
Polynomial Time with Restricted Use of Randomness∗

Matei David Periklis A. Papakonstantinou Anastasios Sidiropoulos

University of Toronto
{matei,papakons,tasoss}@cs.toronto.edu

Abstract

We define a hierarchy of complexity classes that lie betweenP andRP, yielding a new way of quan-
tifying partial progress towards the derandomization ofRP. A standard approach in derandomization is
to reduce the number of random bits an algorithm uses. We instead focus on a model of computation
that allows us to quantify the extent to which random bits arebeing used. More specifically, we consider
Stack Machines(SMs), which are log-space Turing Machines that have accessto an unbounded stack,
an input tape of lengthN , and a random tape of lengthNO(1). We parameterize these machines by al-
lowing at mostr(N)−1 reversals on the random tape, thus obtaining ther(N)-th level of our hierarchy,
denoted byRPdL[r]. It follows by a result of Cook [Coo71] thatRPdL[1] = P, and of Ruzzo [Ruz81]
thatRPdL[exp(N)] = RP. Our main results are the following.

• For everyi ≥ 1, derandomizingRPdL[2O(logi
N)] implies the derandomization ofRNCi. Thus,

progress towards theP vs RP question along our hierarchy implies also progress towardsderan-
domizingRNC. Perhaps more surprisingly, we also prove a partial converse: Pseurorandom gen-
erators (PRGs) forRNCi+1 are sufficient to derandomizeRPdL[2O(logi

N)]; i.e. derandomizing
using PRGs a class believed to be strictly insideP, we derandomize a class containingP.

More generally, we introduceRandomness Compilers, a model equivalent to Stack Machines. In
this model a polynomial time algorithm gets an inputx and it outputs a circuitCx, which takes
random inputs. Acceptance ofx is determined by the acceptance probability ofCx. WhenCx is
of polynomial size and depthO(logi N) the corresponding class is denoted byP+RNCi, and we
show thatRPdL[2O(logi

N)] ⊆ P+RNCi ⊆ RPdL[2O(logi+1
N)].

• We show an unconditionalNΩ(1) lower bound on the number of reversals required by a SM for
Polynomial Evaluation. This in particular implies that known Schwartz-Zippel-like algorithms for
Polynomial Identity Testing cannot be implemented in the lowest levels of our hierarchy.

• We show that in the 1-st level of our hierarchy, machines withone-sided error are as powerful as
machines with two-sided and unbounded error.

Keywords: probabilistic polynomial time, complexity hierarchy, derandomization, polynomial identity test-
ing, communication complexity

∗An earlier version of this paper has the title “A Hierarchy betweenP andRP”.

1

Electronic Colloquium on Computational Complexity, Report No. 39 (2009)

ISSN 1433-8092

1 Introduction

Randomness is central to computer science and its intersection with engineering, and natural sciences. Some
of the most intriguing and long-standing open questions in theoretical computer science regard the gap
between polynomial time and its probabilistic analogs (e.g. RP, BPP). It is conjectured (e.g. [IW97, KI03,
NW88]) that this gap is small or even that randomness is in general not necessary. A standard measure of
how far a probabilistic algorithm is from a deterministic one is thenumber of random bitsit uses. As such,
the quest for derandomization concentrates on reducing this number, for example, using pseudorandom
generators.

In this paper, we propose an orthogonal perspective to randomness. Informally, we say that a machine
“makes essential use of randomness” if it revisits the same random bit “many times” during its computation.
More precisely, we consider a natural model of computation characterizing polynomial time, in which it is
meaningful to count thenumber of head reversals on the random tape.

Consider for example a randomized procedure which performsa random walk in a graph. After each
transition the algorithm may “forget” the random bits used so far. Contrast this with a randomized procedure
where random bits used at one step of the computation are revisited in future steps. Our definition of essential
use of randomness allows us to distinguish between these twoscenarios.

A characterization of essential use of randomness.Consider a polynomial time TMM which receives
its input on a regular (read-write) work tape and its random bits on a separate read-only tape. As explained
before, we would like to say thatM makes essential use of randomness if it accesses the same random bit
many times. There seems to be no clean way to capture this notion in an arbitrary polynomial time TM.
Counting head reversals over the random tape is not interesting sinceM can simply copy all the random
bits on its work tape. This simple trick does not work of course for machines with small space. However,
since we are interested in arbitrary polynomial-time computation, we need a characterization ofP in terms
of space-bounded machines. To that end, we consider a characterization due to Cook [Coo71], which shows
that a logarithmic-space TM equipped with an unbounded stack, henceforth called aStack Machine(SM),
exactly characterizesP.

The above simple observation naturally gives rise to a hierarchy of classes betweenP and RP. For
r(N) ≥ 1, we denote byRPdL[r] (which stands for Randomized Pushdown Log-space) the classof lan-
guages that can be decided by a SM with an input tape of lengthN and a random tape of lengthNO(1),
which is allowed at mostr(N) − 1 reversals over the random tape, and has bounded one-sided error. It
follows by a result of Cook [Coo71] thatRPdL[1] = P, and thatRPdL[exp(N)] = RP. We similarly
define the classesNPdL[r], coNPdL[r], coRPdL[r], BPPdL[r], andPPdL[r]. We have arbitrarily chosen
to make our expositionRP-centric. Everything can be restated in terms of other probabilistic polynomial
time classes such asBPP.

The stack is indispensable for the study of probabilisticpolynomial timeclasses, in the following sense.
Logspace TMs without a stack characterizeLogSPACE ⊆ NC2. By adding a polynomially long (two-way
access) random tape to logspace machines we define [Nis93] the classR∗LogSPACE ⊆ RNC2.

1.1 Our results

How easy is it to collapse the first levels? Given the definition of our hierarchy betweenP and RP,
several questions arise. IfP = RP, thenRPdL[1] = RPdL[exp(N)]. An immediate question is then

How easy is it to proveRPdL[1] = RPdL[r], for somer(N)?

2

We give strong evidence that collapsing the first levels of the hierarchy is a non-trivial task, and requires
progress towards existing major open questions. In particular, for anyi ≥ 1, derandomizingRPdL[2O(logi N)]
implies derandomizingRNCi. In other words, progress towards theP vs RP question along our hierarchy
implies also progress towards the derandomization ofRNC. Perhaps more surprisingly, we also prove a
partial converse: pseurorandom generators forRNCi+1 are sufficient to derandomizeRPdL[2O(logi N)]. In
other words, modulo the derandomization technique (use of PRGs), derandomizing classes believed to lie
far insideP, we derandomize the levels of our hierarchy (even the first level containsP).

This follows by an alternative definition of restricted use of randomness, which we show to be equivalent
to the one that uses Stack Machines. We considerRandomness Compilersto be polynomial time algorithms,
which on every input they construct a shallow circuit, whichin turn it is evaluated at a random input.
More precisely, letP+RNCi denote the class of languagesL decidable in the following sense: a polytime
transducer, on inputx it computes a probabilistic circuitCx of constant fan-in, polynomial size and depth
O(logi N). If x ∈ L, thenPrρ[Cx(ρ) = 1] ≥ 1

2 , whereas ifx 6∈ L thenPrρ[Cx(ρ) = 1] = 0. We show

thatP+RNCi ⊆ RPdL[2O(logi N)] ⊆ P+RNCi+1 (Section 3). Contrary to a possible interpretation of the
notationP+RNCi, we stress-out that the computed circuit is much stronger than aP-uniform RNC circuit,
since in general it depends on the given input.

How easy is it to collapse the last levels?Another immediate question is of course

How easy is to proveRPdL[r] = RPdL[exp(N)], for somer(N)?

We also provide evidence that this is also a challenging problem given the current state of the art in deran-
domization. If such a smallr(N) exists, then one should at least be able to show that certain problems in e.g.
coRP can be decided in the low-levels of thecoRPdL[·] hierarchy. In particular, we consider the problem
of Polynomial Identity Testing1 (PIT), a prototypical problem incoRP. We observe that almost all currently
known Schwartz-Zippel-like algorithms for PIT evaluate a polynomial at a random point. We prove (Sec-
tion 5) an unconditionalNΩ(1) lower bound on the number of reversals required by a SM for Polynomial
Evaluation (PE). This in particular implies that implementing PIT inRPdL[No(1)] is a non-trivial task.

Understanding the model. We study some natural variants of our model. In particular, we show that in
the 1-st level, a SM that is allowed unbounded (two-sided) error is as powerful as a SM with bounded and
one-sided error. In other words,PPdL[1] = RPdL[1] = P, which in particular derandomizesBPPdL[1]
(Section 4).

Finally, we consider the case of non-deterministic tape under different settings. A detailed exposition is
given in Appendix C.2. Among others, we show that the corresponding hierarchy (namely,NPdL[·]) turns
out to be trivial:NPdL[1] = P, while NPdL[2] = NP.

1.2 Related Work

Stack Machines. [Coo71] characterizes poly-time computation in terms of Stack Machines (AuxPDAs):
log-space bounded TMs equipped with an unbounded stack. Recursive log-space computation is a natural

1In the PIT problem, the input is an arithmetic circuit describing a polynomialP ∈ F[x1, . . . , xm], whereF is a field, and the
question is whetherP always evaluates to0 overFm (we are interested in polynomials of degree bigger than the characteristic of the
field). Note that in fields of characteristic zero this problem coincides to deciding whether the given arithmetic circuit corresponds
to the identically zero polynomial.

3

concept. Moreover, SMs exhibit quite interesting equivalences to other models of computation. Our work re-
lies on the connections between deterministic (and non-deterministic) logspace and time-bounded SMs, and
that ofSAC (andNC) circuits with various forms of uniformity [All89, BCD+89, Ruz80, Ruz81, Ven91].
When simultaneously to the space we also bound the time, there is a constructive and direct correspondence
(which intermediately goes through ATMs) between SMs and combinatorial circuits. This enable us to blur
the distinction between space-time bounded SMs and families of circuits. In a study ofNC in presence of
strong uniformity (P-uniformity) [All89] studies SMs with restricted input-head moves. This is related to
the concept of head-reversals on the random tape consideredin our paper. For example, the discussion in
[All89] (p.919) about the fact that the natural restrictionon the head-moves of a SM translates to something
more subtle in case of ATMs, is related to our definition of essential use of randomness using SMs with
restricted number of reversals on the random tape.

Derandomization. There is a long line of research in derandomization. Successful stories range from
straightforward algorithms e.g. forMaxSAT (e.g. [AB08]) to quite sophisticated ones such as the AKS
primality test [AKS04]. There is a plethora of works that aimto derandomize probabilistic polynomial
time using certain types of pseudorandom generators. The majority of them relate the problem of deran-
domization to the problem of proving lower bounds for the average-case complexity of one-way functions
[Yao82], or to arbitrary hard functions (cf. [NW88, IW97, STV99, Uma03]). The general theme of this
research direction comes under the title “randomness-hardness tradeoffs”. These works are in line with our
intuition about the circuit complexity of certain problemsin E, EXP or NEXP. They provide evidence that
derandomization of classes such asBPP might be possible, and simultaneously they give evidence about
the conceptual difficulty of achieving such a goal.

Polynomial Identity Testing. Kabanets and Impagliazzo [KI03] show that even the task of derandomizing
a particular problem incoRP, namely PIT, is essentially the same as proving superpolynomial lower bounds
on the arithmetic circuit complexity ofNEXP. Hence, derandomizing PIT is a challenging task. Our results
give evidence for the limitations of Schwartz-Zippel-likealgorithms (e.g. [Zip79, Sch80]) for derandom-
izing PIT. There are also algorithms [CK97, LV98] that use fewer bits than the standard Schwartz-Zippel
algorithm. Despite the fact that the number of random bits issmaller, it is still the case that these algorithms
evaluate the input polynomial at a chosen point. Therefore in our framework, their use of randomness is as
essential as in the standard test. Yet other algorithms [AB99, ABKPM06, KS01] avoid evaluating the input
polynomial directly at a chosen point. Although our lower bound does not apply in this setting, implement-
ing these algorithms in the lower levels of our hierarchy appears to be a difficult task.

1.3 Our Techniques

The technically more involved argument is an unconditionalNΩ(1) lower bound on the number of reversals
a SM makes for polynomial evaluation - even when the polynomial is non-uniformly given to the machine.
The lower bound follows by a direct-sum type of argument, using a NIH communication complexity reduc-
tion to inner product (over any field). This argument uses some ideas from [BHN08], but it is essentially
different (see Section 5.2 for a comparison).

The relations betweenP+RNC andRPdL[NpolylogN] builds upon the work of [All89, BCD+89, Ruz80,
Ruz81]. The main tool is the time-compression lemma (Lemma 7), together with theorems from the related
work.

4

The derandomization ofPPdL[1] (a two-sided error class) relies on extending the Dynamic Program-
ming algorithm in [Coo71], so as to count the number of accepting leaves in the computation tree of a
non-deterministic SM. Starting from the observation that in the computation tree of depthexp(N) on every
path there are at most polynomially many branches, we count the number of accepting paths.

We also provide some other structural results. These results range from the simple argument showing
NPdL[2] = NP, to arguments that put together structural implications building on the work of [All89,
BCD+89, HS08, Ruz80, Ruz81].

1.4 Organization

We use Stack Machines to define randomized hierarchies betweenP andRP in Section 2. Some preliminary
results are given in the same section. In Section 3 we study the relation between Stack Machines and
Randomness Compilers, and we show thatRPdL[NpolylogN] = P+RNC. This also suggests that PRGs
used for derandomization alongRNC imply the derandomization alongRPdL[NpolylogN]. In Section 4
we show that for every SMM that makes one scan over its randomness and has two-sided, unbounded
error, there is a polynomial-time algorithm deciding the same language asM . In Section 5 we give the
unconditional lower bound for Polynomial Evaluation (PE) which implies the lower bound for the family
of Schwartz-Zippel-like algorithms. We conclude in Section 6 by outlining a few among the future research
directions.

