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Abstract

We define a hierarchy of complexity classes that lie betvieandRP, yielding a new way of quan-
tifying partial progress towards the derandomizatioR&f A standard approach in derandomization is
to reduce the number of random bits an algorithm uses. Wedddbcus on a model of computation
that allows us to quantify the extent to which random bitshbaieg used. More specifically, we consider
Stack Machine§SMs), which are log-space Turing Machines that have adceas unbounded stack,
an input tape of lengthV, and a random tape of lengfi®(!). We parameterize these machines by al-
lowing at most-(V) — 1 reversals on the random tape, thus obtaining-{té)-th level of our hierarchy,
denoted byRPdL[r]. It follows by a result of Cook [Coo71] th&®PdL[1] = P, and of Ruzzo [Ruz81]
thatRPdL[exp(N)] = RP. Our main results are the following.

e For everyi > 1, derandomizindRPdL[2°0°s" M)] implies the derandomization &NC’. Thus,
progress towards thié vs RP question along our hierarchy implies also progress towdedan-
domizingRNC. Perhaps more surprisingly, we also prove a partial corvétseurorandom gen-
erators (PRGs) foRNC'** are sufficient to derandomiRPdL[200os" M)]: j.e. derandomizing
using PRGs a class believed to be strictly indideve derandomize a class containifg
More generally, we introducRandomness Compilera model equivalent to Stack Machines. In
this model a polynomial time algorithm gets an inpuand it outputs a circui€’;,, which takes
random inputs. Acceptance ofis determined by the acceptance probabilityCet WhenC, is
of polynomial size and depif(log’ N) the corresponding class is denoted®yRNC’, and we
show thaRPdL[200es" M] C P+RNC’ C RPdL[20eg"™" M7,

e We show an unconditionaV**(!) lower bound on the number of reversals required by a SM for
Polynomial Evaluation. This in particular implies that kmoSchwartz-Zippel-like algorithms for
Polynomial Identity Testing cannot be implemented in thvedst levels of our hierarchy.

e We show that in the 1-st level of our hierarchy, machines witb-sided error are as powerful as
machines with two-sided and unbounded error.

Keywords: probabilistic polynomial time, complexity hierarchy, dadomization, polynomial identity test-
ing, communication complexity

*An earlier version of this paper has the title “A HierarchyveeenP andRP”.
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1 Introduction

Randomness is central to computer science and its intemsaeith engineering, and natural sciences. Some
of the most intriguing and long-standing open questionshaotetical computer science regard the gap
between polynomial time and its probabilistic analogs.(BB, BPP). It is conjectured (e.g. [IW97, KI03,
NW88]) that this gap is small or even that randomness is irrggmot necessary. A standard measure of
how far a probabilistic algorithm is from a deterministiceois thenumber of random biti uses. As such,
the quest for derandomization concentrates on reducirggnilnmber, for example, using pseudorandom
generators.

In this paper, we propose an orthogonal perspective to randss. Informally, we say that a machine
“makes essential use of randomness” if it revisits the saméam bit “many times” during its computation.
More precisely, we consider a natural model of computatimsracterizing polynomial time, in which it is
meaningful to count thaumber of head reversals on the random tape

Consider for example a randomized procedure which perfamandom walk in a graph. After each
transition the algorithm may “forget” the random bits usedas. Contrast this with a randomized procedure
where random bits used at one step of the computation asateslin future steps. Our definition of essential
use of randomness allows us to distinguish between thessdsrrios.

A characterization of essential use of randomness.Consider a polynomial time TM/Z which receives
its input on a regular (read-write) work tape and its randdisidn a separate read-only tape. As explained
before, we would like to say thadi/ makes essential use of randomness if it accesses the sadoenrait
many times. There seems to be no clean way to capture thisnniotian arbitrary polynomial time TM.
Counting head reversals over the random tape is not iniregesince M/ can simply copy all the random
bits on its work tape. This simple trick does not work of ceufsr machines with small space. However,
since we are interested in arbitrary polynomial-time cotapion, we need a characterization®fn terms
of space-bounded machines. To that end, we consider a tér@zaton due to Cook [Coo71], which shows
that a logarithmic-space TM equipped with an unboundedkstaenceforth called &tack MachingSM),
exactly characterizeB.

The above simple observation naturally gives rise to a hibyaof classes betwedn and RP. For
r(N) > 1, we denote byRPdL[r] (which stands for Randomized Pushdown Log-space) the ofdss-
guages that can be decided by a SM with an input tape of leNgéind a random tape of lengtfi®(),
which is allowed at most(N) — 1 reversals over the random tape, and has bounded one-sided ker
follows by a result of Cook [Coo71] th&PdL[1] = P, and thatRPdL[exp(N)] = RP. We similarly
define the classesPdL][r], coNPdL|[r]|, coRPdL[r], BPPdL[r], andPPdL|[r]. We have arbitrarily chosen
to make our expositioRP-centric. Everything can be restated in terms of other gdritiséic polynomial
time classes such &PP.

The stack is indispensable for the study of probabilipptynomial timeclasses, in the following sense.
Logspace TMs without a stack characterizEySPACE C NC2. By adding a polynomially long (two-way
access) random tape to logspace machines we define [Nis98tbeR *LogSPACE C RNC?.

1.1 Ourresults

How easy is it to collapse the first levels? Given the definition of our hierarchy betweéhand RP,
several questions arise.Rf= RP, thenRPdL[1] = RPdL[exp(/V)]. An immediate question is then

How easy is it to prov®&®PdL[1] = RPdL[r], for somer(N)?



We give strong evidence that collapsing the first levels eftiferarchy is a non-trivial task, and requires
progress towards existing major open questions. In paaticior anyi > 1, derandomizingRPdL[20 (e’ N)]
implies derandomizingRNC'. In other words, progress towards thevs RP question along our hierarchy
implies also progress towards the derandomizatioRNEC. Perhaps more surprisingly, we also prove a
partial converse: pseurorandom generatordC ! are sufficient to derandomiRPdL[QO(logl N )]. In
other words, modulo the derandomization technique (useR@4), derandomizing classes believed to lie
far insideP, we derandomize the levels of our hierarchy (even the fivet leontaingP).

This follows by an alternative definition of restricted useamdomness, which we show to be equivalent
to the one that uses Stack Machines. We congtdgrdomness Compilets be polynomial time algorithms,
which on every input they construct a shallow circuit, whiohturn it is evaluated at a random input.
More precisely, leP+RNC’ denote the class of languagBglecidable in the following sense: a polytime
transducer, on input it computes a probabilistic circui’, of constant fan-in, polynomial size and depth
O(log" N). If z € L, thenPr,[C,(p) = 1] > 1, whereas ifr ¢ L thenPr,[C,(p) = 1] = 0. We show
that P+RNC’ C RPdL[200os' V)] € P+RNC'™! (Section 3). Contrary to a possible interpretation of the
notationP+RNC?, we stress-out that the computed circuit is much stronger &P-uniform RNC circuit,
since in general it depends on the given input.

How easy is it to collapse the last levels? Another immediate question is of course
How easy is to prov®PdL[r] = RPdL[exp(N)], for somer(N)?

We also provide evidence that this is also a challenginglpmlgiven the current state of the art in deran-
domization. If such a smatl( V) exists, then one should at least be able to show that certalatgms in e.g.
coRP can be decided in the low-levels of theRPdL[-] hierarchy. In particular, we consider the problem
of Polynomial Identity Testing(PIT), a prototypical problem inoRP. We observe that almost all currently
known Schwartz-Zippel-like algorithms for PIT evaluate@ymomial at a random point. We prove (Sec-
tion 5) an unconditionalV?") lower bound on the number of reversals required by a SM foyriewhial
Evaluation PE). This in particular implies that implementing PITRPdL[N°()] is a non-trivial task.

Understanding the model. We study some natural variants of our model. In particula,slow that in
the 1-st level, a SM that is allowed unbounded (two-sidet)ras as powerful as a SM with bounded and
one-sided error. In other wordBPdL[1] = RPdL[1] = P, which in particular derandomizeé3PPdL[1]
(Section 4).

Finally, we consider the case of hon-deterministic tapesundfferent settings. A detailed exposition is
given in Appendix C.2. Among others, we show that the cowadmg hierarchy (namelpPdL[-]) turns
out to be trivial:NPdL[1] = P, while NPdL[2] = NP.

1.2 Related Work

Stack Machines. [Co071] characterizes poly-time computation in terms @icgtMachines (AuxPDAS):
log-space bounded TMs equipped with an unbounded stackurgtee log-space computation is a natural

In the PIT problem, the input is an arithmetic circuit delsiery a polynomialP € Flz1, . .., z..], whereF is a field, and the
question is whetheP always evaluates tooverF™ (we are interested in polynomials of degree bigger thantheacteristic of the
field). Note that in fields of characteristic zero this prableoincides to deciding whether the given arithmetic circorresponds
to the identically zero polynomial.



concept. Moreover, SMs exhibit quite interesting equiveds to other models of computation. Our work re-
lies on the connections between deterministic (and noerahéistic) logspace and time-bounded SMs, and
that of SAC (andNC) circuits with various forms of uniformity [All89, BCD89, Ruz80, Ruz81, Ven91].
When simultaneously to the space we also bound the times iharconstructive and direct correspondence
(which intermediately goes through ATMs) between SMs amdlmoatorial circuits. This enable us to blur
the distinction between space-time bounded SMs and failieircuits. In a study oNC in presence of
strong uniformity P-uniformity) [AlI89] studies SMs with restricted input-ad moves. This is related to
the concept of head-reversals on the random tape considecen paper. For example, the discussion in
[AlIB9] (p.919) about the fact that the natural restrictmmthe head-moves of a SM translates to something
more subtle in case of ATMs, is related to our definition ofeesisl use of randomness using SMs with
restricted number of reversals on the random tape.

Derandomization. There is a long line of research in derandomization. Subdestries range from
straightforward algorithms e.g. fdlaxSAT (e.g. [ABO08]) to quite sophisticated ones such as the AKS
primality test [AKS04]. There is a plethora of works that aimmderandomize probabilistic polynomial
time using certain types of pseudorandom generators. Theritgeof them relate the problem of deran-
domization to the problem of proving lower bounds for therage-case complexity of one-way functions
[Yao82], or to arbitrary hard functions (cf. [NW88, IW97, 899, Uma03]). The general theme of this
research direction comes under the title “randomnessaeardtradeoffs”. These works are in line with our
intuition about the circuit complexity of certain problemsE, EXP or NEXP. They provide evidence that
derandomization of classes suchBRP might be possible, and simultaneously they give evidenceitab
the conceptual difficulty of achieving such a goal.

Polynomial Identity Testing. Kabanets and Impagliazzo [KI03] show that even the task &rmd#omizing

a particular problem ikoRP, namely PIT, is essentially the same as proving superpaljgldower bounds

on the arithmetic circuit complexity ¢ddEXP. Hence, derandomizing PIT is a challenging task. Our result
give evidence for the limitations of Schwartz-Zippel-lieggorithms (e.g. [Zip79, Sch80]) for derandom-
izing PIT. There are also algorithms [CK97, LV98] that usede bits than the standard Schwartz-Zippel
algorithm. Despite the fact that the number of random bigsnaller, it is still the case that these algorithms
evaluate the input polynomial at a chosen point. Therefor@ur framework, their use of randomness is as
essential as in the standard test. Yet other algorithms AB8KPMO06, KS01] avoid evaluating the input
polynomial directly at a chosen point. Although our loweuhd does not apply in this setting, implement-
ing these algorithms in the lower levels of our hierarchyegwp to be a difficult task.

1.3 Our Techniques

The technically more involved argument is an unconditiai&(") lower bound on the number of reversals
a SM makes for polynomial evaluation - even when the polymbisinon-uniformly given to the machine.
The lower bound follows by a direct-sum type of argumentngsi NIH communication complexity reduc-
tion to inner product (over any field). This argument usesesaieas from [BHNO8], but it is essentially
different (see Section 5.2 for a comparison).

The relations betweeR+RNC andRPdL[NPoY'°eN] puilds upon the work of [AlI89, BCH89, Ruz80,
Ruz81]. The main tool is the time-compression lemma (Lemjnegether with theorems from the related
work.



