
Reducibility Among Fractional Stability Problems

Shiva Kintali ∗ Laura J. Poplawski †‖ Rajmohan Rajaraman ‡‖

Ravi Sundaram §‖ Shang-Hua Teng ¶

Abstract

“As has often been the case with NP-completeness proofs, PPAD-completeness proofs will
be eventually refined to cover simpler and more realistic looking classes of games. And then
researchers will strive to identify even simpler classes.” –Papadimitriou (chapter 2 of [37])

In a landmark paper [39], Papadimitriou introduced a number of syntactic subclasses of
TFNP based on proof styles that (unlike TFNP) admit complete problems. A recent series
of results [12, 19, 6, 7, 8, 9] has shown that finding Nash equilibria is complete for PPAD, a
particularly notable subclass of TFNP. A major goal of this work is to expand the universe
of known PPAD-complete problems. We resolve the computational complexity of a number of
outstanding open problems with practical applications.

Here is the list of problems we show to be PPAD-complete, along with the domains of
practical significance: Fractional Stable Paths Problem (FSPP) [21] - Internet routing; Core
of Balanced Games [41] - Economics and Game theory; Scarf’s Lemma [41] - Combinatorics;
Hypergraph Matching [1]- Social Choice and Preference Systems; Fractional Bounded Budget
Connection Games (FBBC) [30] - Social networks; and Strong Fractional Kernel [2]- Graph
Theory. In fact, we show that no fully polynomial-time approximation schemes exist (unless
PPAD is in FP).

This paper is entirely a series of reductions that build in nontrivial ways on the framework
established in previous work. In the course of deriving these reductions, we created two new
concepts - preference games and personalized equilibria. The entire set of new reductions can
be presented as a lattice with the above problems sandwiched between preference games (at
the “easy” end) and personalized equilibria (at the “hard” end). Our completeness results
extend to natural approximate versions of most of these problems. On a technical note, we wish
to highlight our novel “continuous-to-discrete” reduction from exact personalized equilibria to
approximate personalized equilibria using a linear program augmented with an exponential
number of “min” constraints of a specific form. In addition to enhancing our repertoire of
PPAD-complete problems, we expect the concepts and techniques in this paper to find future
use in algorithmic game theory.

∗College of Computing, Georgia Institute of Technology, kintali@cc.gatech.edu
†ljp@ccs.neu.edu
‡rraj@ccs.neu.edu
§koods@ccs.neu.edu
¶Microsoft Research New England and Boston University, steng@cs.bu.edu
‖College of Computer and Information Science, Northeastern University

Electronic Colloquium on Computational Complexity, Report No. 41 (2009)

ISSN 1433-8092

1 Introduction

Intuitively, the notion of stability implies the absence of oscillations over time and encompasses
the concepts of fixed points and equilibria. Stability is important in a variety of fields ranging from
the practical - the Internet - to the theoretical - combinatorics and game theory. For important
practical systems (e.g. Internet), the existence and computational feasibility of stable operating
modes is of profound real-world significance. On the more abstract front, the study of stable
solutions to combinatorial problems has a distinguished tradition dating back to, at least, the
Gale-Shapley algorithm [17]. It is often the case, as with Nash’s celebrated theorem [36], that
fractional stable points are guaranteed to exist even when integral points don’t. In this paper, we
focus on fractional stability and resolve the computational complexity of a set of eight problems
with applications to a variety of different domains. Six of these are pre-existing problems. Below
we provide elaborate motivation for two of the pre-existing problems - Fractional Stable Paths
Problem (FSPP) and Core of Balanced Games. The remaining four are: Scarf’s lemma,
a fundamental result in combinatorics with several applications [41], Fractional Hypergraph
Matching [1], useful for modeling preferences in social-choice and economic systems, FBBC, the
fractional version of the Bounded Budget Connection (BBC) game [30], which models decentralized
overlay network creation and social networks, and Strong Fractional Kernel [2], of relevance
to structural graph theory. In addition, we define two new concepts — personalized equilibria for
matrix games and preference games — which are not only useful tools for carrying out reductions
but also of independent interest.