2 Definitions & Preliminaries: Stack Machines and Randomness Compilers

Notation and conventions. We use standard names for complexity classes, e.g.P, NP, BPP, NC, NEXP,
DSPACE(f(n)) (see e.g. [AB08]). We denote byN the number of input bits. LetE := ∪c>0DTIME(2cN),
and EXP := ∪∞k=1DTIME(2Nk

), QuasiP := ∪∞i=1DTIME(2logi N). We simplify notation by omitting
floors and ceilings for integer values. The auxiliary, external read-only tape of SMs is of length polynomial
in N . The working memory size isO(log N) unless mentioned otherwise. If the head on the external tape
reversesr − 1 times then we say that thenumber of scansis r. Let [n] := {1, . . . , n}. Let α ∈ {0, 1}n,
we denote byαi the i-th coordinate ofα. Occasionally, we identify a stringα ∈ {0, 1}n by its support
supp(α) = {i : αi = 1}. Let Sm be the set of permutations over[m]. F is used to denote a field and⊕
denotes the addition inF. ρ ∈ {0, 1}∗ denotes a random (or pseudorandom) string.I ⊆ Z

+ usually denotes
an infinite subset ofZ+. For a positive integeri, SACi ⊆ ACi is the semi-unbounded restriction ofACi;
i.e. only theOR gates have bounded fan-in, and the negations are to the inputlevel. A family {Cm}m∈I of
circuits is anNCi (SACi) circuit-family of polysize (semi-unbounded) and depthO(logi N) circuits defined
for input-lengths inI. Um denotes the uniform distribution over{0, 1}m.

Stack Machines. We consider three types of Stack Machines. A SM (AuxPDA)M is a logspace Turing
Machine augmented with an unbounded stack. We may also write(r, s)-SM to denote that the machine
makes at mostr(N) reversals on its input and it has worktapes of sizes. All SMs have logarithmic space-
bound, unless mentioned otherwise. For a detailed definition of a SM (AuxPDA) and its computation see
[Coo71]. We assume that the SMs always halt with an empty stack. Furthermore, in each transition exactly
one of the following happens:either a head-move, or a push tothe stack or a pop from the stack. Occasionally
we allow the SM to do coin flipping, in which case we writerandomized SM. Central to our study are
Verifier Stack Machines (vSMs). These are polytime verifiers with access to a random tape; i.e. a vSM
is a SM extended with a polynomially long (read-only) randomtape. Finally, we considernon-uniform

5

Stack Machines (nu-SMs)which are SMs extended with a polynomially long tape containing a non-uniform
advice. Non-uniform Stack Machines appear for different reasons in Section 3 and Section 5. We make use
of the following theorem which is a corollary of [BCD+89, Ruz80, Ruz81].

Theorem 1. Let C be the class of languages decided by (deterministic) SMs that work in time2O(logi N).
Then,NCi ⊆ C ⊆ SACi ⊆ NCi+1, where the circuit classes are (logspace) uniform. The samerelation
holds for non-uniform SMs andNC, SAC circuits.

Verifier Stack Machines compute arbitrary polytime predicates[Coo71]. Also, every probabilistic poly-
time TM computes a deterministic predicateR(x, ρ), ρ ∈R {0, 1}N

k
whereρ is the random bits. Hence, it

is straightforward to modify the proofs in [Coo71] and to obtain the following fact.

Fact 2. A verifier Stack Machine with the standard definition of errorcharacterizes the corresponding
probabilistic polynomial time class such asRP, coRP, BPP, PP. Furthermore, if the external tape contains
non-deterministic bits (equivalently: false-negatives with unbounded error) then we characterizeNP.

Randomized and non-deterministic hierarchies. We consider false-negatives/false-positives/two-sided
bounded/unbounded error regimes, corresponding in the usual way to the prefixesN-, coN-, R-, coR-, P-
andBP-. Furthermore, we consider bounding the number of reversals r(N) a vSM is allowed on its external
tape. Accordingly,xPdL[r] is the class of languages accepted by vSMs that are allowed atmostr − 1 head
reversals on the external tape, operating in error regimex. Thus, e.g.,RPdL[1] is the class of languages
accepted by vSMs with one-way (no reversals) access to the external tape and one-sided error. We use the
term non-deterministic hierarchyto refer to the collection of levels ofNPdL[·]. Similarly, when the error
condition is clear from the context we use the termrandomized hierarchy.

It is easy to check that the following classes are closed under logspace (or weaker) transformations:
RPdL[c], c ∈ Z

+, RPdL[constant] :=
⋃∞

k=1 RPdL[k], RPdL[O(log N)] :=
⋃

c>0 RPdL[c log N], and
RPdL[poly] :=

⋃

c>0 RPdL[N c].

P+RNCi: polytime Randomness Compilers. P+RNCi denotes the class of languagesL decidable as
follows: there exists a polynomial time TMM which on every inputx, M computes a probabilistic circuit
Cx of constant fan-in, polynomial size and depthO(logi N). If x ∈ L, thenPrρ[Cx(ρ) = 1] ≥ 1

2 , whereas
if x 6∈ L thenPrρ[Cx(ρ) = 1] = 0. We refer to this model of computation asP+RNC model, and to the
polytime transducerM asRandomness Compiler.

Variants of our model. In the parameterization on the number of reversals over the random tape, the “re-
versals resource” is a worst-case resource; similar to the resource of running time in the definition ofRP. In
Section 3 we show that vSMs have the same power as theP+RNC model. The model of vSMs allows more
flexibility in defining natural variants of the model, whereas it is not obvious how to do something similar
for the P+RNC model. For example, for randomized computation one may wantto defineRPdLE[r(N)]
as the class of problems decided by vSMs where the expected number of scans over the randomness is
r(N). In Appendix C.1 we show thatRPdL[poly] = RPdLE[poly]; thus, simplifying the task of giving SM
algorithms to show containment inRPdL[poly].

Another variant of the vSM model is when the auxiliary tape contains non-deterministic bits. In this
case the situation becomes technically simple, and we show that one reversal (two scans) is sufficient to
characterizeNP.

6

Theorem 3. The non-deterministic hierarchy collapses to level2. More specifically,NPdL[2] = NP and
alsoNPdL[1] = P.

Among others, this theorem indicates that the randomized case is non-trivial even for the second level
RPdL[2]. Discussion and further results about variants of our modelare given in Appendix C.2.

3 RPdL[NpolylogN] and P+RNC

We have introduced two models to define restricted use of randomness. The first model (characterization
of RPdL) is a transition system on which we make explicit the conceptof essential use of randomness,
by counting random bits accesses. In the second model (characterization ofP+RNC) we compile all the
needed randomness in a shallow circuit. It turns out that thetwo models are equivalent. Intuitively, this says
that the syntactically defined model of verifier Stack Machines is able to express computations which are
simultaneously (i) arbitrary deterministic polytime and (ii) when it comes to randomness much weaker than
polytime.

Theorem 4. Let i ∈ Z
+. Then,P+RNCi ⊆ RPdL[2O(logi N)] ⊆ P+RNCi+1.

The proofs of the statements of this section appear in Appendix D.
An immediate consequence of Theorem 4 is thatP∪RNCi ⊆ RPdL[2O(logi N)]. Thus, derandomization

along theRPdL[·] implies derandomization alongRNC (evenP-uniform RNC). More importantly, using
PRGs to derandomizeRNC (which is believed to be deeply insideP) implies derandomization of classes
that containP. That is, such a derandomization ofRNC implies progress in a concrete sense towards the
derandomization ofRP. As mentioned, everything stated forRP andRNC holds for other probabilistic
classes, e.g.BPP andBPNC.

The derandomization of the quasi-polynomial levels ofRPdL[·] using weak PRGs (Theorem 6 - see
below) is a corollary of Theorem 4.

ε-biased pseudorandom generators (PRGs).Our PRGs definitions aim to a more qualitative view than
the usual. Several parameters have been fixed to reduce clutter. For example, we focus on PRGs that stretch
polylogarithmic bits to polynomial. These parameters can be adjusted in the standard way to generalize our
results. All distinguishers are non-uniform circuits.

Definition 5. Let 0 < ε < 1, k ≥ 1. Let G : {0, 1}∗ → {0, 1}∗ be a function, such thatG(z) is computable
in time 2O(|z|1/k). We say thatG is an(NCi, k, ε)-pseudorandom generatorif for every non-uniformNCi

circuit-family C and for sufficiently large|z| := n, z ∈ {0, 1}∗, where|G(z)| = 2|z|
1/k

:= m

|Prz∈R{0,1}n [Cm(G(z)) = 1]− Prρ∈Um [Cm(ρ) = 1] | ≤ ε

whereCm ∈ C hasm input bits.

Theorem 6. Letk, i ≥ 1. If there exists a(NCi+1, k, 1
7)-PRG, thenRPdL[2O(logi N)] ⊆ DTIME(2O(logk N)).

Hence, if there exists ak for all i’s then RPdL[NpolylogN] ⊆ DTIME(2O(logk N)), whereas ifk is a
function of i thenRPdL[NpolylogN] ⊆ QuasiP. We remark that a slightly different argument proves that
the PRG is sufficient to be secure againstSACi circuits, instead ofNCi+1.

The proof of Theorem 4 relies on Lemma 7, which we show following [All89]. The proof is based
on the fact that the computation between two successive headmoves on the input can be compressed to

7

be polynomially-long, given some small (polysize) advice which depends on the input length. At first,
the feasibility of this “compression” may be seen as counter-intuitive since the computation between two
successive head-moves depends on the content of the stack, which in turn it depends on the given input (not
only its length).

Lemma 7 (Time-compression lemma). LetM be a deterministic nu-SM which makesr(N) reversals over
its input. Then, there exists a deterministic nu-SMM ′ which makesr(N) reversals over its input, it works
in timeO(r(N)NO(1)), and it decides the same language asM .

In practice, the non-uniformity in Theorem 6 seems to be sufficient, since most constructions of PRGs
are against non-uniform distinguishers. A minor modification in Cook’s construction [Coo71] shows that
given the advice forM (or if M is uniform), then the non-uniform advice in the proof of Lemma 7 can be
replaced with a polytime computable advice. It turns out that one cannot do better than this.

Lemma 8. Given the advice forM , then the non-uniform advice in the proof of Lemma 7 cannot becom-
puted in logspace uniformNC, unlessPSPACE = EXP.

4 PPdL[1] = P

It can be shown along the lines of the proof of Theorem 3, thatPPdL[2] = PP. In this section we
derandomize the first level of the randomized hierarchy withtwo-sided and unbounded error.

Theorem 9. PPdL[1] ⊆ P.

An immediate corollary isBPPdL[1] = PPdL[1] = P. The description of the algorithm and its proof
of correctness are given in Appendix B.

Outline of the algorithm - comparison with [Coo71]. We look at the computation of a vSMM on an
input x as a tree of depthexp(N) of configurations, where every branching node corresponds to tossing
a coin. In thenondeterministic (false-negatives unbounded)error regime considered in [Cook71], to de-
cide whetherM acceptsx, one has to determine whether there is a path from the initialto the accepting
configuration.

We define asurface configurationC of M on w to consist of (0) the state ofM , (1) the location of the
input head; (2) the full configuration of the work tapes (headpositions and tape contents); (3) the top stack
symbol; and (4) the location of the external tape head (denoted byh(C)) and the symbol it is scanning.

Cook defines the notion of "realizable pair of surface configurations" to be a pair(C1, C2) such that
there exists a computation path that takesM from C1 to C2, with the stack level being the same in both, and
never going below that level between them2. The key in Cook’s proof is showing how existing realizable
pairs can be combined to yield new ones, until, eventually, all realizable pairs are found. The number of
distinct surface configurations is polynomial and thus thistakes polytime. At the end, to decide whether
M acceptsx, we check if the surface of the initial configuration and thatof the accepting configuration are
realizable.

In the two-sided unboundederror regime considered in here, one way to decide ifM acceptsx is to
compute the total probability of all strings that takeM from the initial configuration to the accepting one. We
simplify things by including the external head position in (full and surface) configurations, so that all strings

2More precisely, this a path that takesM from some (full) configurationC1 with surfaceC1 to some (full) configurationC2 with
surfaceC2. This path cannot depend on the stack contents inC1 (except for the top stack symbol) because they are not accessed.

8

that takeM from one (surface) configuration to another have the same length. Then, we only have tocount
the number of strings leading to the accepting configuration. Not unexpectedly, we are only able to perform
this counting whenM tosses at most polynomially many coins, in contrast to the nondeterministic regime
[Coo71] where the proof works for exponentially many tosses. We consider pairs of surface configurations
(C1, C2), and we nowcount exactlythe numberα(C1, C2) of strings that takeM from C1 to C2, with
stack level the same, and never going below that level in-between them. As compared to Cook, the rule for
computing the valuesα(·, ·) for new pairs from previously computed ones is more involved.

5 The Schwartz-Zippel test cannot showPIT ∈ coRPdL[N c]

The only known derandomization forcoRPdL[·] is thatRPdL[1] = coRPdL[1] = P, sinceRPdL[1] ⊆
NPdL[1] andP is closed under complement. We show that algorithms which evaluate even a fixed polyno-
mial on an arbitrary point cannot show containment of PIT incoRPdL[N c], for constantc > 0.

