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Abstract

Khrapchenko’s classical lower boundn2 on the formula size of the parity functionf can be interpreted
as designing a suitable measure of subrectangles of the combinatorial rectanglef −1(0) × f −1(1). Trying
to generalize this approach we arrived at the concept ofconvex measures. We prove the negative result
that convex measures are bounded byO(n2) and show that several measures considered for proving lower
bounds on the formula size are convex. We also prove quadratic upper bounds on a class of measures that
are not necessarily convex.
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1. Introduction

Most proofs of lower bounds on the formula size can be viewed as inventing suitableformal complexity
measuresof boolean functions which can be nontrivially bounded frombelow at some explicitly given
boolean functionf : {0, 1}n → {0, 1}. Such measures are real valued functions defined on all boolean
functions and satisfying certain conditions. Formal complexity measures were introduced by Paterson. He
showed that Khrapchenko’sn2 lower bound on the formula size of the parity function [8] canbe recast
in this formalism (see e.g. [16], Sect. 8.8). Generalizing Khrapchenko’s argument for the parity function,
Rychkov [15] provedΩ(n2) lower bounds for error correcting codes. All these resultsare for the De Morgan
basis¬,∨,∧. In principle this approach should give lower bounds for every basis, but no results for other
bases have been obtained in this manner. In this paper we willonly consider the de Morgan basis.

In order to obtain larger lower bounds, Razborov [13] proposed to look at rectangles as matrices over
some field and introduce appropriate measures on subrectangles in terms of the corresponding submatrices.
Razborov studied the measures based on the rank of matrices.He showed that the rank can only give linear
lower bounds for the De Morgan basis, but it gives superpolynomial lower bounds for the monotone basis
∨,∧.
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More recently, a number of various matrix norms have been proposed for proving lower bounds on
communication complexity and formula size [9, 10, 12]. Unfortunately up to now none of the proposed
measures was able to prove more than quadratic lower bounds.Therefore it is necessary to explain this
failure before we attempt to break then2 barrier for lower bounds based on formal complexity measures.

In previous papers some limitations of the method used therein were proved. Here we will introduce
another general concept,convex measures. The reason for introducing this concept is to capture a large
class of measures that are defined using matrices on the rectangle f −1(0)× f −1(1). We will prove that such
measures are always at mostO(n2) and show that some measures considered before are of this type, hence
the upper bound also applies to them. Our upper bound on convex measures is based on the upper bound on
the fractional cover number of Karchmer, Kushilevitz, and Nisan [6]. Using a different technique we will
also prove quadratic, and even linear upper bounds on some other measures related to convex measures.

The main message of this paper is that we must use non-convex measures in order to beat Khrapchenko’s
bound. Non-convexity, however, is only necessary but not sufficient property: we show that the measure
based on matrix introduced by Razborov in [13] is not convex but still, as shown by Razborov in [14], cannot
even yield super-linear lower bounds. The only super-quadratic lower bound, the lower boundΩ(n3−o(1)) of
Håstad [4], has not been translated into the formalism of measures yet.

2. Basic concepts

Let n be a fixed positive integer, letF denote the set of all boolean functionsf : {0, 1}n → {0, 1}.
Literals are boolean variables and their negations. LetL( f ) denotethe formula size complexityof f in
the De Morgan basis, i.e., the minimal number of occurrencesof literals in a formula expressingf using
connectives{∨,∧}. A functionm : F → R is calleda formal complexity measureof boolean functions if it
satisfies the following inequalities:

(a) Normalization: the measure of each literal is at most 1;
(b) Subadditivity: m(g∨ h) ≤ m(g) +m(h) andm(g∧ h) ≤ m(g) +m(h), for everyg, h ∈ F .

It follows, by induction, that for every formal complexity measurem, we have thatL( f ) ≥ m( f ) for
all boolean functionsf . On the other hand,L is a formal complexity measure, hence we are not loosing
anything by using formal complexity measures. The hope is that while it is hard to computeL( f ), we
may be able to handle other complexity measures. With this goal in mind, the following larger class of
measures—so-called rectangle measures—were considered by many authors.

Let Un = {0, 1}n × {0, 1}n. In this paper we shall define ann-dimensionalcombinatorial rectangle, or
just a rectangle, to be a non-empty Cartesian productS = S0 × S1 such thatS ⊆ Un andS0 ∩ S1 = ∅.
(Note thatUn itself is not a rectangle.) The setsS0 andS1 are calledsidesof the rectangleS = S0 × S1. A
subrectangleof S is a subsetR ⊆ S which itself forms a rectangle. Vector pairse = (x, y) with x , y will
be referred to asedges. A boolean functionf : {0, 1}n→ {0, 1} separatesthe rectangleS = S0 × S1 if

f (x) =















0 for x ∈ S0,

1 for x ∈ S1.

If the setsS0 andS1 form a partition of{0, 1}n, then the rectangleS = S0×S1 is called afull rectangle. Note
that there is a one-to-one correspondence between boolean functions f : {0, 1}n→ {0, 1} and full rectangles
of the form

S f := f −1(0)× f −1(1) ;

but there are much more rectangles than boolean functions.
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Important class of rectangles are monochromatic rectangles which are the rectangles that can be sepa-
rated by single literals. That is, a rectangleM = M0×M1 is monochromatic, if there exists ani ∈ {1, . . . , n}
and anε ∈ {0, 1} such that for all (x, y) ∈ M, xi = ε andyi = 1− ε; herexi is thei-th bit in x. The smallest
monochromatic rectangles are single edges, i.e., rectangles of the formM = {(x, y)} with x , y. The largest
ones are the so-calledcanonicalmonochromatic rectangles

Mi,ε = {(x, y) ∈ Un : xi = ε andyi = 1− ε} .