Fractional Stable Paths Problem. Griffin, Shepherd and Wilfong [20] showed how BGP
(Border Gateway Protocol, the routing mechanism of the Internet) can be viewed as a distributed
mechanism for solving the Stable Paths Problem (SPP). They showed that there exist SPP instances
with no integral stable solutions, a phenomenon that would explain why oscillation has been ob-
served in Internet routes. Route oscillation is viewed as a negative, since it imposes higher system
overheads, reorders packets, and creates difficulties for tracing and debugging. Subsequently, Hax-
ell and Wilfong [21] introduced FSPP: a natural fractional relaxation of SPP with the property
that a (fractional) stable solution always exists. Intuitively, FSPP can be viewed as a game played
between Autonomous Systems that each assign fractional capacities to the different paths leading
to a destination in such a way that they maximize their utility without violating the capacity con-
straints of downstream nodes. Understanding the computational feasibility of finding the equilibria
of this game could help to develop techniques for stable routing in the Internet.

Core of balanced games. The notion of core in cooperative games is analogous to that of
Nash equilibrium in non-cooperative games. Informally, a core is the set of all outcomes in which
no coalition of players has an incentive to secede and obtain a better payoff, either viewed as
a set (transferable utilities) or individually (non-transferable utilities). Necessary and sufficient
conditions for the nonemptiness of the core in games with transferable utilities is given by the classic
Bondareva-Shapley theorem [5, 43], which also yields a polynomial-time algorithm for finding an
element in a nonempty core. Subsequently, in a celebrated paper, Scarf [41] generalized their result,
developed certain sufficient balance conditions for the nonemptiness of the core in games with non-
transferable utilities, and presented an algorithm for finding a point in the core. As noted by Jain
and Mahdian in Chapter 15 of [37], “However, the worst case running time of this algorithm (like
the Lemke-Howson algorithm) is exponential.” Resolving the computational feasibility of finding
the core in balanced games is of considerable significance in the theory of cooperative games.

Personalized equilibria for matrix games - a generalization. Imagine a business man-
ufacturing and selling outfits consisting of a pant (solid or striped) and a shirt (cotton or wool).
The manager of the location producing pants decides on the ratio of striped pants produced to

1

solid pants while the manager at the location producing shirts decides on the ratio of cotton shirts
produced to wool shirts. Each manager is then given half the total number of shirts and pants (in
the proportions decided) and has to match them into outfits and sell them at her own location in
such a way as to maximize her individual profits. Personalized equilibria for matrix games capture
exactly this situation: each player chooses a distribution over her own actions, but then each player
independently customizes the matching of her own actions to the actions of other players in such
a way as to maximize individual payoff. The concept of personalized equilibria for matrix games
generalizes a number of games and problems, including FSPP and FBBC.

Preference games - a specialization. Consider a world of bloggers where each blogger has a
choice of actions. They can fill their blogs with original content or they can copy from the original
content on others’ blogs. Naturally, each blogger has a preference order over the content of the
different bloggers (as well as their own). Also, of course, more cannot be copied from another
blog than the amount that other blogger has written. The preference game models each blogger’s
choice of what percentage of his blog is original and what percentages are copied from which other
blogs. Such preference games arise whenever each player has a preference among her actions,
and her distribution over her actions is constrained by others’ distributions. The definition of a
preference game is surprisingly simple, making this a great candidate problem for reductions. In
fact, preference games are reducible in polynomial-time to all the problems considered in this paper.

1.1 Our Contributions

Hewing to the dictum that a picture is worth a thousand words, we present a diagram (Figure
2) showing the different reductions. The takeaway is that all the eight problems of interest are
PPAD-complete. To be precise, we show that for all these problems, the exact versions are in
PPAD, and our reductions extend to natural approximation versions to show that there are no
fully polynomial-time approximation schemes (unless PPAD is in FP). Our reductions build on
prior work in intricate and involved fashion.

From a conceptual standpoint, we believe there is merit in the definitions of preference games
and personalized equilibria. Preference games are very simple to describe and model a number of
real-world situations, such as the blogger example mentioned earlier. Yet we can show that the set
of equilibria of preference games can be nonconvex and in fact, are hard even to approximate. As a
counterbalance we show that finding equilibria in the subclass of symmetric (for a natural notion of
“symmetric”) preference games is in FP. Personalized equilibria of matrix games are, we believe,
a fascinating solution concept worthy of independent study. Not only do they model real-world
situations as motivated earlier by the example of the apparel company, but they also constitute a
natural generalization of a variety of predefined games, such as FSPP and FBBC. Our results on
the hardness of approximating personalized equilibria for k-player games apply for k ≥ 4. We show
that finding personalized equilibria of 2-player games is in FP. The k = 3 case is open.