The derandomization d?PdL[1] (a two-sided error class) relies on extending the Dynamigfam-
ming algorithm in [Coo71], so as to count the number of adngpkeaves in the computation tree of a
non-deterministic SM. Starting from the observation thethie computation tree of deptlkp (V') on every
path there are at most polynomially many branches, we chemuamber of accepting paths.

We also provide some other structural results. These semlige from the simple argument showing
NPdL[2] = NP, to arguments that put together structural implicationgding on the work of [AlI89,
BCD"89, HS08, Ruz80, Ruz81].

1.4 Organization

We use Stack Machines to define randomized hierarchies bafvendRP in Section 2. Some preliminary
results are given in the same section. In Section 3 we stuglyetation between Stack Machines and
Randomness Compilers, and we show tR&dL[NP°Y'°eN] — P+RNC. This also suggests that PRGs
used for derandomization alorRNC imply the derandomization alongPdL[NP°Yl°eN] |n Section 4
we show that for every SM// that makes one scan over its randomness and has two-sidealnded
error, there is a polynomial-time algorithm deciding thenedanguage ag/. In Section 5 we give the
unconditional lower bound for Polynomial EvaluatiddH) which implies the lower bound for the family
of Schwartz-Zippel-like algorithms. We conclude in Secté®by outlining a few among the future research
directions.

2 Definitions & Preliminaries: Stack Machines and Randomnes Compilers

Notation and conventions. We use standard names for complexity classesR.§P, BPP, NC, NEXP,
DSPACE(f(n)) (see e.g. [AB08]). We denote by the number of input bits. Lé := U..oDTIME(2¢V),
andEXP := U DTIME(2Y"), QuasiP := U DTIME(2°¢'N). We simplify notation by omitting
floors and ceilings for integer values. The auxiliary, exééread-only tape of SMs is of length polynomial
in N. The working memory size i©(log N) unless mentioned otherwise. If the head on the external tape
reverses- — 1 times then we say that thumber of scangs r. Let[n] := {1,...,n}. Leta € {0,1}",
we denote byy; thei-th coordinate ofx. Occasionally, we identify a string € {0,1}" by its support
supp(a) = {i : «; = 1}. LetS,, be the set of permutations over]. F is used to denote a field argl
denotes the addition .. p € {0,1}* denotes a random (or pseudorandom) string. Z* usually denotes
an infinite subset oZ*. For a positive integer, SAC' C AC' is the semi-unbounded restriction AC’;
i.e. only theOR gates have bounded fan-in, and the negations are to theleyaht A family {C,, }ner Of
circuits is anNC’ (SACY) circuit-family of polysize (semi-unbounded) and depttiog’ N) circuits defined
for input-lengths in/. U,, denotes the uniform distribution ovée, 1}™.

Stack Machines. We consider three types of Stack Machines. A SM (AuxPDA)s a logspace Turing
Machine augmented with an unbounded stack. We may also Wwtitg-SM to denote that the machine
makes at most(V) reversals on its input and it has worktapes of sizéll SMs have logarithmic space-
bound, unless mentioned otherwise. For a detailed defindfaa SM (AuxPDA) and its computation see
[Coo71]. We assume that the SMs always halt with an emptkstarthermore, in each transition exactly
one of the following happens:either a head-move, or a puitetstack or a pop from the stack. Occasionally
we allow the SM to do coin flipping, in which case we wrindomized SMCentral to our study are
Verifier Stack Machines (vSMs)Yhese are polytime verifiers with access to a random tape;a.vSM

is a SM extended with a polynomially long (read-only) randtape. Finally, we considemon-uniform



Stack Machines (nu-SMehich are SMs extended with a polynomially long tape commtgira non-uniform
advice. Non-uniform Stack Machines appear for differeasoms in Section 3 and Section 5. We make use
of the following theorem which is a corollary of [BC89, Ruz80, Ruz81].

Theorem 1. LetC be the class of languages decided by (deterministic) SMsathek in time20(og’ V)
Then,NC’ C ¢ C SAC' C NC*!, where the circuit classes are (logspace) uniform. The sealaéion
holds for non-uniform SMs andC, SAC circuits.

Verifier Stack Machines compute arbitrary polytime pretis@Coo71. Also, every probabilistic poly-
time TM computes a deterministic predicaéz, p), p €r {0, 1}Nk wherep is the random bits. Hence, it
is straightforward to modify the proofs in [Coo71] and toahtthe following fact.

Fact 2. A verifier Stack Machine with the standard definition of erabraracterizes the corresponding
probabilistic polynomial time class such B®, coRP, BPP, PP. Furthermore, if the external tape contains
non-deterministic bits (equivalently: false-negativahwnbounded error) then we characterixe.

Randomized and non-deterministic hierarchies. We consider false-negatives/false-positives/two-sided
bounded/unbounded error regimes, corresponding in thel way to the prefixe-, coN-, R-, coR-, P-
andBP-. Furthermore, we consider bounding the number of revergal') a vSM is allowed on its external
tape. AccordinglyzPdL[r] is the class of languages accepted by vSMs that are alloweadsit- — 1 head
reversals on the external tape, operating in error regim&hus, e.g.RPdL[1] is the class of languages
accepted by vSMs with one-way (no reversals) access to teenak tape and one-sided error. We use the
term non-deterministic hierarchyo refer to the collection of levels MiPdL[-]. Similarly, when the error
condition is clear from the context we use the teemdomized hierarchy

It is easy to check that the following classes are closed mulndgspace (or weaker) transformations:
RPdL[c], ¢ € Z*, RPdL[constant] := |J;Z; RPdL[k], RPAL[O(log N)] := (J,.,RPdL[clog N], and
RPdL[poly] := | J.., RPAL[N®].
P+RNC’: polytime Randomness Compilers. P+RNC' denotes the class of languagesiecidable as
follows: there exists a polynomial time T/ which on every input:, M computes a probabilistic circuit
C, of constant fan-in, polynomial size and deiflog’ N). If 2 € L, thenPr,[C,(p) = 1] > 3, whereas
if « ¢ L thenPr,[C,(p) = 1] = 0. We refer to this model of computation B+RNC mode| and to the
polytime transducel asRandomness Compiler

Variants of our model. In the parameterization on the number of reversals overahdam tape, the “re-
versals resource” is a worst-case resource; similar togtbsurce of running time in the definition BP. In
Section 3 we show that vSMs have the same power aB-HRNC model. The model of vSMs allows more
flexibility in defining natural variants of the model, whesdgis not obvious how to do something similar
for the P+RNC model. For example, for randomized computation one may weadefineRPdL"[r(N)]
as the class of problems decided by vSMs where the expecratberuof scans over the randomness is
7(N). In Appendix C.1 we show th&PdL [poly] = RPdLE[poly]; thus, simplifying the task of giving SM
algorithms to show containment RPdL[poly].

Another variant of the vSM model is when the auxiliary tapatams non-deterministic bits. In this
case the situation becomes technically simple, and we shatvone reversal (two scans) is sufficient to
characterize\P.



Theorem 3. The non-deterministic hierarchy collapses to leelMore specificallyNPdL[2] = NP and
alsoNPdL[1] = P.

Among others, this theorem indicates that the randomized sanon-trivial even for the second level
RPdL[2]. Discussion and further results about variants of our madebiven in Appendix C.2.

3 RPdL[NP¥°eN] and P+RNC

We have introduced two models to define restricted use oforanéss. The first model (characterization
of RPdL) is a transition system on which we make explicit the conadpgssential use of randomness,
by counting random bits accesses. In the second model (thdération ofP+RNC) we compile all the
needed randomness in a shallow circuit. It turns out thatvilbenodels are equivalent. Intuitively, this says
that the syntactically defined model of verifier Stack Maekitis able to express computations which are
simultaneously (i) arbitrary deterministic polytime arigl\{hen it comes to randomness much weaker than
polytime.

Theorem 4. Leti € Z+. Then,P+RNC’ C RPdL[20Uoe" ¥)] € P+RNCH!.

The proofs of the statements of this section appear in Agrdnd _

An immediate consequence of Theorem 4 is BhaRNC’ C RPdL[20(°g" V)], Thus, derandomization
along theRPdL[:] implies derandomization alorl@NC (evenP-uniform RNC). More importantly, using
PRGs to derandomizBRNC (which is believed to be deeply insid® implies derandomization of classes
that containP. That is, such a derandomization RNC implies progress in a concrete sense towards the
derandomization oRP. As mentioned, everything stated fRIP and RNC holds for other probabilistic
classes, e.BPP andBPNC.

The derandomization of the quasi-polynomial levelSR$fdL[-] using weak PRGs (Theorem 6 - see
below) is a corollary of Theorem 4.

e-biased pseudorandom generators (PRGs).Our PRGs definitions aim to a more qualitative view than
the usual. Several parameters have been fixed to reducerckdr example, we focus on PRGs that stretch
polylogarithmic bits to polynomial. These parameters camdhjusted in the standard way to generalize our
results. All distinguishers are non-uniform circuits.

Definition 5. Let0 < e < 1,k > 1. LetG : {0,1}* — {0, 1}* be a function, such thak(z) is computable
in time 200=1""*) . We say thats is an(NC’, k, ¢)-pseudorandom generatdfrfor every non-uniformNC’
circuit-family C and for sufficiently largéz| := n, z € {0, 1}*, where|G(z)| = 211" .= m

‘PrZGR{O,l}"L [Cm(G(Z)) = 1] - PrpEUm [Cm(p) = 1] ‘ S €
whereC,,, € C hasm input bits.
Theorem 6. Letk, i > 1. Ifthere exists NC™*!, k, 1)-PRG, therRPdL[20(0°s' )] C DTIME(20(1es" V),

Hence, if there exists & for all i’s then RPAL[NPo¥°eN] C DTIME(200e" M) whereas ifk is a
function ofi thenRPdL[NPoVl°eN] C QuasiP. We remark that a slightly different argument proves that
the PRG is sufficient to be secure agai®8C’ circuits, instead oNC***,

The proof of Theorem 4 relies on Lemma 7, which we show follmpjAll89]. The proof is based
on the fact that the computation between two successive imeaes on the input can be compressed to
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be polynomially-long, given some small (polysize) advichisln depends on the input length. At first,
the feasibility of this “compression” may be seen as codmiielitive since the computation between two
successive head-moves depends on the content of the staick,iwturn it depends on the given input (not
only its length).

Lemma 7 (Time-compression lemma) et M be a deterministic nu-SM which makgsV) reversals over
its input. Then, there exists a deterministic nu-8Mwhich makes:(/N) reversals over its input, it works
intime O (r(N)N°(M), and it decides the same language/ds

In practice, the non-uniformity in Theorem 6 seems to be @efit, since most constructions of PRGs
are against non-uniform distinguishers. A minor modifimatin Cook’s construction [Coo71] shows that
given the advice fotM (or if M is uniform), then the non-uniform advice in the proof of Lemifhcan be
replaced with a polytime computable advice. It turns out time cannot do better than this.

Lemma 8. Given the advice foi/, then the non-uniform advice in the proof of Lemma 7 cannatdoe-
puted in logspace uniforiNC, unlessPSPACE = EXP.

4 PPdL[1]=P

It can be shown along the lines of the proof of Theorem 3, BatL[2] = PP. In this section we
derandomize the first level of the randomized hierarchy withtsided and unbounded error.

Theorem 9. PPdL[1] C P.

An immediate corollary i8PPdL[1] = PPdL[1] = P. The description of the algorithm and its proof
of correctness are given in Appendix B.

Outline of the algorithm - comparison with [Coo71]. We look at the computation of a vSW on an
input z as a tree of depthxp(/NV) of configurations, where every branching node correspondsssing

a coin. In thenondeterministic (false-negatives unboundedpr regime considered in [Cook71], to de-
cide whetherM acceptsr, one has to determine whether there is a path from the indi#the accepting
configuration.

We define asurface configuratior’ of M onw to consist of (0) the state dff, (1) the location of the
input head; (2) the full configuration of the work tapes (hpaditions and tape contents); (3) the top stack
symbol; and (4) the location of the external tape head (éehbyh(C)) and the symbol it is scanning.

