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Abstract

Khrapchenko’s classical lower boumd on the formula size of the parity functioh can be interpreted
as designing a suitable measure of subrectangles of theicatotal rectanglef ~1(0) x f~(1). Trying

to generalize this approach we arrived at the concemoaffex measuresWe prove the negative result
that convex measures are boundeddfy?) and show that several measures considered for proving lowe
bounds on the formula size are convex. We also prove quadrggier bounds on a class of measures that
are not necessarily convex.
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1. Introduction

Most proofs of lower bounds on the formula size can be vievgeidaenting suitabléormal complexity
measuref boolean functions which can be nontrivially bounded frbelow at some explicitly given
boolean functionf : {0,1}" — {0,1}. Such measures are real valued functions defined on all dnwole
functions and satisfying certain conditions. Formal camjhty/ measures were introduced by Paterson. He
showed that Khrapchenkois® lower bound on the formula size of the parity function [8] dam recast
in this formalism (see e.g. [16], Sect. 8.8). Generalizifgapchenko’s argument for the parity function,
Rychkov [15] proved(n?) lower bounds for error correcting codes. All these resarésfor the De Morgan
basis—, v, A. In principle this approach should give lower bounds forrgvmasis, but no results for other
bases have been obtained in this manner. In this paper wendliconsider the de Morgan basis.

In order to obtain larger lower bounds, Razborov [13] pregb look at rectangles as matrices over
some field and introduce appropriate measures on subréetangerms of the corresponding submatrices.
Razborov studied the measures based on the rank of matdeeshowed that the rank can only give linear
lower bounds for the De Morgan basis, but it gives superpmtyial lower bounds for the monotone basis
v, A.
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More recently, a number of various matrix horms have beepgsed for proving lower bounds on
communication complexity and formula size [9, 10, 12]. Utdoately up to now none of the proposed
measures was able to prove more than quadratic lower bourtierefore it is necessary to explain this
failure before we attempt to break th&barrier for lower bounds based on formal complexity measure

In previous papers some limitations of the method used ithevere proved. Here we will introduce
another general conceptpnvex measuresThe reason for introducing this concept is to capture aelarg
class of measures that are defined using matrices on thegézta’(0) x f~1(1). We will prove that such
measures are always at m@n?) and show that some measures considered before are ofplishgnce
the upper bound also applies to them. Our upper bound on xongasures is based on the upper bound on
the fractional cover number of Karchmer, Kushilevitz, anddx [6]. Using a dterent technique we will
also prove quadratic, and even linear upper bounds on sdree mieasures related to convex measures.

The main message of this paper is that we must use non-coreasures in order to beat Khrapchenko’s
bound. Non-convexity, however, is only necessary but nfitcsent property: we show that the measure
based on matrix introduced by Razborov in [13] is hot conugbslhill, as shown by Razborov in [14], cannot
even yield super-linear lower bounds. The only super-catadiower bound, the lower bour@(n®-°M) of
Hastad [4], has not been translated into the formalism ofsores yet.

2. Basic concepts

Let n be a fixed positive integer, lef denote the set of all boolean functiois: {0,1}" — {0, 1}.
Literals are boolean variables and their negations. L(¢) denotethe formula size complexityf f in
the De Morgan basis, i.e., the minimal number of occurreddierals in a formula expressing using
connectivegVv, A}. A functionm : ¥ — R is calleda formal complexity measur boolean functions if it
satisfies the following inequalities:

(a) Normalization the measure of each literal is at most 1;
(b) Subadditivity m(g v h) < m(g) + m(h) andm(g A h) < m(g) + m(h), for everyg,h € F.

It follows, by induction, that for every formal complexityaasurem, we have that (f) > m(f) for
all boolean functions. On the other hand, is a formal complexity measure, hence we are not loosing
anything by using formal complexity measures. The hope as$ while it is hard to computé(f), we
may be able to handle other complexity measures. With théd igomind, the following larger class of
measures—so-called rectangle measures—were considenadry authors.

Let U, = {0,1}" x {0, 1}". In this paper we shall define amdimensionalcombinatorial rectangleor
just arectangle to be a non-empty Cartesian prod&t= S° x S* such thatS ¢ U, andS° n St = 0.
(Note thatU,, itself is not a rectangle.) The se&’ andS?* are calledsidesof the rectangleéS = SO x St. A
subrectangleof S is a subseR C S which itself forms a rectangle. Vector pais= (x,y) with x # y will
be referred to asdges A boolean functionf : {0, 1}" — {0, 1} separateshe rectangles = SO x St if

0 forxeS?
f(x) = '
» {1 for x e S1.

If the setsS® andS? form a partition of{0, 1)", then the rectangls = S°x St is called &ull rectangle Note
that there is a one-to-one correspondence between boairatiohsf : {0, 1}" — {0, 1} and full rectangles
of the form
St = fH0) x f1(1);
but there are much more rectangles than boolean functions.
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Important class of rectangles are monochromatic rectangktéch are the rectangles that can be sepa-
rated by single literals. That is, a rectanéle= M° x M* is monochromaticif there exists ame {1, ..., n}
and ane € {0, 1} such that for all X, y) € M, X; = ¢ andy; = 1 — &; herex; is thei-th bit in x. The smallest
monochromatic rectangles are single edges, i.e., reemngithe formM = {(x, y)} with x # y. The largest
ones are the so-callanonicalmonochromatic rectangles

Mie = {(Xy) € Uy: X = eandy; = 1 - &}.