From a technical standpoint, we particularly wish to highlight our reduction from finding exact
personalized equilibria to finding approximate personalized equilibria. To capture exact person-
alized equilibria, we write a linear program plus an exponential number of single-variable min
constraints. These are constraints specifying that the minimum of a subset of variables is 0. Us-
ing this specification, we prove the existence of rational equilibria. Furthermore, we reduce to
approximate personalized equilibria by showing that an ε-approximate equilibrium for sufficiently
small ε points us to a subset of the variables that can be set to 0 to simultaneously satisfy all
of the min constraints, leaving us with a polynomially-sized feasible linear program for an exact
equilibrium. With this reduction in hand and an additional technical bound on the size of short
feasible vectors, we are then able to carry through the reduction to End-of-the-Line to show that
personalized equilibria is in PPAD.

2

1.2 Related Work

Nash profoundly changed game theory by demonstrating the existence of mixed equilibria
[35, 36]. Decades later, on the computational front [37], the complexity class TFNP was in-
troduced by Megiddo and Papadimitriou [34]. Papadimitriou’s seminal work [39] not only defined
a number of syntactic subclasses of TFNP (including PPAD), but also proved that a variety of
problems, including discrete versions of Brouwer’s fixed point theorem and Sperner’s lemma, are
PPAD-complete. The problem of finding Nash equilibria was left open. Recently, a series of papers
comprising different author combinations of the two teams, Daskalaikis-Goldberg-Papadimitriou
[12, 19] and Chen-Deng-Teng [6, 7, 8, 9] culminated in establishing that approximating Nash equi-
libria with two players, 2-Nash, is hard. The reductions in our work build on the framework
established in these papers.

BGP has been the focus of much attention since its inception [40, 45]. As mentioned earlier
SPP was introduced by Griffin, Shepherd and Wilfong [20] to explain the nonconvergence of BGP
[47]. Haxell and Wilfong [21] defined FSPP and proved the existence of an equilibrium using
Scarf’s lemma and a compactness-type argument. They left open the complexity of finding an
equilibrium. Our reduction from personalized equilibria to End-of-the-Line is a different approach
that generalizes the Haxell-Wilfong existence result while preserving computational tractability.
Kintali [27] presented a distributed algorithm for finding an ε-approximation for FSPP that is
guaranteed to converge, although no bounds are given on the time-to-convergence (our results
imply a polynomial time bound is unlikely).

Cooperative games, the study of mechanisms to sustain and enforce cooperation among willing
agents, has a rich and extensive literature [10, 18, 11, 16, 29]. As mentioned earlier, in a celebrated
paper Scarf [41] generalized the classical Bondareva-Shapley theorem [5, 43] result and developed an
algorithm for finding a point in the core of balanced games with non-transferable utilities. More
recently, Markakis and Saberi [33], Immorlica, Jain and Mahdian [23] studied certain classes of
games with non-transferable utilities in the context of the Internet; however, it is unclear that their
problems are even in TFNP. Scarf’s paper [41] also contains Scarf’s lemma, an important result in
combinatorics which played a crucial part in the FSPP existence proof of Haxell and Wilfong [21].
Aharoni and Holzman [2] proved that every clique-acyclic digraph has a strong fractional kernel,
and Aharoni and Fleiner [1] proved that every hypergraphic preference system has a fractional
stable matching. Both of these proofs are based on Scarf’s lemma. The computational complexity
of these problems was left unresolved.

The BBC game, introduced in [30, 31], builds on a large body of work in network formation
games [24, 4]. A direct precursor to BBC games was introduced by Fabrikant et al. [15]. Fractional
BBC games were introduced in [31], but the problem of finding an equilibrium was left open.

