤ 2r′ (e/γ)a
(

e((1/γ)−1)/2K22K
)−a

≤ 2r′−a

= 2r′−γr′ ,

where the last inequality follows by setting γ sufficiently small compared to K.

We are now ready to prove the width lower bound.

23

Theorem 25. Every fully-adaptive-order pBT algorithm A for Ax = b requires width 2Ω(n).

Proof. We will show that there are significantly more than 2r′ good partial paths in TA. If we set
b randomly, then each partial path remains in T b

A with probability at least 2−r′ , so there must be
a setting of b where T b

A, and hence the pBT tree of A, is big.
By Lemma 24, there are at most 2εr′ bad paths in TA where ε < 1. By Lemma 21, each such bad

path finds at most 2n−r′ assignments. Therefore, all the bad paths together find at most 2n−(1−ε)r′

assignments. Since the set of all partial paths must find 2n assignments by Lemma 19, the set of
good paths must find at least 2n − 2n−(1−ε)r′ ≥ (1 − o(1))2n assignments. By Lemma 23, then,
there must be at least (1− o(1))2qr′ good paths in TA, where q > 1. For any (partial) path π, the
probability that a random b will be consistent with π is 2−r′ . Hence, the expectation over random
b of the number of good paths in T b

A, is at least 2
(q−1)r′ . Thus there must be a setting of b that

achieves this width.

Note that Theorem 25 is proving something stronger than stated. The theorem is showing an
exponential lower bound on the expected width with respect to the input distribution induced by
the uniform distribution over random b vectors. If we define a randomized pBT algorithm as a
distribution over deterministic pBT algorithms, then we get a lower bound on the expected width
of randomized pBT algorithms by applying Yao’s minmax principle.

6.4.3 The Depth-First Lower Bound

We now know that for every fully-adaptive-order pBT algorithm, there is a setting of b so that the
Ax = b problem requires large width. Of course, that algorithm may be able to put an orientation
on its pBT tree for such a b such that the leftmost path of the pBT tree finds the corresponding
solution. If the tree is generated in a depth-first manner, then the algorithm may solve the instance
very quickly. Here we prove that for any depth-first pBT algorithm, there must be a choice of b
such that the algorithm must traverse 2Ω(n) paths before it finds the solution. In order to achieve
this, we need to take a closer look at what T b

A looks like for a “typical” choice of b. In particular,
we will show that for almost all b’s, the tree T b

A has exponential width.
Let c′ = 2c − 3, so that A is an (r, 3, c′)-boundary expander. The eventual lower bound (in

Theorem 30) will begin by fixing A and any b ∈ {0, 1}n such that T b
A contains no bad partial paths.

By Lemma 24, almost every b satisfies this. We will then implicitly describe a set of 2Ω(n) partial
paths that must appear in T b

A. Since we have so much flexibility in our choice of b, we will choose
one such that the corresponding solution appears in the right subtree of the top branching point in
T b
A, and observe that there are actually an exponential number of partial paths in the left subtree
alone.

Definition 26 ([4]). For any set of variables x̂ in the linear system Ax = b, define the following
inference relation on subsets of equations:

L1 `x̂ L2 ≡ |L1| ≤ r/2 ∧ ∂L2 ⊆ x̂ ∪ V ars(L1). (1)

Let Cl(x̂) (the closure of x̂) denote the union of all sets of equations L that can be inferred (through
the transitive closure of `x̂) from ∅.

Proposition 27. For any set of variables x̂ of size at most c′r/2, Cl(x̂) has size at most |x̂|/c′.

Proof. If not, consider unioning the sets comprising Cl(x̂) in some arbitrary order that respects the
order of inference: L1,L2, Define Ck = ∪

k
i=1Li, and let t be the minimum number such that Ct

has size greater than |x̂|/c′. Because of the order of the sets, ∂Ct ⊆ x̂. Also Ct has size at most r.
But then, by boundary expansion, Ct should have a boundary of size at least c′ |Ct| > |x̂|.

24

The following lemma is fairly straightforward, but very important. It basically says that closures
of sets of variables are the “hardest” subsets of equations to satisfy.

Lemma 28 ([2]). Let A be an (r, 3, c′)-boundary expander and fix any b ∈ {0, 1}n. Let χ be any
partial assignment to x and let x̂ be the set of variables underlying χ. Let L = Cl(x̂). If there is
an assignment to x satisfying L that is consistent with χ, then for every subset of equations L′ of
size at most r/2, there is an assignment to x consistent with χ satisfying L′.