Cook defines the notion of "realizable pair of surface coméigans” to be a paifCy, Cs) such that
there exists a computation path that takégrom C; to C5, with the stack level being the same in both, and
never going below that level between thémThe key in Cook’s proof is showing how existing realizable
pairs can be combined to yield new ones, until, eventuallyealizable pairs are found. The number of
distinct surface configurations is polynomial and thus thikes polytime. At the end, to decide whether
M acceptsr, we check if the surface of the initial configuration and thithe accepting configuration are
realizable.

In the two-sided unboundedrror regime considered in here, one way to decid&/ifacceptsr is to
compute the total probability of all strings that takefrom the initial configuration to the accepting one. We
simplify things by including the external head positionfull(and surface) configurations, so that all strings

2More precisely, this a path that tak&s from some (fuII)EnfigurationTl with surfaceC’ to some (full) configuratiol©z with
surfaceC>. This path cannot depend on the stack conten€s;ifexcept for the top stack symbol) because they are not aatess
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that takeM from one (surface) configuration to another have the sangtheihen, we only have toount
the number of strings leading to the accepting configuraidot unexpectedly, we are only able to perform
this counting whenV/ tosses at most polynomially many coins, in contrast to thedaterministic regime
[Coo71] where the proof works for exponentially many tosa&le consider pairs of surface configurations
(C1,C9), and we nowcount exactlythe numbera(Cy, Cy) of strings that takel/ from C; to Cs, with
stack level the same, and never going below that level inbet them. As compared to Cook, the rule for
computing the values(-, -) for new pairs from previously computed ones is more involved

5 The Schwartz-Zippel test cannot showPIT € coRPdL[N¢|

The only known derandomization faoRPdL[-] is thatRPdL[1] = coRPdL[1] = P, sinceRPdL[1] C
NPdL[1] andP is closed under complement. We show that algorithms whieluate even a fixed polyno-
mial on an arbitrary point cannot show containment of PIToRPdL[N¢], for constant > 0.

Translations of a family of Probabilistic Turing Machines (PTMs) to vSMs. The technically more
involved part of our contribution is an unconditiohdbwer bound for a popular family of probabilistic
polynomial time algorithms for PIT. These algorithms ewdduthe input polynomial on a random point;
we refer to this family as SZ-algorithms (where SZ standsSohwartz-Zippel). Our lower bound refers
to these algorithms when realized as vSMs. Note that if wanadirbitrary translations of PTMs to vSMs
andP = RP then no non-trivial lower bound is possible: we could alwaysp a PTM to a vSM that does
not access its randomness. To that end, we consider a neggtattion on such translations. Informally,
the dependence on Polynomial Evaluation (PE) of the PTMasgwed. More formally, consider PTMs
which at some point in their execution make a call to an oradieh evaluates the input polynomial at a
random point. We allow both the PTM and the oracle to be implaedarbitrarily as a vSM, with the only
restriction that the same oracle call be made. The ternrarpPE-preserving implementation as a vaif

a SZ-algorithm corresponds to the collection of transfetias mentioned above.

The lower bound. Every SZ-algorithm is realized as a vSM. Our lower bound @rthmber of reversals
on the random tape focuses on the (arbitrarily implemergedluation procedure of the algorithm. By defi-
nition of the randomized hierarchy we parametrize on thestoase number of reversals. Hence, the lower
bound for the SZ-family follows directly by showing a lowesdnd fordeterministicSMs with two input
tapes: one contains the input polynonmpednd the other the point on which we evaluate the polynomial.
We count reversals only on the tape which contains the poivite emphasize that since we are interested in
the worst-case number of reversals to prove the lower bauswdfices to adversarially choose the pgint
The proof of Theorem 10 follows from Corollary 15, since theér product of two vectors is the evaluation
of the quadratic polynomial induced by the inner product.

Theorem 10. Let.4 be a PTM which in every execution evaluates at least oncenfiwg polynomialp at

a random pointp, presented in terms of its coordinates on the random tapeenTavery PE-preserving
implementation ofd as a vSM makes at least® reversals on the random tape, for some explicit constant
0 < ¢ < 1, whereN is the input length.

3Recall that the input ifPE is an arithmetic circuit. This problem is easily shown to laechfor P. Hence, conditionally, if
P # NC it is easy to see that SZ-algorithms cannot show containinezdRPdL[N?°¥°¢™]. Note, that proving unconditionally
any such superpolynomial lower bound would sepatag@SPACE from P (in fact LOGDCFL from P).



Although no known Schwartz-Zippel-like algorithm evalesithe polynomial approximately, our lower
bound can be generalized to hold even for algorithms thawighr error bounded away frorh, when the
input points are chosen uniformly at random.

5.1 Definitions related to the Communication Complexity lover bound

Communication Complexity. We consider the standard Number-In-Hand (NIH) model [KN®vhere

each of they players gets an-bit input part. Communication is done via a shared blackihoBeterministic

protocols are always correct and randomized protocols @reat with probability at leas?/3 where the
randomness is public. For a functign: ({0,1}")” — {0, 1} we denote byR(f) the minimum cost of the
best randomized communication protocol fqrover all inputs and random strings.

We define the functionsSETINT and IP. Let PSETINT,,, : ({0,1}")? — {0, 1} be thep-playern-bit
promise intersectiofiunction defined as follows. On input;, ..., x,), z; € {0,1}" the promise is that
either the setsupp(z;) are mutually disjoint or their intersection is a singletat. sFor a promised input
x = (x1,...,3p) definePSETINT, () = 1 iff (\_, supp(z;) = {a}, a € [n]. Let 1P}, : (F")? — {0,1}
be the2-player n-ary inner productfunction over fieldF, defined by 1B, (z1,z2) = Y7, 1,22,. By
[CKSO3], R(PSETINT,, ) = Q(51555)- By a simple reduction froSETINT,p, R(IPIQF,”) = Q(n).

Our lower bound is based on a direct sum type of argument forddmmunication complexity for set
disjointness and generalized inner product. Using itsksta&M can solve efficiently the straightforwardly
defined direct sum version of the problems. To that end, wé/gggymutations on the inputs.

Definition 11. Let X = {0,1}". Consider aase functionf : X? — {0,1}, p > 2. In the commu-
nication complexity model playef getsz;, from an input(zy,...,z,) € XP. Let® = (¢1,...,¢p)
be a sequence of permutations. Tienn)-bit function V- : (X™)? — {0,1} is defined on input
T = (21,...,7p) € X™, wherex; = (v;1,...,7m) € X™ as follows: f'®(z) = Vit f(@g),9),
wherez(;) o = (T1,4,(j): - - - Tp,gp(j))- When no confusion arises insteadagf;  we write zj;). When f

is the generalized inner product théfi-® (z) = @', f(z(;,8), is also alifting of the given inner product
problem, which by definition is a bigger (permuted) innerduct instance.

Notation: Letn > 1and letX = {0,1}". Letm > 1 andp > 2. Let f = PSETINT, ,, : X? — {0,1}.
Letg = IPgn. Let® = (¢1,...,0p) € (Sm)? be the sequence ofpermutations offin] that have small
sortedness (see Appendix A). Recall Definition 11f8f> and ofg®®. Letr, s : N — N be functions. Let
d < O(p(r(mnp))?/y/m). In what follows the choice of andm will be such thap(r(mnp))? = o(y/m).

5.2 A Streaming Perspective and A Comparison to [BHNO8]

The lower bound is a corollary of a technical result which banndependently interpreted from the per-
spective ofstreaming A detailed treatment of Section 5 is given in Appendix A.

The streaming model of computation was introduced by [AM$98@n attempt to model the huge real-
world differences in access times to internal memory (&éM) and external memory (e.g., hard drives).
In this model, the computation device is a space bounded BMsdhallowed a bounded number of reversals
on the input tape. Arfr, s)-Stack Machine can be naturally seen as an extension of itj@arstreaming
model, in which the TM is given access to an unbounded stack.

One of the most important problems studied in the contextrebming is that of computing the fre-
quency moments of a data stream. Fhil frequency momeri;, of a sequence = (aq,...,an), a; € [R]
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is Fi(a) = Zjam(fj)’“, wheref; = |{i : a; = j}|. * Positive results for approximating this problem are
given by [AMS99, IW05, BGKS06], and negative results areegiby [AMS99, SS02, BYJKS04, CKSO03].

[GSO05] introduced another extension of the streaming moid®mputation, called afr, s, ¢t)-read/write
stream algorithm: a TM with external tapes on which the heads can reverse a totdiimies, and internal
tapes of total size. [BHNO8], building on [BJR07, GS05, GHS06], prove that(@flogn), s, O(1))-r/w
stream algorithm that approximates th¢h frequency moment of a data stream requires n'!~*/#=9 for
anyk > 4 andé > 0.

Our lower bound proof is inspired by [BHNOS], but the hearbof argument is entirely new. Below,
we address how r/w stream algorithms compare with SMs, anddkelty in our proof.

Comparison of computational models. In Lemma 12 (the proof is given in Appendix A.5) we formally
show that under a widely-believed complexity assumgtidhe unboundness when accessing the stack
makes our model stronger than the one considered in [BHN@83ome languages .

Lemma 12 (The power of one-way SMs).etm € Z*. There existd, € P such that (i) there is a SM
deciding L with one scan over the input, and (ii) every TM with a logspace work tape (on which we
don’t count reversals) and a constant number of tapes onwhie count reversals)/ cannot decidel
with log™ N reversals, unlesg C PSPACE.

This lemma refers to the (uniform) models of interest. Wewvaethe lower bound (Theorem 13) using
communication complexity, which means that inherenths tlower bound applies even to non-uniform
machines. Hence, Lemma 12 leaves open the possibility aagribounds on the non-uniform version of
our model follow by lower bounds on the non-uniform versidr{:0 s, 2)-r/w stream algorithms. However,
it is impossible to prov@olynomiallower bounds - as we do in this paper for SMs - fars, 2)-r/w stream
algorithms®.

Comparison of proof techniques. Thegeneral setuf both proofs is the same. We assume we have an
efficient r/w-stream algorithm/SM/ (henceforth, referred to as "machine") that solves a "p&diyprod-
uct of several instances of a base functjoriJsing this machine, we construct an efficient communigatio
protocol for f as follows. Given an input instance to the protocol, refénte as the "real” instance, the
players construct many "decoy" instances, they combina tiogether with the real one, and they simulate
the machine on this extended input. The fact thasolves a permuted product of instanceg tis used in
order to argue that/ must dedicate its resources (external tapes in [BHNO8}kdtaour case) to solving
only a fraction of all instances.

The heart of both arguments is an "algorithmic" part, which says thiat/i does not dedicate its re-
sources to solving the real instance, then there existsfameat communication protocol simulatingy.
The difference between our proof and the one in [BHNO8] isvtny heart of the argument. [BHNOS8] gives
an efficient simulation of air, s, t)-r/w stream algorithm, whereas we give an entirely new satioh of
an(r, s)-SM.

A subtle issue, which makes our simulation somehow unegged that 2 stacks have the full power of
an unrestricted TM. In contrast, the simulation in [BHNO&jnks for any number of tapes.

“We consider this problem fat/ = R®™. For the computational/streaming problems we are intedeist approximating
F(a) wherea is presented in the input by listing the elementsvpgach of which is encoded usi)log R) bits; i.e. the input
length is alsaV = R®®),

%It is straightforward to show unconditionally th&t£ PSPACE. It is usually thought that these classes are incomparable.

®Because afO(log n), s, 2)-r\w stream algorithm casort, which is enough to compute frequency moments exactly [GHSO
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Finally, note that we show a polynomial lower bound on the bemof reversals on the worktape,
whereas [BHNO8] can only show a logarithmic lower bound.

5.3 The Statement of the Technical Result

Theorem 13(Main Reduction) Assume there exists a randomizeds)-Stack Machine\/ for fV-® with
error at mosts. Then, there exists a randomized protoédfor f, with costO(p? - (r(mnp))? - s(mnp))
and error at most + d(1 — §). Furthermore, the same holds when we replgdey g, and fV® by g®®.

Corollary 14. Letk > 5 ande > 0 be constants. There exists a constant 0 such that any(r, s)-SM Ay
computing ar(1 + ¢) approximation ofF, with constant error requires = w(N?) or s = w(N?).