These 2n rectangles cover every rectangle.
Instead of rectangles within the whole setUn, one can work only with rectanglesR ⊆ S within some

fixed rectangleS, say, within the full rectangleS f = f −1(0)× f −1(1) of a given boolean functionf .
For the rest of this paper we shall assume that the dimensionn and a rectangleS are fixed. We shall call

S the ambient rectangle. In what follows,R = R(S) will denote the set of all subrectangles andM =M(S)
the set of all monochromatic subrectangles ofS.

2.1. Subadditive measures and communication complexity
A rectangle functionis a real-valued functionµ : R → R. A rectangle measureis a rectangle function

µ : R → R satisfying the following two conditions:

(i) Normalization: µ(M) ≤ 1 for every monochromatic rectangleM ∈ M.
(ii) Subadditivity: µ(R) ≤ µ(R1) + µ(R2), for every rectangleR ∈ R and for every its partition into disjoint

union of rectanglesR1,R2 ∈ R.

The first condition is usually achieved by normalization. That is, if a rectangle functionν is subadditive, we
obtain a measure by defining

µ(R) =
ν(R)

maxM ν(M)
,

whereM ranges over all monochromatic rectangles.
These two conditions already suffice for lower-bounding the formula size. Notice that rectangles can be

decomposed into disjoint unions of two rectangles in two ways—vertically and horizontally. Subadditivity
of rectangle measures corresponds to the two conditions of subadditivity (b) in the definition of formal
complexity measures of boolean functions.

The connection between rectangle measures can be best seen in the framework of communication
games, as introduced by Karchmer and Wigderson [7]: having arectangleR, one of the players decom-
posesR either row-wise or column-wise, and the players continue the game on one of the subrectangles
R1 or R2. Let Γ(R) denote the minimal number of leaves in a tree like communication protocol for a rect-
angleR in a Karchmer-Wigderson game. ThenL( f ) = Γ(S f ) [7]. The measureΓ(R) itself is a rectangle
measure. Moreover, by induction onΓ(R), it can be easily shown thatΓ(R) ≥ µ(R) holds for any rectangle
measureµ. Hence, subadditive rectangle measures can reachL( f ) as well. The advantage, however, is that
now we have a larger class of measures, and the subadditivitycondition for rectangle measures is weaker
requirement than that for boolean functions.

We keep this important observation as

Proposition 2.1. For every boolean function f and every subadditive rectangle measureµ we have that
L( f ) = Γ(S f ) ≥ µ(S f ).

The two concepts—rectangle measures and formal complexitymeasures—are related as follows.

Observation 2.2. If m( f ) is a formal complexity measure of boolean functions, then the rectangle function
µ(R), defined byµ(R) := min{m( f ) : f separates R}, is a rectangle measure.
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2.2. Subadditive measures and the partition number

A more general condition than (ii) has also been considered:

(iii) Strong subadditivity: if µ(R) ≤ ∑m
i=1 µ(Mi), for every rectangleR and every its partition into disjoint

union of monochromatic rectanglesMi ⊆ R.

In order to obtain a lower bound onL( f ) it suffices to require this property only forR= S f . Note, however,
that rectangle measures, satisfying the strong subadditivity condition (iii) may not achieveL( f ), because
they lower bound a different quantity, namely, thepartition numberof rectangles defined by:

D(R) = min{k: Rcan be decomposed intok disjoint monochromatic rectangles} .

As observed by Rychkov [15], this measure was implicitly used already in Khrapchenko’s proof [8]. Since
D(R) is strongly subadditive, it is also subadditive. Hence,L( f ) ≥ D(S f ) for any boolean functionf . But in
the opposite direction we only know that log2 L( f ) ≤ (log2 D(S f ))2 [1]. Still, the latter inequality implies
that boolean functionsf in n variables such thatD(S f ) ≥ 2(1−o(1))

√
n exist. Hence, in principle, the partition

numberD(S) can also achieve super-polynomial lower bounds on the formula size. The problem how large
the gapL( f )/D(S f ) can actually be remains still open.

The measureD(R) has several nice properties.

Proposition 2.3. D(R) is the largest strongly subadditive measure, i.e.,D(R) is strongly subadditive and for
every strongly subadditive measureµ, µ(R) ≤ D(R) for all rectangles R.

We leave the proof to the reader as an easy exercise. AlthoughD(R) is the largest strongly subadditive
measure, it makes sense to study other strongly subadditivemeasures, because it is very difficult to compute
D(R) for specific functions.

Other nice properties ofD(R) include the following: it is defined independently of a particular boolean
function, can be naturally extended from rectangles to all subsetsX ⊆ S and is monotonic with respect to
set-inclusion. A consequence for lower bounds based on measures is that one can use measures with all
these nice properties and still obtain exponential lower bounds.

However, we cannot stretch the good properties too far. In particular, it is essential that in the subaddi-
tivity conditions the rectangles in the partitions must be pairwise disjoint. Would we not require them to be
disjoint, thenµ(S) ≤ 2n would hold for anyn-dimensional rectangleS, just because each such rectangle can
be covered by 2n canonical monochromatic rectangles. In the next section wewill show another property,
the convexity, that limits the values of measures satisfying it.

3. Convex measures and the fractional partition number

For a rectangleR, let χR be its indicator function, that is,χR(e) = 1 for e ∈ R, andχR(e) = 0 for e < R.
Let Rbe a rectangle,R1, . . . ,Rm its subrectangles andr1, . . . , rm weights from [0, 1] such that

χR =

m
∑

i=1

r i · χRi , (1)

Then we say that the rectanglesR1, . . . ,Rm with the weightsr1, . . . , rm are afractional partition of the
rectangleR. This is equivalent to the condition that for every edgee ∈ R,

∑

i:e∈Ri

r i = 1 .
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Notice that if allr i ∈ {0, 1} then a fractional partition is a partition. Instead of (1) weshall use the following
simpler notation

R=
∑

i

r iRi .