We will often abuse notation and write Cl(χ) for Cl(x̂), where χ is a partial assignment to the
variables x̂. In what follows, given a b and a node v in T b

A, we will say that v satisfies its closure if
there is an assignment to x consistent with χ(v) that satisfies those equations of Ax = b in Cl(χ(v)).

Lemma 29. Let b be such that T b
A contains no bad partial paths. Then T b

A has at least 2Ω(r′) good
partial paths. In fact, both subtrees below the top branching point of T b

A contain 2Ω(r′) good partial
paths.

Proof. A sufficient set of good partial paths in T b
A will be those partial paths π that maintain the

invariant that, for all v on π, v satisfies its closure.
We first argue that any v in T b

A of depth less than r′ that satisfies its closure has a child in T b
A.

The only possible violation of this statement is if v is an x-node that has no children (equivalently,
if the Solver chooses ∅ in step (3)). But if v satisfies its closure, then, by Lemma 28, there is an
assignment to x consistent with χ(v) that satisfies the equations underlying β(v). Let w ∈ {0, 1}n

be this assignment. If v has no children, then A will not find w since for every node v′ in TA that is
not on any path including v must have χ(v′) disagreeing with χ(v) or β(v′) disagreeing with β(v).
In fact, we can even argue that there is a child of v that satisfies those equations underlying β(v)
and that satisfies its closure; this is because together these constitute a set of at most r′+r′/c′ ≤ r/2
equations (here we are applying Proposition 27), so we can still use Lemma 28 as above.

Now let π be any partial path in T b
A that has maintained the invariant until depth r′. Let x̂

be the variables underlying χ(π) and let L be those equations from the system Ax = b that are in
Cl(x̂). Since π must be a good path, |x̂| ≥ γr′. By Lemma 22, there are at least 2(q−1)r′ setting (for
the same q as in Lemma 23) to x̂ that are consistent with solutions to L. Therefore, there must
be at least (q − 1)r′ x-nodes v along π satisfying the following: let xi be the variable set by v and
assume χ(π) sets xi = 0; then there is an assignment consistent with χ(v) ∪ [xi = 1] that satisfies
L. We will argue that each such node v has two children in T b

A and both satisfy their closures. If
there were no child of v corresponding to the partial assignment χ(v) ∪ [xi = 1], then, again, let w
be the consistent assignment to x that satisfies L; A would not find w. So let v′ be that child of v.
Since Cl(χ(v′)) ⊆ L, v′ must satisfy its closure.

We have now established that there are partial paths that satisfy the invariant and that every
such partial path has at least (q−1)r′ partial paths branching off of it that also satisfy the invariant.
This means that there must be at least 2(q−1)r′ such partial paths. To see the claim about the two
subtrees of T b

A, consider the first x-node in the tree and assume it corresponds to variable xi. The
closure of a single variable is empty for a good expander such as A, so that x-node must have two
children both satisfying the invariant. Now simply apply the same argument to both subtrees.

We can now prove the depth-first lower bound:

Theorem 30. Every fully-adaptive-order pBT algorithm A for Ax = b requires depth-first size
2Ω(n).

Proof. Since A is a depth-first algorithm, it will impose an order (say, left-to-right) on the children
of every x-node in TA. The root of TA is a b-node root. Let v denote the unique x-node that is

25

a child of root and let xi be the variable it corresponds to. Finally, assume that v sets xi = 0 on
its left branch and xi = 1 on its right. Choose a value for b ∈ {0, 1}n such that (i) b is consistent
with β(v); (ii) b’s corresponding x sets xi = 1; and (iii) T b

A contains no bad partial paths. This is
certainly possible since at least a 1/2K+1 fraction of b’s satisfy (i) and (ii), while, by Lemma 24,
all but a 2(ε−1)r′ fraction of b’s satisfy (iii). By Lemma 29, T b

A contains 2Ω(r′) = 2Ω(n) good partial
paths in the left subtree of T b

A, but the solution is not found until the right subtree.

6.5 Subset-Sum lower bound

To prove an exponential lower bound on the width of any fully-adaptive-order pBT algorithm for
the Subset-Sum problem, we extend the lower bound for the Ax = b problem and then use a “pBT
reduction” from the extended Ax = b problem to the Subset-Sum problem.