Corollary 15. LetF be any field, lepp = 2, and letm = n%6. Then, any(r, s)-SM Ay computing
(|plg,n)@"1’ with constant error requires = w(N'/8) or s = w(N/?),

6 Conclusions and Future Work

This paper initiates the study of randomness based on theemfiaccesses to the random bits as opposed
to the amount of random bits a polytime algorithm uses. A nmgdinl definition becomes possible by
extending SMs with a polynomially-long auxiliary tape. &aetrizing on the number of head-reversals
on the random tape we define hierarchies lying in-betweeynpatial time and probabilistic polynomial
time. When one considers the auxiliary resource to conkisbim-deterministic or non-uniform bits one can
define similar hierarchies.

We also introduce an alternative, equivalent definitiontfar use of randomness, where a polynomial
time algorithm on a given input compiles all the randomnegsgéds in a polynomial size, swallow circuit.
One implication is that derandomization (using PRGs) oRNC hierarchy, which is believed to be a small
fraction of P, implies derandomization for classes that lie much highanRNC. Another consequence
is that this definition provides an alternative perspectivlich may find use in devising algorithms in
the lower levels of our hierarchy. The extensive literatuw@arallel computation can be potentially used
towards this goal.

The derandomization for one-sided error classes is an inateecbrollary of the Dynamic Programming
algorithm given in [Coo71]. A non-trivial modification of #halgorithm is used to derandomize the first
level of two-sided error probabilistic polynomial time,eswvwith unbounded error. Other than this the
resolution of the fundamental complexity questions maitigathis paper remains widely open. In [Ven06] a
pseudorandom generator is given against polynomial tinMsy®vith one-way access over the randomness.
It is conceivable that this generator may be secure agaiost than one scans over the randomness. We
have recently obtained [DPS09] such a result for logspace Without a stack, by investigating properties
of Nisan's PRG [Nis92] against logspace, and one-scan bearandomness.

Our main lower bound refers to a particular use of the randweas, showing that every algorithm
which evaluates the given polynomial on the provided rangmimt withesses containment of PIT away
from P, with respect to our parameterization of head-reversdihoAgh this result does not have immediate
structural consequences, it does provide grounds fordusearch according to the proposed framework.
Proving unconditional lower bounds for time and space nes®suis in general a far-to-reach goal. On the
other hand, we see that there is a certain success in pravitigl@ver bounds on head reversals. One may
speculate that this opens the possibility the proof tealesgntroduced in this paper to find application in
the derandomization of the randomized hierarchy.

12



This paper gives rise to a number of questions (even in ogldti areas such as Cryptography, random-
ness extractors etc) not possible to be listed here in somermensive form. We conclude by mentioning
five of them which at this stage seem to be more relevant totady.s

e Derandomization of the first few levels of tR®dL[-] hierarchy. In particular, derandomizing even
the second level of the hierarchy is interesting. It seerasritbw tools have to be developed towards
this direction.

e Derandomize the first few level BPPdL[:]. Note that in the two-sided error case it would also be
interesting to show containment INP.

e Investigate structural relations among levels of the hieinées. For example, is it true th&PPdL[k] C
RPdL[£'] for somek’ > k? Another possibility would be to prove theorems of the forg €'if
P # RP thenRPdL[exp] # RPdL[r(N)]". That is, to derandomiz®&P it is sufficient to derandom-
ize only the first-(IV) many levels of the randomized hierarchy.

e Complexity-theoretic questions for variants of our moéel: example, we have shown that constantly-
many reversals on the non-deterministic tape of a logspeadnnot get us outsidblL. We also
know that polynomially many reversals are sufficient to elsgerizeNP. Thus it seems interesting
to check whether for superlogarithmic number of reversasr@main insidé®. Another question
is to study what happens when the auxiliary tape of the SMdgdsi than polynomial. It is easy
to see that if the random tape is exponentially long tape veeadterizePSPACE. What happens
with a subexponentially-long tape? For example, is theyeralation to the levels of the polynomial
hierarchy? How does the number of reversals become relgvanth a case?

e DevisePIT randomized algorithms with reduced number of reverskistead of trying to reduce the
number of random bits an algorithm for Polynomial Identigsling uses, design algorithms that use
as few reversals over the randomness as possible. Equlyalesing randomness compilers), devise
randomized algorithms where their “deterministic partarbitrary polytime and their “randomized
part” is parallelizable.

The proposed approach to randomness creates potentiadgadgether tools developed in many excel-
lent works in the areas of derandomization, communicatmnpiexity, streaming and structural complexity
related to AuxPDAs (SMs). Devising new tools based on anmaédimg results from these areas seems to
be our best bet for the moment.
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Appendix

A Streaming Lower Bound

A.1 The family of Schwartz-Zippel algorithms

Our main lower bound is on the number of reversals when camgat permuted version of inner product,
a special case of polynomial evaluation. This, in particulées-out the family of SZ-algorithms, defined in
Section 5. Furthermore, our lower bound rules-out a skghitgjger family, which allows us to include the
algorithms in [LV98, CK97]. If a SMM:

(i) evaluates the input polynomidt at a pointX = (X,..., X,,) € F™, and

(ii) derives the pointX from its random tapeR by partitioning R into m contiguous pieces
(Ry,...,Ry), and arbitrarily, but surjectively, computing; from R; (i.e., X; may not depend
on R; for i’ # i, and X; takes all possible values ihas R; varies);

then M makesN ¢ reversals on its random tape, for some- 0. Thus, such algorithms cannot show that
PIT is in a level lower thamwoRPdL[N].

A.2 Preliminaries, sketch of main lemmas, and proof of the man theorem

In this section, we prove Theorem 13. We give the intuitiod 8@ proof for the case wheh= PSETINT,,,
andM computesfV:?®.

Overview of the proof. We show that evaluating a polynomial at a given point regujyelynomially
many reversals on the input tape. For this we rely on the Idwends forrSETINT and IP° (see Section
2). Hence, it suffices to present a protocol that efficierittysates ar(r, s)-Stack Machine.

Our goal is to construct a randomized proto£olvhich runs on the given input. As an intermediate step
we construct a deterministic protocB! where the players i they useP’ as a routine. In particular, in
the description ofP the players first transform the given (actual) input into #ifieial bigger input using
shared randomness and the actual input. Then, they sinthkaideterministic protocal’ on this special
input they have created. The extension of the given inpuidh ¢hat the output to this input is the same as
for the actual one.

The construction of”’ is the main bulk of the proof. The intuitive goal is to showttimaP’, it is possible
for the players to perform the simulation of the Stack Maehinthout communicating the stack content.

1. Identify an obstruction to efficient simulation. This ietdefinition of acorrupted instancgDefi-
nition 18). In absence of the obstruction it is possible toudate the(r, s)-Stack Machine without
communicating the stack content.

2. Bound the frequency that this obstruction occurs (Lem@)a 2

3. Construct the deterministic protoc8! (Lemma 19). This protocol may abort the simulation when
we have a corrupted instance. However, the protdtddentifies when the situation of a corrupted
instance occurs. When we do not have a corrupted instancethireprotocol works correctly and
it is efficient, in the sense that the players do not have tonconicate the stack content during the
simulation of the machine.
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4. Use Yao’s min-max principle to show the existence of a oamded protocolP (Theorem 13). Ran-
domization is mainly used to construct the extension andaagin a probabilistic sense) the situa-
tion where we have a corrupted instance.

In Remark 21, we explain what is different in the case when| Pgm andM computes;®®. We begin
by defining the sortedness of a permutation, an importartegatrfor our construction.

Permutations, Permuted Functions and Frequency Moments. For a permutationp € S,, we de-

fine its sortednessdenoted bysortedness(¢), to be the length of the longest monotone subsequence of
(¢(1),...,6(m)). Therelative sortednessf ¢, ¢2 € S, is defined aselsorted (¢1, ¢2) = sortedness(¢po

$51). Ingeneral, for a sequence of permutatins: (¢y, ..., ¢,), letrelsorted(®) = max;;(relsorted(¢;, ¢;)).
We are interested in sequences of permutations with smative sortedness. The relative sortedness of
any two permutations is at leagtn [ES35] , so the following is optimal up to constants.

Fact 16 (Corollary 2.2 in [BHNO8]) Letp = m®("). Then, there exists a sequenbec (S,,,)? such that
relsorted(®) = O(y/m).

Additional definitions and notation.  Since in each transition exactly one of the following hageither
a head-move, or a push to the stack or a pop from the stack,feretoenove transitionspush transitions
and pop transitions respectively. For a fiel@ and IFngn we write 0-inputsto refer to the subset d>"
which consists of every element whose inner produ6t iBhis is not to be confused with the @llivector in
F2" which is just oné)-input.

So, given a Stack Machin&/ for fV-®, we build a communication protocol fgt. Letz be an input
to P. Our strategy is as follows: the playersihextendz to an inputv to f¥-® by randomly choosing an
instance numbej € [m], randomly choosingn — 1 O-inputsy = (y!,...,y™ 1) to f, embeddingr as
instance numbef andy as the other instances in an inpuy, =, 7) to M, and simulatingl/ on inputv.

Definition 17. For the fixed®, let j € [m], z € X? andy = (y!,...,y™ ') € (XP)™~l. Recalling
Definition 11, we define = v(j,x,7) € (X™)P to be the string satisfyingv;; = x; vj; = 7' for
1 < j' < j;anduy =y ~Lorj < j < m.

Sincey consists of O-inputs td, it's clear thatfV:®(v(j,z,7)) = f(z). Thus, if the players inP
manage to simulat®/ onv(j, z,7), they obtainf(z).

Assume M is deterministic, and lef’ denote the sequence of configurationsidéfon inputv =
v(j,x,7). The players in protocaP collectively see most of the tape af, except for the parts where
their respective inputs are embedded infg, z, 7). Specifically, playei is the only one who sees the sym-
bols inv; 4,(;), which isz;. In protocol P, the players will take turns simulating the transitiond’ione
by one, and it will be the job of playerto simulate the transitions when the input head is scannipg ).
Intuitively, we expect that by using: > 1 and the special sequence of permutatibnghe machinel/ does
not use its stack on instangewhich is the one we really want to solve.

Definition 18. Let j’ € [m] and letv’ € (X™)P. 7 Let M’ be a deterministi¢r, s)-Stack Machine. Let
I be the sequence of configurationsdf on+’. PartitionI” into r contiguous “scans” according to the
movement of the input head. We say thetance;j’ is corrupted in input’ on machineM’ if the following
holds. There exist scarig < I; € [r], there exist; # is € [p], and configurations;, . € I" such that:

"In this definition,j’ andv’ arenot necessarily related by = v(j’, z,7) for somez, 7.
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(i) for a € [2], v, belongs to scaf), and the input head in, is scanning a symbol from;a7¢ia(j,); (ii) the
transition out ofy; is a push transition (see Section 2); (iii) the transition @iy, is a pop transition; (iv)
the stack height is the same-f and in the configuration followings; and (v) the stack height is strictly
higher in between them. LEEAD(M’,v") C [m] denote the set of instances that are corrupted am M'.

Intuitively, according to this definition, instanges corrupted in inpub(j, z,7) on Stack Machine\/
if M ever pushes a symbol on the stack in a transition that is tovhdated by playei;, and later pops that
same symbol in a transition that is to be simulated by angitegteris # i,. We claim that indeed, when
is not corrupted inv(j, z,7) on M, the protocolP can efficiently simulaté/ onv(j, z,7).

Lemma 19. Let M’ be a deterministi¢r, s)-Stack Machine forf V:®. Letj € [m] and lety € (XP)m™~1,
There exists a deterministic communication protoB6l= P’(M’, j,7) such that, on input € X?: (i) if
j € BAD(M',v(j,z,7)), then P" outputs “fail”; (ii) otherwise, P’ outputsM’(v(j,z,7)); and (iii) the
cost of P’ is O(p? - (r(mnp))? - s(mnp)).

We defer the proof of this lemma to Appendix A.4. This lemmahis main part of the reduction. It
is not hard to see how it is possible to efficiently detect Wwhej is corrupted inv. Assuming thatj is
not corrupted it is possible to efficiently simulate the t&tachine; i.e. without communicating the entire
stack content. Let us give an example so as to develop somidnt Although the machine computation
described in this example is among the simpler cases whemiés to efficient simulation by the players,
this example does illustrate some of the main issues.