In this paper we are mainly interested in the following strengthening of the strong subadditivity condi-
tion (iii) for rectangle measuresµ:

(iv) Convexity: A rectangle functionµ is convexif, for every rectangleR and every fractional partition
R=

∑

i r iRi ,

µ(R) ≤
m

∑

i=1

r i · µ(Ri) . (2)

Karchmer, Kushilevitz and Nisan in [6] introduced a modification of the partition number which they
called deterministic fractional cover number. In this paper we will call it fractional partition numberand
denote it byD∗(R). To call it ‘cover number’ would be misleading, because it is important that one uses
partitions, not general coverings. This measure is defined by:

D∗(R) = min
∑

i

r i ,

such thatRhas a fractional partition with monochromatic rectanglesM1, . . . ,Mm and weightsr1, . . . , rm.
The following is a fractional version of Proposition 2.3

Proposition 3.1. D∗ is the largest convex measure, i.e.,D∗ is convex and for every convex measureµ,
µ(R) ≤ D∗(R) for all rectangles R.

P. First we will show thatD∗ is convex. LetR=
∑

j∈J r jRj be a fractional partition ofR and, for every
j, let Rj =

∑

i∈I j
si j Mi j be a fractional partition ofRj such thatMi j are monochromatic andD∗(Rj) =

∑

i si j

(such fractional partitions exist by definition). Then, clearly, R =
∑

i j r j si j Mi j is a fractional partition ofR
into monochromatic rectangles. Hence

D∗(R) ≤
∑

i j

r j si j =
∑

j

r jD
∗(Rj) .

Now we will show the second part. Letµ be a convex measure. LetR=
∑

i r i Mi be a fractional partition
of R into monochromatic rectangles such thatD∗(R) =

∑

i r i . Using convexity and normality ofµ we get

µ(R) ≤
∑

i

r iµ(Mi) ≤
∑

i

r i = D∗(R) .

�

Theorem 3.2 ([6]). For every n-dimensional rectangle S ,D∗(S) ≤ 4n2.

Consequently every convex measure is bounded by 4n2. For the sake of completeness we will reproduce
their proof. By more careful computation we will get the constant 9

8 instead of 4. We will state and prove
the bound for all convex measures.

Following Karchmer [5], and Karchmer, Kushilevitz and Nisan [6], associate with each subsetI ⊆ [n] =
{1, . . . , n} the following twoparity rectangles.

PI ,ε = {x ∈ {0, 1}n : ⊕i∈I xi = ε} × {y ∈ {0, 1}n : ⊕i∈I yi = 1− ε} , ε = 0, 1 .

Hence, monochromatic rectangles correspond to the case when |I | = 1. There are exactly 2n+1 parity
rectangles (including the empty one).
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Lemma 3.3. Every edge(x, y) ∈ {0, 1}n × {0, 1}n such that x, y belongs to exactly2n−1 parity rectangles.

P. For I ⊆ [n], let vI ∈ {0, 1}n be its incidence vector. Lete = (x, y) ∈ S. Sincex , y, the vectorx⊕ y
is not a zero vector. Since each nonzero vector is orthogonaloverGF(2) to exactly half of the vectors in
{0, 1}n, this implies that precisely 2n−1 of the vectorsvI are non-orthogonal tox ⊕ y. This means that each
edgeebelongs to precisely 2n−1 of the setsPI = PI ,0 ∪ PI ,1. SincePI ,0 ∩ PI ,1 = ∅, we are done. �

Lemma 3.4. Let µ be a rectangle measure defined on S . Then for every I⊆ [n], ε = 0, 1, we have
µ(PI ,ε ∩ S) ≤ 9

8 |I |
2.

P. A parity rectanglePI ,ε can be viewed as a rectangle corresponding to the parity function in |I |
variables, or its negation. As shown in [11], parity ofn = 2l + k variables can be computed by a formula of
sizec(n) = 2l (2l + 3k). This givesc(n) ≤ 9

8n2. To see that, observe that the functiony(y+ 3x)/(y + x)2 for
x ∈ (0, y) reaches maximum at the pointx = y/3, and it has then value 9/8. Henceµ(S∩PI ,ε) ≤ 9

8 |I |2, since
µ is a lower bound to the formula size. �

Theorem 3.5. If µ is a convex rectangle measure then, for every n-dimensionalrectangle S ,

µ(S) ≤ 1.25(n2 + n) .

P. Let S be a rectangle andµ a convex measure. Fori = 1, . . . n, ε = 0, 1, let

Ri,ε := {PI ,ε ∩ S : I ⊆ [n], |I | = i}

and letRpar be the union of all these 2n families of parity subrectangles ofS. For counting reasons, we shall
understandRpar as a multiset, elements ofRpar corresponding to different parity rectangles are considered
different. Under this provision, Lemma 3.3 implies that every edge inS is contained in exactly 2n−1 elements
of Rpar. HenceRpar form a fractional partition ofS with each rectangleR ∈ Rpar of weightrR = 2−(n−1). By
the previous lemma, we know thatµ(R) ≤ ci2 for everyR ∈ Ri,ε, wherec = 9/8 = 1.25. The convexity ofµ
implies that

µ(S) ≤
∑

R∈Rpar

rR · µ(R) = 2−(n−1)
∑

R∈Rpar

µ(R) = 2−(n−1)
∑

i,ε

∑

R∈Ri,ε

µ(R)

≤ 2−(n−1)
n

∑

i=1

∑

ε=0,1

(

n
i

)

ci2 = 2−(n−1)2c
n

∑

i=1

(

n
i

)

i2 = 2−(n−2)c
n

∑

i=1

(

n
i

)

i2 .