These 2 rectangles cover every rectangle.

Instead of rectangles within the whole $&t, one can work only with rectangld® € S within some
fixed rectangleS, say, within the full rectangl&s = f~1(0) x f~1(1) of a given boolean functiof.

For the rest of this paper we shall assume that the dimemnsamal a rectangl§ are fixed. We shall call
S the ambient rectangle. In what follow®,= R(S) will denote the set of all subrectangles awti= M(S)
the set of all monochromatic subrectanglesof

2.1. Subadditive measures and communication complexity
A rectangle functions a real-valued functiop : R — R. A rectangle measures a rectangle function
u R — R satisfying the following two conditions:

(i) Normalization u(M) < 1 for every monochromatic rectangié € M.
(i) Subadditivity u(R) < u(R1) + u(Ry), for every rectangl® € R and for every its partition into disjoint
union of rectangle®;, R, € R.

The first condition is usually achieved by normalizationafis, if a rectangle function is subadditive, we
obtain a measure by defining
R = —
maxy v(M)
whereM ranges over all monochromatic rectangles.

These two conditions alreadyffige for lower-bounding the formula size. Notice that rectasgan be
decomposed into disjoint unions of two rectangles in twosvayertically and horizontally. Subadditivity
of rectangle measures corresponds to the two conditionsildditivity (b) in the definition of formal
complexity measures of boolean functions.

The connection between rectangle measures can be bestnséiem framework of communication
games, as introduced by Karchmer and Wigderson [7]: havirgctangleR, one of the players decom-
posesR either row-wise or column-wise, and the players continneeghme on one of the subrectangles
R; or Ry. LetT'(R) denote the minimal number of leaves in a tree like commuioicgorotocol for a rect-
angleR in a Karchmer-Wigderson game. Theff) = I'(S¢) [7]. The measurd’(R) itself is a rectangle
measure. Moreover, by induction (R), it can be easily shown th&(R) > u(R) holds for any rectangle
measure:. Hence, subadditive rectangle measures can re@ighas well. The advantage, however, is that
now we have a larger class of measures, and the subadduuwitition for rectangle measures is weaker
requirement than that for boolean functions.

We keep this important observation as

Proposition 2.1. For every boolean function f and every subadditive rectangkeasure: we have that
L(f) =I(St) > u(St).

The two concepts—rectangle measures and formal compledgsures—are related as follows.

Observation 2.2. If m(f) is a formal complexity measure of boolean functions, therrglatangle function
u(R), defined by:(R) := min{m(f): f separates R is a rectangle measure.
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2.2. Subadditive measures and the partition number
A more general condition than (ii) has also been considered:

(iii) Strong subadditivityif w(R) < X, u(M;), for every rectangldk and every its partition into disjoint
union of monochromatic rectanglé4 c R.

In order to obtain a lower bound dr{f) it suffices to require this property only f&= S;. Note, however,
that rectangle measures, satisfying the strong subaitigitendition (iii) may not achieve (f), because
they lower bound a dlierent quantity, namely, thgartition numberof rectangles defined by:

D(R) = min{k: R can be decomposed inkadisjoint monochromatic rectangles

As observed by Rychkov [15], this measure was implicitlydualkeady in Khrapchenko’s proof [8]. Since
D(R) is strongly subadditive, it is also subadditive. Herlgd,) > D(St) for any boolean functiori. But in
the opposite direction we only know that loig(f) < (log, D(S¢))? [1]. Still, the latter inequality implies
that boolean function$ in n variables such thad(Sy) > 2(1-2MW) VM exist. Hence, in principle, the partition
numberD(S) can also achieve super-polynomial lower bounds on thedt@size. The problem how large
the gapL(f)/D(St) can actually be remains still open.

The measur®(R) has several nice properties.

Proposition 2.3. D(R) is the largest strongly subadditive measure, DR) is strongly subadditive and for
every strongly subadditive measureu(R) < D(R) for all rectangles R.

We leave the proof to the reader as an easy exercise. AlthD(ighis the largest strongly subadditive
measure, it makes sense to study other strongly subadditesures, because it is veryidiult to compute
D(R) for specific functions.

Other nice properties d(R) include the following: it is defined independently of a jpaustar boolean
function, can be naturally extended from rectangles touddsstsX C S and is monotonic with respect to
set-inclusion. A consequence for lower bounds based onuresass that one can use measures with all
these nice properties and still obtain exponential loweiriolg.