2 The Class PPAD

A major contribution of this paper is to expand the set of problems known to be PPAD-
complete. The class PPAD (Polynomial Parity Argument in a Directed graph) was introduced
by Papadimitriou in [39], which defined a number of syntactic classes in the semantic class TFNP,
or the set of all total search problems. A search problem S consists of a set of inputs IS ⊆ Σ∗ such

that for each x ∈ IS there is an associated set of solutions Sx ⊆ Σ|x|k for some integer k. For each

x ∈ IS and y ∈ Σ|x|k , it is decidable in polynomial time whether or not y is in Sx. A search problem
is total if Sx 6= ∅ for all x ∈ IS . TFNP is the set of all total search problems [34]. Since every
member of TFNP is equipped with a mathematical proof that it belongs to TFNP, a number of
syntactic classes can be defined based on their proof styles. The complexity class PPAD is the
class of all search problems whose totality is proved using a directed parity argument.

3

Problems in PPAD are reducible to the End of the Line problem. In End of the Line,
we are given a finite directed graph in which each node has at most one outgoing edge and at most
one incoming edge. The input to the problem is not a complete list of the nodes and edges; such
a list may be exponentially large in the size of the input. Instead, we are given an initial source
node and a circuit. The circuit takes a node name as input and in polynomial time returns the
next node (the other end of the outgoing edge from the input node) and the previous node (the
other end of the incoming edge into the input node). If the input node is a source (or sink), null is
returned as the previous (or next) node. The problem for End of the Line is to find a sink or a
source other than the initial source.

Throughout this paper, we use problem A ≤P problem B to mean “There exists a polynomial
time reduction from finding a stable point in problem A to finding a stable point in problem
problem B.”

3 Preference Games

In this section, we define a very simple game, the preference game. Each player has a preference
list across the set of players and must assign weight to each player. No player may put more
weight on another player than that player puts on itself. A best response for a player occurs when
that player cannot move weight from a lower preference player to a higher preference player. We
show in Section 3.2 that when preferences are symmetric, it is very easy to find an equilibrium in
which all weights are either 0 or 1. However, in Section 3.3 we show that the set of equilibria in
general preference games may not be convex, implying that we cannot hope to find an equilibrium
using convex programming, and in Section 3.4, we show that finding an equilibrium in general
preference games is PPAD-hard. In Section 3.5, we define an ε-approximate equilibrium for the
preference game and extend our PPAD-hardness result to approximate equilibria. Our notion of
approximation carries though all of the reductions in later sections, so we prove that there are no
fully polynomial-time approximation schemes (unless PPAD is in FP) for computing stable points
in any of the problems discussed in this paper. Finally, in section 3.6, we define the degree of a
preference game, and show that any preference game can be reduced to a preference game with
constant degree.

3.1 Preference Games

In a preference game with a set S of players, each player’s strategy set is S. Each player i ∈ S
has a preference relation �i among the strategies. 1 For strategies j and k, j �i k indicates that
player i prefers j at least as much as k. When it is clear from context that we are talking about
the preferences for player i, we write j � k instead of j �i k. Each player i chooses a weight
distribution, which is an assignment wi : S → [0, 1] satisfying two conditions: (a) the weights add
up to 1:

∑

j∈S wi(j) = 1; and (b) the weight placed by i on j is no more than the weight placed by
j on j: wi(j) ≤ wj(j) for all i, j ∈ S.

Given weight assignments wi, w′
i, and w−i such that (wi, w−i) and (w′

i, w−i) are both feasible,
we say wi is lexicographically at least w′

i (with respect to w−i) if for all j ∈ S,
∑

k�ij
wi(k) ≥

∑

k�ij
w′

i(k). We say that wi is lexicographically maximal (implied: with respect to w−i) if (wi, w−i)
is feasible and wi is lexicographically at least every assignment w′

i such that (w′
i, w−i) is feasible. An

equilibrium in a preference game is an assignment w = {wi : i ∈ S} such that wi is lexicographically
maximal with respect to w−i for all i ∈ S.

Every preference game has an equilibrium, a fact which can be shown using standard fixed-point
theorems; we defer the proof to Section 4, where we show the existence and PPAD-membership of

1A preference relation is a binary relation that is transitive and complete.

4

a more general class of equilibria.

Preference Game: Given a set of players [n], each with strategy set [n], and a preference
relation �i among the strategies for each player i. Find a feasible weight assignment w such
that for all i, wi is lexicographically maximal with respect to w−i.

3.2 Symmetric Preference Games

In a symmetric preference game, the players are ordered {1, . . . , n}. Given the order of the
players, we have the following symmetry in the preferences: if i ≤ j, and if i �j j, then j �i i. In
other words, if a player j is later in the order than i, and if j prefers i over itself, than the earlier
player i also prefers j over itself.