6.5.1 Extended lower bound for Ax = b

The extended Ax = b problem is identical to the original except for the presence of n extra equality
items, one for each row of A. The equality item ei contains only the index i of the row it corresponds
to (in particular, it contains no information about b). The possible decisions about ei are accept and
reject, where a potential solution that accepts ei is valid only if all of the variables in row i of A are
set equal (i.e. they are all 0 or all 1). Likewise, if a potential solution rejects ei, then that solution
is valid only if the variables in that row are not all equal. Notice that this extended problem is no
harder for pBT than the original problem. The algorithm could simply ignore the equality items
until it has set all of the variable items and then simply set the equality items accordingly. On the
other hand, the presence of extra items could introduce new opportunities for the pBT algorithm
to branch and/or change its ordering.

Nevertheless, we show that any fully-adaptive-order pBT algorithm for the extended problem
still requires exponential width. The proof will essentially mirror the previous lower bound, with
small modifications to the definitions of the game and of good and bad paths to accomodate the
equality items.

Begin by fixing A as above. Each round of the Solver-Adversary game now proceeds as follows:
(1) The Solver proposes a possible item D = 〈xj, q1, ..., qK〉, or an equality item ei.
(2) In the former case, the Adversary reveals values for bj1 , ..., bjK

, where j1, ..., jK are the rows of
A that have a 1 in the jth digit. The Adversary must remain consistent with its previous answers.
In the latter case, the adversary does nothing.
(3) In the former case, if the q values match the b values, the Solver chooses a set S ⊆ {0, 1};
otherwise the round ends and a new round begins. In the latter case, the Solver chooses a set
S ⊆ {accept, reject}.
(4) In both cases, the Adversary selects an element from S (if there is one).
The game ends when the Solver has proposed an item and chosen a subset for every variable and
every equality item, or when the Solver reveals ∅ in step (3).

Again, let TA be the tree that represents an algorithm A’s strategy against all adversaries. Now
there will be three kinds of nodes: the b nodes and x nodes as before, and the e-nodes (or equality
nodes) which will have at most two children, corresponding to the Adversary’s decision in step (4)
when the Solver selects an equality item in step (1). It is still the case that each b-node will have
exactly one child that is an x-node and all other children will be b-nodes. Define T b

A as before.

Definition 31. For a path π in TA, let χ(π) be the (partial) assignment to the variables x =
(x1, ..., xn) corresponding to the branches of x-nodes that π follows, and let β(π) be the values of
b = (b1, ..., bn) that have been revealed according to the branches of b-nodes that π follows. Let η(π)

26

be the (partial) assignment to the equality items corresponding to the branches of e-nodes that π
follows.

Lemma 19 still holds in this new context. We define a partial path as in Defintion 20 and then
have the following analogous defintion for good and bad parftial paths.

Definition 32. A partial path π is called good if either
(1) χ(π) assigns values to at least γr′ variables in x, or
(2) there are at least γr′ accepted equality items in π.
As in Definition 20, γ > 0 will be a sufficiently small constant. Otherwise, π is called bad. For
w ∈ {0, 1}n, we say that a partial path π finds w if there is an extension π′ of π such that χ(π′) = w
and β(π′) = Aw and η(π′) is consistent with w.

Lemma 21 still holds in exactly the same form.

Lemma 33. No good partial path in TA can find more than 2n−qr′ assignments in {0, 1}n where q
is a constant strictly bigger than 1.

Proof. Let π be a good partial path. If case (1) of the definition of good holds, we proceed exactly
as in Lemma 23. In case (2), let L ⊆ [n] denote the rows i of A such that β(π) reveals bit bi.
Consider an i ∈ [n] such that π accepts ei and i ∈ L. Any extension of π that finds a solution
must set all the variables in row i to 0 if bi = 0 and all the variables to 1 if bi = 1. In other words,
the values of the variables underlying row i are fixed. Therefore, if at least γr′/2 of the accepted
equality items correspond to equations in L, then we can proceed as above with at least (2−δ)γr′/2
variables fixed (by expansion). Of course, if two such equations set a single variable in two different
ways, then no extension of π will find a solution.

Now assume that at least γr′/2 of the accepted equality items correspond to equations outside
L. Let ê ∈ [n] denote the rows corresponding to these γr′/2 accepted equality items. We prove
an analogue of Lemma 22 that shows there are many settings to the items ei, for i ∈ ê, that are
consistent with the equations L. More importantly, one particular partial assignment to the ei’s
extends to relatively few consistent full assignments.