However, we cannot stretch the good properties too far. tticodar, it is essential that in the subaddi-
tivity conditions the rectangles in the partitions must bé&wise disjoint. Would we not require them to be
disjoint, thenu(S) < 2nwould hold for anyn-dimensional rectangls, just because each such rectangle can
be covered by 2 canonical monochromatic rectangles. In the next sectiowillshow another property,
the convexity, that limits the values of measures satigfyin

3. Convex measures and the fractional partition number

For a rectangldR, let yr be its indicator function, that igsr(€) = 1 fore € R, andyr(e) = 0 fore ¢ R.
Let Rbe arectangleRy, ..., Ry its subrectangles and, . . ., r,, weights from [Q1] such that

m
XrR= ) Ti'XR (1)
i=1

Then we say that the rectangl®s, ..., R, with the weightsr4,...,rn are afractional partition of the
rectangleR. This is equivalent to the condition that for every edgeR,

ES

i;ecR;



Notice that if allr; € {0, 1} then a fractional partition is a partition. Instead of (1) st&ll use the following
simpler notation
R=)rR.
i

In this paper we are mainly interested in the following sfiteening of the strong subadditivity condi-
tion (iii) for rectangle measurgs

(iv) Convexity A rectangle functioru is convexif, for every rectangleR and every fractional partition
R=2irR,

HR < Y ri-u(R). @
i=1

Karchmer, Kushilevitz and Nisan in [6] introduced a modifica of the partition number which they
called deterministic fractional cover number. In this pawe will call it fractional partition humberland
denote it byD*(R). To call it ‘cover number’ would be misleading, becausesitmportant that one uses
partitions, not general coverings. This measure is defiged b

D*(R) = minz ri,

such thaR has a fractional partition with monochromatic rectangles. . ., M, and weightgq, ..., rm.
The following is a fractional version of Proposition 2.3

Proposition 3.1. D* is the largest convex measure, i.8% is convex and for every convex measure
u(R) < D*(R) for all rectangles R.

Proor. First we will show thaD* is convex. LeR = 3., rjR; be a fractional partition oR and, for every
j, letRj = e, sjMij be a fractional partition oR; such thatVii; are monochromatic and"(R;) = 3; s;
(such fractional partitions exist by definition). Then,alg, R = 3;; rjsjM;; is a fractional partition oR
into monochromatic rectangles. Hence

D'(R) < Y rjsj = Y 1D (R).
] j

Now we will show the second part. Legtbe a convex measure. Liet= Y, ri M; be a fractional partition
of Rinto monochromatic rectangles such tb&{R) = > ; ri. Using convexity and normality of we get

uR < ) riu(M) < ) ri =D'(R).

Theorem 3.2 ([6]). For every n-dimensional rectangle B%(S) < 4n°.

Consequently every convex measure is boundechByRor the sake of completeness we will reproduce
their proof. By more careful computation we will get the damﬂ;% instead of 4. We will state and prove
the bound for all convex measures.

Following Karchmer [5], and Karchmer, Kushilevitz and Nig&], associate with each subset [n] =
{1,...,n} the following twoparity rectangles

Ple={xe{0,1}": @i X =&} x{ye{0,1}": @ yi=1-¢}, e=0,1.

Hence, monochromatic rectangles correspond to the case \WWhe 1. There are exactly™! parity

rectangles (including the empty one).
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Lemma 3.3. Every edgdx,y) € {0, 1}" x {0, 1}" such that x# y belongs to exactl@"! parity rectangles.

Proor. Forl C [n], letv, € {0,1}" be its incidence vector. Let= (x,y) € S. Sincex # Yy, the vectorx oy
is not a zero vector. Since each nonzero vector is orthogoraalGF(2) to exactly half of the vectors in
{0, ", this implies that precisely™! of the vectors, are non-orthogonal t& @ y. This means that each
edgee belongs to precisely™? of the sets, = Pi.oU P 1. SinceP,; o N Py 1 =0, we are done. O

Lemma 3.4. Let u be a rectangle measure defined on S. Then for evety [n], ¢ = 0,1, we have
u(Pren'S) < gl

Proor. A parity rectangleP, . can be viewed as a rectangle corresponding to the paritytiuman ||
variables, or its negation. As shown in [11] parityrof 2' + k variables can be computed by a formula of
sizec(n) = 2'(2' + 3K). This givesc(n) < 2n?. To see that, observe that the functig(y + 3x)/(y + x)? for
x € (0,y) reaches maximum at the pomt: y/3, and it has then value/8. Henceu(SN Py ;) < %ll 12, since
wis a lower bound to the formula size. O

Theorem 3.5. If u is a convex rectangle measure then, for every n-dimensiectdngle S,
u(S) < 1.25(% +n).
Proor. LetS be arectangle anga convex measure. Foe 1,...n,£=0,1, let
Rie ={PienS:1Cn],|l| =i}

and letRy,r be the union of all thesenXamilies of parity subrectangles 8f For counting reasons, we shall
understandRpar as a multiset, elements &%, corresponding to dierent parity rectangles are considered
different. Under this provision, Lemma 3.3 implies that everyeddS is contained in exactly2! elements

of Rpar. HenceR,ar form a fractional partition o6 with each rectangl® € Rpa of weightrg = 2-(-1. By
the previous lemma, we know thafR) < ci? for everyR € R; ., wherec = 9/8 = 1.25. The convexity of:

implies that
u(S) < Z rr-u(R) = 2-(n-1) Z u(R) = 2-(n-1) Z Z u(R)

ReRpar ReRpar i,e ReRi;