Theorem 3.1. In any symmetric preference game, an equilibrium in which all weights are 0 or 1
can be found in polynomial time.

Proof. If our preference rules obey this style of symmetry, we can use Algorithm 1 to find an
equilibrium.

Algorithm 1 Finding an equilibrium in a symmetric preference game

1: Sort the players into their symmetry order.
2: Set all weights to −1.
3: for i = 1 . . . n do
4: if wi(i) = −1 then
5: Assign wi(i) = 1.
6: for j = i + 1 . . . n do
7: Assign wi(j) = 0.
8: if j �i i then
9: Assign wj(j) = 0.

10: for i = 1 . . . n do
11: if wi(i) = 0 then
12: Find the player j with wj(j) = 1 that is highest in i’s preference list.
13: Assign wi(j) = 1.
14: Assign wi(k) = 0 for all other k 6= j.

Since each player has weight 1 assigned to exactly one strategy, Algorithm 1 assigns a feasible
set of weights. To show that Algorithm 1 finds an equilibrium, we must show that the results of the
algorithm obey the following. (a) If wi(i) = 1, then there is no j such that j �i i with wj(j) = 1,
and (b) if wi(i) = 0, then there is some j such that j �i i with wj(j) = 1.

To show (a): consider the point in the algorithm at which wi(i) is set to 1. By this point, we
have already looked through all j ahead of i in the ordering. Since wi(i) is still −1, for each j for
which we assigned wj(j) = 1, none had i �j j. By symmetry, this means that no j ahead of i in
the ordering has wj(j) = 1 and j �i i. Now, for all j following i in the ordering, if j �i i, then we
assign wj(j) = 0 immediately after we assign wi(i) = 1.

To show (b): Consider the point at which we assigned wi(i) = 0. We had just assigned wj(j) = 1
for some j ahead of i in the order. We found that i �j j, which by symmetry implies that j �i i,
as required.

5

3.3 Non-Convexity

Although symmetric preference games have a simple equilibrium which can be found in poly-
nomial time, general preference games are more complex. In this section, we show that the set of
equilibrium for a preference game may not be convex.

Theorem 3.2. There exists an instance of the preference game for which the set of equilibria is
not convex.

(a) The a players assign weights
1/2, 1/2, the b players both use b1, the
c players both use c2.

(b) The a players assign weights 1/2−
1/2, the b players both use b2, the c
players both use c1.

(c) Combining half of each equilib-
rium, x will assign 1/2 to a1, 1/4 to
each of b1 and c1. x could improve by
assigning weight only to a1 and b1.

Figure 1: Example of an instance of the preference game for which the equilibrium set is not convex.

Proof. Consider the following instance of the preference game. We have 3 sets of 2 players each,
a1, a2, b1, b2, c1, c2, and one additional player, x. The preference lists for these nodes are: a1:
(a2, a1); a2: (a1, a2); b1: (b2, b1); b2: (b1, b2); c1: (c2, c1); c2: (c1, c2); x: (a1, b1, c1, x). (Each list
gives strategies in order from most preferred to least preferred.) We now show two equilibria whose
linear combination is not an equilibrium. In equilibrium w (figure 1(a)): wa1(a1) = 1

2 , wa1(a2) = 1
2 ,

wa2(a2) = 1
2 , wa2(a1) = 1

2 , wb1(b1) = 1, wb2(b1) = 1, wc1(c2) = 1, wc2(c2) = 1, wx(a1) = 1
2 ,

wx(b1) = 1
2 . In equilibrium w′ (figure 1(b)): w′

a1
(a1) = 1

2 , w′
a1

(a2) = 1
2 , w′

a2
(a2) = 1

2 , w′
a2

(a1) = 1
2 ,

w′
b1

(b2) = 1, w′
b2

(b2) = 1, w′
c1

(c1) = 1, w′
c2

(c1) = 1, w′
x(a1) = 1

2 , w′
x(c1) = 1

2 . It is easy to verify

that w and w′ are both equilibria, and in a solution λ ·w + (1− λ) ·w′ (for any λ > 1
4) (figure 1(c)

shows λ = 1
2), player x would do better by moving more weight to its second preference. Therefore,

the convex combination of w and w′ is not an equilibrium.