The identity
(

n
k

)

· k = n ·
(

n−1
k−1

)

gives

n
∑

i=1

(

n
i

)

i2 = n ·
n

∑

i=1

(

n− 1
i − 1

)

i = n ·
n

∑

i=1

(

n− 1
i − 1

)

+ n ·
n

∑

i=1

(

n− 1
i − 1

)

(i − 1)

= n ·
n

∑

i=1

(

n− 1
i − 1

)

+ n ·
n

∑

i=2

(

n− 1
i − 1

)

(i − 1)

= n ·
n

∑

i=1

(

n− 1
i − 1

)

+ n(n− 1) ·
n

∑

i=2

(

n− 2
i − 2

)

= n2n−1 + n(n− 1)2n−2 = (n2 + n)2n−2 .

Hence,µ(S) ≤ 2−(n−2)c(n2 + n)2n−2 = c(n2 + n). �

6



4. General construction of convex measures

In his seminal paper [8], Khrapchenko proved a general lowerbound on formula size complexity of the
form

L( f ) ≥ |{(x, y) ∈ R: dist(x, y) = 1}|2
|R| ,

whereR is a subrectangle ofS f . Paterson (see, e.g., [16]) interpreted this formula as a formal complexity
measure and reproved Khrapchenko’sn2 lower bound on the parity function in this formalism. We willcall
the measure

κ(R) =
|R∩ Y|2
|R| , (3)

whereY = {(x, y) : dist(x, y) = 1} is the set of all vector pairs of Hamming distance 1, theKhrapchenko
measure.One can also interpret Rychkov’s lower bounds on error correcting codes as lower bounds based
on the Khrapchenko measure. There one uses pairs of distanceat mostd + 1 instead ofY for codes of the
minimal distance 2d + 1.

We can interpret Khrapchenko’s lower bound as follows. One starts with rectangle functionss(R) = |R|,
w(R) = |Y ∩ R|, which themselves do not give better than linear lower bounds. We define a new rectangle
functionµ(R) = F(w(R), s(R)) by means of a real functionF(x, y) = x2/y, and it is this measure that allows
us to prove quadratic lower bounds. In this scenario, subadditivity is guaranteed by properties ofF. This
suggests the possibility of obtaining a new rectangle measure from some given set of rectangle measures by
means of a functionF : R

m→ R in the hope that the new measure will be more apt to prove lowerbounds.
In this section, we observe that ifF has nice properties thenF will produce a subadditive measure, but ifF
has too nice properties, it will produce a convex measure.

Notice that the Khrapchenko measure has the form

µ(R) = s(R) · ϕ
(

w(R)
s(R)

)

with w(R) = |R ∩ Y|, s(R) = |R| andϕ(x) = x2. Subadditivity ofµ stems from the fact that the used
real functionϕ is convex. As will be stated in Corollary 4.3, convexity ofϕ implies thatµ is a convex
rectangle measure (ifw(R), s(R) satisfy certain conditions), and henceµ cannot give better than quadratic
lower bounds.

We will need another condition (stronger than convexity):

(vi) Additivity: α(R) = α(R1) + α(R2), for all rectanglesR,R1,R2 ∈ R such thatR is the disjoint union of
R1 andR2.

Observe that, for every additive rectangle functionα,

α(R) =
∑

e∈R
α(e). (4)

Thus an additive rectangle functions is defined by a matrix onthe ambient rectangleS. Examples of such
rectangle functions are|R| and |R ∩ Y| that appear in the definition of the Khrapchenko measure. The
convexity of additive measures is a consequence of the following stronger property:

α(R) =
m

∑

i=1

r i · α(Ri) , (5)
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for every fractional partitionR=
∑m

i=1 r iRi, which is an immediate consequence of (4).
The fractional partition numberD∗ was introduced in [6] in order to apply the linear programming

duality for obtaining lower bounds on communication complexity of relations, in particular for proving
lower bounds on formula size complexity. Applying the duality for linear programs, one can write this
measure as

D∗(S) = max
w

∑

e∈S
w(e),

where the maximum is over all functionsw : S → R satisfying the constraint
∑

e∈M w(e) ≤ 1 for all
monochromatic rectanglesM. Hence, in order to prove a lower boundD∗(S) ≥ t it is enough to find at least
one weight functionw : S → R such that

∑

e∈S w(e) ≥ t, and the weight of each monochromatic rectangle
does not exceed 1. In our terminology this means to find an additive measurew such thatw(S) ≥ t.

In other words, whenever a lower bound can be proved using a convex measure, it can be proved using
an additive measure. However, in practice it may be easier towork with convex measures rather than
additive ones. Karchmer, Kushilevitz, and Nisan found a surprisingly new proof of Khrapchenko’sn2 lower
bound based on an additive measure. Their measure uses positive and negative values. As we will see, it is
necessary to use negative values in order to obtain superlinear lower bounds. (This implies thatD∗ is not
additive.)

We start with a simple observation.

Proposition 4.1. Any linear combination of convex rectangle functions is a convex rectangle function.

P. Letµ1, . . . , µn be convex rectangle functions. Letµ(R) =
∑n

i=1 ai · µi(R) be their linear combination.
Let R=

∑m
j=1 r jRj be a fractional partition ofR. The convexity ofµi ’s implies thatµi(R) ≤ ∑m

j=1 r j · µi(Rj),
for all i = 1, . . . , n. Then

µ(R) =
n

∑

i=1

ai · µi(R) ≤
n

∑

i=1

ai

m
∑

j=1

r j · µi(Rj) =
m

∑

j=1

r j

n
∑

i=1

ai · µi(Rj) =
m

∑

j=1

r j · µ(Rj) .

�

Let F : R
m→ R be a real function inmvariables. We shall think ofm-tuples of real numbers as vectors

in R
m. The results below can be extended to functions whose domainis a subset ofRm closed w.r.t. addition

of vectors, and multiplication by positive real numbers. Wesay thatF is subnorm, if any two non-negative
numbersa andb, and any two vectors~x and~y in R

m,

F(a~x+ b~y) ≤ aF(~x) + bF(~y) . (6)

If this only holds fora = b = 1, thenF is calledsubadditive. What makes subadditive function subnorm is
the conditionF(ax) ≤ aF(x) for everya > 0.