Translations of a family of Probabilistic Turing Machines (PTMs) to vSMs. The technically more
involved part of our contribution is an unconditional3 lower bound for a popular family of probabilistic
polynomial time algorithms for PIT. These algorithms evaluate the input polynomial on a random point;
we refer to this family as SZ-algorithms (where SZ stands forSchwartz-Zippel). Our lower bound refers
to these algorithms when realized as vSMs. Note that if we allow arbitrary translations of PTMs to vSMs
andP = RP then no non-trivial lower bound is possible: we could alwaysmap a PTM to a vSM that does
not access its randomness. To that end, we consider a naturalrestriction on such translations. Informally,
the dependence on Polynomial Evaluation (PE) of the PTM is preserved. More formally, consider PTMs
which at some point in their execution make a call to an oraclewhich evaluates the input polynomial at a
random point. We allow both the PTM and the oracle to be implementedarbitrarily as a vSM, with the only
restriction that the same oracle call be made. The term arbitrary PE-preserving implementation as a vSMof
a SZ-algorithm corresponds to the collection of translations as mentioned above.

The lower bound. Every SZ-algorithm is realized as a vSM. Our lower bound on the number of reversals
on the random tape focuses on the (arbitrarily implemented)evaluation procedure of the algorithm. By defi-
nition of the randomized hierarchy we parametrize on the worst-case number of reversals. Hence, the lower
bound for the SZ-family follows directly by showing a lower bound fordeterministicSMs with two input
tapes: one contains the input polynomialp and the other the pointρ on which we evaluate the polynomial.
We count reversals only on the tape which contains the pointρ. We emphasize that since we are interested in
the worst-case number of reversals to prove the lower bound it suffices to adversarially choose the pointρ.
The proof of Theorem 10 follows from Corollary 15, since the inner product of two vectors is the evaluation
of the quadratic polynomial induced by the inner product.

Theorem 10. LetA be a PTM which in every execution evaluates at least once the input polynomialp at
a random pointρ, presented in terms of its coordinates on the random tape. Then, every PE-preserving
implementation ofA as a vSM makes at leastN c reversals on the random tape, for some explicit constant
0 < c < 1, whereN is the input length.

3Recall that the input inPE is an arithmetic circuit. This problem is easily shown to be hard for P. Hence, conditionally, if
P 6= NC it is easy to see that SZ-algorithms cannot show containmentin coRPdL[NpolylogN]. Note, that proving unconditionally
any such superpolynomial lower bound would separateLogSPACE from P (in fact LOGDCFL from P).

9

Although no known Schwartz-Zippel-like algorithm evaluates the polynomial approximately, our lower
bound can be generalized to hold even for algorithms that errwith error bounded away from1, when the
input points are chosen uniformly at random.

5.1 Definitions related to the Communication Complexity lower bound

Communication Complexity. We consider the standard Number-In-Hand (NIH) model [KN97], where
each of thep players gets ann-bit input part. Communication is done via a shared blackboard. Deterministic
protocols are always correct and randomized protocols are correct with probability at least2/3 where the
randomness is public. For a functionf :

(
{0, 1}n

)p → {0, 1} we denote byR(f) the minimum cost of the
best randomized communication protocol forf , over all inputs and random strings.

We define the functionsPSETINT and IPF. Let PSETINTp,n : ({0, 1}n)p → {0, 1} be thep-playern-bit
promise intersectionfunction defined as follows. On input(x1, . . . , xp), xi ∈ {0, 1}n the promise is that
either the setssupp(xi) are mutually disjoint or their intersection is a singleton set. For a promised input
x = (x1, . . . , xp) definePSETINTp,n(x) = 1 iff

⋂p
i=1 supp(xi) = {a}, a ∈ [n]. Let IPF

2,n : (Fn)2 → {0, 1}
be the2-playern-ary inner productfunction over fieldF, defined by IPF2,n(x1, x2) =

∑n
i=1 x1,ix2,i. By

[CKS03],R(PSETINTp,n) = Ω(n
p log p). By a simple reduction fromPSETINT2,n, R(IPF

2,n) = Ω(n).
Our lower bound is based on a direct sum type of argument for NIH communication complexity for set

disjointness and generalized inner product. Using its stack, a SM can solve efficiently the straightforwardly
defined direct sum version of the problems. To that end, we apply permutations on the inputs.

Definition 11. Let X = {0, 1}n. Consider abase functionf : Xp → {0, 1}, p ≥ 2. In the commu-
nication complexity model playerI getsxi, from an input(x1, . . . , xp) ∈ Xp. Let Φ = (φ1, . . . , φp)
be a sequence of permutations. The(pmn)-bit function f∨,Φ : (Xm)p → {0, 1} is defined on input
x = (x1, . . . , xp) ∈ Xmp, wherexi = (xi,1, . . . , xi,m) ∈ Xm as follows: f∨,Φ(x) =

∨m
j=1 f(x[j],Φ),

wherex[j],Φ = (x1,φ1(j), . . . , xp,φp(j)). When no confusion arises instead ofx[j],Φ we writex[j]. Whenf

is the generalized inner product thenf⊕,Φ(x) =
⊕m

j=1 f(x[j],Φ), is also a lifting of the given inner product
problem, which by definition is a bigger (permuted) inner product instance.

Notation: Let n ≥ 1 and letX = {0, 1}n. Let m ≥ 1 andp ≥ 2. Let f = PSETINTp,n : Xp → {0, 1}.
Let g = IPF

2,n. Let Φ = (φ1, . . . , φp) ∈ (Sm)p be the sequence ofp permutations on[m] that have small
sortedness (see Appendix A). Recall Definition 11 off∨,Φ and ofg⊕,Φ. Let r, s : N→ N be functions. Let
d ≤ O(p(r(mnp))2/

√
m). In what follows the choice ofr andm will be such thatp(r(mnp))2 = o(

√
m).

5.2 A Streaming Perspective and A Comparison to [BHN08]

The lower bound is a corollary of a technical result which canbe independently interpreted from the per-
spective ofstreaming. A detailed treatment of Section 5 is given in Appendix A.

The streaming model of computation was introduced by [AMS99] in an attempt to model the huge real-
world differences in access times to internal memory (e.g.,RAM) and external memory (e.g., hard drives).
In this model, the computation device is a space bounded TM that is allowed a bounded number of reversals
on the input tape. An(r, s)-Stack Machine can be naturally seen as an extension of the original streaming
model, in which the TM is given access to an unbounded stack.

One of the most important problems studied in the context of streaming is that of computing the fre-
quency moments of a data stream. Thek-th frequency momentFk of a sequenceα = (a1, . . . , aM), ai ∈ [R]

10

is Fk(α) =
∑

j∈|R|(fj)
k, wherefj = |{i : ai = j}|. 4 Positive results for approximating this problem are

given by [AMS99, IW05, BGKS06], and negative results are given by [AMS99, SS02, BYJKS04, CKS03].
[GS05] introduced another extension of the streaming modelof computation, called an(r, s, t)-read/write

stream algorithm: a TM witht external tapes on which the heads can reverse a total ofr times, and internal
tapes of total sizes. [BHN08], building on [BJR07, GS05, GHS06], prove that an(o(log n), s,O(1))-r/w
stream algorithm that approximates thek-th frequency moment of a data stream requiress = n1−4/k−δ for
anyk > 4 andδ > 0.

Our lower bound proof is inspired by [BHN08], but the heart ofour argument is entirely new. Below,
we address how r/w stream algorithms compare with SMs, and the novelty in our proof.

Comparison of computational models. In Lemma 12 (the proof is given in Appendix A.5) we formally
show that under a widely-believed complexity assumption5, the unboundness when accessing the stack
makes our model stronger than the one considered in [BHN08],for some languages inP.

Lemma 12 (The power of one-way SMs). Let m ∈ Z
+. There existsL ∈ P such that (i) there is a SM

decidingL with one scan over the input, and (ii) every TMM with a logspace work tape (on which we
don’t count reversals) and a constant number of tapes on which we count reversals,M cannot decideL
with logm N reversals, unlessE ⊆ PSPACE.

This lemma refers to the (uniform) models of interest. We derive the lower bound (Theorem 13) using
communication complexity, which means that inherently this lower bound applies even to non-uniform
machines. Hence, Lemma 12 leaves open the possibility that lower bounds on the non-uniform version of
our model follow by lower bounds on the non-uniform version of (r, s, 2)-r/w stream algorithms. However,
it is impossible to provepolynomiallower bounds - as we do in this paper for SMs - for(r, s, 2)-r/w stream
algorithms6.

Comparison of proof techniques. Thegeneral setupof both proofs is the same. We assume we have an
efficient r/w-stream algorithm/SMM (henceforth, referred to as "machine") that solves a "permuted" prod-
uct of several instances of a base functionf . Using this machine, we construct an efficient communication
protocol forf as follows. Given an input instance to the protocol, referred to as the "real" instance, the
players construct many "decoy" instances, they combine them together with the real one, and they simulate
the machine on this extended input. The fact thatM solves a permuted product of instances tof is used in
order to argue thatM must dedicate its resources (external tapes in [BHN08], stack in our case) to solving
only a fraction of all instances.

The heart of both arguments is an "algorithmic" part, which says that if M does not dedicate its re-
sources to solving the real instance, then there exists an efficient communication protocol simulatingM .
The difference between our proof and the one in [BHN08] is thevery heart of the argument. [BHN08] gives
an efficient simulation of an(r, s, t)-r/w stream algorithm, whereas we give an entirely new simulation of
an(r, s)-SM.

A subtle issue, which makes our simulation somehow unexpected, is that 2 stacks have the full power of
an unrestricted TM. In contrast, the simulation in [BHN08] works for any number of tapes.

4We consider this problem forM = RΘ(1). For the computational/streaming problems we are interested in approximating
Fk(α) whereα is presented in the input by listing the elements ofα, each of which is encoded usingΘ(log R) bits; i.e. the input
length is alsoN = RΘ(1).

5It is straightforward to show unconditionally thatE 6= PSPACE. It is usually thought that these classes are incomparable.
6Because an(O(log n), s, 2)-r/w stream algorithm cansort, which is enough to compute frequency moments exactly [GHS06].

11

Finally, note that we show a polynomial lower bound on the number of reversals on the worktape,
whereas [BHN08] can only show a logarithmic lower bound.

5.3 The Statement of the Technical Result

Theorem 13(Main Reduction). Assume there exists a randomized(r, s)-Stack MachineM for f∨,Φ with
error at mostδ. Then, there exists a randomized protocolP for f , with costO(p2 · (r(mnp))2 · s(mnp))
and error at mostδ + d(1 − δ). Furthermore, the same holds when we replacef by g, andf∨,Φ byg⊕,Φ.

Corollary 14. Letk > 5 andε ≥ 0 be constants. There exists a constantβ > 0 such that any(r, s)-SMAN

computing an(1 + ε) approximation ofFk with constant error requiresr = ω(Nβ) or s = ω(Nβ).

Corollary 15. Let F be any field, letp = 2, and letm = n8/6. Then, any(r, s)-SM AN computing
(
IPF

2,n

)⊕,Φ
with constant error requiresr = ω(N1/8) or s = ω(N1/8).

6 Conclusions and Future Work

This paper initiates the study of randomness based on the number of accesses to the random bits as opposed
to the amount of random bits a polytime algorithm uses. A meaningful definition becomes possible by
extending SMs with a polynomially-long auxiliary tape. Parametrizing on the number of head-reversals
on the random tape we define hierarchies lying in-between polynomial time and probabilistic polynomial
time. When one considers the auxiliary resource to consist of non-deterministic or non-uniform bits one can
define similar hierarchies.

We also introduce an alternative, equivalent definition forthe use of randomness, where a polynomial
time algorithm on a given input compiles all the randomness it needs in a polynomial size, swallow circuit.
One implication is that derandomization (using PRGs) of theRNC hierarchy, which is believed to be a small
fraction of P, implies derandomization for classes that lie much higher thanRNC. Another consequence
is that this definition provides an alternative perspective, which may find use in devising algorithms in
the lower levels of our hierarchy. The extensive literaturein parallel computation can be potentially used
towards this goal.

The derandomization for one-sided error classes is an immediate corollary of the Dynamic Programming
algorithm given in [Coo71]. A non-trivial modification of this algorithm is used to derandomize the first
level of two-sided error probabilistic polynomial time, even with unbounded error. Other than this the
resolution of the fundamental complexity questions motivating this paper remains widely open. In [Ven06] a
pseudorandom generator is given against polynomial time vSMs, with one-way access over the randomness.
It is conceivable that this generator may be secure against more than one scans over the randomness. We
have recently obtained [DPS09] such a result for logspace TMs without a stack, by investigating properties
of Nisan’s PRG [Nis92] against logspace, and one-scan over the randomness.

Our main lower bound refers to a particular use of the random stream, showing that every algorithm
which evaluates the given polynomial on the provided randompoint witnesses containment of PIT away
from P, with respect to our parameterization of head-reversals. Although this result does not have immediate
structural consequences, it does provide grounds for future research according to the proposed framework.
Proving unconditional lower bounds for time and space resources is in general a far-to-reach goal. On the
other hand, we see that there is a certain success in proving such lower bounds on head reversals. One may
speculate that this opens the possibility the proof techniques introduced in this paper to find application in
the derandomization of the randomized hierarchy.

12

This paper gives rise to a number of questions (even in relation to areas such as Cryptography, random-
ness extractors etc) not possible to be listed here in some comprehensive form. We conclude by mentioning
five of them which at this stage seem to be more relevant to our study.

• Derandomization of the first few levels of theRPdL[·] hierarchy. In particular, derandomizing even
the second level of the hierarchy is interesting. It seems that new tools have to be developed towards
this direction.

• Derandomize the first few level ofBPPdL[·]. Note that in the two-sided error case it would also be
interesting to show containment inNP.