Example for a special case of the efficient simulation. Consider the case of two players. Both players
know the0-inputs. We refer to the part of thieinputs as public input zone. If a stack symbol was pushed
to the stack during the simulation af’ when the head was over a public zone then this stack symhol (fo
the corresponding time step and stack height) is a publaksgmbol. This way we define the concept of
public stack zone. Similarly, we define the private zonedlayeri. The symbols in the stack, have value
(i.e. the actual symbol) and in addition we label them adogrdo which zone the input head was when
they were pushed in the stack. This distinction is necesbagause during the simulation, for a particular
stack height a player may know the label of the input-zoneasated with the stack symbol, but not the
actual symbol.

Consider the situation depicted on Figure 1 and supposedhbaimulation has reached timmg On
the right we depict the stack content which was created/bly computing on the input and by possibly
making a few scans over the tape between timmadt,. Furthermore, assume the invariant that up to tme
each player knows: (i) the position (stack height) of evarligc and private stack-symbol, (ii) the symbol
for each public stack symbol, (iii) Playerknows her private stack symbols and (iv) the top stack symbol
of the private stack zone which belongs to the other playkydp-1 will carry the simulation at this point
since the input head enters her private zone. She can dontisdation up to times where the head exits
her private zone. As the simulation proceeds she pusheg tstdlck her private stack symbols and when
she pops stack symbols these are either private to her aicputiltime ¢, it is not a good idea to send to
Player-2 the stack height and the input-head position. €aean is that later on and as long as the head is
over the public zone, the popped stack symbols enter attirtee private zone of Player-1 (and Player-2
does not know these stack symbols). Thus, Player-1 comtitmusimulate aftet; and up to the lowest
level I, of the stack with the input head over the public zone. At tlimpand since she knows this is the
lowest level, she sends to Player-2 the stack height, thetémb symbol, and the position of the input head.
Since this is the lowest stack height and the input head is thheepublicly known zone both Players can
independently reconstruct the public stack zone from tigall the way to timets;, where Player-2 takes
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Figure 1: On the upper part we depict how the stack heightgdsmas a function of the simulation step of
M’ on the given input. On the right side of this upper part we ctgpie stack content at two different times.

On the lower part we depict the input and which part of the ingplkknown only to player 1, only to player
2 and which is known to both (public).

over the simulation. This completes the description of ttemple. O

We would like to make sure that in protocBl, the probability that instancgis corrupted onv(j, z,7)
is small. By construction, of the: inputs tof embedded in(j, z,7), m — 1 of them are always 0-inputs.
If, on the one handf(x) = 1, then instancg will be, intuitively, probabilistically distinguishableso it is
plausible that\/ dedicates the use of its stack to solving this instancejmgyito be corrupted in(j, z, 7).
However, note that the protocét’ from Lemma 19 can detect thatis corrupted inv(j, z, 7). So, in this
case, the protocaP will simply output 1. If, on the other hand;(z) = 0, thenv(j, z,7) consists ofn O-
inputs tof. In the following Lemma (proof deferred in Appendix A.4), wse the property of the sequence
of permutationsp to give an upper bound on the number of instances that arepted in a fixed input’.

Lemma 20. Let M’ be a deterministi¢r, s)-Stack Machine forfV:® and letv’ € (X™)P. Then, we have
[BAD(M',v')| < O(p - r(mnp) - log(r(mnp)) - v/m).

In the casef (z) = 0, if we were to show that the choice ¢fs statistically independent from(j, z,7),
the Lemma above would give us a bound for the probability fhatcorrupted irv(j, z, 7). A subtle point
is that we cannot immediately prove this 'everyO-inputx. We overcome this by proving the statement
distributionally, when: and the 0-inputs iff come from the same distributiof.To implement this intuition,
we use Yao's min-max principle that connects the randomizadmunication complexity of a function with
its distributional complexity.

8As explained in [BHNO8], another way would be to observe fbathe special case of = PSETINT, any O-input can be
transformed into any other O-input by a column permutatimd then modifying the protocé? to apply such a random permutation
to z itself.
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Proof of Theorem 13 (for the case whgénr= PSETINT,, ,,). For everygq, let M, denote the deterministic
(r, s)-Stack Machine obtained by runnirdg with random string.

Let D be any distribution on the spacé€’ of inputs tof. Below, we give a randomized protocB} for
f with cost and error as described in Theorem 13, but with eronputed over the choice of the input
from D and of the random coing. By standard arguments, we can fixo obtain a deterministic protocol
with the same error, but only over the choicexdfom D. Since such a protocol exists for every distribution
D, by Yao’s min-max principle (e.g., Theorem 3.20 in [KN9ZPe conclusion of Theorem 13 follows.

If D has support only on O-inputs or only on 1-inpui, is trivial. Otherwise, letDy = D conditioned
on f(z) =0.

Consider the following protocaPp:

Oninputz € X?, where playet getsz; € X, and shared random string
Publicly draw; uniformly from [m]
publicly drawy = (y',...,y™ ") from Dy~
publicly drawg uniformly
RunP’ = P'(M,, j,y) (from Lemma 19) on input, simulatingM,(v(z, j,7))
If P" outputs “fail”, thenPp outputsl. Else,Pp outputs the same value &5

The cost ofPp is equal to the cost aP’ which isO(p?(r(mnp))?s(mnp)). To argue about the error in
Pp, define the following events:

A = A(z, p): Pp is correct on input: with coinsp
B = B(q,v): M is correct on inpub with coinsq and
C =0C(j,q,v): j ¢ BAD(M,,v).

By Lemma 19, the simulation i’ fails if and only if C. Leta = Pr,[f(x) = 0]. We writePr[A] =
a-PriA|f(z) =0+ (1 — «) - Pr[A|f(z) = 1].

For the right term, consider the conditionirfdz) = 1. Then, Pp is correct if either the simulation
in P’ fails (and Pp correctly outputs 1), or the simulation iR" does not fail and\M is correct, thus,
CV (C AB) = A,inparticularB = A, soPr[A|f(z) = 1] > Pr[B|f(x) = 1]. The eventf(x) = 1is
independent of the choice gf and by the correctness condition/ef, Vv, Prg[B(Q,v)] > (1 —4). Hence,
Pr[B|f(z) = 1] = Pr[B] > (1 - 9).

For the left term, consider the conditionirfdz) = 0. Then, Pp is correct whenever the simulation in
P" works and)M is correct, thusB A C = A, andPr[A|f(z) = 0] > Pr[B|f(x) = 0] Pr[C|B, f(x) = 0].
As before,Pr[B|f(z) = 0] > (1 — ). Next, j is clearly statistically independent aof and ¢q. Fur-
thermore, under the conditioninf(x) = 0, we claim thatj is statistically independent from. To see
this, notice how the distribution obtained on pajijsv) in Pp is the same as independently choosing
0-inputs from Dy and combining them i, and choosingj uniformly from [m]. Thus, in the expres-
sion Pr[C(j,q,v)|B(q,v), f(z) = 0], the conditioning depends dm, v, q), C itself depends or, and
j is statistically independent frorfw, v,¢). By Lemma 20,Y(q,v), Pr;[C(J,q,v)] > (1 — d). Then,
Pr[C|B, f(z) = 0] = Pr[C] > (1 — d).

Putting everything together gives the claimed error bolhfld] > 1 — (6 + d(1 — 9)). O

Remark21l Theorem 13 states thatgf= IPgm and M is a Stack Machine fog®®, we can build a similar
protocol P for g. One can check that Definitions 17, 18, Lemmas 19 and 206oddepend on either the
“base” functionf, or on the “combining” functiorv. Furthermore, one can check that even the proof for
the casef = PSETINT, ,, goes though if we replacg by g, andfV:® by ¢®*. Note that if we were to write
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the proof for the case af andg®®, we need not bother defining distributiddy: the players inPp could
simply drawg from D™~ (rather thanD]"~ '), because they could still compujér) from & (v(j, z,7))
by adding to the latter the outputs of the— 1 inputs ing.

A.3 Proof of Corollaries 14 and 15

To prove Corollary 14, we need the following result. Thisuetibn originates, in a non-permuted form,
from [AMS99]. [BHNOS8] point out that the reduction still wks for permuted instances @SETINT.
However, while [BHNO8] make use of an additional externgletdo make it work, we do not have that
luxury when dealing with Stack Machines. We explain how tbthe reduction to work with no additional
tapes. Intuitively, the idea is that during the simulatiom enly need to look at a limited portion of the tape.
We also slightly improve the dependency between paramevergBHNOS].

Theorem 22. Lete > 0. Let M = mnp, withp > (mn)?(),

1. Letk > 1andp > (2¢(2 + ¢)mn)'/*. Assume that, for largéV, there exists a nonuniforrr, s)-
Stack Machinedy that, given a sequence of N®() elements froniN®()], outputs a(1 + ¢)-
approximation of;,(a). Then, for largelM, there exists a nonuniforr+2, s+O(log M))-Stack Ma-
chine B such that, when given an inpute {0, 1}, By, outputsf"-®(v), wheref = PSETINT,, ,,.
Moreover, ifAy is randomized with error at most< 1/2, then so isB);.

2. The same holds whén< 1 andp > 2¢(2 + e)mn/(1 + €)%

Proof of Theorem 22First, consider the cage> 1. Letv € {0, 1} be an input tofV>® (v).

To begin with, B, uses its first two reversals to count the number of 1s istoring this value a€’ on
O©(log M) bits. If C' < p, By outputs 0, as none of the instances oPSETINT,, ,, inside fV-® can contain
an all-1 column. Similarly, ifC’ > mn, Bj; outputs 1. To see this is correct, notice that by the proroise,
0O-instance oPSETINT,, , contains at most 1s, one in each column. Thus, O-instances oPSETINT,, ,,
contain at mosinn 1s. Henceforth, assume< C < mn.

Let N = Clog(mn). Note thatN < mnlogmn < mnp = M sincep = (mn)*1). Also, N >
plogmn > M®Y) soAy exists for largel/. The maching3,; simulates the machiné on the following
N-bit input streamu = a(v): for every (i, j,k) € [p] x [m] x [n] such thatw; ; , = 1 (recall the notation
from Definition 11), the stream contains a valués; * (j) — 1)n + k € [mn]. Itis not hard to check the
following property of this construction:

If £V®(v) = 0, the values in the streamare distinct;
and if fV>®(v) = 1, the streanu containsp occurrences of some value, and the rest are distinct.

Suppose thaB); can somehow simulatd ;- on inputa. So, Ay outputs a valugy which is an(1 + ¢)-
approximation off’ (a). Note that:

If fV-?(v) =0, thenF,(a) = C, soy < (1 +¢€)C;
and if fV"®(v) = 1, thenFy(a) = C — p + p*, soy > (C + p* —p)/(1 +e).

Whenp is larger than a constant, < p*/2. Furthermore, by the assumption in the Theoref, >
2¢(2 + €)mn > 2¢(2 + €)C. Rewriting, we obtair(C + p* — p) > (1 + ¢)2C, meaning that the ranges pf
for fV:®(v) = 0 andfV:*(v) = 1 are disjoint. At this point3,; outputs 1 ify > (1 + ¢)C.

However, note thaB,,; cannot simply write down on a tape, so instead,; will decode small portions
of the stream containing when they are needed. More preciseBy,; holds in its memory: (i) a triple
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(1,7, k) € [p] x [m] x [n] on©(log M) bits, initialized to(1, 1, 1), and always containing the player number,
the instance number and the bit position of the location wiiee input head is scanning (ii) a buffer D

of logmn = ©(log M) bits containing one element af (iii) the spaces(N) of the Stack Machined y;
and (iv) extraO(1) bits. In total, By uses space(N) + O(log M) < s(M) + ©(log M).

Before starting the simulation of;, Bj; scans its input until it finds the first 1. It then writes in the
buffer D the valug(¢; *(j) — 1)n + k. >From now onB,, simulatesA v, using its stack as the stack 4f,
the reserved(V)-bits as the memory ofl iy, and usingD as the input tape fad ;. WheneverA 5 attempts
to move its head left/right of the buffép, B, clears the buffer, moves its own input head left/right uibtil
finds the first 1, refillsD with the value(¢; ' (j) — 1)n + k, and resumes the simulation. It is easy to see that
during this simulationB,; performs at most as many reversalsg. Finally, if Ay is randomized with
errord < 1/2, soisByy.