A system of distinct representatives (SDR) for L is an ordered pairing ((i1, xj1), ..., (ir′ , xjr′
))

such that L = {i1, ..., ir′}, xjα is a variable in the equation corresponding to row iα and xjα does
not occur in any of the equations iα+1, ..., ir′ . Notice that, if we have an SDR, we can set all of the
variables outside the SDR to any assignment we want, and then set the variables in the SDR (in
reverse order) in the unique way to satisfy L. Given an SDR for L, call an equation i ∈ ê saturated
if at least two of its underlying variables appear in the SDR. We show that there is an SDR for
L such that at least half of the equations in ê are not saturated. If this is the case, then pick a
subset of |ê|/4K of these unsaturated equations that are all disjoint on their two variables that are
not covered by the SDR (if there are more than two such variables in an equation, just choose two
arbitrarily). For each equation in this subset, we must set the two uncovered variables equal in any
extension of π if we expect to find a solution. Therefore, π can find at most

(

1

2

)|ê|/4K

2n−r′

solutions.
Now to show that claim about the SDR. While the boundary of L contains elements not in

V ars(ê), choose one and assign it to its corresponding equation in L for the SDR. Let L′ denote
the remaining unsassigned equations in L. We know that ∂L′ is contained in V ars(ê), so at least

27

(1 − 2δ)|L′| of the variables of L′ are in V ars(ê) and each of the remaining variables in V ars(L′)
is contained in at least two equations in L′. Simple calculations show that there can be at most
(1+δ)|L′| elements of V ars(L′) outside of V ars(ê). Due to the expansion of L′∪ ê, we can conclude

(2− δ)(|L′|+ |ê|) ≤ (1 + δ)|L′|+ |V ars(ê)|. (2)

First of all, since |V ars(ê)| ≤ 3|ê|, it follows that |L′| ≤ 1+δ
1−2δ |ê|. Substituting this into inequality

(2), we get that
|V ars(ê)| − |L′| ≥ (2− 5δ)|ê|,

for δ sufficiently small. There are at most |L′| variables in any SDR for L that extends the current
partial SDR that are contained in V ars(ê). Therefore, no matter how we extend the partial SDR,
there will be at least 2 − 5δ variables per equation in ê on average that are not covered by the
SDR. Certainly, then, half the equations in ê must not be saturated (again if δ is sufficiently small).
Therefore, just extend the partial SDR in the usual way: while L′ is not empty, choose a boundary
variable and assign it to its corresponding equation.

Lemma 34. There are at most 2εr′ bad partial paths in TA, where ε is a constant strictly smaller
than 1.

Proof. Consider the proof of Lemma 24. Each bad path (by the original definition) was specified by
a pair of sequences B and X. To specify a bad path by the new definition, it is sufficient to add a
sequence E denoting the decisions made at e-nodes along the path. There can be potentially n such
decisions, but at most a = γr′ of them can be accepted; the others must be rejected. Therefore,
we can bound the number of bad paths by taking the expression,

2r′ (e/γ)a
(

e((1/γ)−1)/2K22K
)−a

which we used to bound the number of bad paths by the original definition, and multiply it by
(n
γr′

)

. This yields a bound of

2r′(e/γ)a(f/γ)a
(

e((1/γ)−1)/2K22K
)−a

,

where f is a constant that depends on r/n. Again, by taking γ sufficiently small compared to K
and f , we can make this expression at most 2r′−a = 2r′−γr′ .

Finally, we get the following theorem in exactly the same manner as we did Theorem 25.

Theorem 35. Every pBT algorithm A for the extended Ax = b problem requires width 2Ω(n).

6.5.2 Reduction to Subset-Sum

To prove a lower bound for Subset-Sum, we exhibit a reduction from the extended Ax = b problem
to Subset-Sum that is sufficiently local that it preserves efficient fully-adaptive-order pBT algo-
rithms. We will not formally define the concept of a pBT reduction but we believe the specific
reduction we provide will illustrate the requirements for such a reduction. Informally, we need to
transform items in the source problem domain to (sets of) items in the target domain in such a way
that any ordering/decisions in the target domain will induce an ordering/decisions in the source
domain.