Let nows(R) andw(R) be two rectangle functions. Having such rectangle functions and a real-valued
function F(x, y), we can consider induced rectangle functions. This can be easily extended tom-tuples of
rectangle functions and for functionsF on more than two variables.

Proposition 4.2. Let F(x, y) be a subnorm, ands(R) an additive rectangle function. Then the induced
rectangle functionµF(R) = F(w(R), s(R)) is convex if

1. eitherw(R) is additive,

8



2. or w(R) is convex and F(x, y) is nondecreasing in x.

The same also holds with words “subnorm” and “convex” replaced by “subadditive”.

P. To prove the first claim, assume that bothw(R) ands(R) are additive, and let
∑

i r iRi be a fractional
partition ofR. Setwi = w(Ri) andsi = s(Ri). By (5), we have thatw(R) =

∑

i r i · wi ands(R) =
∑

i r i · si.
SinceF is a subnorm, this yields

µF(R) = F(w(R), s(R)) = F
(

∑

i

r iwi ,
∑

i

r i si

)

≤ r i

∑

i

F(wi , si) =
∑

i

µF(Ri) .

If w(R) is only convex (not necessarily additive) butF(x, y) is nondecreasing inx, then we can replace the
second equality by inequality. �

Note that subadditivity ofF guarantees subadditivity ofµF, and henceµF can be (after appropriate
normalization) used as a rectangle measure for proving lower bounds. But ifF is also a subnorm,µF will
be convex and the lower bounds given byµF cannot exceedO(n2). However, there are many subadditive
real functions that are not subnorms. It is not clear whetherthe functionF can be chosen in such a way that
µF will give better than quadratic lower bounds.

Say that a rectangle functions(R) is positiveif s(R) > 0 for every nonempty rectangleR (of our ambient
rectangle).

Corollary 4.3. Let a rectangle functionµ be defined as follows:

µ(R) = s(R) · ϕ
(

w(R)
s(R)

)

, (7)

whereϕ : R→ R is a convex real function ands(R) is additive and positive rectangle function.

1. If w(R) is additive, thenµ is convex.
2. If ϕ is nondecreasing andw(R) is subadditive thenµ is subadditive.
3. If ϕ is nondecreasing andw(R) is convex thenµ is convex.

P. It is sufficient to prove that the functionF(x, y) = yϕ( x
y) is a subnorm. The conditionF(ax, ay) ≤

aF(x, y) is immediate. (This is in fact equality andF is a norm.) Subadditivity ofF is an application of
Jensen’s inequality:

ϕ
(y1z1 + y2z2

y1 + y2

)

≤ y1ϕ(z1) + y2ϕ(z2)
y1 + y2

. (8)

Assumey1, y2 > 0. Settingzi = xi/yi , we obtain that

ϕ
( x1 + x2

y1 + y2

)

≤
y1ϕ(

x1
y1

) + y2ϕ(
x2
y2

)

y1 + y2
.

Hence

(y1 + y2) · ϕ
(

x1 + x2

y1 + y2

)

≤ y1 · ϕ
(

x1

y1

)

+ y2 · ϕ
(

x2

y2

)

.

�
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5. Polynomial rectangle measures

An important special case of measures considered above are rectangle measuresµ of the form (7) based
on convex function of the formϕ(x) = xk, k ≥ 1. That is,

µ(R) =
w(R)k

|R|k−1
, (9)

wherew(R) is subadditive. We call thempolynomial measures of degree k.
Sinceϕ = xk, k ≥ 1 is a nondecreasing convex function, Corollary 4.3 impliesthat polynomial measures

are subadditive measures. Moreover, ifw(R) is convex thenµ(R) is also convex. Therefore, by Theorem
3.5, polynomial measures with convexw(R) can yield at most quadratic lower bounds.

On the other hand, every subadditive measure is a polynomialmeasure of degree one. This shows that
polynomial measures can in principle give exponential lower bounds.

Quadratic lower bounds were proved by Khrapchenko [8] usingpolynomial measures of degreek =
2 with w(R) additive and positive, as well as by Karchmer, Kushilevitzand Nisan [6] using polynomial
measures of degreek = 1 with w(R) additive but not non-negative.

5.1. Small degree:1 ≤ k < 2 and additive weight

For 1 ≤ k < 2, polynomial measures withw(R) subadditiveand non-negativecan give exponential
lower bounds. To see this, consider the rectangle functionµ(R) = w(R)k/|R|k−1 with w(R) = L(R) being the
smallest size of a formula separatingR. Hence, this weight functionw(R) is subadditive and non-negative,
andµ(R) is normalized sinceL(R) is normalized. Most boolean functions inn variables, and hence, mostn-
dimensional rectanglesR requireL(R) ≥ 2n(1−o(1)). For such rectanglesR, measureµ(R) gets asymptotically
close to the values

2kn

22n(k−1)
= 2n(2−k) .

On the other hand, small degree measures are useless, if we require the weight functionw(R) be non-
negative andadditive.

Proposition 5.1. Let k ≥ 1 andµ(R) = w(R)k/s(R)k−1, wheres(R) is a positive monotone rectangle func-
tion. If the weight functionw(R) is additive and non-negative, thenµ(R) ≤ (2n)k for any n-dimensional
rectangle R.

P. The normalization conditionµ(M) ≤ 1, for a monochromatic rectangleM implies that

w(M) ≤ s(M)
k−1

k .

Since everyn-dimensional rectangle can be (non-disjointly) covered byat most 2n canonical monochro-
matic rectanglesMi,ε, we have

w(S) ≤
∑

i,ε

w(Mi,ε) ≤
∑

i,ε

s(Mi,ε)
k−1

k ≤ 2n · s(S)
k−1

k .