3.4 PPAD Hardness

We show that finding an equilibrium in preference games is PPAD-hard. We will follow the
framework of [12], which shows that finding a Nash equilibrium in a degree-3 graphical game
is PPAD-hard, using a reduction from the PPAD-complete problem 3-D Brouwer. In this
problem, we are given a 3-D cube in which each dimension is broken down into 2−n segments –
thereby dividing the cube into 23n cubelets. We are also given a circuit that takes as input the 3
coordinates of the center of a cubelet (each as an n-bit number) and returns a 2-bit number that
represents one of four 3-D vectors: either (1, 0, 0), (0, 1, 0), (0, 0, 1), or (−1,−1,−1). A solution to
the 3-D Brouwer instance is a cubelet vertex such that the set of 8 results obtained by running
the circuit on each of the 8 cubelets surrounding the vertex contains each of the four vectors at
least once.

As in [12], we will construct a set of gadgets to simulate various arithmetic operators, logical
operators, arithmetic comparisons and other operators. We then follow their framework to system-
atically combine these gadgets to simulate the input boolean circuit and to encode the geometric
condition of discrete fixed points in the 3-D Brouwer instance. In the preference game we con-
struct, we specify the preference relation of any player P by an ordered list of a subset of the players,
with the last element being P , also referred to as the “self” strategy. When we say that a player

6

P plays itself with weight v, we mean that P assigns a weight of v to strategy P . We’ll engineer
the payoffs such that the game is only in equilibrium if the weights assigned by certain players
to themselves successfully echo the inputs and outputs of 8 copies of the circuit that surround a
solution vertex of the 3-D Brouwer instance.

For this reduction, we require the following sets of players.

1. One player for each of the 3 dimensions (the coordinate players). If the graph is an equilibrium,
each coordinate player plays itself with weight equal to its coordinate of the 3-D Brouwer

solution vertex.

2. One player for each of the bits of each of the 3 coordinates (the bit players). In order to
force these players to correctly represent the bits, we need some additional players. Assuming
we’ve correctly calculated the first i− 1 bits of coordinate x (call them x0, . . . , xi−1), we can
create the ith bit as follows. One player will play itself with weight pi = x −

∑i−1
j=0

xj

2j . The

bit player will play itself with weight equal to the ith bit. If pi ≥
1
2i , then this bit should be

1. Otherwise, it should be 0. Therefore, in order to properly extract the bits, we create the
following four types of players.

(a) HALF player: In any equilibrium in which a given player plays itself with weight a, the
HALF player will play itself with weight a

2 .

(b) DIFF player: In any equilibrium in which two given players play themselves with weights
a and b, the DIFF player will play itself with weight a − b.

(c) VALUE player: In any equilibrium, the VALUE player plays itself with weight 1
2 . This

can be easily created by combining a player whose first preference is itself with a HALF
player.

(d) LESS player: In any equilibrium in which two given players play themselves with weights
a and b, respectively, the LESS player plays itself with weight 1 iff a ≥ b, and plays itself
with weight 0 otherwise. (Actually, the LESS player we create will be inaccurate if a
and b are very close, which we discuss more below.)

3. One player simulates each type of gate used in the circuit of the 3-D Brouwer instance.
For this, we create 3 more types of players.

(e) AND player: In any equilibrium in which two given players play themselves with weights
a and b ∈ {0, 1}, the AND player will play itself with weight a ∧ b.

(f) OR player: In any equilibrium in which two given players play themselves with weights
a and b ∈ {0, 1}, the OR player will play itself with weight a ∨ b.

(g) NOT player: In any equilibrium in which a given player plays itself with weight a
∈ {0, 1}, the NOT player will play itself with weight ¬a.

4. Finally, we need to ensure that the graph is in equilibrium if and only if all four vectors are
represented in the results of the 8 circuits. As in [12], we will represent the output of each
circuit using 6-bits, one each for +x,−x,+y,−y,+z,−z. Now, the 4 possible result vectors
are represented as 100000, 001000, 000010, and 010101. We can use these circuit results with
only two additional types of players to feed back into the original coordinate players. First,
we will create an OR player for each of the 6 bits (over the 8 vertices), which yields a result of
six 1’s if and only if this is a solution vertex. Therefore, an AND player for each coordinate
will all return 1 if and only if this is a solution vertex; at least one of the coordinates will be

7

0 otherwise. We can turn this around using a NOT player for each coordinate, so that we get
all 0’s if and only if this is a solution vertex. Finally, we need the last two new player types,
which we’ll use to add these results back to a copy of the original coordinates (the result will
be the original coordinate player).