• Investigate structural relations among levels of the hierarchies.For example, is it true thatBPPdL[k] ⊆
RPdL[k′] for somek′ > k? Another possibility would be to prove theorems of the form e.g. “if
P 6= RP thenRPdL[exp] 6= RPdL[r(N)]”. That is, to derandomizeRP it is sufficient to derandom-
ize only the firstr(N) many levels of the randomized hierarchy.

• Complexity-theoretic questions for variants of our model.For example, we have shown that constantly-
many reversals on the non-deterministic tape of a logspace TM cannot get us outsideNL. We also
know that polynomially many reversals are sufficient to characterizeNP. Thus it seems interesting
to check whether for superlogarithmic number of reversals we remain insideP. Another question
is to study what happens when the auxiliary tape of the SM is bigger than polynomial. It is easy
to see that if the random tape is exponentially long tape we characterizePSPACE. What happens
with a subexponentially-long tape? For example, is there any relation to the levels of the polynomial
hierarchy? How does the number of reversals become relevantin such a case?

• DevisePIT randomized algorithms with reduced number of reversals. Instead of trying to reduce the
number of random bits an algorithm for Polynomial Identity Testing uses, design algorithms that use
as few reversals over the randomness as possible. Equivalently (using randomness compilers), devise
randomized algorithms where their “deterministic part” isarbitrary polytime and their “randomized
part” is parallelizable.

The proposed approach to randomness creates potential to bring together tools developed in many excel-
lent works in the areas of derandomization, communication complexity, streaming and structural complexity
related to AuxPDAs (SMs). Devising new tools based on amalgamating results from these areas seems to
be our best bet for the moment.

Acknowledgements

We would like to thank Phuong Nguyen for his extensive collaboration in the beginnings of this research
several years ago. Our thanks to Mark Braverman whose remarks initiated the study of the relation between
RPdL andP+RNC. We would also like to thank Siavosh Benabbas, Stephen Cook,Faith Ellen, Toniann
Pitassi and Charles Rackoff for many helpful discussions.

References

[AB99] M. Agrawal and S. Biswas. Primality and identity testing via Chinese remaindering.J. ACM,
50(4):429–443 (electronic), 2003 (preliminary version inFOCS 1999).

13

[AB08] S. Arora and B. Barak.Complexity Theory: A Modern Approach. (draft), 2008.

[ABKPM06] E. Allender, P. Burgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the complexity of
numerical analysis. InCCC 2006, volume 21, 2006.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.Ann. of Math. (2), 160(2):781–793,
2004.

[All89] E. W. Allender. P-uniform circuit complexity. J. Assoc. Comput. Mach., 36(4):912–928,
1989.

[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments.J. Comput. Syst. Sci., 58(1):137–147, 1999.

[BCD+89] A. Borodin, S. A. Cook, P. Dymond, L. Ruzzo, and M. Tompa. Two applications of inductive
counting for complementation problems.SICOMP: SIAM Journal on Computing, 18, 1989.

[BGKS06] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Simpler algorithm for estimating fre-
quency moments of data streams. InSODA 2006, pages 708–713, New York, 2006. ACM.

[BHN08] P. Beame and D.-T. Huynh-Ngoc. On the value of multiple read/write streams for approxi-
mating frequency moments. InFOCS 2008, 2008.

[BJR07] P. Beame, T. S. Jayram, and A. Rudra. Lower bounds forrandomized read/write stream
algorithms. InSTOC 2007, 2007.

[BYJKS04] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach
to data stream and communication complexity.J. Comput. System Sci., 68(4):702–732, 2004.

[CK97] Z.-Z. Chen and M.-Y. Kao. Reducing randomness via irrational numbers.SIAM J. Comput.,
29(4):1247–1256 (electronic), 2000 (preliminary versionin STOC 1997).

[CKS03] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-party com-
munication complexity of set disjointness. InCCC 2003, pages 107–117. IEEE Computer
Society, 2003.

[Coo71] S. A. Cook. Characterizations of pushdown machinesin terms of time-bounded computers.
J. Assoc. Comput. Mach., 18:4–18, 1971.

[DPS09] M. David, P. A. Papakonstantinou, and A. Sidiropoulos. On the derandomization ofRNC1.
(unpublished manuscript), March 2009.

[ES35] P. Erdös and G. Szekeres. A combinatorial problem in geometry.Compositio Math., 2:463–
470, 1935.

[GHS06] M. Grohe, A. Hernich, and N. Schweikardt. Randomized computations on large data sets:
Tight lower bounds. InPODC06, 2006.

[GS05] M. Grohe and N. Schweikardt. Lower bounds for sortingwith few random accesses to external
memory. InPODS 2005, 2005.

14

[HS08] A. Hernich and N. Schweikardt. Reversal complexity revisited.Theoret. Comput. Sci., 401(1-
3):191–205, 2008.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. InSTOC 1997, 1997.

[IW05] P. Indyk and D. P. Woodruff. Optimal approximations of the frequency moments of data
streams. InSTOC 2005, pages 202–208. ACM, 2005.

[KI03] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds.Comput. Complexity, 13(1-2):1–46, 2004 (preliminary version in STOC
2003).

[KN97] E. Kushilevitz and N. Nisan.Communication complexity. Cambridge University Press, New
York, NY, USA, 1997.

[KS01] A. R. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polyno-
mials. InSTOC 2001, pages 216–223 (electronic), New York, 2001. ACM.

[LV98] D. Lewin and S. Vadhan. Checking polynomial identities over any field: towards a derandom-
ization? InSTOC 1998, pages 438–447. ACM, New York, 1998.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[Nis93] N. Nisan. On read-once vs. multiple access to randomness in logspace.Theoret. Comput.
Sci., 107(1):135–144, 1993. Structure in complexity theory (Barcelona, 1990).

[NW88] N. Nisan and A. Wigderson. Hardness vs. randomness.J. Comput. System Sci., 49(2):149–
167, 1994 (preliminary version in FOCS 1988).

[Ruz80] W. L. Ruzzo. Tree-size bounded alternation.J. Comput. System Sci., 21(2):218–235, 1980.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity.J. Comput. System Sci., 22(3):365–383, 1981.
Special issue dedicated to Michael Machtey.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.J. Assoc.
Comput. Mach., 27(4):701–717, 1980.

[SS02] M. Saks and X. Sun. Space lower bounds for distance approximation in the data stream model.
In STOC 2002, pages 360–369 (electronic), New York, 2002. ACM.

[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. System Sci., 62(2):236–266, 2001 (preliminary version in STOC 1999). Special
issue on the Fourteenth Annual IEEE Conference on Computational Complexity (Atlanta,
GA, 1999).

[Uma03] C. Umans. Pseudo-random generators for all hardnesses.J. Comput. System Sci., 67(2):419–
440, 2003. Special issue on STOC2002 (Montreal, QC).

[Ven91] H. Venkateswaran. Properties that characterize LOGCFL.J. Comput. System Sci., 43(2):380–
404, 1991.

15

[Ven06] H. Venkateswaran. Derandomization of probabilistic auxiliary pushdown automata classes.
In CCC 2006, volume 21, 2006.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions. InFOCS 1982, pages 80–91. IEEE,
New York, 1982.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. InSymbolic and algebraic com-
putation (EUROSAM ’79, Internat. Sympos., Marseille, 1979), volume 72 ofLecture Notes in
Comput. Sci., pages 216–226. Springer, Berlin, 1979.

16

Appendix

A Streaming Lower Bound

A.1 The family of Schwartz-Zippel algorithms

Our main lower bound is on the number of reversals when computing a permuted version of inner product,
a special case of polynomial evaluation. This, in particular rules-out the family of SZ-algorithms, defined in
Section 5. Furthermore, our lower bound rules-out a slightly bigger family, which allows us to include the
algorithms in [LV98, CK97]. If a SMM :

(i) evaluates the input polynomialP at a pointX = (X1, . . . ,Xm) ∈ F
m, and

(ii) derives the pointX from its random tapeR by partitioningR into m contiguous pieces
(R1, . . . , Rm), and arbitrarily, but surjectively, computingXi from Ri (i.e.,Xi may not depend
onRi′ for i′ 6= i, andXi takes all possible values inF asRi varies);

thenM makesN ε reversals on its random tape, for someε > 0. Thus, such algorithms cannot show that
PIT is in a level lower thancoRPdL[N ε].

A.2 Preliminaries, sketch of main lemmas, and proof of the main theorem

In this section, we prove Theorem 13. We give the intuition and the proof for the case whenf = PSETINTp,n

andM computesf∨,Φ.

Overview of the proof. We show that evaluating a polynomial at a given point requires polynomially
many reversals on the input tape. For this we rely on the lowerbounds forPSETINT and IPF (see Section
2). Hence, it suffices to present a protocol that efficiently simulates an(r, s)-Stack Machine.

Our goal is to construct a randomized protocolP which runs on the given input. As an intermediate step
we construct a deterministic protocolP ′ where the players inP they useP ′ as a routine. In particular, in
the description ofP the players first transform the given (actual) input into an artificial bigger input using
shared randomness and the actual input. Then, they simulatethe deterministic protocolP ′ on this special
input they have created. The extension of the given input is such that the output to this input is the same as
for the actual one.

The construction ofP ′ is the main bulk of the proof. The intuitive goal is to show that in P ′, it is possible
for the players to perform the simulation of the Stack Machine without communicating the stack content.

1. Identify an obstruction to efficient simulation. This is the definition of acorrupted instance(Defi-
nition 18). In absence of the obstruction it is possible to simulate the(r, s)-Stack Machine without
communicating the stack content.

2. Bound the frequency that this obstruction occurs (Lemma 20).

3. Construct the deterministic protocolP ′ (Lemma 19). This protocol may abort the simulation when
we have a corrupted instance. However, the protocolP ′ identifies when the situation of a corrupted
instance occurs. When we do not have a corrupted instance then the protocol works correctly and
it is efficient, in the sense that the players do not have to communicate the stack content during the
simulation of the machine.

17

4. Use Yao’s min-max principle to show the existence of a randomized protocolP (Theorem 13). Ran-
domization is mainly used to construct the extension and to avoid (in a probabilistic sense) the situa-
tion where we have a corrupted instance.

In Remark 21, we explain what is different in the case wheng = IPF

p,n andM computesg⊕,Φ. We begin
by defining the sortedness of a permutation, an important concept for our construction.

Permutations, Permuted Functions and Frequency Moments. For a permutationφ ∈ Sm we de-
fine its sortedness, denoted bysortedness(φ), to be the length of the longest monotone subsequence of
(φ(1), . . . , φ(m)). Therelative sortednessof φ1, φ2 ∈ Sm is defined asrelsorted(φ1, φ2) = sortedness(φ1◦
φ−1

2). In general, for a sequence of permutationsΦ = (φ1, . . . , φp), letrelsorted(Φ) = maxi6=j(relsorted(φi, φj)).
We are interested in sequences of permutations with small relative sortedness. The relative sortedness of
any two permutations is at least

√
m [ES35] , so the following is optimal up to constants.

Fact 16 (Corollary 2.2 in [BHN08]). Let p = mO(1). Then, there exists a sequenceΦ ∈ (Sm)p such that
relsorted(Φ) = O(

√
m).

Additional definitions and notation. Since in each transition exactly one of the following happens:either
a head-move, or a push to the stack or a pop from the stack, we refer to move transitions, push transitions
andpop transitions, respectively. For a fieldF and IPF

2,n we write 0-inputs to refer to the subset ofF2n

which consists of every element whose inner product is0. This is not to be confused with the all-0 vector in
F

2n which is just one0-input.
So, given a Stack MachineM for f∨,Φ, we build a communication protocol forf . Let x be an input

to P . Our strategy is as follows: the players inP extendx to an inputv to f∨,Φ by randomly choosing an
instance numberj ∈ [m], randomly choosingm − 1 0-inputsy = (y1, . . . , ym−1) to f , embeddingx as
instance numberj andy as the other instances in an inputv(j, x, y) to M , and simulatingM on inputv.

Definition 17. For the fixedΦ, let j ∈ [m], x ∈ Xp andy = (y1, . . . , ym−1) ∈ (Xp)m−1. Recalling
Definition 11, we definev = v(j, x, y) ∈ (Xm)p to be the string satisfying:v[j] = x; v[j′] = yj′ for

1 ≤ j′ < j; andv[j′] = yj′−1 for j < j′ ≤ m.

Sincey consists of 0-inputs tof , it’s clear thatf∨,Φ(v(j, x, y)) = f(x). Thus, if the players inP
manage to simulateM onv(j, x, y), they obtainf(x).

AssumeM is deterministic, and letΓ denote the sequence of configurations ofM on input v =
v(j, x, y). The players in protocolP collectively see most of the tape ofM , except for the parts where
their respective inputs are embedded intov(j, x, y). Specifically, playeri is the only one who sees the sym-
bols in vi,φi(j), which isxi. In protocolP , the players will take turns simulating the transitions inΓ one
by one, and it will be the job of playeri to simulate the transitions when the input head is scanningvi,φi(j).
Intuitively, we expect that by usingm > 1 and the special sequence of permutationsΦ, the machineM does
not use its stack on instancej, which is the one we really want to solve.

Definition 18. Let j′ ∈ [m] and letv′ ∈ (Xm)p. 7 Let M ′ be a deterministic(r, s)-Stack Machine. Let
Γ′ be the sequence of configurations ofM ′ on v′. PartitionΓ′ into r contiguous “scans” according to the
movement of the input head. We say thatinstancej′ is corrupted in inputv′ on machineM ′ if the following
holds. There exist scansl1 ≤ l2 ∈ [r], there existi1 6= i2 ∈ [p], and configurationsγ1, γ2 ∈ Γ′ such that:

7In this definition,j′ andv′ arenot necessarily related byv′ = v(j′, x, y) for somex, y.