<27 1)2 Z ( )CI =2 (- 1)ZCZ( )I =2 (- Z)CZ( )

i=1 e=0,1

The identity(}) - k = n- (_7) gives

Hence u(S) < 2-2¢(n? + n)2"2 = ¢(n? + n). O



4, General construction of convex measures

In his seminal paper [8], Khrapchenko proved a general ldsend on formula size complexity of the
form
l(xy) € R: dist(xy) = 1))
IR ’
whereR is a subrectangle @&¢. Paterson (see, e.g., [16]) interpreted this formula asradbcomplexity
measure and reproved Khrapchenka’dower bound on the parity function in this formalism. We vall
the measure

L(f) >

IRN Y2
b 3
R (3

whereY = {(x,y): dist(x,y) = 1} is the set of all vector pairs of Hamming distance 1, iieapchenko
measure One can also interpret Rychkov's lower bounds on error ctimg codes as lower bounds based
on the Khrapchenko measure. There one uses pairs of disshnoestd + 1 instead ofyY for codes of the
minimal distance @ + 1.

We can interpret Khrapchenkao’s lower bound as follows. Qagswith rectangle functionrs(R) = |R],
w(R) = |Y N R|, which themselves do not give better than linear lower beuntle define a new rectangle
functionu(R) = F(w(R), s(R)) by means of a real functioR(x, y) = x?/y, and it is this measure that allows
us to prove quadratic lower bounds. In this scenario, subueitigdis guaranteed by properties &. This
suggests the possibility of obtaining a new rectangle nredsom some given set of rectangle measures by
means of a functiofr : R™ — R in the hope that the new measure will be more apt to prove |bwends.

In this section, we observe thathfhas nice properties thénwill produce a subadditive measure, buFif
has too nice properties, it will produce a convex measure.

Notice that the Khrapchenko measure has the form

k(R) =

(R = s(R) - w(%)

with w(R) = RN Y|, s(R) = |IR ande¢(X) = x2. Subadditivity ofu stems from the fact that the used
real functiony is convex. As will be stated in Corollary 4.3, convexity gfimplies thatu is a convex
rectangle measure (W(R), s(R) satisfy certain conditions), and henee&annot give better than quadratic
lower bounds.

We will need another condition (stronger than convexity):

(vi) Additivity: a(R) = a(Ry) + a(Ry), for all rectangles}, Ry, R, € R such thaiR is the disjoint union of
R, andRs.

Observe that, for every additive rectangle functign

a(R) = > afe). 4)

ecR

Thus an additive rectangle functions is defined by a matrithenambient rectangl8. Examples of such
rectangle functions argR| and |R N Y| that appear in the definition of the Khrapchenko measure. The
convexity of additive measures is a consequence of thenwitpstronger property:

a(R) = ri-a(R), (5)
i=1
.



for every fractional partitiorR = 3, riR;, which is an immediate consequence of (4).

The fractional partition numbed* was introduced in [6] in order to apply the linear programgnin
duality for obtaining lower bounds on communication comjtle of relations, in particular for proving
lower bounds on formula size complexity. Applying the diyafor linear programs, one can write this
measure as

D*(S) = m\,\","XZ w(e),
eeS

where the maximum is over all functiong : S — R satisfying the constraint ey w(e) < 1 for all
monochromatic rectangléd. Hence, in order to prove a lower boubd(S) > t it is enough to find at least
one weight functiow : S — R such that}, .5 w(e) > t, and the weight of each monochromatic rectangle
does not exceed 1. In our terminology this means to find artiegldneasurav such thatv(S) > t.

In other words, whenever a lower bound can be proved usingngeganeasure, it can be proved using
an additive measure. However, in practice it may be easievoitk with convex measures rather than
additive ones. Karchmer, Kushilevitz, and Nisan found pssingly new proof of Khrapchenkois? lower
bound based on an additive measure. Their measure usasegasi negative values. As we will see, it is
necessary to use negative values in order to obtain superliower bounds. (This implies thBat is not
additive.)

We start with a simple observation.

Proposition 4.1. Any linear combination of convex rectangle functions is avea rectangle function.

Proor. Letus,...,un be convex rectangle functions. Le(R) = Y1, & - ui(R) be their linear combination.
LetR = Z’j“:l riR; be a fractional partition dR. The convexity ofy;’s implies thaty;(R) < Z'J-“:l ri-ui(R;),
foralli=1,...,n. Then

,U(R)Zzai',Ui(R)SZainj'ﬂi(Rj)ZZFjZai',ui(Rj)zzrj-y(Rj).
i—1 i—1  j=1 1 i1 i—1

= i=
0

LetF : R™ — R be areal function imvariables. We shall think afrtuples of real numbers as vectors
in R™. The results below can be extended to functions whose domsiaisubset oR™ closed w.r.t. addition
of vectors, and multiplication by positive real numbers. &g that~ is subnorm if any two non-negative
numbersa andb, and any two vectorg andy in R™,

F(ax+ by) < aF(X) + bF(y). (6)

If this only holds fora = b = 1, thenF is calledsubadditive What makes subadditive function subnorm is
the conditionF(ax) < aF(x) for everya > 0.