We use a small modification on the standard reduction from 3SAT to Subset-Sum. Fix n and
A and consider the universe of items UAx=b for the extended Ax = b problem. Each item in

28

the universe for Subset-Sum will be a decimal number with 2n digits. The first n digits, labelled
x1, ..., xn, will correspond to the n variables of Ax = b. The last n digits, labelled 1, ..., n, will
correspond to the n equations in the system Ax = b. Given a variable item D = 〈xj , bj1, ..., bjK

〉,
we create two Subset-Sum items. Assume, wlog, that bj1 = · · · = bjr = 1 and bjr+1 = · · · = bjK

= 0.
Create one item, called SS1(D), that has a 1 in digit xj and 1’s in digits j1, ..., jr and 0’s elsewhere,
and another item, SS2(D), that has a 1 in digit xj and 1’s in digits jr+1, ..., jK and 0’s elsewhere.
Let SS(D) denote the set of these two items. Given an equality item ei, create an item SS(ei)
that has a 2 in digit i and 0’s elsewhere. The universe for the Subset-Sum problem will be USS =
⋃

D∈UAx=b
SS(D). The target value for Subset-Sum will be the number that has a 1 in digit xj for

each j and a 3 in digit i for each i.
An ordering σ on USS induces an ordering Axb(σ) on UAx=b in the obvious way: go through

σ in order and replace each first occurrence of an item in SS(D) by D. Erase any subsequent
occurrences of items in SS(D). Also, each decision about an item in SS(D) maps to a unique
decision about D: for a variable item D, (SS1(D), accept) maps to (D, accept), (SS1(D), reject)
to (D, reject), (SS2(D), reject) to (D, accept), (SS2(D), accept) to (D, reject). (SS(ei), accept)
maps to (ei, reject), and (SS(ei), reject) maps to (ei, accept).

Lemma 36. If there is a width-w(n) fully-adaptive-order pBT algorithm for Subset-Sum, then
there is a width-w(n) fully-adaptive-order pBT algorithm for the extended Ax = b problem.

Proof. Let A be a width-w(n) algorithm for Subset-Sum. Algorithm B will simulate it as follows:
run A on the universe USS . Whenever A specifies an order σ, the corresponding node of B’s
execution will use the related order Axb(σ). If B finds that item D is the first item in the instance
according to the order, then it provides A with whichever item in SS(D) came first in σ. Whatever
decisions A branches on for this item, B branches on the corresponding decisions for D. It is easy
to check that B’s execution tree will have width at most that of A’s execution tree and a path in
B’s tree leads to a solution if and only if the corresponding path in A’s tree leads to a solution.

Theorem 37. Any fully-adaptive-order pBT algorithm for Subset-Sum requires width 2Ω(n).

Proof. Simply apply Lemma 36 and Theorem 35.

7 Open Questions

There are many open questions regarding our pBT models. Could we show, for example, that
the known greedy 2 − o(1) approximation algorithms for Vertex Cover are the best we can do
using a polynomial width pBT algorithm? This is particularly interesting due to the lack of tight
complexity-bound inapproximation results for Vertex Cover based on standard assumptions (see
[7] for motivation of this idea). For Interval Scheduling, can the adaptive pBT lower bound be
extended to the fully-adaptive model. For proportional profit on one machine, we are able to
show that a width-2 adaptive-order pBT can achieve a better approximation ratio than a priority
algorithm. While we know that, for one machine, an optimal solution requires width Ω(n), the
tradeoff between width and the approximation ratio is not at all understood. For example, what is
the best approximation ratio for a width-3 pBT? We also do not know if an O(1)-width adaptive-
order pBT can achieve an O(1)-approximation ratio for interval scheduling with arbitrary profits.
For any of the problems already studied in the priority framework (e.g. [9, 17, 5, 34, 10]) it
would be interesting to consider constant-width pBT algorithms. Our only general approximation-
width tradeoff results are the somewhat complementary upper and lower bounds for the knapsack
problem and the fixed-order lower bound for interval scheduling for which (as noted above) we

29

do not have a complementary upper bound. It would be interesting to obtain (closely) matching
width-approximation tradeoff results for interval scheduling and other problems whch require large
width for optimality.

Although the focus of this paper has been with regard to worst case complexity, the priority and
pBT models can also be studied with regard to average case (or smoothed) analysis. In particular,
for finding a satisfying assignment with high probability in a random 3CNF formula, the best (with
regard to the ratio of clauses per variable under which it succeeds) current algorithm [28] can be
implemented as a priority algorithm. Indeed almost all random 3SAT algorithms used to study the
3SAT threshold problem have been priority algorithms (one algorithm in [1] is a width 2 pBT).
Obtaining a sharp 3SAT threshold is a major open question and one can consider if it is possible to
improve upon the current best density of 3.52 ([28]) by a priority or small width pBT algorithm.

Will the pBT framework lead us to new algorithms (or at least modified interpretations of old
algorithms)? Small examples in this direction are the width-2 approximation for interval selection,
the linear-width algorithm for 2SAT and the FPTAS for Knapsack presented in this paper.