For the casé: < 1, the simulation is the same, but now for correctness we rieed (p — p¥) <
C/(1 + €)2. This follows by takingy greater than a constant, so th&t< p/2, and using the new condition
p> (2e2+e)mn/(1+¢€)?) > 2(1 —1/(1 +¢€)?)C. O

Proof of Corollary 14.Let 3 = (k — 5)/(9% + 9) > 0. Assumer = O(N”) ands = O(N?). We will
derive a contradiction.

Leta = (5k — 7)/(4k + 7), and letm = n®. Letp = (3¢(2 + €)mn)'/* = O(1) - n(+)A+1/E) (jf
e =0, setp = 2). Let f = PSETINT,,,,. Letr/(M) = r(M) + 2 and lets’(M) = s(M) + O(log(M)).
By Theorem 22, there exists dn’, s’)-SM By, for fV-® with error§ < 1/4. By Theorem 13, there
exists a protocol foPSETINT,, , with costO(p?(r(mnp))?s(mnp)) and error at most + d(1 — §) where
d = O(p(r(mnp))?/+/m). Note that bothr(mnp) ands(mnp) areO(n(1t®)1+1/k)8)  One can check that,
with the settings above, = o(1), so for largen, the error ofB,, is at most, say 1/3. Then, by [CKS03], the
cost of the protocol should be(n/(plogp)). However, one can also check that, with the settings above,
p?(r(mnp))?s(mnp) = o(n/(plog p)). This is a contradiction. O

Proof of Corollary 15. Similarly to the proof of Corollary 14, we use Theorem 13 tdaii an efficient
protocol for Ilj;n, which require€2(n) communication. O

A.4 Full proofs - omitted from the proof of Theorem 13

Proof of Lemma 19Let z € X” be an input toP’. The players shar@/’, j andy. The goal of P’ is to
simulateM’ on inputv = v(j, z,7). We say thaan input symbofrom v is private to player: if it belongs
to v; ¢,(j)» Which is wherer;, the input to playet, is embedded im. Input symbols that are not private to
any player argublic. Private input symbols are never communicatedin

Let " be the sequence of configurationsidf on inputv. Considery € T" and look at the contents of
the stack iny. For every symbof appearing on the stack, we say thick symbaf is private to player if
during the transition whefwas pushed on the stack, the input head was scanning an ympbbkprivate to
playeri. (The same symbol may appear many times on the stack, so wklgbomally talk about a private
stacklevel rather tharsymbo] but we believe this degree of formalization negativelyetf§ the intuition.)
A stack symbol that is not private to any playepigblic.

We say thaplayeri sees a hollow view of the stack in configuratipiif player i knows: (i) the stack
height in~y; (ii) for every symbol on the stack, whether it is public oetblayer to which it is private (that
is, without knowing the symbol itself); (iii) all stack syrols that are public or private to playérand (iv)
for everyi’ # i, the top stack symbol in any contiguous zone of symbols f&it@ player:’. Note that
the hollow views of different players of the same stack difi&e say thathe players see a hollow view of
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configuration~ if every player knows the state in the input head position iy, and sees a hollow view of
the stack iny.

We say thatconfiguration-y is input-private to playet if the input head is scanning an input symbol
that is private to playet. We say thatonfigurationy is stack-private to player if the transition out ofy is
a pop transition and the top stack symbo#is private to playet. Intuitively, player: will be responsible
for simulating the transitions out of configurations inpat-stack-private to it. Note that there exists a
configuration that is input-private and stack-private to tlifferent players if and only if € BAD(M’, v).

A configuration that is neither input-private nor stackvate ispublic.

In the protocolP”’, the players will simulat& transition by transition, always using hollow views of the

configurations along the way. It is not hard to see that: (&)player sees a hollow view of the stack in a
public configurationy, then that player can compute a hollow view of the stack irfigarationnext(~);
(2) as long ag ¢ BAD(M’,v), if playeri sees a hollow view of the stack in a configuratiprvhich is
input- or stack-private to playér then playeri can compute a hollow view of the stackiinxt(~); and (3)
if player i sees a hollow view of the stack in a configuratipthat is input-private to player, it can detect
whethery is stack-private to another playgér# i.

We now describe the protocd! inductively. Clearly, all players see a hollow view of thétiad con-
figuration, because there is nothing on the stack. Indugtisssume all players see a hollow view of
configuratiorry. We consider three cases.

Case 1:y is public By fact (1) above, each player can privately compute a tolliew of the stack in
next(vy), so all players now see a hollow view ofxt (7).

Case 2:y is input-private to playei. This means the input head is scanning, ;) in v. All players
recognize this because they know the input head positiothesogive control of the simulation to player
i. Let~’ be the first configuration following in I" that is no longer input-private to playér By applying
facts (2) and (3) inductively, playereither detects that € BAD(M’, v) (in which case the simulation is
aborted and protocdP’ outputs “fail”), or it can compute hollow views of the stackevery configuration
~" between, and includingy and~’. Playeri recognizesy’ is no longer input-private because it knows the
input head position in’. At this point, player communicates: (a) the state+fi (b) the input head position
in +'; (c) the stack height in/; (d) the top stack symbol ir’; and (e) the lowest stack heightin any
configuratiomy” betweeny and~’, and the top stack symbol if’.

We claim the information communicated is enough for a pla{ef i to compute a hollow view of the
stack in configuration’. Specifically, player’ takes the hollow view of the stack from configuration
truncates it at heighk, and fills it to the height in/ with symbols private to player To compute part (iv)
of the hollow view, playeri’ obtains the top stack symbol ifi from (d), and the stack symbol at levEl
from (e). Hence, after this communication, all players shellbw view of configurationy’.

Case 3y is stack-private to playei (and not input-private). That is, the input head is scanaipgblic
symbol, the transition out of is a pop transition, and the top stack symbolkirs private to player. All
players recognize this situation, because they know whéhieetop stack symbol is private to playgrso
they give control of the simulation to playér Let 4" be the first configuration following in T' that is
either input-private (to any player) or stack-private tongoplayer:’ # i. By facts (1) and (2), playercan
compute hollow views of the stack for every configuratighbetween, and including; and~’.

In order to best explain what playéicommunicates in case 3, we need to step back for a second and
look at what we are trying to do: we are trying to design an iefficprotocol”’, so we want to have as little
communication as possible. Going backward frgiret ~, be the last configuration which is not input-
private. Going forward fromy, let v, be the first configuration which is input-private. LBtdenote the
number of contiguous parts of input-private configuratibe®re~, in I'. During each reversal there are at
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mostp such parts, one corresponding to every player, and thera anestr reversals, s@” < pr. Looking

at the stack iny,, observe that if we group together contiguous zones of spatbols private to the same
player,the number of such contiguous zones is at rfigshe number of contiguous parts of input-private
configurations before,. Possibly all of these stack symbols are popped betwgend~,, but in order
to keep the cost of the protocol low, we will devise a way inefléommunication occurs i’ at mostT’
times once for every zone of contiguous stack symbols privateteesplayer.

The discussion above suggest that in case 3 it would be a leadfed player: to fall back to public
simulation the moment it encounters a public configuratietwieeny and~’: possibly that public configu-
ration is closely followed by another stack-private confegion of playeri, such that both the latter and
correspond to the same contiguous zone of stack symbels imhich would invalidate the communication
bound above.

Another idea is to let player perform the simulation all the way tg. This also turns out to be a bad
idea, because, in general, stack symbols might have be&eguos the stack betweenand+’, and those
should not be private to any player, as the input head is inkdigomone. Then, playei would have to
actually communicate those symbols in order to give thergitayers a proper hollow view of' .

Instead, we lety* be a configuration between, and includingxt(y) and~’, wherethe stack height
is the lowest possibléf there are several, any will do). Then, playesimulates only untih*, and it
communicates items (a)—(d) as before, skipping (e). Agam.claim the information communicated is
enough for a playei’ # i to compute a hollow view of the stack ii*. This is simpler to see than in
case 2 before, because, by choice/tfit is enough for playef’ to truncate its hollow view of the stack in
configuratiorry to obtain a hollow view of the stack i*.

This completes the description of the protocolj i BAD(M’,v), one of the players gets to the final
configuration and announces the output of the function.dfBAD(M’, v), one of the players detects this
and outputs “fail”.

To obtain the stated communication bound, we first obsemeeVery communication take&3(s) bits.
Because there are at mgstcontiguous zones of input-private configurations, the comication generated
by case 2 is at mosD(prs) bits. Finally, by the discussion in case 3, at mpstcommunications occur
during each contiguous zone of non-input-private configoma. There ar@r — 1 such zones, to a total of
O(p?r?s) bits. O

Proof of Lemma 20We say thainstance; € BAD(M’,v’) is corrupted by the tuplély, l2, 41, i2) if the
latter is the lexicographically smallest such tuple sgitigf the conditions in Definition 18 for instange
First, we consider the question of how many instances camtvapted by one 4-tuple. Second, we argue
that not all 4-tuples can simultaneously corrupt instances

Let J C [m] be k distinct instances that are corrupted by the same 4-tlplé,,i1,i2). Recalling
Definition 11, rename the instances.jrin such a way thap; ' (j1) < ¢;' (j2) < -+ < ¢;.' (ji). Assume
that bothl/; andl, are odd. Then, the head 81’ scansy;, during reversal; from left to right, SoM’ first
visits Vi) 671 (h) thenvih(ﬁl(m, and so on, up to; ,-1(;,)- Fora [k], letvq,1, 7va,2 be the configurations

1 11 1

mentioned in Definition 18. By this definition, the stack lev@nnot drop betweef, ; and-, 2, so then we
must havey; 1 < y2,1 < -+ < V1 < Ve2 < - < 72,2 < 71,2. Since we assumed is also odd, the head
is also moving left to right in reversa}, so we obtain thap ' (ji) < --- < ¢;.'(j2) < ¢, (j1). Then,
b5 0 iy (67, (1) < 85" (j2) < -+ < &;,' (jx)) is a sizek monotone decreasing subsequence;gfo ¢;, .
By Fact 16,k < O(y/m). Itis easy to see that the relative parities pandl, change this argument only
in that we might obtain a monotone increasing subsequersteaid of a monotone decreasing one. Thus,
every 4-tuple can corrupt at maSty/m) instances.
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Next, consider the x r matrix A, whereA[l;, ls] = 1 if there existi;, iy € [p] such that some instance is
corrupted by the tupl€/;, l5,i1,1i2), andA[ly, [3] = 0 otherwise. Note thatl = 0 under the main diagonal,
because for a tuple to corrupt an instance we must havel.

Moreover, fork > 1, consider the diagon&} — I; = k, and two entries on this diagonal that &feells
apart, forl < k¥’ < k. We claim that we cannot hav&[l;,l, + k] = 1 andA[l; + k¥',l1 + k + k'] = 1.
Assume this were true. Then, some instapéecorrupted because a symbol is pushed on the stack in scan
I; and popped in scah + k, and another instancg is corrupted because a symbol is pushed on the stack
in scanl; + k&’ and popped in scan + k + k’. But, with these settings; < I1 +k <l +k <l +k+ ¥,
which contradicts the way a stack works.

Hence, fork > 1, the diagonals — [; = k can contain at most/k 1s. In total, we see that contains
at mostO(r logr) 1s.

Finally, for fixedl; <[5, consider the x p matrix B = B, ;,), whereBJiy, i3] = 1 if some instance
is corrupted by the tupl€y, l2,41,i2), and Bli1, i2] = 0 otherwise. First, consider the case wlieandi,
are both odd, so the input head scarsft to right during both scang andis.

We claim that fork’ > 1, we cannot have3[i,is] = 1 and B[i; + k’,i3 + k'] = 1. Assume this were
true. Then, some instangas corrupted because a symbol is pushed on the stack duing,sof the input
part of playeri; and popped during scdg of the input part of playei,, and another instancgis corrupted
because a symbol is pushed on the stack during lsazfithe input part of playei; + &’ and popped during
scanlsy of the input part of playefs + &’. But in scanly, the input part of playeti; is visited before the
input part of playeii; + &, and in scarl,, the input part of playeis is visited before the input part of player
19 + k’. This contradicts the way a stack works.

Hence, on every diagonal — i; = k, the matrixB can contain a single 1. In total contains at most
O(p) 1s. The cases where eithgror [ or both are even are treated similarly.