Let nows(R) andw(R) be two rectangle functions. Having such rectangle funstiand a real-valued
function F(x,y), we can consider induced rectangle functions. This carabi#yeextended ton-tuples of
rectangle functions and for functioff'son more than two variables.

Proposition 4.2. Let F(x,y) be a subnorm, and(R) an additive rectangle function. Then the induced
rectangle functionug(R) = F(W(R), s(R)) is convex if

1. eitherw(R) is additive,



2. or w(R) is convex and Ex, y) is nhondecreasing in x.

The same also holds with words “subnorm” and “convex” repdcboy “subadditive”.

Proor. To prove the first claim, assume that bet{R) ands(R) are additive, and Ie}; r;R; be a fractional
partition of R. Setw; = w(R)) ands = s(R). By (5), we have thav(R) = >iri - w; ands(R) = > ri - S.
SinceF is a subnorm, this yields

ue(R) = FW(R.S(R) = F( Y rwi. Y ris) <1 ) Fw.8) = ) ue(R).

If w(R) is only convex (not necessarily additive) Butx, y) is nondecreasing ix, then we can replace the
second equality by inequality. O

Note that subadditivity o guarantees subadditivity ¢fi-, and henceur can be (after appropriate
normalization) used as a rectangle measure for provingribeends. But ifF is also a subnormyg will
be convex and the lower bounds given iy cannot excee®(n?). However, there are many subadditive
real functions that are not subnorms. It is not clear whethefunctionF can be chosen in such a way that
ur will give better than quadratic lower bounds.

Say that a rectangle functia(R) is positiveif s(R) > 0 for every nonempty rectangke(of our ambient
rectangle).

Corollary 4.3. Let a rectangle functiop be defined as follows:

)

SR ()

(R = s(R) - so(

whereyp : R — R is a convex real function ang(R) is additive and positive rectangle function.

1. If w(R) is additive, thenu is convex.
2. If ¢ is nondecreasing and(R) is subadditive thep is subadditive.
3. If ¢ is nondecreasing and(R) is convex them is convex.

Proor. It is suficient to prove that the functioR(x,y) = ygo(§) is a subnorm. The conditioR(ax, ay) <
aF(x,y) is immediate. (This is in fact equality arkélis a norm.) Subadditivity of is an application of
Jensen’s inequality:

(ylzl + yzzz) - Y1o(Z1) + Y2(22) ()
yi+ys /7 Y1+ Y2 '
Assumey,, Yo > 0. Settingz = X /y;, we obtain that
(xl + x2) 3 y1e(3r) + Y2¢(32)
4 yi+y2/ " Y1+ Y2 '
Hence
X1+ X2 X1 X2
+Vo) - <yi-ol—=]+y2-0|—=]|.
1 +y2) 90()’1 +y2) n 90()’1) y2 90(y2)
O



5. Polynomial rectangle measures

An important special case of measures considered abovedamngle measuresof the form (7) based
on convex function of the form(x) = XX, k > 1. That s,

(R
MR = et (©)

wherew(R) is subadditive. We call thempolynomial measures of degree k

Sincep = X, k > 1 is a nondecreasing convex function, Corollary 4.3 implies polynomial measures
are subadditive measures. Moreovew(R) is convex thernu(R) is also convex. Therefore, by Theorem
3.5, polynomial measures with convexXR) can yield at most quadratic lower bounds.

On the other hand, every subadditive measure is a polynaongakure of degree one. This shows that
polynomial measures can in principle give exponential iohainds.

Quadratic lower bounds were proved by Khrapchenko [8] ugpmignomial measures of degrée=
2 with w(R) additive and positive, as well as by Karchmer, Kushileetrd Nisan [6] using polynomial
measures of degrde= 1 with w(R) additive but not non-negative.

5.1. Small degreel < k < 2 and additive weight

For 1 < k < 2, polynomial measures witw(R) subadditiveand non-negativean give exponential
lower bounds. To see this, consider the rectangle fungit{®) = w(R)*/|R* with w(R) = L(R) being the
smallest size of a formula separatiRgHence, this weight functiow(R) is subadditive and non-negative,
andu(R) is normalized sinc&(R) is normalized. Most boolean functionsrirvariables, and hence, most
dimensional rectangleR requireL(R) > 2"1-°M), For such rectangleR, measure:(R) gets asymptotically
close to the values

2kn
_S _on2k
22n(k-1) :
On the other hand, small degree measures are useless, ifqwieer¢he weight functioow(R) be non-
negative ancdditive

Proposition 5.1. Let k> 1 andu(R) = w(R)¥/s(R)¥"1, wheres(R) is a positive monotone rectangle func-
tion. If the weight functiow(R) is additive and non-negative, theifR) < (2n)* for any n-dimensional
rectangle R.

Proor. The normalization condition(M) < 1, for a monochromatic rectangh implies that
k-1
w(M) < s(M)x .