Dividing by s(S)
k−1

k and raising to the powerk we get the inequality. �
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Hence, if the used additive weight functionw(R) is non-negative, then no polynomial measure of degree
k < 2 can even reach then2 lower bound (even if the size functions(S) is not necessarily additive). Note
however thatw(R) being non-negative is here essential: even fork = 1, additive measures can give quadratic
lower bounds, if some edges are assignednegativeweights [6].

It remains unclear whether polynomial measures of degree 1≤ k < 2 can yield larger lower bounds
using additive weight functions (taking both positive and negative values). In the next section we answer
this question for polynomial measures of degreek ≥ 2: in this case no subadditive weight function can lead
to larger than quadratic (whenk = 2) and even larger than linear (whenk > 2) lower bounds.

5.2. Large degree: k≥ 2 and subadditive weight

We now show that every polynomial measure of degreek > 2, with w(R) subadditive can give at most
linear lower bounds.

Theorem 5.2. Letµ be a rectangle measure of the form

µ(R) =
w(R)k

|R|k−1
,

wherew(R) is a subadditive rectangle function. Then, for any n-dimensional rectangle S , we have

1. µ(S) ≤ n2 if k = 2;
2. µ(S) = O(n) if k > 2.

In the proof we will need the following technical lemma (whose proof is given an Appendix).

Lemma 5.3. Let a≥ 1 andα ∈ [0, 1), and letξ(a) be the maximum, over all x, y ∈ [0, 1], of

ha(x, y) = (xy)α + ((1− x)(1− y))α + a(x(1− y))α + a((1− x)y)α .

Then

(i) ξ(a) = max
{

a(1+ a
1
α−1 )1−α, 21−2α(1+ a)

}

.

(ii) If α = 1
2 then for every d≥ 1

d + 1 ≥ ξ(d) . (10)

(iii) If α > 1
2 then there exists a constant c such that for every d≥ 1,

c · (d + 1)1−α ≥ ξ(c · d1−α) . (11)

We now turn to the actual proof of Theorem 5.2. LetS = S0 × S1. Sinceµ is normalized, we have that

w(M) ≤ |M|1−1/k (12)

for every monochromatic rectangleM.

Claim 5.4.

1. If k = 2 thenw(S) ≤ n · |S|1/2.
2. If k > 2 thenw(S) ≤ cn1/k|S|1−1/k, for a constant c.

11



Note that Theorem 5.2 is a direct consequence of this claim. In the casek = 2,

µ(S) =
w(S)2

|S| ≤
(n|S|1/2)2

|S| = n2 ,

and in the casek > 2,

µ(S) =
w(S)k

|S|k−1
≤ (c · n1/k|S|1−1/k)k

|S|k−1
= ckn = O(n) .

Hence, it remains to prove Claim 5.4. Let dimR= |{i : ∃(x, y) ∈ R : xi , yi}|, and let

w(m, d) = max{w(R) : dimR≤ d and|R| = m} .

Given a rectangleR with dimR = d + 1, we can split it into four disjoint rectangles, two monochromatic
ones and two remaining ones of a smaller dimension. More exactly, if R is ana× b rectangle then, for some
x, y ∈ [0, 1], the monochromatic rectangles will be of sizesax× by anda(1 − x) × b(1 − y), and the two
remaining rectangles of sizeax× (1− y)b anda(1− x) × by. By (12), we have that

w(m, 1) ≤ mα whereα := 1− 1/k.

Sincew(R) is subadditive, we have a recurrent inequality

w(m, d + 1) ≤ sup
x,y∈[0,1]

(

(xym)α + ((1− x)(1− y)m)α + w(x(1− y)m, d) + w((1− x)ym, d)
)

.

We want to upper boundw(m, d). For this, it is sufficient to find a functiong which satisfiesg(m, 1) ≥ mα

and
g(m, d + 1) ≥ sup

x,y∈[0,1]

(

(xym)α + ((1− x)(1− y)m)α + g(x(1− y)m, d) + g((1− x)ym, d)
)

.

We look for a solution of the form
g(m, d) = mα · h(d) .

Henceh(d) needs to satisfy the inequalitiesh(1) ≥ 1 and

h(d + 1) ≥ sup
x,y∈[0,1]

(

(xy)α + ((1− x)(1− y))α + h(d)(x(1 − y))α + h(d)((1 − x)y)α
)

.

Using the definition from Lemma 5.3, it is sufficient to haveh(d) ≥ 1 and

h(d + 1) ≥ ξ(h(d)) .

Lemma 5.3 then asserts that forα = 1/2 (i.e.,k = 2) h(d) = d is a solution, and forα ≥ 1/2 (i.e.,k > 2),
h(d) = c · d1−α is a solution. This completes the proof of Claim 5.4, and thus, the proof of Theorem 5.2.�

6. More examples of measures

In this section we shall survey rectangle measures and show that several of the proposed measures are
convex. Most rectangle measures are based on some matrix defined onS, i.e., a mappingA : S → F, for
some field. The idea of studying matrix parameters for proving lower bounds on formula size complexity is
due to Razborov [13].
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For example, Khrapchenko’s bound can be viewed as based on the matrix

A[x, y] = 1 if d(x, y) = 1 and 0 otherwise. (13)

Similarly Rychkov’s lower bounds on codes of distance 2d + 1 are based on matrices that have 1 for pairs
of distance at mostd + 1 and 0 otherwise.

There are twon2 lower bounds for parity, both based on convex measures. One is the original Khrapchenko’s
bound, the other is the bound of Karchmer, Kushilevitz and Nisan that uses an additive measure. There is
yet another convex measure that gives the same bound. Namely, let A be a real matrix defined onS. Then
the rectangle function defined by

φA(R0 × R1) :=
∑

x∈R0

(
∑

y∈R1 A[x, y])2

|R1|

is convex. Indeed, since the measure of a rectangle is the sumof the measures of its rows, it suffices to show
convexity for rows. This follows from Corollary 4.3.3.