Therefore, at mosO (prlogr) 4-tuples can corrupt instances, and each 4-tuple can ¢ostupost
O(y/m) instances. Thus$BAD(M',v")| < O(prlogry/m). O

A.5 The power of one-way SMs

Proof of Lemma 12 Consider the canonical complete languageHamder log-lin reductions,
U = {M#w#**! | M(w) accepts within tim@*+DIvl1 et the tally sefly := {01*! | z € U}.

Fact 23.
1. If there existd. € (E — PSPACE), thenU requires super-polynomial space.
2.1y eP
3. Ifthere existd, € (E — PSPACE), thenTy; requires super-polylogarithmic space.

Proof. Supposd/ € PSPACE and arbitraryl, € DTIME(2¥"), witnessed by a TM\I, £(M) = L. An
obvious simulation (by considering the projectioniéfwhen the machine id/ andk = k') shows that

L also requires polynomial spac@y; is trivially in P since it is the unary representation of the strings in
U € E. The last bullet follows by the first, and the fact tHat is the unary representation &f. O

Sincely is a polytime tally set, it can be decided by an one-way SMBsdion 2.1 [AlI89]). Suppose
that there isL. € (E — PSPACE) and thatly; can be decided by a TM, with a logspace working tape (on
which we don't count reversals), and a constant number oftiaddl tapes on which we count reversals
(and no space bounds). Suppose that the total number ofsaéwds at mostog® N, for an arbitrary
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constantt € Z*. By [HS08] (Lemma 4.8), € DSPACE(r2(N) log N) = DSPACE(log?**! N), which
contradicts Fact 23 (3). O

B PPdL[l]=P

Proof of Theorem 9Let M be a vSM with one-way access to its external tape and lbe a string. We
assume, without loss of generality, thidtalways halts with an empty stack, scanning the last symbtien
external tape. By definition of thie- (two-sided unbounded) error regimi, acceptsw iff the number of
random strings that tak&/ to an accepting configuration is greater than the numbermafoma strings that
take it to a rejecting configuration. In what follows, we shitat there is a poly-time algorithm that, given
M andw, outputs the exact number of random strings that takéo an accepting configuration. Clearly,
the existence of such an algorithm pladgs\/) in P.

Without loss of generality (it costs an increase in the nundfestates by only a constant factor), we
assume that every transition &f is of exactly one of the following types:ushtransition, gpoptransition,

a (coin)tosstransition (in which the external tape head moves right), amovetransition (in which any of
the input tape head and internal tape heads can move).

We define asurface configuratior’ of M onw to consist of (0) the state dff, (1) the location of the
input head; (2) the full configuration of the work tapes (hpaditions and tape contents); (3) the top stack
symbol; and (4) the location of the external tape head (aehby/(C')) and the symbol it is scanning. We
define afull configurationC' of M onw to consist of everything included in a surface configuratigins
(5) the entire stack content.

Let C7, C> be two full configurations of\/ on w with h(C7) < h(C3), and letp be a string of size
h(C3) — h(C1) (Whenh(Cy) = h(Cy), pis the empty string). We say thét’;, Cs) is up-realizable along
if, when we plug inp on the external tape dff between locations(C;) + 1 andh(Cy), and we starfl/ in
full configurationC7, M eventually reaches full configuratia@rh,, and the stack level never drops below the
level in C7. We say thatC1, C») is realizable along if, additionally, the stack level is the sameGh and
in Cy. We say that a surface configurati6h is reachable if there is a full configuratiorC; with surface
C1 and a string such thatCy, C7) is up-realizable along, whereCy is the initial configuration of\/.

Informally, the heart of the proof in [Coo71], showing thahandeterministic SM can be simulated
in polynomial time, is that one can compute all realizablespaf surface configurations, where a pair is
realizable (in their sense) if it is realizable (in our sgradengsomestring (in that terminology, a sequence
of nondeterministic guesses). In here, to decide whetliexcceptsw, we compute exactly the number of
strings along which each pair is realizable.

More formally, letC’; be a full configuration such that its surfaCg is reachable and let, be a surface
configuration. We define(C1, Cs) to be the number of stringssuch that there exists a full configuration
Oy with surfaceCs, such that(Cy, Cs) is realizable along. Crucially, observe that a computation path that
starts atC; and along which the stack level never drops below thafiimnly depends on the surfacg of
C,. Thus, for full configurationg;, 71' with the same surfac€', and for all surface configuratiorns:,
we havea(Cy, Cs) = a(Ch', Cs). We denote this quantity by(Cy, C»). © Below, we give an algorithm
computing all non-zero entries(Cy, Cy). Having done that, to decide wheth&f acceptsw, we simply
sum the entriesx(Cy, C,,), whereCy is the surface of the initial configuration, aig, ranges over the
surfaces of accept configurations, and compare the reguitilue with half times the maximum number of
random strings.

%Note, we only care about the enifC1, C2) whenC is reachable, we leave it undefined otherwise.
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Let C' be a surface configuration 8f. Note thatC' completely determines the next transition\dgt If C'
is followed by amoveor apushtransition, letext(C') denote the next surface configurationidf(observe
that, in this caseC’ completely determinesext(C)). If C'is followed by atosstransition, slightly over-
loading notation, lehext(C') denote the set consisting of the two possible surface coatigus following
C, corresponding to the two possible outcomes of the coin(t@ssof the next symbol read on the external
tape). IfC is followed by apoptransition, letnext(C, z) denote the surface configuration followidgin
which the top stack symbol is now The following are easy consequences of our definitions.

Lemma 24. For all surface configurationg’;, C such thatC’; is reachable:
o If O =y, thena(Cl,Cg) = 1.
e If Cy is followed by amovetransition, thenu(C1, Cs) = a(next(Cy), Ca).

e If C is followed by atosstransition, andnext(Cy) = {C3,C4}, thena(Cy,Cs) = a(Cs,Cs) +
04(04,02).

e If 'y is followed by gpushtransition, denoting by the top stack symbol i€,
a(Cy,Cy) = Z a(next(Cy),Cs) - a(next(Cs, x), Ca).

C3:C3 is followed by a pop transition

To compute the entries(C1, Cs), we first define a partial order relation on surface configomat as
follows. Informally, C; < C] when some entry of the form(C1,-) directly depends on another entry
a(C1,-). Formally, we writeC; < C1 if (i) C1 is followed by amovetransition and”] = next(C); (i) C4
is followed by atosstransition and”] € next(C); and (iii) Cy is followed by apushtransition and (jii-a)
C] = next(C), or (iii-b) there exists a surface configuratii{’ such thata(next(C1),CY) > 0, C7 is
followed by apoptransition, and”] = next(CY, x), wherez is the top stack symbol i;.

Lemma 25. The relation< contains no cycles.

Proof of Lemma 25Assume a cycle exists. Lély, ..., C,, be a sequence of surface configurations such
that: ¢y, = C,,, and for everyl < i < m, C; < C;11. Observe that whenever; < C;,1, we have
h(C;) < h(Ci+1). Hence,h(Cy) = h(Cy,) = h(C;) for all i € [m], and so none of th€’; for i < m is
followed by atosstransition. Furthermore, if’; is followed by apoptransition, we cannot hawg; < ;.11
because such configurations create no dependencies. lgacgpne of the configurations in the sequence
C1,...,C,, is followed by either anoveor apushtransition.

But then, there is a path from a full configurati6h to a full configurationC; with the same surface
C1 = C,,, with the stack level never dropping below thatip. Since this path only depends on the surface
O, of C, and sincel;’ has the same surface, this path is infinite. We assufeis reachable from the
initial configuration ofM, henceM does not halt along this path, a contradiction. O

To fill in the values ina(+, -), we proceed as follows.

1. for all surface configé’, seen[C] < f al se

2. find any surface config; such thaseen|[C1] for all C{ with C; < C]
3. for all surface config€’s

4 computen(C1, C2) using the formulas in Lemma 24

5. endfor

6. seen[Cy] «—true

7. repeat step 2 as long there are unseen surface configugratio
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The test in step 2 can easily be implemented in the obvioussuggested by the definition ef. In the
“most complex” case (iii-b), one can simply try out all pdstiies for C?/, since there are only polynomially
many of them. By Lemma 25, this algorithm does not get stuckegt 2. As an invariant, when line 6 is
executed, all non-zero entries in the reMC', -) have been computed. Since there are polynomially many
surface configs, the algorithm runs in polynomial tinf&. O

C Variants of the model and omitted structural results

C.1 RPdL[poly] = RPdL"[poly]
Lemma 26. RPdL[r(N)] € RPALE[r(N)] € RPAL[O(r(N))], wherer(N) = NOO),

Proof of Lemma 26 The first inclusion is trivial. The second is also easy. Let RPdL[r(N)], and letAM/
be a SM such that for every ¢ L, M (x) rejects with probabilityl and for everyr € L, M (x) accepts with
probability % Moreover, the expected number of reversals on every impsit-(N), || = N. Construct
M’ which on inputz computes as follows.

1. SimulateM (z) for at mostdr(N) reversals; count the reversals on the worktape.
2. If more thandr (V) reversals are needed then reject.
3. else do whab/ (x) does.

Fix an inputz. If ¢ L thenM’ outputs the correct answer with probability

Suppose that € L and letR be the random variable that corresponds to the number ofsage
By Markov's inequality we have thder[R > 4r(N)] < 1/4, wherer(N) = E[R] by definition. First,
using Markov’s inequality we show th&[M (z) rejectsR < 4r(N)] < 2. The details of the calculations
are given below. Then, by a different application of Marleiriequality, together with the definition of
RPdL"[r(V)] we obtain thaPr[M’(z) rejecty < Z + 1 = 1L. This probability is amplified te< 3 in the
standard way, by considering a constant times larger raridpenand use its bits for independent repetitions.
This also increases the number of reversals by a constant.fac

Here are the details of the calculations. First, we boBrid/ (x) reject$R < 4r(N)] from above.

Pr[M (z) reject§ = Pr[R < 4r(N)| Pr[M(x) rejectsR < 4r(N)]
+ Pr[R > 4r(N)] Pr[M (z) reject$R > 4r(N)]
> (1 —Pr[R > 4r(N)]) Pr[M(z) reject3R < 4r(N)]

v

Z Pr[M (x) reject$R < 4r(N)]
P

4

r[M(x) reject$R < 4r(N)] <

[SSIN )

Then,

%As a side note, observe that the algorithm might computéeantf the formn(C1, Cs) for unreachabl€;, because we cannot
test whether”; is reachable. These entries are useless (they are fornmalgfined), but also harmless, because well-defined entries
never depend on undefined ones.
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Pr[M’(z) reject§ = Pr[R < 4r(N)] Pr[M’(z) reject$R < 4r(N)]
+ Pr[R > 4r(N)] Pr[M'(z) reject$R > 4r(N)]
= Pr[R < 4r(N)] Pr[M(x) reject$R < 4r(N)| + Pr[R > 4r(N)]
2 1 11

< Pr[M(x) reject$R < 4r(N)] + Pr[R > 4r(N)] < 3 + i-1

C.2 Non-deterministic variants

Proof of Theorem 3NPdL[1] = P follows directly by the nontrivial Theorem 1 p.7 [Coo71]. Bye NP-
completeness of $SAT under many-to-one logspace reductions, it suffices to deBiAT in NPdL[2],
sinceNPdL[2] is closed under logspace reductions.

We describe a non-deterministic SM foISAT. Let ¢ be the 3-CNF formula given in the input, with
n variablesxy, ..., x, andm clausesCi,...,C,,. Let 7 be a truth assignment identified by the string
(t(z1),...,7(z,)) and letr ¥ denote the reversed string. Simultaneously, we: (i) cheekruth assignment
is a satisfying one; and (i) check that the external tape th@form (7, 7%, ... 7, 7%, %), Associate

m times
with the first clause”; the first copy of the truth assignmentwith C, the second copy’?, and so on up
to Cp,.

To check (i) we do not use the stack, just the logspace woekiaperify thatr satisfiesC;, 7 satisfies
Cs and so on. This verification can be done in one scan over thelemmministic tape.