Since everyn-dimensional rectangle can be (non-disjointly) coveredabynost 2 canonical monochro-
matic rectangled/; ., we have

W(S) < > w(Mi,) < 3 s(Mi,)'T <2n-5(S)'F .

ie i,e

Dividing by s(S)k;kl and raising to the powdswe get the inequality. O
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Hence, if the used additive weight functior(R) is non-negativethen no polynomial measure of degree
k < 2 can even reach th# lower bound (even if the size functi@{S) is not necessarily additive). Note
however thatv(R) being non-negative is here essential: everkferl, additive measures can give quadratic
lower bounds, if some edges are assignegativeweights [6].

It remains unclear whether polynomial measures of degreekl< 2 can yield larger lower bounds
using additive weight functions (taking both positive aredjative values). In the next section we answer
this question for polynomial measures of degkee?2: in this case no subadditive weight function can lead
to larger than quadratic (whén= 2) and even larger than linear (whkn 2) lower bounds.

5.2. Large degree: k 2 and subadditive weight

We now show that every polynomial measure of dedeee2, with w(R) subadditive can give at most
linear lower bounds.

Theorem 5.2. Letu be a rectangle measure of the form

G
- |R|k—1 i

u(R)

wherew(R) is a subadditive rectangle function. Then, for any n-dinered rectangle S, we have

1. u(S) < ?ifk = 2;
2. u(S) = O(n) ifk > 2.

In the proof we will need the following technical lemma (whg®oof is given an Appendix).
Lemmab.3. Leta> 1anda € [0, 1), and leté(a) be the maximum, over all x € [0, 1], of

ha(X,y) = (xy)* + ((1 = X)(1 - y)* + a(x(L - y)* + a((1 — x)y)* .
Then

() £(8) = max{a(l + aw1)t, 21-27(1 + a)).

(i) If @ = 3 then for every ¢ 1
d+1>¢(d). (10)

@iy If @ > % then there exists a constant ¢ such that for every4
c-(d+1)F > ¢c-db). (11)
We now turn to the actual proof of Theorem 5.2. et S° x S. Sinceu is normalized, we have that
w(M) < |MF-Yk (12)
for every monochromatic rectanghé.

Claim 5.4.
1. Ifk = 2thenw(S) < n- |S|¥/2.
2. Ifk > 2thenw(S) < cnK|S|*-YK for a constant c.
11



Note that Theorem 5.2 is a direct consequence of this clairnthd casd = 2,

~w(S)? _ (nsfr?z -,
MO = =g =g =™

and in the cask > 2, K 1/kja1-1/kyk

w(S c-n/¥|S|

,u(S) = (k—)l < ( k-1 )
S| S|

Hence, it remains to prove Claim 5.4. Let dir= [{i: A(X,y) € R: X # Vyi}|, and let

=cn=0(n).

w(m, d) = maxXw(R): dmR < dand|R =m}.

Given a rectangl&k with dimR = d + 1, we can split it into four disjoint rectangles, two monamiatic
ones and two remaining ones of a smaller dimension. MoretlgxdR is ana x b rectangle then, for some
X,y € [0, 1], the monochromatic rectangles will be of sizsx by anda(l — X) x b(1 - y), and the two
remaining rectangles of sizx x (1 — y)b anda(l — x) x by. By (12), we have that

w(m, 1) < m® wherea :=1- 1/k.
Sincew(R) is subadditive, we have a recurrent inequality

w(md+1) < SuIO ((xym® + (1= x)(1 = y)mM)* +w(x(1 - y)m.d) + w((1 - x}ym d)) .

x,ye[0

We want to upper bound(m, d). For this, it is stficient to find a functiorg which satisfieg(m, 1) > m*
and

g(md+1)= ySl[JIO ((xym® + (1= x)(1 = y)m)* + g(x(1 - y)m.d) + g((1 - x}ym d)) .

We look for a solution of the form
g(m,d) = m* - h(d).

Henceh(d) needs to satisfy the inequalitiéél) > 1 and

h(d+1) > ) ySl[Jopl ()" + (1 =X)L = y)* + h(A)(X(L - y)* + h(d)((1 - x)y)) .

Using the definition from Lemma 5.3, it isSicient to haveh(d) > 1 and
h(d + 1) > &(h(d)) .

Lemma 5.3 then asserts that fer= 1/2 (i.e.,k = 2) h(d) = d is a solution, and forr > 1/2 (i.e.,k > 2),
h(d) = ¢- d* is a solution. This completes the proof of Claim 5.4, and il proof of Theorem 5.20]

6. More examples of measures

In this section we shall survey rectangle measures and dhetveéveral of the proposed measures are
convex. Most rectangle measures are based on some matnediefS, i.e., a mappindA : S — F, for
some field. The idea of studying matrix parameters for pmplaaver bounds on formula size complexity is
due to Razborov [13].

12



For example, Khrapchenko’s bound can be viewed as basedanatrix
AlXx y] = 1if d(x,y) = 1 and O otherwise. (13)

Similarly Rychkov’s lower bounds on codes of distancke+2l are based on matrices that have 1 for pairs
of distance at modd + 1 and O otherwise.