If S is the rectangle of the parity function andA as in (13), the functionφA is normalized, hence measure,
andφA(S) = n2. The measureφA for this special matrixA was introduced by Koutsoupias [9].

6.1. Matrix rank

Razborov in [13] used the rank of matrices to prove lower bounds on monotone formula size. Given an
n× n matrix A (over some field), he associates with it the following measure for n-dimensional rectangles:

µA(R) =
rank(AR)

maxM rank(AM)
, (14)

whereAR is the restriction ofA to the rectangleR (obtained by setting to 0 all entries outsideR), and the
maximum is over all monochromatic subrectangles ofR (or over all canonical monochromatic rectangles of
the ambient rectangleS, as originally defined in [13]; Proposition 6.1 below holds under both definitions).
If rank(AR) = 0 then we setµA(R) = 0.

Subadditivity of rank implies that these measures are subadditive. But it turns out that rank-based
measures are not convex.

Proposition 6.1. For any even integer n there is a(0, 1) matrix A such that the measureµA is not convex.

P. Let n be even. Take a rectangleR = R0 × R1 with R0 = {x1, . . . , xn} andR1 = {y1, . . . , yn} where
xi = ei , yi = ei + ei+1 andei ∈ {0, 1}n+1 is the ith unit vector. LetA be the complement of then × n unit
matrix. We define the fractional partition of the rectangleR as follows.

For everyi ∈ [n] we take the size-1 rectangleRi = {(xi , yi)} and give it weightr i = 1. To cover the rest
of the rectangleR, we use rectanglesRI = {(xi , y j) : i ∈ I , j < I } for all I ⊆ [n] of size |I | = n/2, and give
them weight

r I =

(

4− 4
n

) (

n
n/2

)−1

.

This is a fractional partition, because rectangleRI containsn2/4 of then2 − n ones inA and there are
(

n
n/2

)

such rectangles.
For everyi ∈ [n] we have thatµA(Ri) = 0 since we have only 0’s on the diagonal ofA. For every

subsetI of [n] we have thatµA(RI ) = 1 since there are no 0’s outside the diagonal, implying thatARI is
13



an all-1 matrix. Hence, on the right hand side of the corresponding inequality (2) for convexity we have
the sum ofn zeros (the ranks of the size one matrices on the diagonal) and

(

n
n/2

)

terms each being at most

4
(

n
n/2

)−1
, implying that the right hand sums to at most 4. On the other hand, since rank(A) is n or n − 1

(which depends onn and the field), on the left hand side we haveµA(R) ≥ (n − 1)/2: by the construction
of R, no monochromatic subrectangleM of R can hit the diagonal in more than one entry, implying that
rank(AM) ≤ 2. �

We have shown that, for some measuresµA, the convexity inequality (2) fails badly: the right hand
side is constant whereas the left had side isΩ(n). Since the measuresµA based on the rank are not convex,
Theorem 3.5 does not apply for them. Still, Razborov in [14] proved that these measures belong to the class
of so-called submodular measures, and none of them can yieldlarger thanO(n) lower bound.

6.2. Matrix norms

Interesting measures can be obtained from matrix norms. A mapping A 7→ ‖A‖ is a matrix norm if it
satisfies all the properties of vector norms:

(i) ‖A‖ ≥ 0 with equality if and only ifA = 0;
(ii) ‖rA‖ = |r | · ‖A‖ for all numbersr and all matricesA, and
(iii) ‖A+ B‖ ≤ ‖A‖ + ‖B‖ for all matricesA andB.

In particular, every matrix norm is a subnorm in the sense of Section 4, and the rectangle functionµ(R) =
‖AR‖ is convex. By Corollary 4.3.3, ifϕ is a non-decreasing convex real function ands is an additive
rectangle function, then the rectangle function

µ(R) = s(R) · ϕ
(

‖AR‖
s(R)

)

, (15)

is also convex, and hence cannot give better thanO(n2) lower bounds. We give two examples of measures
that appear in the literature.

Factorization norm. Factorization normγ2(A), is mainly used in Banach space theory. Linial and
Shraibman used this norm to prove lower bounds on the quantumcommunication complexity [12]. It has
several equivalent definitions one of which is:

γ2(A) = max
‖B‖2=1

‖A ◦ B‖2,

whereA ◦ B is the Hadamard (i.e. componentwise) product of matrices and

‖A‖2 = max
u,v,0

|utAv|
|u|2|v|2

is the spectral norm ofA. Sinceγ2 is a norm, any rectangle measure of the form (15) that usesγ2 can yield
at most quadratic lower bounds.

Spectral norm and its square.Barnum, Saks and Szegedy [3] introduced a parameter of boolean func-
tions defined by

SA( f ) := max
A,0

‖A‖2
maxi ‖Ai‖2

whereA ranges over all nonzero matrices onS f andAi[x, y] = A[x, y] if xi , yi and 0 otherwise. Laplante,
Lee and Szegedy [10] studied a parameter of boolean functions calledsumPI( f ) which is known to be equal
to SA( f ). They proved that
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1. sumPI( f )2 ≤ D(S f ), hencesumPI( f )2 ≤ L( f ), and
2. sumPI( f )2 ≤ n2.

We shall show a relation of this parameter to convex rectangle measures which also implies a quadratic
upper bound.

Proposition 6.2. SA( f )2 ≤ D∗(S f ).

P. Let A , 0 be fixed and letu, v be vectors such thatutAv = ‖A‖2. For a rectangleR = X × Y, let
ut

R denoteu restricted toX and letvR denotev restricted toY. Let c = maxM ‖AM‖2. Let T = {x : u[x] ,
0} × {y : v[y] , 0}. For a rectangleR⊆ T define:

σA(R) :=

( |ut
RARvR|

c|uR||vR|

)2

=
|ut

RARvR|2

c2|uR|2|vR|2
.