To check (ii) we use the stack and the worktape as follows p8sgthat the external memory contains
the stringswy, ... wy_1,w,. In the first scan the machine uses the stack to verify that= w?,
wp—3 = wl 5, andw,_1 = wk. When the head reverses it uses the stack to verifyithat = wl ,
and so on. Intuitively, we first verify equality between maity exclusive pairs and then we “link” them by
verifying equality among the pairs. O

For Theorem 3 itis essential that the machine has a stackskaf a regular log-space bounded TM the
situation is very different. Recall that a log-space TM vétholynomially-long read-only non-deterministic
tape characterizeNP. However, if we bound the number of reversals to be constan we cannot go
outsideNL. We denote by [r(V)] the class of sets decidable by logspace machines with exteon-
deterministic memory anc(V) scans.

Lemma 27. L*[r(N)] € NSPACE(r(N) log N)

Proof. We simulate a log-spaeg V)-scan NTMAM with aO(r(N) log N) space one-scan NTNY/'.

Fix an arbitrary branch of the non-deterministic compotatii.e. fix a choice of non-deterministic
coins. We patrtition this branch of the computation accaydmthe scan number. Associate each tape-scan
1,...,r(N) with a part of this branch of the non-deterministic compotathere is how\/’ works. We be-
gin by makingr(N)-many non-deterministic guesses for the configurationedch part of the computation
when the head is over the first symbol of the non-determmiape. We keep an additional copy (which we
won'’t modify during the simulation) for each of thes@V) configurations corresponding to head-position
over the first symbol. Storing each configuration takes sp¥¢eg N). M’ continues simulating/ simul-
taneously (and step-by-step) for th@V)-many parts of the computation. For the odd-numbered plaets t
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simulation moves forward in time, whereas for the even ohesimulation goes backwards in time (since
the head has opposite direction). If the guesses are vadidna¢ point the:(/V) parts of the computation
are going to meet and form a valid branch of the non-detestiincomputation. O

Corollary 28. LetL"[constant] := (J;2, LT[k]. ThenNL = L™ [constant].

Since with polynomially many reversals we go all the wayNiB it is natural to ask what is the first
time we captureP. Is it possible to captur® before we capture the whoP? For instance, is it pos-
sible thatP C LT[N*], for some constant > 0? This is not true, unlesB C NSPACE(N*log N) C
DSPACE(N*), for some constarit’.

D Omitted proofs from Section 3

Proof of Theorem 4P+RNC’ C RPdL[20(°e" V)] is the easy inclusion. Let € P+RNC’ and M be the
polytime transducer that on inputcomputesC,,.. Construct a vSMV/’ as follows: use Cook’s algorithm
[Coo71] to simulatel! so as to obtain thé&-th output bit from the description af,.. Note that each bit is
computed without accessing the random tajé evaluate<”,. on the provided randomness in the usual way
(e.g. [Ruz81]) by a depth first search. Note that if the dpsion of the circuit were given through oracle
access, the evaluation procedure would have taken 2fifes’Y). Hence, M’ makes at mosp© (o' N)
reversals on the random tape and the accepting probalsiliheisame as that 6f,.

To showRPdL[200oe" )] ¢ P+RNC*™ we rely on the time-compression Lemma 7 and on [Ruz80,
Ruz81]. In the version of the time-compression lemma fofarm machines, the advice can be computed
in polynomial time. FixZ € RPdL[200°¢" N)], and letM’ be a vSM such thaf(M’) = L. We construct a
polytime M that on inputr outputs a circuitC,, with the same accepting probability &§'.

There existd\/” extending)/’ as follows: (1)M” has an extra input (read-only) tape which will contain
the particular advice described in the proof of Lemma 7. (@}ttermore, " is a modification ofd/’ as
described in the proof of Lemma 7. Therefore, on inpgiven that the extra-tape contains this advitg,
computes identically td/’. Syntactically,M"” is a SM with three read-only input tapes. When the 3rd tape
contains the appropriate advick” is a SM that works in spaa@(log N) and in time20(lee’ V) NyO(1) —
20(log" N) ;> 1. We assert the existence of an equivalent AFF ) that works in spac€(log N) and
in time O(log™! N). This is being done by observing that the correspondingvatgrices carry through
when the only difference is that both the SM and the ATM indtebione they have three input tapes. It is
straightforward to verify that all equivalences betweenssiid ATMs in the constructions of Theorem 5
part 3 [Ruz81] p.379 (i.e. Theorem 2 [Ruz80] pp. 227-231Y @orollary 3 (c,d,e) [Ruz81] pp. 379-380
are the same when the number of input tapes is a constantrbiggeone. Hence, syntactically given the
3-input tape SMM” we have an ATMM yTv With 3-input tapes that computes identically. The constant
description ofA/5Tys it can be hardwired in a (polytime) TM/. Although M Ty andM” accept the same
inputs, we are only interested in the computations wherie 8rd tape contains the advice of Lemma 7;
in which case)M” computes the same dg¢’. Intuitively, one can blur the distinction between spaoeet
bounded ATMs and size-depth families of combinatorialwis; and moreover we observe that given the
description of the ATM we can construct efficiently the citdier the corresponding input length. That
is, the description of the polytimé&/ should be evident through the observation that the corigirum
the proof of Theorem 3 [Ruz81] p.375 is computable in t2SMN)O(T(N)) N = NOO) where
S(N) = O(log N) andT(N) = O(log"™! N) is the space and the time 8f1y;. For completeness we
briefly review this construction below.
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1. Oninputr use (the modified) Cook’s algorithm to compute the adviceasfima 7, which is a function
of N = |z|.

2. M has hardwired the description of the ATMay and it computes the description of a circaif.
In this circuit, both the input and the advice are hardwired using the constant 0/1 gatés ofrtuit.

3. The circuit gates are labelled with, ¢), wherea is the configuration of the ATM, antlis the time
where the output gates has label,itial, 0), Wherea;,itia) IS the starting configuration. Configurations
of typeV, 3 correspond to gates,\/, we connect gate&v, t), (5,t + 1) if « yields 5. The only
exceptions to this rule is when the time and the space becbigger than?'(N), S(N) in which
case we hardwire the gatestpand when we have configurations accessing the input in wd@sh
instead of a gate we have an input gate.

Step (1) takes polynomial time. The construction of theufrin Step 3, also takes polynomial time
OEWNNO(T(N))NOM), O

Proof of Theorem 6This is a straightforward argument, standard in derandatioiz. \We show the stronger
containmenRPdL[20(" M| ¢ BPPdL[200es’ N)] ¢ DTIME(200°8" M) _ 1t directly follows that Theo-
rem 4 holds also if we consid&PdL andP+BPNC, instead oRPdL andP+RNC.

Let L € BPPdL[2O(1°gZ N )]. Then, there exists polytime transduddrthat on inputz outputs a circuit
O, of depthO(log"™! N), such that ifx € L thenPr,[C,.(p) = 1] > 2/3, whereas ifz ¢ L then
Pr,[Cx(p) = 1] < 1/3, and the input to the circuit is of lengtN™, for a constanin > 0. We construct a
deterministic TMA/ that runs in timeO(21°gk N). Here is the description af/: (1) Enumerate all strings
of lengthO(m* log® N). (2) For each such string use the PRG to compute a sprisfdength N'". (3) Fix
the random tape af/ to bep and simulatelM in polytime. (4) Output the majority of the outcome of the
simulation.

M takes time©e" N) to enumerate all strings, for each such string it takes ohjial time to compute
p and then polynomial time to simulafe on (z, p).

We claim that for infinitely many;’s:

(*) for input z;, at least a fractiod — 2 = 4 > 1 of the pseudorandom strings/ gives the
correct answer, for sufficiently large input length

Note that the error probability in the definition BfBPPdL can be amplified to any constant arbitrarily
close tol /2, and thus (*) suffices to conclude the theorem.

Suppose (*) is not true. Then, we are going to liséo construct a (non-uniform) family of distinguish-
ers Dy, for infinitely many N’s (where N takes values among the output length of the PRG){g} be
an infinite family of inputs where (*) is false. Then, by defion C,, is an appropriate distinguisher with
distinguishing probability strictly greater thgn— 4 = 1. O

Proof of Lemma 7t suffices to show that the computation between two suceedwad-moves can be
“compressed” to be polynomially long by the use of the noifemm advice on the tape. This non-uniform
advice extends the non-uniform advice already given to thehime. Fix two arbitrary successive head-
moves. Partition the computationbetween these head-moves in two phases. Suppose that iatetedi
after reading the input symbol the stack level id.atn phase 1;y reaches its lowest stack height;,.

Let v be the computation subsequenceydfom the beginning until we reach the lowest stack level and
just before we start going upwards (pushing symbols to thek}t Definey, to be the complement of;

wrt v. Hence, iy, the computation reaches its final stack height. A simple counting argument shows
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that for a halting SM, the stack height is polynomial, and¢f@e the stack height in; gets decreased
polynomially low (from! to I,,:,) and in~, gets increased polynomially high (frofp,;, to l;.s:). We
constructM’ simulating M using the following non-uniform advice. The advice is a fiime from every
surface configuration to the set of surface configuratioettogr with two special symbols/, | }. For every
surface configuration define exactly one of the three pairs:

1. If starting fromo we can return to the same stack level without ever going béh@ninitial stack-
level (and without a head-move on the input) then considerctnfiguration after a maximally-long
computation such that whel returns to the same stack-level the surface configuratieh i$hen,
the associated pair i, o).

2. If starting fromo we move at least one level upwards without ever returningpedriitial stack-level
(and without moving the head) then the paifds?).

3. Else, the pair igo, |).

Obviously, this is a well-defined function and we say thatrfese configuratior is of type (1), (2) or
(3) respectively.

Between two successive head-mowéssimulates)/ by reading the advice tape and updating its surface
configuration appropriately. In case of (1) it updates thektape, the state and the top stack symbol. In
case of (2) and (3) it simulate¥ for one step.

We refer to asimulation stepas the computation sequenceldf in which M’ reads the non-uniform
tape, compares it to the current surface configuration adatep the surface configuration appropriately.
In what follows the reader is reminded that, v» is the computation of\/ which is simulated by the
machineM’, and that)’ is given the non-uniform advice. We say that a function frdma integers is
2-monotonically increasing (decreasing) if it is stricthcreasing (decreasing) for two successive integers;
i.e. for the functionr : Zt — Z*, h(n) < h(n + 1) andh(n) < h(n + 2).

Claim 29. In the simulation ofy; the stack height i/’ is 2-monotonically decreasing. Hence, this simu-
lation takes at mos2(! — ,,;,,) Simulation steps af/’.

Proof. Consider two successive stack levals> I := [ — 1 in 71 and consider the first tim&/’ gets to
1. The current surface configuratien cannot be of type (2). Suppose thatis of type (2). Since we are
in v; we know that the stack level gets as lowlas,. If o1 is of type (2) then we know that during the
stack level will get back té,. Hence o should instead be of type (1).

Hence o is either of type (1) or of type (3). If it is of type (3) therensthing left to show. Suppose
is of type (1). The fact that the next surface configuratiothisimulation cannot be of the same type (1)
follows by the maximality in the definition of type (1). O

Similarly, we show that in the simulation 6f the stack height id/’ is 2-monotonically increasing. [

Proof of Lemma 8.n this proof all circuit classes are uniform. Suppose thatrion-uniform advice can be
computed ifNC = SAC; i.e. let)M] be an SM that computes the advice string (i.e.ittrebit of the output)
in the proof of Lemma 7 ilNC. We show that every polytime computable tally languége {0}* can be
computed inNC. By [AlIB9] (Corollary 6.3 and Corollary 6.7) this impliebatPSPACE = EXP.

Since,£(M) € NC, by Theorem 1 we know that/ works in timeO (210" V).

Fix arbitrary L C {0}*, L € P. Let M be a SM, such thaf (M) = L.

We construct a SM”, which works in timeO (21°s°’ ¥ 'such thatC(M"”) = L; i.e. L € NC.
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Here is the description af/”. In a single tape-scan ovef' computeN and store it on the work-tape.
Note that)M” can simulatel/ on the given input, without moving its input head (also seapBsition 2.1
[AlI89]). Since the advice in the proof of Lemma 7 can be cotepuby M following this proof we can
construct a uniform\/’ that decided. and it makes polynomial many calls to an oracle computingithece

bit given its index. By assumption each oracle call can bepded by simulating/ in time 0(21"%0(1) M.
Therefore M" works in timeO(NO()21ee” Ny — (2log® Ny, O
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