One way to augment the pBT model would be to allow non-deterministic branching. That is,
to allow a node in the pBT tree to branch without viewing an input item and, therefore, without
assigning decisions. For example, a node could branch in this way to allow each of its children to
explore different orders on the remaining items. Does this capability strengthen the pBT model
(in the fully-adaptive case)? In [18], it is shown that it does not help significantly for 7SAT.

While we have shown that the pBT model has strong connections to dynamic programming
and backtracking, can it be extended to capture other common algorithms? For example, we show
that pBT captures simple dynamic programming but what about other dynamic programming
algorithms? To capture some “non-simple” applications of dynamic programming, [11] recently
defined a model that enhances pBT by making more essential use of memoization. Namely, they
define a pBP (priority branching program) model which is a DAG analogue of our tree-based pBT
programs. Amongst other results, they argue that the Bellman Ford algorithm for the least cost
path problem (in a graph with no negative cycles) can be formulated within their pBP model
(with non-deterministic branching), but that there is no efficient pBT algorithm (without non-
deterministic branching) for the problem. It is not clear whether a pBT algorithm with non-
deterministic branching can capture Bellman Ford. A further extension will be needed to capture
“non serial” dynamic programming algorithms such as the well known algorithms for computing
optimal matrix chain products and optimal binary search trees?

Finally, it is natural to consider randomized pBT algorithms. There are several ways to augment
pBT algorithms with randomness and then to study the trade-offs between expected width (or depth
first size) and the probability of obtaining a solution. One natural model is as follows. Let H be
the set of allowable decisions at a given node of the pBT . Then for every subset H ′ ⊆ H, we have a
probability pH′ of choosing H ′ as the set of decisions to consider at that node, where

∑

H′ pH′ = 1.
In the special case that the probabilities are such that only singleton sets have positive probability,
we have a randomized priority (i.e. width 1) algorithm. It is easy to see that, in general, such
a randomized pBT induces a probability distribution on deterministic, but not-necessarily-correct
pBT algorithms. That is, not every algorithm in this distribution succeeds in solving every instance
of the problem. Therefore, the randomized lower bound alluded to after Theorem 25 does not give
a lower bound for this model, unless we impose the (seemingly unreasonable) condition that the
pH′ are assigned in such a way that every resulting algorithm is correct. In other words, we do not
get the desired trade-off between expected width and the probability of obtaining a solution. Can
such a lower bound be proven, perhaps for SAT?

30

8 Acknowledgments

We thank Spyros Angelopoulos, Paul Beame, Jeff Edmonds, and Periklis Papakonstantinou for
their very helpful comments. Special thanks to Alberto Marchetti-Spaccamela for contributing the
upper bound of Theorem 10, and to Charles Rackoff for going above and beyond the call of helpful
comments.

References

[1] Dimitris Achlioptas and Gregory B. Sorkin. Optimal myopic algorithms for random 3-SAT.
In IEEE Symposium on Foundations of Computer Science, pages 590–600, 2000.

[2] M. Alekhnovich. Lower bounds for k-DNF resolution on random 3CNF. In Proceedings of the
37th Symposium on Theory of Computing, pages 251–256, 2005.

[3] M. Alekhnovich, E. Hirsch, and D. Itsykson. Exponential lower bounds for the running time
of DPLL algorithms on satisfiable formulas. In Automata, Languages and Programming: 31st
International Colloquium, ICALP04, 2004. To appear in 2005 SAT special issue of the Journal
of Automated Reasoning.

[4] M. Alekhnovich and A. Razborov. Lower bounds for the polynomial calculus: non-binomial
case. In Proc. 42nd Ann. Symp. on Foundations of Computer Science. IEEE Computer Society,
2001.

[5] S. Angelopoulos and A. Borodin. On the power of priority algorithms for facility location and
set cover. Algorithmica, 40(4):271–291, 2004.

[6] E. M. Arkin and E. L. Silverberg. Scheduling jobs with fixed start and end times. Disc. Appl.
Math, 18:1–8, 1987.

[7] Sanjeev Arora, Béla Bollobás, László Lovász, and Iannis Tourlakis. Proving integrality gaps
without knowing the linear program. Theory of Computing, 2(2):19–51, 2006.

[8] Kenneth Arrow. Social Choice and Individual Values. Wiley, New York, 1951.