There are tway lower bounds for parity, both based on convex measures. €3he original Khrapchenko’s
bound, the other is the bound of Karchmer, Kushilevitz ansbNithat uses an additive measure. There is
yet another convex measure that gives the same bound. Ndatelybe a real matrix defined dB. Then
the rectangle function defined by

(Cyert A V)

SROXRY) = ) = ap

xeRO

is convex. Indeed, since the measure of a rectangle is the@stlma measures of its rows, itffices to show
convexity for rows. This follows from Corollary 4.3.3.

If Sis the rectangle of the parity function aAds in (13), the functio is normalized, hence measure,
andga(S) = n?. The measurea for this special matriXA was introduced by Koutsoupias [9].

6.1. Matrix rank

Razborov in [13] used the rank of matrices to prove lower loisuzn monotone formula size. Given an
nx n matrix A (over some field), he associates with it the following meadarn-dimensional rectangles:

rank(Ar)
maxy rankAy) (14)

whereAg is the restriction ofA to the rectangldr (obtained by setting to O all entries outsiy and the
maximum is over all monochromatic subrectangleR ¢dr over all canonical monochromatic rectangles of
the ambient rectangl8, as originally defined in [13]; Proposition 6.1 below holdslar both definitions).
If rank(AR) = 0 then we setia(R) = 0.

Subadditivity of rank implies that these measures are glit)agl But it turns out that rank-based
measures are not convex.

ua(R) =

Proposition 6.1. For any even integer n there is(@, 1) matrix A such that the measugg is not convex.

Proor. Letn be even. Take a rectangie= R® x R with R® = {xg,..., X,} andR! = {yi,...,yn} where
X =6,y =& +6e, andg € {0,1})™ is theith unit vector. LetA be the complement of thex n unit
matrix. We define the fractional partition of the rectanglas follows.

For everyi € [n] we take the size-1 rectangi® = {(X;, y;)} and give it weight; = 1. To cover the rest
of the rectangleR, we use rectanglelR = {(x;,y;): i €1,j ¢ 1} forall I c [n] of size|l| = n/2, and give

them weight
4\( n\1
”:@_HKWJ |

This is a fractional partition, because rectangjecontainsn?/4 of then? — n ones inA and there arén;‘z)
such rectangles.
For everyi € [n] we have thaiua(R) = 0 since we have only O's on the diagonal A&f For every

subsetl of [n] we have thajua(R)) = 1 since there are no 0’s outside the diagonal, implying Agatis
13



an all-1 matrix. Hence, on the right hand side of the corradp inequality (2) for convexity we have
the sum ofn zeros (the ranks of the size one matrices on the diagonalfn%jderms each being at most

4(n72)_1, implying that the right hand sums to at most 4. On the othedhaince rankf) isnorn-1
(which depends on and the field), on the left hand side we hayg€R) > (n — 1)/2: by the construction
of R, no monochromatic subrectang\é of R can hit the diagonal in more than one entry, implying that
rank(Av) < 2. O

We have shown that, for some measusgs the convexity inequality (2) fails badly: the right hand
side is constant whereas the left had sid@(s). Since the measures, based on the rank are not convex,
Theorem 3.5 does not apply for them. Still, Razborov in [IMed that these measures belong to the class
of so-called submodular measures, and none of them canlgigler tharnO(n) lower bound.

6.2. Matrix norms

Interesting measures can be obtained from matrix norms. ppimgA — ||Al] is a matrix norm if it
satisfies all the properties of vector norms:

(i) 1Al > 0 with equality if and only ifA = O;
@ii) |IrAll = Ir] - |All for all numbers and all matrice#\, and
(i) |JA+ BJ| < ||All + IB|| for all matricesA andB.

In particular, every matrix norm is a subnorm in the senseeaftin 4, and the rectangle functip(R) =
IIARll is convex. By Corollary 4.3.3, i is a non-decreasing convex real function anig an additive
rectangle function, then the rectangle function

||AR||)’ (15)

HR) = R o
is also convex, and hence cannot give better Bérf) lower bounds. We give two examples of measures
that appear in the literature.

Factorization norm. Factorization normy,(A), is mainly used in Banach space theory. Linial and
Shraibman used this norm to prove lower bounds on the quaotummunication complexity [12]. It has
several equivalent definitions one of which is:

A) = max ||Ao B,
y2(A) ||B||2=l|| ll2

whereA o B is the Hadamard (i.e. componentwise) product of matrices an

Ju'Av
All2 = max——
A2 = N8 o
is the spectral norm oA. Sincey, is a norm, any rectangle measure of the form (15) that ysean yield
at most quadratic lower bounds.
Spectral norm and its squar®arnum, Saks and Szegedy [3] introduced a parameter of &rodlmc-
tions defined by
A2
SA(f) == max————
() Az0 max ||Aill2
whereA ranges over all nonzero matrices 8pandAi[x, y] = Alx ] if X; # y; and 0 otherwise. Laplante,
Lee and Szegedy [10] studied a parameter of boolean fursatimifedsumPI( ) which is known to be equal

to SA(f). They proved that
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1. sumPI(f)? < D(St), hencesumPI(f)? < L(f), and
2. sumPI(f)? < n?.

We shall show a relation of this parameter to convex receanggasures which also implies a quadratic
upper bound.
Proposition 6.2. SA(f)? < D*(S).