For the other rectangles defineσA(R) = σA(R∩ T) if R∩ T , 0 and 0 otherwise. By definitionσA(R) is
normalized. We shall show that it is convex.

First observe that|ut
RARvR| is a convex function. Indeed, letR =

∑

k Rk be a fractional partition ofR.
Then

|ut
RARvR| =

∣

∣

∣

∣

∣

∣

∣

∣

∑

(x,y)∈R
ut

R[x]AR[x, y]vR[y]

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∑

k

rk

∑

(x,y)∈Rk

ut
Rk

[x]ARk[x, y]vRk[y]

∣

∣

∣

∣

∣

∣

∣

∣

≤

∑

k

rk

∣

∣

∣

∣

∣

∣

∣

∣

∑

(x,y)∈Rk

ut
Rk

[x]ARk[x, y]vRk[y]

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

k

rk|ut
Rk

ARkvRk |.

By Corollary4.3 and sincec2|uR|2|vR|2 is an additive rectangle function,σA(R) is a convex measure and
σA(S f ) ≤ D∗(S f ).

Notice thatAi is the direct sum ofAMi,0 andAMi,1. Since every monochromatic rectangle is a subrect-
angle of one of the maximal monochromatic rectangles and thespectral norm is monotonic with respect to
submatrices, we get

c = max
M
‖AM‖2 ≤ max

i
‖Ai‖2.

Hence
sumPI( f )2 = SA( f )2 ≤ max

A,0
σA(S f ) ≤ D∗(S f ).

�

7. Open problems

Problem 7.1. Can polynomial rectangle measures (9) of degree1 ≤ k < 2 yield super-quadratic lower
bounds when the weight functionw(R) is an additive (but not necessarily non-negative) rectangle function?

Problem 7.2. Can rectangle functionsµF(R) = F(w(R), s(R)) with F(x, y) subadditive and bothw(R) and
s(R) additive yield super-quadratic lower bounds?

Problem 7.3. Is it possible to generalize the quadratic upper bound of Theorem 5.2 to measures of the form

µ(R) =
w(R)k

s(R)k−1
,

wheres(R) is an arbitrary additive and positive measure?
15



We only have such upper bounds forw(R) subadditive ands(R) = |R|, or w(R) convex ands(R) additive and
positive. The problem is to find a common generalization of these two cases.

Problem 7.4. Is it possible to prove superpolynomial lower bounds on monotone formulas using convex
measures?

This is equivalent to the problem of [6] whether the monotonefractional covering number can be super-
polynomial.

Problem 7.5. Prove a super-quadratic lower bound of using formal complexity measures.

Interpreting Andreev’s [2] or Håstad’s proof in terms of measures may be a way to make progress in lower
bounds on the formula size complexity.
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Appendix: Proof of Lemma 5.3

To prove the first claim (i), leta ≥ 1 andα ∈ [0, 1) be given. Our goal is to determine

ξ(a) = max
x,y∈[0,1]

ha(x, y) ,

where
ha(x, y) = (xy)α + ((1− x)(1− y))α + a(x(1− y))α + a((1− x)y)α .
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The functionh(x, y) := ha(x, y) is continuous and hence it attains maximum on the squareP = [0, 1]× [0, 1].
The maximum can be reached either in the interior ofP, or on the boundary. The boundary itself consists
of the corners and the sides ofP. We consider these cases separately.

The corners.We obtain

h(0, 0) = h(1, 1) = 1, h(0, 1) = h(1, 0) = a .

The sides.Sety := 1 and let us determine critical points ofh(x, 1) on (0, 1). Setting thex-derivative of
h(x, 1) to 0 gives

xα−1 − a(1− x)α−1 = 0 .

Hence the only critical point is at

x =
a

1
α−1

1+ a
1
α−1

,

and the value ofh(x) is
a(1+ a

1
α−1 )1−α .

The other cases are symmetric.
The interior. Sinceh(x, y) = h(1 − x, 1 − y), h has a critical point at (x, y) = (1/2, 1/2). The value of

h(x, y) at this point is
21−2α(1+ a) .

There are no other critical points, since thex-partial derivative is strictly monotone inx and hence it can
have at most one zero.

Altogether we get

max
P

h(x, y) = max
{

1, a, a(1+ a
1
α−1 )1−α, 21−2α(1+ a)

}

. (16)

Sincea ≥ 1, this gives maxP h(x, y) = max
{

a(1+ a
1
α−1 )1−α, 21−2α(1+ a)

}

.

To prove the second claim (ii), letα = 1
2. Thenξ(a) = max

{

a(1+ a−2)
1
2 , (1+ a)

}

, and we must show
that

d + 1 ≥ max
{

d(1+ d−2)
1
2 , 1+ d

}

,

which is immediate.
To prove the last claim (iii), letα > 1

2. We must findc ≥ 1 such that

c · (d + 1)1−α ≥ c · d1−α(1+ (c · d1−α)
1
α−1 )1−α ,

c · (d + 1)1−α ≥ 21−2α(1+ c · d1−α) .

The first inequality is satisfied by anyc ≥ 1. Since 1− α > 0, it is equivalent to

d + 1 ≥ d · (1+ (c · d1−α)
1
α−1 )

and hence tod + 1 ≥ d + c
1
α−1 resp. toc

1
1−α ≥ 1. The second inequality will be satisfied, if

c · ((d + 1)1−α − 21−2α · d1−α) ≥ 21−2α.

We have
c · ((d + 1)1−α − 21−2α · d1−α) ≥ c · d1−α(1− 21−2α) .
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Our assumptionα > 1/2 implies 21−2α < 1, and it is sufficient to set

c =
21−2α

1− 21−2α
=

1

22α−1 − 1
.

If α ∈ (1
2, 1) thenc > 1. �
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