[9] A. Borodin, M. Nielsen, and C. Rackoff. (Incremental) priority algorithms. Algorithmica,
37:295–326, 2003.

[10] Allan Borodin, Joan Boyar, and Kim S. Larsen. Priority Algorithms for Graph Optimization
Problems. In Second Workshop on Approximation and Online Algorithms, volume 3351 of
Lecture Notes in Computer Science, pages 126–139. Springer-Verlag, 2005.

[11] J. Buresh-Oppenheim, S. Davis, and R. Impagliazzo. A stronger model of dynamic program-
ming algorithms. Manuscript in preparation, 2007.

[12] V. Chvátal. Hard knapsack problems. Operations Research, 28(6):1402–1441, 1985.

[13] S. Cook and D. Mitchell. Finding hard instances of the satisfiability problem: A survey. In
DIMACS Series in Theoretical Computer Science, 1997.

[14] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, Second Edition.
MIT Press, Cambridge, Mass., 2001.

31

[15] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Commu-
nications of the ACM, 5:394–397, 1962.

[16] M. Davis and H. Putnam. A computing procedure for quantification theory. Communications
of the ACM, 7:201–215, 1960.

[17] S. Davis and R. Impagliazzo. Models of greedy algorithms for graph problems. In Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004.

[18] S. Davis and R. Impagliazzo. Randomized priority algorithms, pBT, and free-branching pBT
lower bounds. Manuscript in preparation, 2007.

[19] B.C Dean, M.X. Goemans, and J. Vondrák. Approximating the stochastic knapsack problem:
The benefit of adaptivity. In Proc. 44th Ann. Symp. on Foundations of Computer Science,
2004.

[20] T. Erlebach and F.C.R. Spieksma. Interval selection: Applications, algorithms, and lower
bounds. Technical Report 152, Computer Engineering and Networks Laboratory, ETH, October
2002.

[21] J. Gu, P. W. Purdom, J. Franco, and B. J. Wah. Algorithms for the Satisfiability (SAT)
Problem: A Survey. In Satisfiability (SAT) Problem, DIMACS, pages 19–151. American Math-
ematical Society, 1997.

[22] M. Halldorsson, K. Iwama, S. Miyazaki, and S. Taketomi. Online independent sets. Theoretical
Computer Science, pages 953–962, 2002.

[23] J. H̊astad. Some optimal inapproximability results. JACM, 48:798–859, 2001.

[24] P. Helman. A common schema for dynamic programming and branch and bound algorithms.
Journal of the Association of Computing Machinery, 36(1):97–128, 1989.

[25] P. Helman and A. Rosenthal. A comprehensive model of dynamic programming. SIAM J. on
Algebraic and Discrete Methods, 6:319–334, 1985.

[26] S.L. Horn. One-pass algorithms with revocable acceptances for job interval selection. MSc
Thesis, University of Toronto, 2004.

[27] O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack and sum of subset
problems. JACM, 1975.

[28] A. Kaporis, L. Kirousis, and E. Lalas. Selecting complementary pairs of literals. In Proc.
LICS‘03 Workshop on Typical Case Complexity and Phase Transitions, 2003.

[29] R.M. Karp and M. Held. Finite state processes and dynamic programming. SIAM J. Applied
Mathematics, 15:693–718, 1967.

[30] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views
of approximability. SIAM Journal on Computing, 28:164–a91, 1998.

[31] D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.

[32] E. L. Lawler. Fast approximation algorithms for knapsack problems. In Proc. 18th Ann. Symp.
on Foundations of Computer Science, Long Beach, CA, 1977. IEEE Computer Society.

32

[33] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press,, 1995.

[34] Oded Regev. Priority algorithms for makespan minimization in the subset model. Information
Processing Letters, 84(3):153–157, Septmeber 2002.

[35] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[36] G. Woeginger. When does a dynamic programming formulation guarantee the existence of a
fully polynomial time approximation scheme (FPTAS)? INFORMS Journal on Computing,
12:57–75, 2000.

33

9 Appendix

Proof. (of Lemma 17) It is well-known that the probabilistic method gives expanders with 3 ones
in each row, but here there are two additional subtle points: the maximum number of ones in each
column and the rank of the resulting matrix. We handle the former issue using a trick from [2] and
the latter by the techniques from [3].

Lemma 38 ([3]). Let L be a linear subspace of {0, 1}n of codimension k. Let the vector v be a
random vector in {0, 1}n with weight 3. Then Pr[v 6∈ L] = Ω(k

n).