18

(i) for a ∈ [2], γa belongs to scanla and the input head inγa is scanning a symbol fromv′ia,φia (j′); (ii) the
transition out ofγ1 is a push transition (see Section 2); (iii) the transition out of γ2 is a pop transition; (iv)
the stack height is the same inγ1 and in the configuration followingγ2; and (v) the stack height is strictly
higher in between them. LetBAD(M ′, v′) ⊆ [m] denote the set of instances that are corrupted inv′ onM ′.

Intuitively, according to this definition, instancej is corrupted in inputv(j, x, y) on Stack MachineM
if M ever pushes a symbol on the stack in a transition that is to be simulated by playeri1, and later pops that
same symbol in a transition that is to be simulated by anotherplayeri2 6= i1. We claim that indeed, whenj
is not corrupted inv(j, x, y) onM , the protocolP can efficiently simulateM on v(j, x, y).

Lemma 19. Let M ′ be a deterministic(r, s)-Stack Machine forf∨,Φ. Let j ∈ [m] and lety ∈ (Xp)m−1.
There exists a deterministic communication protocolP ′ = P ′(M ′, j, y) such that, on inputx ∈ Xp: (i) if
j ∈ BAD(M ′, v(j, x, y)), thenP ′ outputs “fail”; (ii) otherwise, P ′ outputsM ′(v(j, x, y)); and (iii) the
cost ofP ′ is O(p2 · (r(mnp))2 · s(mnp)).

We defer the proof of this lemma to Appendix A.4. This lemma isthe main part of the reduction. It
is not hard to see how it is possible to efficiently detect whether j is corrupted inv. Assuming thatj is
not corrupted it is possible to efficiently simulate the Stack Machine; i.e. without communicating the entire
stack content. Let us give an example so as to develop some intuition. Although the machine computation
described in this example is among the simpler cases when it comes to efficient simulation by the players,
this example does illustrate some of the main issues.

Example for a special case of the efficient simulation. Consider the case of two players. Both players
know the0-inputs. We refer to the part of the0-inputs as public input zone. If a stack symbol was pushed
to the stack during the simulation ofM ′ when the head was over a public zone then this stack symbol (for
the corresponding time step and stack height) is a public stack symbol. This way we define the concept of
public stack zone. Similarly, we define the private zones forPlayer-i. The symbols in the stack, have value
(i.e. the actual symbol) and in addition we label them according to which zone the input head was when
they were pushed in the stack. This distinction is necessary, because during the simulation, for a particular
stack height a player may know the label of the input-zone associated with the stack symbol, but not the
actual symbol.

Consider the situation depicted on Figure 1 and suppose thatthe simulation has reached timet1. On
the right we depict the stack content which was created byM by computing on the input and by possibly
making a few scans over the tape between time0 andt1. Furthermore, assume the invariant that up to timet1
each player knows: (i) the position (stack height) of every public and private stack-symbol, (ii) the symbol
for each public stack symbol, (iii) Player-i knows her private stack symbols and (iv) the top stack symbol
of the private stack zone which belongs to the other player. Player-1 will carry the simulation at this point
since the input head enters her private zone. She can do the simulation up to timet2 where the head exits
her private zone. As the simulation proceeds she pushes to the stack her private stack symbols and when
she pops stack symbols these are either private to her or public. At time t2 it is not a good idea to send to
Player-2 the stack height and the input-head position. The reason is that later on and as long as the head is
over the public zone, the popped stack symbols enter at timet3 the private zone of Player-1 (and Player-2
does not know these stack symbols). Thus, Player-1 continues to simulate aftert2 and up to the lowest
level l4 of the stack with the input head over the public zone. At this point and since she knows this is the
lowest level, she sends to Player-2 the stack height, the topstack symbol, and the position of the input head.
Since this is the lowest stack height and the input head is over the publicly known zone both Players can
independently reconstruct the public stack zone from timet4 all the way to timet5, where Player-2 takes

19

� � � � �
� � � � � �

� � 	 �

 � � �

� � � � � � �

�

� �
� �

� �

� � � � � � �
� � � � � � � � � � � �

�
�
�

� � ! " #

$ % � "

� � � � � �
$ % � "

�

� �
� �

& � � '
� % � � " � �

 � �

(� � � �
� � "

�
�
�

) * + , - . /
0 1 2 -

� �

& � � '
� % � � " � �

 � � �

Figure 1: On the upper part we depict how the stack height changes as a function of the simulation step of
M ′ on the given input. On the right side of this upper part we depict the stack content at two different times.
On the lower part we depict the input and which part of the input is known only to player 1, only to player
2 and which is known to both (public).

over the simulation. This completes the description of the example.

We would like to make sure that in protocolP , the probability that instancej is corrupted onv(j, x, y)
is small. By construction, of them inputs tof embedded inv(j, x, y), m− 1 of them are always 0-inputs.
If, on the one hand,f(x) = 1, then instancej will be, intuitively, probabilistically distinguishable, so it is
plausible thatM dedicates the use of its stack to solving this instance, causing j to be corrupted inv(j, x, y).
However, note that the protocolP ′ from Lemma 19 can detect thatj is corrupted inv(j, x, y). So, in this
case, the protocolP will simply output 1. If, on the other hand,f(x) = 0, thenv(j, x, y) consists ofm 0-
inputs tof . In the following Lemma (proof deferred in Appendix A.4), weuse the property of the sequence
of permutationsΦ to give an upper bound on the number of instances that are corrupted in a fixed inputv′.

Lemma 20. Let M ′ be a deterministic(r, s)-Stack Machine forf∨,Φ and letv′ ∈ (Xm)p. Then, we have
|BAD(M ′, v′)| ≤ O(p · r(mnp) · log(r(mnp)) · √m).

In the casef(x) = 0, if we were to show that the choice ofj is statistically independent fromv(j, x, y),
the Lemma above would give us a bound for the probability thatj is corrupted inv(j, x, y). A subtle point
is that we cannot immediately prove this forevery0-input x. We overcome this by proving the statement
distributionally, whenx and the 0-inputs iny come from the same distribution.8 To implement this intuition,
we use Yao’s min-max principle that connects the randomizedcommunication complexity of a function with
its distributional complexity.

8As explained in [BHN08], another way would be to observe thatfor the special case off = PSETINT, any 0-input can be
transformed into any other 0-input by a column permutation,and then modifying the protocolP to apply such a random permutation
to x itself.

20

Proof of Theorem 13 (for the case whenf = PSETINTp,n). For everyq, let Mq denote the deterministic
(r, s)-Stack Machine obtained by runningM with random stringρ.

Let D be any distribution on the spaceXp of inputs tof . Below, we give a randomized protocolPD for
f with cost and error as described in Theorem 13, but with errorcomputed over the choice of the inputx
from D andof the random coinsρ. By standard arguments, we can fixρ to obtain a deterministic protocol
with the same error, but only over the choice ofx from D. Since such a protocol exists for every distribution
D, by Yao’s min-max principle (e.g., Theorem 3.20 in [KN97]),the conclusion of Theorem 13 follows.

If D has support only on 0-inputs or only on 1-inputs,PD is trivial. Otherwise, letD0 = D conditioned
onf(x) = 0.

Consider the following protocolPD:

On inputx ∈ Xp, where playeri getsxi ∈ X, and shared random stringρ:
Publicly drawj uniformly from [m]

publicly drawy = (y1, . . . , ym−1) from Dm−1
0

publicly drawq uniformly
RunP ′ = P ′(Mq, j, y) (from Lemma 19) on inputx, simulatingMq(v(x, j, y))
If P ′ outputs “fail”, thenPD outputs1. Else,PD outputs the same value asP ′

The cost ofPD is equal to the cost ofP ′ which isO(p2(r(mnp))2s(mnp)). To argue about the error in
PD, define the following events:

A = A(x, ρ): PD is correct on inputx with coinsρ
B = B(q, v): M is correct on inputv with coinsq and
C = C(j, q, v): j /∈ BAD(Mq, v).

By Lemma 19, the simulation inP ′ fails if and only if C. Let α = Prx[f(x) = 0]. We writePr[A] =
α · Pr[A|f(x) = 0] + (1− α) · Pr[A|f(x) = 1].

For the right term, consider the conditioningf(x) = 1. Then,PD is correct if either the simulation
in P ′ fails (andPD correctly outputs 1), or the simulation inP ′ does not fail andM is correct, thus,
C ∨ (C ∧ B) ⇒ A, in particularB ⇒ A, soPr[A|f(x) = 1] ≥ Pr[B|f(x) = 1]. The eventf(x) = 1 is
independent of the choice ofq, and by the correctness condition ofM , ∀v,PrQ[B(Q, v)] ≥ (1− δ). Hence,
Pr[B|f(x) = 1] = Pr[B] ≥ (1− δ).

For the left term, consider the conditioningf(x) = 0. Then,PD is correct whenever the simulation in
P ′ works andM is correct, thusB ∧ C ⇒ A, andPr[A|f(x) = 0] ≥ Pr[B|f(x) = 0]Pr[C|B, f(x) = 0].
As before,Pr[B|f(x) = 0] ≥ (1 − δ). Next, j is clearly statistically independent ofx and q. Fur-
thermore, under the conditioningf(x) = 0, we claim thatj is statistically independent fromv. To see
this, notice how the distribution obtained on pairs(j, v) in PD is the same as independently choosingm
0-inputs fromD0 and combining them inv, and choosingj uniformly from [m]. Thus, in the expres-
sion Pr[C(j, q, v)|B(q, v), f(x) = 0], the conditioning depends on(x, v, q), C itself depends onj, and
j is statistically independent from(x, v, q). By Lemma 20,∀(q, v),PrJ [C(J, q, v)] ≥ (1 − d). Then,
Pr[C|B, f(x) = 0] = Pr[C] ≥ (1− d).

Putting everything together gives the claimed error bound,Pr[A] ≥ 1− (δ + d(1− δ)).

Remark21. Theorem 13 states that ifg = IPF

2,n andM is a Stack Machine forg⊕,Φ, we can build a similar
protocolP for g. One can check that Definitions 17, 18, Lemmas 19 and 20 donot depend on either the
“base” functionf , or on the “combining” function∨. Furthermore, one can check that even the proof for
the casef = PSETINTp,n goes though if we replacef by g, andf∨,Φ by g⊕,Φ. Note that if we were to write

21

the proof for the case ofg andg⊕,Φ, we need not bother defining distributionD0: the players inPD could
simply drawy from Dm−1 (rather thanDm−1

0), because they could still computeg(x) from g⊕,Φ(v(j, x, y))
by adding to the latter the outputs of them− 1 inputs iny.

A.3 Proof of Corollaries 14 and 15

To prove Corollary 14, we need the following result. This reduction originates, in a non-permuted form,
from [AMS99]. [BHN08] point out that the reduction still works for permuted instances ofPSETINT.
However, while [BHN08] make use of an additional external tape to make it work, we do not have that
luxury when dealing with Stack Machines. We explain how to get the reduction to work with no additional
tapes. Intuitively, the idea is that during the simulation we only need to look at a limited portion of the tape.
We also slightly improve the dependency between parametersover [BHN08].

Theorem 22. Let ε ≥ 0. LetM = mnp, with p ≥ (mn)Ω(1).

1. Letk > 1 and p > (2ε(2 + ε)mn)1/k. Assume that, for largeN , there exists a nonuniform(r, s)-
Stack MachineAN that, given a sequencea of NΘ(1) elements from[NΘ(1)], outputs a(1 + ε)-
approximation ofFk(a). Then, for largeM , there exists a nonuniform(r+2, s+O(log M))-Stack Ma-
chineBM such that, when given an inputv ∈ {0, 1}M , BM outputsf∨,Φ(v), wheref = PSETINTp,n.
Moreover, ifAN is randomized with error at mostδ < 1/2, then so isBM .

2. The same holds whenk < 1 andp > 2ε(2 + ε)mn/(1 + ε)2.

Proof of Theorem 22.First, consider the casek > 1. Let v ∈ {0, 1}mnp be an input tof∨,Φ(v).
To begin with,BM uses its first two reversals to count the number of 1s inv, storing this value asC on

Θ(log M) bits. If C < p, BM outputs 0, as none of them instances ofPSETINTp,n insidef∨,Φ can contain
an all-1 column. Similarly, ifC > mn, BM outputs 1. To see this is correct, notice that by the promise,one
0-instance ofPSETINTp,n contains at mostn 1s, one in each column. Thus,m 0-instances ofPSETINTp,n

contain at mostmn 1s. Henceforth, assumep ≤ C ≤ mn.
Let N = C log(mn). Note thatN ≤ mn log mn ≤ mnp = M sincep = (mn)Ω(1). Also, N ≥

p log mn ≥MΩ(1), soAN exists for largeM . The machineBM simulates the machineAN on the following
N -bit input streama = a(v): for every(i, j, k) ∈ [p] × [m] × [n] such thatvi,j,k = 1 (recall the notation
from Definition 11), the streama contains a value(φ−1

i (j) − 1)n + k ∈ [mn]. It is not hard to check the
following property of this construction:

If f∨,Φ(v) = 0, the values in the streama are distinct;
and iff∨,Φ(v) = 1, the streama containsp occurrences of some value, and the rest are distinct.

Suppose thatBM can somehow simulateAN on inputa. So,AN outputs a valuey which is an(1 + ε)-
approximation ofFk(a). Note that:

If f∨,Φ(v) = 0, thenFk(a) = C, soy ≤ (1 + ε)C;
and if f∨,Φ(v) = 1, thenFk(a) = C − p + pk, soy ≥ (C + pk − p)/(1 + ε).