Proor. Let A # 0 be fixed and let, v be vectors such thafAv = ||A)l,. For a rectangl® = X x Y, let
u‘R denoteu restricted toX and letvg denotev restricted toY. Letc = maxy [|Amll2. LetT = {x: u[X] #
0} x {y: Vv[y] # 0}. For arectangl® C T define:

2
|U}qARVR|) B UL ARVRI?
ClURIIVRI C2|urlAIVRIZ

O’A(R) = (

For the other rectangles defing(R) = ca(RNT) if RN T # 0 and 0 otherwise. By definitiomra(R) is
normalized. We shall show that it is convex.

First observe thalU‘RARle is a convex function. Indeed, I& = >, R« be a fractional partition oR.
Then

Dtk D, UrIXARDOYIVRIY]| <

k  (xy)eR

t
JURARVR| =

> URIXIARLX. YIVRDY]

(xy)eR

>

k

> Wk IXARIX YIVR Y]
(x.Y)eRk
By Corollary4.3 and since?|ug?lvgl? is an additive rectangle functiom;a(R) is a convex measure and
aa(St) < D*(S¢).
Notice thatA is the direct sum oy, andAy;,. Since every monochromatic rectangle is a subrect-
angle of one of the maximal monochromatic rectangles andghetral norm is monotonic with respect to
submatrices, we get

= > rduk AR VR,
k

¢ = max|[Aullz < max||Ail2.

Hence
sumPI()? = SA(F)? < maxca(St) < D(Sr).
+

7. Open problems

Problem 7.1. Can polynomial rectangle measures (9) of degteg k < 2 yield super-quadratic lower
bounds when the weight functiar{R) is an additive (but not necessarily non-negative) rectarighction?

Problem 7.2. Can rectangle functiongg(R) = F(w(R), s(R)) with F(x, y) subadditive and botiw(R) and
s(R) additive yield super-quadratic lower bounds?

Problem 7.3. Is it possible to generalize the quadratic upper bound ofoféie 5.2 to measures of the form

(R
u(R) = #

wheres(R) is an arbitrary additive and positive measure?
15



We only have such upper bounds {R) subadditive and(R) = |R|, orw(R) convex and(R) additive and
positive. The problem is to find a common generalization eéhtwo cases.

Problem 7.4. Is it possible to prove superpolynomial lower bounds on nam® formulas using convex
measures?

This is equivalent to the problem of [6] whether the monotémaetional covering number can be super-
polynomial.

Problem 7.5. Prove a super-quadratic lower bound of using formal comiptexeasures.

Interpreting Andreev’s [2] or Hastad’s proof in terms of reees may be a way to make progress in lower
bounds on the formula size complexity.
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Appendix: Proof of Lemma5.3

To prove the first claim (i), led > 1 anda € [0, 1) be given. Our goal is to determine
= h
@) nax, a(X,Y) »

where
ha(X,y) = (xy)* + ((1 — X)(1 - y%)g +a(x(1-y)* +a((1 - xy)”*.



The functionh(x,y) := ha(X, y) is continuous and hence it attains maximum on the sgBatg0, 1] x [0, 1].
The maximum can be reached either in the interioPpbr on the boundary. The boundary itself consists
of the corners and the sides®f We consider these cases separately.

The cornersWe obtain

h(0,0) = h(1,1) = 1, h(0,1) = h(1,0) = a.
The sides. Sety := 1 and let us determine critical points lofx, 1) on (Q 1). Setting thex-derivative of

h(x, 1) to O gives
X 1_al-x*t=o0.
Hence the only critical point is at

1
Aa-1

X =

1+art
and the value ofi(x) is
a(l+ar1)to
The other cases are symmetric.
The interior. Sinceh(x,y) = h(1 — x,1 - ), h has a critical point atX,y) = (1/2,1/2). The value of
h(x, y) at this point is
21721 + a).

There are no other critical points, since th@artial derivative is strictly monotone iwand hence it can
have at most one zero.
Altogether we get

maxh(x.y) = max{l, aa(l +ar1)l 2l-20(1 4 a)} . (16)

Sincea > 1, this gives maxh(x.y) = max{a(1 + ar1)l-e 21-2¢(1 4 a)}.

To prove the second claim (ii), let = % Thené(a) = max{a(1+ a‘z)%, a+ a)}, and we must show
that
d+1> max{d(1+ a2 1+ d} ,

which is immediate.
To prove the last claim (iii), let > % We must findc > 1 such that

c-dr 1+ (- db)Fnyte,
221+ ¢ db?).

c-d+1)t >
c-d+1t >
The first inequality is satisfied by amy> 1. Since 1- a > 0, it is equivalent to
d+1>d-(1+(c-d-o)a)
and hence tal + 1 > d + c71 resp. toct= > 1. The second inequality will be satisfied, if
c-((d+ 1)t - ol-2a dl-o) > ol-2a
We have

C- ((d + 1)1—a _ 21—Za X dl—a) >c- dl—a(l _ 21—2a) )
17



Our assumptiom > 1/2 implies 22* < 1, and it is sificient to set

21-2 1

c= 1_21—20 = 22(1/—1_1'

If @ € (3,1) thenc > 1. O
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