Consider the random matrix An that contains Kn rows (K may depend on n), each of which
is chosen uniformly at random from the set of all rows of weight 3.

Proposition 39. With probability 1− o(1), rank(An) > (1− e−Ω(K))n.

Proof. The proof resembles the analysis of the well-known Coupon Collector puzzle. Consider the
process of generating the rows of A: let At be the matrix consisting of the first t rows of A, thus
A = A[Kn]. By Lemma 38 it takes on average O(n/(n − k)) new rows to increase the rank of At

from k to k + 1. Thus, in order to achieve the rank (1− e−K)n on average one has to take

T = O





(1−e−K)n
∑

k=1

n

n− k





randomly chosen rows. It is left to notice that

(1−e−K)n
∑

k=1

1/(n − k) =
n−1
∑

k=(e−K)n

1/k = K +O(1).

Assume that n is an integer and c′ is a constant slightly bigger than c, say c′ = c + (2 − c)/2.
From now on, K will be a large constant the exact value of which will be determined later.

The following well-known fact states that a random matrix is a good expander.

Lemma 40. For any c′ < 2, there is an α > 0 such that for all K > 0 and n sufficiently large, An

is an (r, 3, c′)-expander with probability 1− o(1) provided that r ≤ α n
K1/(2−c′)

.

Let n′ = rank(An). By Proposition 39, n′ > (1 − e−Ω(K))n. One may remove at most 2−Ω(K)n
columns from An so that the resulting (Kn)× n′ matrix has rank n′. Denote by J1 the index set
of these columns. Denote by J2 the index set of the columns that contain at least K̂ = 3K

c′−c(n/r)
ones (note this value is constant). Since An has Kn ones overall, |J2| ≤ (c′ − c)r/3. If we remove
from A all the columns corresponding to J1 ∪ J2 then the resulting matrix has full rank and every
column has at most K̂ ones. The only problem is that it may not be an expander anymore. To fix
this we use a procedure similar to one developed in [3].

Definition 41. For an A ∈ {0, 1}m×n and a subset of its columns J ⊆ [n] we define an inference
relation `c

J on the set of [m] rows of A:

I `c
J I1 ≡ |I1| ≤ r/2 ∧ |Γ(I1) \ [Γ(I) ∪ J]| < c|I1| (3)

Let Cle(J) denote the union of all sets of rows that can be inferred (via the transitive closure of `c
J)

from ∅.

34

It is not hard to see the benefit of the Cle() operation: namely, for A ∈ {0, 1}m×n an (r, 3, c′)-
expander and J ⊆ [n], set Î = Cle(J) and Ĵ = Γ(Î). Let A′ be the matrix that results from A after
removing the columns Ĵ and the rows Î. Then A′ is an (r/2, 3, c)-expander. We will eventually
apply this transformation to A where J = J1∪J2, but first we need to bound the size of Î in terms
of |J |.

Lemma 42. If |J | ≤ (c′ − c)r/2, then |Cle(J)| ≤ (c′ − c)−1|J |.

Proof. Consider unioning the sets comprising Cle(J) in some arbitrary order that respects the order
of inference: I1, I2, Define Ck = ∪

k
i=1Ii and let t be the minimum number such that Ct has size

greater than |J |/(c′ − c). Note that |Ct| ≤ r, so, by expansion it must be the case that

|Γ(Ct)| ≥ c′|Ct|.

On the other hand, each new Ij in the sequence contributes at most c|Ij | new elements to Γ(Cj−1),
so

|Γ(Ct)| ≤ |J |+ c|Ct|.

The lemma follows.

We are ready to finish the proof of Lemma 17. Let J = J1 ∪ J2 and choose K large enough so
that |J | < (c′ − c)r/2. This is possible since r/n is inverse polynomial in K, but |J1|/n is inverse
exponential in K. Again, let Î = Cle(J) and let Ĵ = Γ(Î). By Lemma 42, |Î | < r/2 and therefore
|Ĵ | < r. If we remove all columns corresponding to Ĵ from A then the resulting matrix has full
column rank. This is because after we remove the columns corresponding to J1 we get a matrix
in which all columns are linearly independent, thus after the removal of Ĵ the matrix still has
full column rank. At this point, all rows in Î are all-zero, so we can safely remove them without
decreasing the rank. Finally, let n̂ = Ω(n) be the number of remaining columns and throw out all
but n̂ linearly independent rows. The final matrix, Â, is a full-rank, n̂× n̂, (r/2, 3, c)-expander that
has at most K̂ ones in each column.

35