When p is larger than a constant,p < pk/2. Furthermore, by the assumption in the Theorem,pk >
2ε(2 + ε)mn ≥ 2ε(2 + ε)C. Rewriting, we obtain(C + pk − p) > (1 + ε)2C, meaning that the ranges ofy
for f∨,Φ(v) = 0 andf∨,Φ(v) = 1 are disjoint. At this point,BM outputs 1 ify > (1 + ε)C.

However, note thatBM cannot simply write downa on a tape, so instead,BM will decode small portions
of the stream containinga when they are needed. More precisely,BM holds in its memory: (i) a triple

22

(i, j, k) ∈ [p]× [m]× [n] onΘ(log M) bits, initialized to(1, 1, 1), and always containing the player number,
the instance number and the bit position of the location where the input head is scanningv; (ii) a buffer D
of log mn = Θ(log M) bits containing one element ofa; (iii) the spaces(N) of the Stack MachineAN ;
and (iv) extraO(1) bits. In total,BM uses spaces(N) + Θ(log M) ≤ s(M) + Θ(log M).

Before starting the simulation ofAN , BM scans its input until it finds the first 1. It then writes in the
bufferD the value(φ−1

i (j)−1)n+k. >From now on,BM simulatesAN , using its stack as the stack ofAN ,
the reserveds(N)-bits as the memory ofAN , and usingD as the input tape forAN . WheneverAN attempts
to move its head left/right of the bufferD, BM clears the buffer, moves its own input head left/right untilit
finds the first 1, refillsD with the value(φ−1

i (j)−1)n+k, and resumes the simulation. It is easy to see that
during this simulation,BM performs at most as many reversals asAN . Finally, if AN is randomized with
errorδ < 1/2, so isBM .

For the casek < 1, the simulation is the same, but now for correctness we needC − (p − pk) <
C/(1 + ε)2. This follows by takingp greater than a constant, so thatpk < p/2, and using the new condition
p > (2ε(2 + ε)mn/(1 + ε)2) ≥ 2(1− 1/(1 + ε)2)C.

Proof of Corollary 14. Let β = (k − 5)/(9k + 9) > 0. Assumer = O(Nβ) ands = O(Nβ). We will
derive a contradiction.

Let α = (5k − 7)/(4k + 7), and letm = nα. Let p = (3ε(2 + ε)mn)1/k = O(1) · n(1+α)(1+1/k) (if
ε = 0, setp = 2). Let f = PSETINTp,n. Let r′(M) = r(M) + 2 and lets′(M) = s(M) + O(log(M)).
By Theorem 22, there exists an(r′, s′)-SM BM for f∨,Φ with error δ < 1/4. By Theorem 13, there
exists a protocol forPSETINTp,n with costO(p2(r(mnp))2s(mnp)) and error at mostδ + d(1 − δ) where
d = O(p(r(mnp))2/

√
m). Note that bothr(mnp) ands(mnp) areO(n(1+α)(1+1/k)β). One can check that,

with the settings above,d = o(1), so for largen, the error ofBM is at most, say 1/3. Then, by [CKS03], the
cost of the protocol should beΩ(n/(p log p)). However, one can also check that, with the settings above,
p2(r(mnp))2s(mnp) = o(n/(p log p)). This is a contradiction.

Proof of Corollary 15. Similarly to the proof of Corollary 14, we use Theorem 13 to obtain an efficient
protocol for IPF

2,n, which requiresΩ(n) communication.

A.4 Full proofs - omitted from the proof of Theorem 13

Proof of Lemma 19.Let x ∈ Xp be an input toP ′. The players shareM ′, j andy. The goal ofP ′ is to
simulateM ′ on inputv = v(j, x, y). We say thatan input symbolfrom v is private to playeri if it belongs
to vi,φi(j), which is wherexi, the input to playeri, is embedded inv. Input symbols that are not private to
any player arepublic. Private input symbols are never communicated inP ′.

Let Γ be the sequence of configurations ofM ′ on inputv. Considerγ ∈ Γ and look at the contents of
the stack inγ. For every symbolξ appearing on the stack, we say thatstack symbolξ is private to playeri if
during the transition whenξ was pushed on the stack, the input head was scanning an input symbol private to
playeri. (The same symbol may appear many times on the stack, so we should formally talk about a private
stacklevel, rather thansymbol, but we believe this degree of formalization negatively affects the intuition.)
A stack symbol that is not private to any player ispublic.

We say thatplayer i sees a hollow view of the stack in configurationγ if player i knows: (i) the stack
height inγ; (ii) for every symbol on the stack, whether it is public or the player to which it is private (that
is, without knowing the symbol itself); (iii) all stack symbols that are public or private to playeri; and (iv)
for every i′ 6= i, the top stack symbol in any contiguous zone of symbols private to playeri′. Note that
the hollow views of different players of the same stack differ. We say thatthe players see a hollow view of

23

configurationγ if every player knows the state inγ, the input head position inγ, and sees a hollow view of
the stack inγ.

We say thatconfigurationγ is input-private to playeri if the input head is scanning an input symbol
that is private to playeri. We say thatconfigurationγ is stack-private to playeri if the transition out ofγ is
a pop transition and the top stack symbol inγ is private to playeri. Intuitively, playeri will be responsible
for simulating the transitions out of configurations input-or stack-private to it. Note that there exists a
configuration that is input-private and stack-private to two different players if and only ifj ∈ BAD(M ′, v).
A configuration that is neither input-private nor stack-private ispublic.

In the protocolP ′, the players will simulateΓ transition by transition, always using hollow views of the
configurations along the way. It is not hard to see that: (1) ifa player sees a hollow view of the stack in a
public configurationγ, then that player can compute a hollow view of the stack in configurationnext(γ);
(2) as long asj /∈ BAD(M ′, v), if player i sees a hollow view of the stack in a configurationγ which is
input- or stack-private to playeri, then playeri can compute a hollow view of the stack innext(γ); and (3)
if player i sees a hollow view of the stack in a configurationγ that is input-private to playeri, it can detect
whetherγ is stack-private to another playeri′ 6= i.

We now describe the protocolP ′ inductively. Clearly, all players see a hollow view of the initial con-
figuration, because there is nothing on the stack. Inductively, assume all players see a hollow view of
configurationγ. We consider three cases.

Case 1:γ is public. By fact (1) above, each player can privately compute a hollow view of the stack in
next(γ), so all players now see a hollow view ofnext(γ).

Case 2:γ is input-private to playeri. This means the input head is scanningvi,φi(j) in γ. All players
recognize this because they know the input head position, sothey give control of the simulation to player
i. Let γ′ be the first configuration followingγ in Γ that is no longer input-private to playeri. By applying
facts (2) and (3) inductively, playeri either detects thatv ∈ BAD(M ′, v) (in which case the simulation is
aborted and protocolP ′ outputs “fail”), or it can compute hollow views of the stack in every configuration
γ′′ between, and including,γ andγ′. Playeri recognizesγ′ is no longer input-private because it knows the
input head position inγ′. At this point, playeri communicates: (a) the state inγ′; (b) the input head position
in γ′; (c) the stack height inγ′; (d) the top stack symbol inγ′; and (e) the lowest stack heightL in any
configurationγ′′ betweenγ andγ′, and the top stack symbol inγ′′.

We claim the information communicated is enough for a playeri′ 6= i to compute a hollow view of the
stack in configurationγ′. Specifically, playeri′ takes the hollow view of the stack from configurationγ,
truncates it at heightL, and fills it to the height inγ′ with symbols private to playeri. To compute part (iv)
of the hollow view, playeri′ obtains the top stack symbol inγ′ from (d), and the stack symbol at levelL
from (e). Hence, after this communication, all players see ahollow view of configurationγ′.

Case 3:γ is stack-private to playeri (and not input-private). That is, the input head is scanninga public
symbol, the transition out ofγ is a pop transition, and the top stack symbol inγ is private to playeri. All
players recognize this situation, because they know whether the top stack symbol is private to playeri, so
they give control of the simulation to playeri. Let γ′ be the first configuration followingγ in Γ that is
either input-private (to any player) or stack-private to some playeri′ 6= i. By facts (1) and (2), playeri can
compute hollow views of the stack for every configurationγ′′ between, and including,γ andγ′.

In order to best explain what playeri communicates in case 3, we need to step back for a second and
look at what we are trying to do: we are trying to design an efficient protocolP ′, so we want to have as little
communication as possible. Going backward fromγ, let γa be the last configuration which is not input-
private. Going forward fromγ, let γb be the first configuration which is input-private. LetT denote the
number of contiguous parts of input-private configurationsbeforeγa in Γ. During each reversal there are at

24

mostp such parts, one corresponding to every player, and there areat mostr reversals, soT ≤ pr. Looking
at the stack inγa, observe that if we group together contiguous zones of stacksymbols private to the same
player,the number of such contiguous zones is at mostT , the number of contiguous parts of input-private
configurations beforeγa. Possibly all of these stack symbols are popped betweenγa andγb, but in order
to keep the cost of the protocol low, we will devise a way in which communication occurs inP ′ at mostT
times, once for every zone of contiguous stack symbols private to some player.

The discussion above suggest that in case 3 it would be a bad idea for playeri to fall back to public
simulation the moment it encounters a public configuration betweenγ andγ′: possibly that public configu-
ration is closely followed by another stack-private configuration of playeri, such that both the latter andγ
correspond to the same contiguous zone of stack symbols inγa, which would invalidate the communication
bound above.

Another idea is to let playeri perform the simulation all the way toγ′. This also turns out to be a bad
idea, because, in general, stack symbols might have been pushed on the stack betweenγ andγ′, and those
should not be private to any player, as the input head is in a public zone. Then, playeri would have to
actually communicate those symbols in order to give the other players a proper hollow view ofγ′.

Instead, we letγ∗ be a configuration between, and including,next(γ) andγ′, wherethe stack height
is the lowest possible(if there are several, any will do). Then, playeri simulates only untilγ∗, and it
communicates items (a)—(d) as before, skipping (e). Again,we claim the information communicated is
enough for a playeri′ 6= i to compute a hollow view of the stack inγ∗. This is simpler to see than in
case 2 before, because, by choice ofγ∗, it is enough for playeri′ to truncate its hollow view of the stack in
configurationγ to obtain a hollow view of the stack inγ∗.

This completes the description of the protocol. Ifj /∈ BAD(M ′, v), one of the players gets to the final
configuration and announces the output of the function. Ifj ∈ BAD(M ′, v), one of the players detects this
and outputs “fail”.

To obtain the stated communication bound, we first observe that every communication takesO(s) bits.
Because there are at mostpr contiguous zones of input-private configurations, the communication generated
by case 2 is at mostO(prs) bits. Finally, by the discussion in case 3, at mostpr communications occur
during each contiguous zone of non-input-private configurations. There arepr − 1 such zones, to a total of
O(p2r2s) bits.

Proof of Lemma 20.We say thatinstancej ∈ BAD(M ′, v′) is corrupted by the tuple(l1, l2, i1, i2) if the
latter is the lexicographically smallest such tuple satisfying the conditions in Definition 18 for instancej.
First, we consider the question of how many instances can be corrupted by one 4-tuple. Second, we argue
that not all 4-tuples can simultaneously corrupt instances.

Let J ⊆ [m] be k distinct instances that are corrupted by the same 4-tuple(l1, l2, i1, i2). Recalling
Definition 11, rename the instances inJ in such a way thatφ−1

i1
(j1) < φ−1

i1
(j2) < · · · < φ−1

i1
(jk). Assume

that bothl1 andl2 are odd. Then, the head ofM ′ scansvi1 during reversall1 from left to right, SoM ′ first
visitsvi1,φ−1

i1
(j1)

, thenvi1,φ−1
i1

(j2), and so on, up tovi1,φ−1
i1

(jk). Fora ∈ [k], let γa,1, γa,2 be the configurations

mentioned in Definition 18. By this definition, the stack level cannot drop betweenγa,1 andγa,2, so then we
must haveγ1,1 ≺ γ2,1 ≺ · · · ≺ γk,1 ≺ γk,2 ≺ · · · ≺ γ2,2 ≺ γ1,2. Since we assumedl2 is also odd, the head
is also moving left to right in reversall2, so we obtain thatφ−1

i2
(jk) < · · · < φ−1

i2
(j2) < φ−1

i2
(j1). Then,

φ−1
i2
◦φi1(φ

−1
i1

(j1) < φ−1
i1

(j2) < · · · < φ−1
i1

(jk)) is a size-k monotone decreasing subsequence ofφ−1
i2
◦φi1 .

By Fact 16,k ≤ O(
√

m). It is easy to see that the relative parities ofl1 andl2 change this argument only
in that we might obtain a monotone increasing subsequence instead of a monotone decreasing one. Thus,
every 4-tuple can corrupt at mostO(

√
m) instances.

25

Next, consider ther×r matrixA, whereA[l1, l2] = 1 if there existi1, i2 ∈ [p] such that some instance is
corrupted by the tuple(l1, l2, i1, i2), andA[l1, l2] = 0 otherwise. Note thatA = 0 under the main diagonal,
because for a tuple to corrupt an instance we must havel1 ≤ l2.

Moreover, fork ≥ 1, consider the diagonall2− l1 = k, and two entries on this diagonal that arek′ cells
apart, for1 ≤ k′ < k. We claim that we cannot haveA[l1, l1 + k] = 1 andA[l1 + k′, l1 + k + k′] = 1.
Assume this were true. Then, some instancej is corrupted because a symbol is pushed on the stack in scan
l1 and popped in scanl1 + k, and another instancej′ is corrupted because a symbol is pushed on the stack
in scanl1 + k′ and popped in scanl1 + k + k′. But, with these settings,l1 < l1 + k′ < l1 + k < l1 + k + k′,
which contradicts the way a stack works.

Hence, fork ≥ 1, the diagonall2 − l1 = k can contain at mostr/k 1s. In total, we see thatA contains
at mostO(r log r) 1s.

Finally, for fixedl1 ≤ l2, consider thep × p matrix B = B(l1,l2), whereB[i1, i2] = 1 if some instance
is corrupted by the tuple(l1, l2, i1, i2), andB[i1, i2] = 0 otherwise. First, consider the case whenl1 andl2
are both odd, so the input head scansv left to right during both scansl1 andl2.

We claim that fork′ ≥ 1, we cannot haveB[i1, i2] = 1 andB[i1 + k′, i2 + k′] = 1. Assume this were
true. Then, some instancej is corrupted because a symbol is pushed on the stack during scanl1 of the input
part of playeri1 and popped during scanl2 of the input part of playeri2, and another instancej′ is corrupted
because a symbol is pushed on the stack during scanl1 of the input part of playeri1 + k′ and popped during
scanl2 of the input part of playeri2 + k′. But in scanl1, the input part of playeri1 is visited before the
input part of playeri1 +k′, and in scanl2, the input part of playeri2 is visited before the input part of player
i2 + k′. This contradicts the way a stack works.

Hence, on every diagonali2 − i1 = k, the matrixB can contain a single 1. In total,B contains at most
O(p) 1s. The cases where eitherl1 or l2 or both are even are treated similarly.

Therefore, at mostO(pr log r) 4-tuples can corrupt instances, and each 4-tuple can corrupt at most
O(
√

m) instances. Thus,|BAD(M ′, v′)| ≤ O(pr log r
√

m).

A.5 The power of one-way SMs

Proof of Lemma 12.Consider the canonical complete language forE under log-lin reductions,
U := {M#w#k|w| |M(w) accepts within time2(k+1)|w|}. Let the tally setTU := {0|x| | x ∈ U}.
Fact 23.

1. If there existsL ∈ (E− PSPACE), thenU requires super-polynomial space.

2. TU ∈ P

3. If there existsL ∈ (E− PSPACE), thenTU requires super-polylogarithmic space.

Proof. SupposeU ∈ PSPACE and arbitraryL ∈ DTIME(2k′n), witnessed by a TMM , L(M) = L. An
obvious simulation (by considering the projection ofU when the machine isM andk = k′) shows that
L also requires polynomial space.TU is trivially in P since it is the unary representation of the strings in
U ∈ E. The last bullet follows by the first, and the fact thatTU is the unary representation ofU .

SinceTU is a polytime tally set, it can be decided by an one-way SM (Proposition 2.1 [All89]). Suppose
that there isL ∈ (E − PSPACE) and thatTU can be decided by a TM, with a logspace working tape (on
which we don’t count reversals), and a constant number of additional tapes on which we count reversals
(and no space bounds). Suppose that the total number of reversals is at mostlogk N , for an arbitrary

26

constantk ∈ Z
+. By [HS08] (Lemma 4.8),L ∈ DSPACE(r2(N) log N) = DSPACE(log2k+1 N), which

contradicts Fact 23 (3).

B PPdL[1] = P

Proof of Theorem 9.Let M be a vSM with one-way access to its external tape and letw be a string. We
assume, without loss of generality, thatM always halts with an empty stack, scanning the last symbol onthe
external tape. By definition of theP- (two-sided unbounded) error regime,M acceptsw iff the number of
random strings that takeM to an accepting configuration is greater than the number of random strings that
take it to a rejecting configuration. In what follows, we showthat there is a poly-time algorithm that, given
M andw, outputs the exact number of random strings that takeM to an accepting configuration. Clearly,
the existence of such an algorithm placesL(M) in P.

Without loss of generality (it costs an increase in the number of states by only a constant factor), we
assume that every transition ofM is of exactly one of the following types: apushtransition, apoptransition,
a (coin)tosstransition (in which the external tape head moves right), and amovetransition (in which any of
the input tape head and internal tape heads can move).

We define asurface configurationC of M on w to consist of (0) the state ofM , (1) the location of the
input head; (2) the full configuration of the work tapes (headpositions and tape contents); (3) the top stack
symbol; and (4) the location of the external tape head (denoted byh(C)) and the symbol it is scanning. We
define afull configurationC of M on w to consist of everything included in a surface configuration, plus
(5) the entire stack content.

Let C1, C2 be two full configurations ofM on w with h(C1) ≤ h(C2), and letρ be a string of size
h(C2)−h(C1) (whenh(C1) = h(C2), ρ is the empty string). We say that(C1, C2) is up-realizable alongρ
if, when we plug inρ on the external tape ofM between locationsh(C1) + 1 andh(C2), and we startM in
full configurationC1, M eventually reaches full configurationC2, and the stack level never drops below the
level inC1. We say that(C1, C2) is realizable alongρ if, additionally, the stack level is the same inC1 and
in C2. We say that a surface configurationC1 is reachable, if there is a full configurationC1 with surface
C1 and a stringρ such that(C0, C1) is up-realizable alongρ, whereC0 is the initial configuration ofM .

Informally, the heart of the proof in [Coo71], showing that anondeterministic SM can be simulated
in polynomial time, is that one can compute all realizable pairs of surface configurations, where a pair is
realizable (in their sense) if it is realizable (in our sense) alongsomestring (in that terminology, a sequence
of nondeterministic guesses). In here, to decide whetherM acceptsw, we compute exactly the number of
strings along which each pair is realizable.

More formally, letC1 be a full configuration such that its surfaceC1 is reachable and letC2 be a surface
configuration. We defineα(C1, C2) to be the number of stringsρ such that there exists a full configuration
C2 with surfaceC2 such that(C1, C2) is realizable alongρ. Crucially, observe that a computation path that
starts atC1 and along which the stack level never drops below that inC1 only depends on the surfaceC1 of
C1. Thus, for full configurationsC1, C1

′
with the same surfaceC1, and for all surface configurationsC2,

we haveα(C1, C2) = α(C1
′
, C2). We denote this quantity byα(C1, C2). 9 Below, we give an algorithm

computing all non-zero entriesα(C1, C2). Having done that, to decide whetherM acceptsw, we simply
sum the entriesα(C0, Ca), whereC0 is the surface of the initial configuration, andCa ranges over the
surfaces of accept configurations, and compare the resulting value with half times the maximum number of
random strings.

9Note, we only care about the entryα(C1, C2) whenC1 is reachable, we leave it undefined otherwise.

27

LetC be a surface configuration ofM . Note thatC completely determines the next transition ofM . If C
is followed by amoveor apushtransition, letnext(C) denote the next surface configuration ofM (observe
that, in this case,C completely determinesnext(C)). If C is followed by atosstransition, slightly over-
loading notation, letnext(C) denote the set consisting of the two possible surface configurations following
C, corresponding to the two possible outcomes of the coin toss(i.e., of the next symbol read on the external
tape). IfC is followed by apop transition, letnext(C, x) denote the surface configuration followingC in
which the top stack symbol is nowx. The following are easy consequences of our definitions.

Lemma 24. For all surface configurationsC1, C2 such thatC1 is reachable:

• If C1 = C2, thenα(C1, C2) = 1.

• If C1 is followed by amovetransition, thenα(C1, C2) = α(next(C1), C2).

• If C1 is followed by atosstransition, andnext(C1) = {C3, C4}, thenα(C1, C2) = α(C3, C2) +
α(C4, C2).

• If C1 is followed by apushtransition, denoting byx the top stack symbol inC1,

α(C1, C2) =
∑

C3:C3 is followed by a pop transition

α(next(C1), C3) · α(next(C3, x), C2).

To compute the entriesα(C1, C2), we first define a partial order relation on surface configurations, as
follows. Informally, C1 ≺ C ′

1 when some entry of the formα(C1, ·) directly depends on another entry
α(C ′

1, ·). Formally, we writeC1 ≺ C ′
1 if (i) C1 is followed by amovetransition andC ′

1 = next(C1); (ii) C1

is followed by atosstransition andC ′
1 ∈ next(C1); and (iii) C1 is followed by apushtransition and (iii-a)

C ′
1 = next(C1), or (iii-b) there exists a surface configurationC ′′

1 such thatα(next(C1), C
′′
1) > 0, C ′′

1 is
followed by apop transition, andC ′

1 = next(C ′′
1 , x), wherex is the top stack symbol inC1.

Lemma 25. The relation≺ contains no cycles.

Proof of Lemma 25.Assume a cycle exists. LetC1, . . . , Cm be a sequence of surface configurations such
that: C1 = Cm, and for every1 ≤ i < m, Ci ≺ Ci+1. Observe that wheneverCi ≺ Ci+1, we have
h(Ci) ≤ h(Ci+1). Hence,h(C1) = h(Cm) = h(Ci) for all i ∈ [m], and so none of theCi for i < m is
followed by atosstransition. Furthermore, ifCi is followed by apoptransition, we cannot haveCi ≺ Ci+1

because such configurations create no dependencies. Hence,every one of the configurations in the sequence
C1, . . . , Cm is followed by either amoveor apushtransition.

But then, there is a path from a full configurationC1 to a full configurationC1
′
with the same surface

C1 = Cm, with the stack level never dropping below that inC1. Since this path only depends on the surface
C1 of C1, and sinceC1

′
has the same surface, this path is infinite. We assumedC1 is reachable from the

initial configuration ofM , henceM does not halt along this path, a contradiction.

To fill in the values inα(·, ·), we proceed as follows.

1. for all surface configsC, seen[C]← false
2. find any surface configC1 such thatseen[C ′

1] for all C ′
1 with C1 ≺ C ′

1

3. for all surface configsC2

4. computeα(C1, C2) using the formulas in Lemma 24
5. endfor
6. seen[C1]← true
7. repeat step 2 as long there are unseen surface configurations

28

The test in step 2 can easily be implemented in the obvious waysuggested by the definition of≺. In the
“most complex” case (iii-b), one can simply try out all possibilities for C ′′

1 , since there are only polynomially
many of them. By Lemma 25, this algorithm does not get stuck atstep 2. As an invariant, when line 6 is
executed, all non-zero entries in the rowα(C1, ·) have been computed. Since there are polynomially many
surface configs, the algorithm runs in polynomial time.10

C Variants of the model and omitted structural results

C.1 RPdL[poly] = RPdLE[poly]

Lemma 26. RPdL[r(N)] ⊆ RPdLE[r(N)] ⊆ RPdL[O(r(N))], wherer(N) = NO(1).

Proof of Lemma 26.The first inclusion is trivial. The second is also easy. LetL ∈ RPdL[r(N)], and letM
be a SM such that for everyx 6∈ L, M(x) rejects with probability1 and for everyx ∈ L, M(x) accepts with
probability 1

2 . Moreover, the expected number of reversals on every inputx is r(N), |x| = N . Construct
M ′ which on inputx computes as follows.

1. SimulateM(x) for at most4r(N) reversals; count the reversals on the worktape.

2. If more than4r(N) reversals are needed then reject.

3. else do whatM(x) does.

Fix an inputx. If x 6∈ L thenM ′ outputs the correct answer with probability1.
Suppose thatx ∈ L and letR be the random variable that corresponds to the number of reversals.

By Markov’s inequality we have thatPr[R ≥ 4r(N)] ≤ 1/4, wherer(N) = E[R] by definition. First,
using Markov’s inequality we show thatPr[M(x) rejects|R ≤ 4r(N)] ≤ 2

3 . The details of the calculations
are given below. Then, by a different application of Markov’s inequality, together with the definition of
RPdLE[r(N)] we obtain thatPr[M ′(x) rejects] ≤ 2

3 + 1
4 = 11

12 . This probability is amplified to≤ 1
2 in the

standard way, by considering a constant times larger randomtape and use its bits for independent repetitions.
This also increases the number of reversals by a constant factor.

Here are the details of the calculations. First, we boundPr[M(x) rejects|R ≤ 4r(N)] from above.

Pr[M(x) rejects] = Pr[R ≤ 4r(N)] Pr[M(x) rejects|R ≤ 4r(N)]

+ Pr[R > 4r(N)] Pr[M(x) rejects|R > 4r(N)]

≥ (1− Pr[R > 4r(N)]) Pr[M(x) rejects|R ≤ 4r(N)]

≥ 3

4
Pr[M(x) rejects|R ≤ 4r(N)]

⇒ Pr[M(x) rejects|R ≤ 4r(N)] ≤ 2

3

Then,

10As a side note, observe that the algorithm might compute entries of the formα(C1, C2) for unreachableC1, because we cannot
test whetherC1 is reachable. These entries are useless (they are formally undefined), but also harmless, because well-defined entries
never depend on undefined ones.

29

Pr[M ′(x) rejects] = Pr[R ≤ 4r(N)] Pr[M ′(x) rejects|R ≤ 4r(N)]

+ Pr[R > 4r(N)] Pr[M ′(x) rejects|R > 4r(N)]

= Pr[R ≤ 4r(N)] Pr[M(x) rejects|R ≤ 4r(N)] + Pr[R > 4r(N)]

≤ Pr[M(x) rejects|R ≤ 4r(N)] + Pr[R > 4r(N)] ≤ 2

3
+

1

4
=

11

12

C.2 Non-deterministic variants

Proof of Theorem 3.NPdL[1] = P follows directly by the nontrivial Theorem 1 p.7 [Coo71]. BytheNP-
completeness of 3-SAT under many-to-one logspace reductions, it suffices to decide 3-SAT in NPdL[2],
sinceNPdL[2] is closed under logspace reductions.

We describe a non-deterministic SM for 3-SAT. Let φ be the 3-CNF formula given in the input, with
n variablesx1, . . . , xn and m clausesC1, . . . , Cm. Let τ be a truth assignment identified by the string
〈τ(x1), . . . , τ(xn)〉 and letτR denote the reversed string. Simultaneously, we: (i) check the truth assignment
is a satisfying one; and (ii) check that the external tape is of the form 〈τ, τR, . . . , τ, τR, τ, τR〉

︸ ︷︷ ︸

m times

. Associate

with the first clauseC1 the first copy of the truth assignmentτ , with C2 the second copyτR, and so on up
to Cm.

To check (i) we do not use the stack, just the logspace worktape to verify thatτ satisfiesC1, τR satisfies
C2 and so on. This verification can be done in one scan over the non-deterministic tape.

To check (ii) we use the stack and the worktape as follows. Suppose that the external memory contains
the stringsw1, . . . wn−1, wn. In the first scan the machine uses the stack to verify thatw1 = wR

2 , . . .,
wn−3 = wR

n−2, andwn−1 = wR
n . When the head reverses it uses the stack to verify thatwn−1 = wR

n−2

and so on. Intuitively, we first verify equality between mutually exclusive pairs and then we “link” them by
verifying equality among the pairs.

For Theorem 3 it is essential that the machine has a stack. In case of a regular log-space bounded TM the
situation is very different. Recall that a log-space TM witha polynomially-long read-only non-deterministic
tape characterizesNP. However, if we bound the number of reversals to be constant then we cannot go
outsideNL. We denote byL+[r(N)] the class of sets decidable by logspace machines with external non-
deterministic memory andr(N) scans.

Lemma 27. L+[r(N)] ⊆ NSPACE(r(N) log N)

Proof. We simulate a log-spacer(N)-scan NTMM with aO(r(N) log N) space one-scan NTMM ′.
Fix an arbitrary branch of the non-deterministic computation; i.e. fix a choice of non-deterministic

coins. We partition this branch of the computation according to the scan number. Associate each tape-scan
1, . . . , r(N) with a part of this branch of the non-deterministic computation. here is howM ′ works. We be-
gin by makingr(N)-many non-deterministic guesses for the configurations foreach part of the computation
when the head is over the first symbol of the non-deterministic tape. We keep an additional copy (which we
won’t modify during the simulation) for each of theser(N) configurations corresponding to head-position
over the first symbol. Storing each configuration takes spaceO(log N). M ′ continues simulatingM simul-
taneously (and step-by-step) for ther(N)-many parts of the computation. For the odd-numbered parts the

30

simulation moves forward in time, whereas for the even ones the simulation goes backwards in time (since
the head has opposite direction). If the guesses are valid atsome point ther(N) parts of the computation
are going to meet and form a valid branch of the non-deterministic computation.

Corollary 28. LetL+[constant] :=
⋃∞

k=1 L+[k]. Then,NL = L+[constant].

Since with polynomially many reversals we go all the way toNP it is natural to ask what is the first
time we captureP. Is it possible to captureP before we capture the wholeNP? For instance, is it pos-
sible thatP ⊆ L+[Nk], for some constantk > 0? This is not true, unlessP ⊆ NSPACE(Nk log N) ⊆
DSPACE(Nk′

), for some constantk′.

D Omitted proofs from Section 3

Proof of Theorem 4.P+RNCi ⊆ RPdL[2O(logi N)] is the easy inclusion. LetL ∈ P+RNCi andM be the
polytime transducer that on inputx computesCx. Construct a vSMM ′ as follows: use Cook’s algorithm
[Coo71] to simulateM so as to obtain thek-th output bit from the description ofCx. Note that each bit is
computed without accessing the random tape.M ′ evaluatesCx on the provided randomness in the usual way
(e.g. [Ruz81]) by a depth first search. Note that if the description of the circuit were given through oracle
access, the evaluation procedure would have taken time2O(logi N). Hence,M ′ makes at most2O(logi N)

reversals on the random tape and the accepting probability is the same as that ofCx.
To showRPdL[2O(logi N)] ⊆ P+RNCi+1 we rely on the time-compression Lemma 7 and on [Ruz80,

Ruz81]. In the version of the time-compression lemma for uniform machines, the advice can be computed
in polynomial time. FixL ∈ RPdL[2O(logi N)], and letM ′ be a vSM such thatL(M ′) = L. We construct a
polytimeM that on inputx outputs a circuitCx with the same accepting probability asM ′.

There existsM ′′ extendingM ′ as follows: (1)M ′′ has an extra input (read-only) tape which will contain
the particular advice described in the proof of Lemma 7. (2) Furthermore,M ′′ is a modification ofM ′ as
described in the proof of Lemma 7. Therefore, on inputx given that the extra-tape contains this advice,M ′′

computes identically toM ′. Syntactically,M ′′ is a SM with three read-only input tapes. When the 3rd tape
contains the appropriate advice,M ′′ is a SM that works in spaceO(log N) and in time2O(logi N)NO(1) =

2O(logi N), i ≥ 1. We assert the existence of an equivalent ATMMATM that works in spaceO(log N) and
in time O(logi+1 N). This is being done by observing that the corresponding equivalences carry through
when the only difference is that both the SM and the ATM instead of one they have three input tapes. It is
straightforward to verify that all equivalences between SMs and ATMs in the constructions of Theorem 5
part 3 [Ruz81] p.379 (i.e. Theorem 2 [Ruz80] pp. 227-231), and Corollary 3 (c,d,e) [Ruz81] pp. 379-380
are the same when the number of input tapes is a constant bigger than one. Hence, syntactically given the
3-input tape SMM ′′ we have an ATMMATM with 3-input tapes that computes identically. The constant
description ofMATM it can be hardwired in a (polytime) TMM . AlthoughMATM andM ′′ accept the same
inputs, we are only interested in the computations where their 3rd tape contains the advice of Lemma 7;
in which caseM ′′ computes the same asM ′. Intuitively, one can blur the distinction between space-time
bounded ATMs and size-depth families of combinatorial circuits, and moreover we observe that given the
description of the ATM we can construct efficiently the circuit for the corresponding input length. That
is, the description of the polytimeM should be evident through the observation that the construction in
the proof of Theorem 3 [Ruz81] p.375 is computable in time2O(S(N))O(T (N))NO(1) = NO(1), where
S(N) = O(log N) andT (N) = O(logi+1 N) is the space and the time ofMATM. For completeness we
briefly review this construction below.

31

1. On inputx use (the modified) Cook’s algorithm to compute the advice of Lemma 7, which is a function
of N = |x|.

2. M has hardwired the description of the ATMMATM and it computes the description of a circuitCx.
In this circuit, both the inputx and the advice are hardwired using the constant 0/1 gates of the circuit.

3. The circuit gates are labelled with(α, t), whereα is the configuration of the ATM, andt is the time
where the output gates has label(αinitial, 0), whereαinitial is the starting configuration. Configurations
of type ∀,∃ correspond to gates∧,∨, we connect gates(α, t), (β, t + 1) if α yields β. The only
exceptions to this rule is when the time and the space becomesbigger thanT (N), S(N) in which
case we hardwire the gates to0, and when we have configurations accessing the input in whichcase
instead of a gate we have an input gate.

Step (1) takes polynomial time. The construction of the circuit in Step 3, also takes polynomial time
(2O(S(N))O(T (N))NO(1)).

Proof of Theorem 6.This is a straightforward argument, standard in derandomization. We show the stronger
containmentRPdL[2O(logi N)] ⊆ BPPdL[2O(logi N)] ⊆ DTIME(2O(logk N)). It directly follows that Theo-
rem 4 holds also if we considerBPdL andP+BPNC, instead ofRPdL andP+RNC.

Let L ∈ BPPdL[2O(logi N)]. Then, there exists polytime transducerM that on inputx outputs a circuit
Cx of depthO(logi+1 N), such that ifx ∈ L then Prρ[Cx(ρ) = 1] ≥ 2/3, whereas ifx 6∈ L then
Prρ[Cx(ρ) = 1] ≤ 1/3, and the input to the circuit is of lengthNm, for a constantm > 0. We construct a

deterministic TMM̂ that runs in timeO(2logk N). Here is the description of̂M : (1) Enumerate all strings
of lengthO(mk logk N). (2) For each such string use the PRG to compute a stringρ of lengthNm. (3) Fix
the random tape ofM to beρ and simulateM in polytime. (4) Output the majority of the outcome of the
simulation.

M̂ takes time2O(logk N) to enumerate all strings, for each such string it takes polynomial time to compute
ρ and then polynomial time to simulateM on (x, ρ).

We claim that for infinitely manyxi’s:

(*) for input xi, at least a fraction23 − 1
7 = 11

21 > 1
2 of the pseudorandom strings,M gives the

correct answer, for sufficiently large input lengthN .

Note that the error probability in the definition ofP+BPPdL can be amplified to any constant arbitrarily
close to1/2, and thus (*) suffices to conclude the theorem.

Suppose (*) is not true. Then, we are going to useM to construct a (non-uniform) family of distinguish-
ersDN , for infinitely manyN ’s (whereN takes values among the output length of the PRG). Let{xi} be
an infinite family of inputs where (*) is false. Then, by definition Cxi is an appropriate distinguisher with
distinguishing probability strictly greater than23 − 11

21 = 1
7 .

Proof of Lemma 7.It suffices to show that the computation between two successive head-moves can be
“compressed” to be polynomially long by the use of the non-uniform advice on the tape. This non-uniform
advice extends the non-uniform advice already given to the machine. Fix two arbitrary successive head-
moves. Partition the computationγ between these head-moves in two phases. Suppose that immediately
after reading the input symbol the stack level is atl. In phase 1,γ reaches its lowest stack heightlmin.
Let γ1 be the computation subsequence ofγ from the beginning until we reach the lowest stack level and
just before we start going upwards (pushing symbols to the stack). Defineγ2 to be the complement ofγ1

wrt γ. Hence, inγ2 the computation reaches its final stack heightllast. A simple counting argument shows

32

that for a halting SM, the stack height is polynomial, and therefore the stack height inγ1 gets decreased
polynomially low (from l to lmin) and in γ2 gets increased polynomially high (fromlmin to llast). We
constructM ′ simulatingM using the following non-uniform advice. The advice is a function from every
surface configuration to the set of surface configuration together with two special symbols{↑, ↓}. For every
surface configurationσ define exactly one of the three pairs:

1. If starting fromσ we can return to the same stack level without ever going belowthe initial stack-
level (and without a head-move on the input) then consider the configuration after a maximally-long
computation such that whenM returns to the same stack-level the surface configuration isσ′. Then,
the associated pair is(σ, σ′).

2. If starting fromσ we move at least one level upwards without ever returning to the initial stack-level
(and without moving the head) then the pair is(σ, ↑).

3. Else, the pair is(σ, ↓).

Obviously, this is a well-defined function and we say that a surface configurationσ is of type (1), (2) or
(3) respectively.

Between two successive head-movesM ′ simulatesM by reading the advice tape and updating its surface
configuration appropriately. In case of (1) it updates the worktape, the state and the top stack symbol. In
case of (2) and (3) it simulatesM for one step.

We refer to asimulation stepas the computation sequence ofM ′ in which M ′ reads the non-uniform
tape, compares it to the current surface configuration and updates the surface configuration appropriately.
In what follows the reader is reminded thatγ1, γ2 is the computation ofM which is simulated by the
machineM ′, and thatM ′ is given the non-uniform advice. We say that a function from the integers is
2-monotonically increasing (decreasing) if it is strictly increasing (decreasing) for two successive integers;
i.e. for the functionh : Z

+ → Z
+, h(n) ≤ h(n + 1) andh(n) < h(n + 2).

Claim 29. In the simulation ofγ1 the stack height inM ′ is 2-monotonically decreasing. Hence, this simu-
lation takes at most2(l − lmin) simulation steps ofM ′.

Proof. Consider two successive stack levelsl1 > l2 := l1 − 1 in γ1 and consider the first timeM ′ gets to
l1. The current surface configurationσ1 cannot be of type (2). Suppose thatσ1 is of type (2). Since we are
in γ1 we know that the stack level gets as low aslmin. If σ1 is of type (2) then we know that duringγ1 the
stack level will get back tol1. Hence,σ1 should instead be of type (1).

Hence,σ1 is either of type (1) or of type (3). If it is of type (3) there isnothing left to show. Supposeσ1

is of type (1). The fact that the next surface configuration inthe simulation cannot be of the same type (1)
follows by the maximality in the definition of type (1).

Similarly, we show that in the simulation ofγ2 the stack height inM ′ is 2-monotonically increasing.

Proof of Lemma 8.In this proof all circuit classes are uniform. Suppose that the non-uniform advice can be
computed inNC = SAC; i.e. letM̂ be an SM that computes the advice string (i.e. thei-th bit of the output)
in the proof of Lemma 7 inNC. We show that every polytime computable tally languageL ⊆ {0}∗ can be
computed inNC. By [All89] (Corollary 6.3 and Corollary 6.7) this implies thatPSPACE = EXP.

Since,L(M̂) ∈ NC, by Theorem 1 we know thatM works in timeO(2logO(1) N).
Fix arbitraryL ⊆ {0}∗, L ∈ P. Let M be a SM, such thatL(M) = L.

We construct a SMM ′′, which works in timeO(2logO(1) N), such thatL(M ′′) = L; i.e. L ∈ NC.

33

Here is the description ofM ′′. In a single tape-scan over0N computeN and store it on the work-tape.
Note thatM ′′ can simulateM on the given input, without moving its input head (also see Proposition 2.1
[All89]). Since the advice in the proof of Lemma 7 can be computed byM̂ following this proof we can
construct a uniformM ′ that decidesL and it makes polynomial many calls to an oracle computing theadvice
bit given its index. By assumption each oracle call can be computed by simulatingM̂ in timeO(2logO(1) N).

Therefore,M ′′ works in timeO(NO(1)2logO(1) N) = O(2logO(1) N).

34

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