(h) COPY player: In any equilibrium in which a given player plays itself with weight a, the
COPY player will also play itself with weight a.

(i) SUM player: In any equilibrium in which two given players play themselves with weights
a and b, the SUM player will play itself with weight min(a + b, 1).

If the coordinates represented a solution vertex to the 3-D Brouwer instance, then all the
values we’ve added back in will be zero; so the coordinate players cannot do better by changing
their strategies. On the other hand, if the coordinates do not form a solution vertex, then
at least one of the values is 1, so that the coordinate player will have incentive to change
strategies and play more weight on itself.

We now describe how to create the new types of players (gadgets) required for the reduction.
For each of these gadget definitions, we assume we are given a preference game such that in any
equilibrium, player X plays itself with weight v1 and player Y plays itself with weight v2. For the
first three gadgets, we assume v1, v2 ∈ {0, 1}. For the rest of the gadgets, we assume v1, v2 ∈ [0, 1].

OR(X,Y)

We can add a new node R = OR(X,Y) that will play itself with weight v1 ∨ v2 in any equilibrium.
Create a node R1 with preference list (X,Y,R1). Let node R’s preference list be (R1, R). Now, if
v1 and/or v2 is 1, then R1 will play R1 with weight 0, so R will play itself with weight 1. If both
v1 and v2 is 0, then R1 will play itself with weight 1, so R will play R1 with weight 1 and R with
weight 0.

NOT(X)

We can add a new node N = NOT(X) that will play itself with weight ¬v1 in any equilibrium. Let
node N ’s preference list be (X,N). Clearly, N will play X as much as v1 and will play N with the
remainder.

AND(X,Y)

We can add a new node A = AND(X,Y) that will play itself with weight v1∧v2 in any equilibrium.
Assemble the OR and NOT gadgets NOT(OR(NOT(X),NOT(Y))).

SUM(X,Y)

We can add a new node S = SUM(X,Y) that will play itself with weight max(1, v1 + v2) in any
equilibrium. Create a node S1 with preference list (X,Y, S1). Let node S’s preference list be
(S1, S). Now, clearly node S1 will play S1 with weight max(0, 1 − v1 − v2), and node S will play
S1 that same amount. So node S will play itself with weight 1 − max(0, 1 − v1 − v2). In other
words, if v1 + v2 ≥ 1, then S will play itself with weight 1. Otherwise, S will play itself with weight
1 − 1 + v1 + v2 = v1 + v2, as desired.

8

DIFF(X,Y)

We can add a new node D = DIFF(X,Y) that will play itself with weight v1 − v2 if v1 > v2, or
0 otherwise in any equilibrium. Create a node D1 with preference list (X,D1). D1 will play itself
with weight 1 − v1. Now set the preference list for D to (D1, Y,D). D will play itself with weight
min(0, 1 − (1 − v1) − v2) = min(0, v1 − v2), as desired.

COPY(X)

We can add a new node C = COPY(X) that will play itself with weight v1 in any equilibrium.
Create a node C1 with preference list (X,C1). C1 will play itself with weight 1 − v1. Set the
preference list for node C to (C1, C). C will play C1 with weight 1 − v1, leaving weight v1 on C.

DOUBLE(X)

We can add a new node M = DOUBLE(X) that will play itself with weight min(1, v1 ∗ 2) in any
equilibrium. Create player M1 = COPY(X) and set M as SUM(X,M1).

LESS(X,Y)

Given εl (0 < εl ≤
1
2), We can add a new node L = LESS(X,Y) to the game that in any equilibrium

will play only itself if v1 − v2 ≥ εl, and will play L1 (for a new node L1) if v1 ≤ v2. First
create D = DIFF(X,Y). Then create M1 = DOUBLE(D). For i = 1 to − log εl, create player
Mi+1 = DOUBLE(Mi). Call the last DOUBLE player node L and the extra player for the sum
player of the last DOUBLE player node L1. If v1 ≤ v2, the DIFF player will return 0, so player L
will play the result of multiplying 0 by 2 many times, or 0. If v1 − v2 ≥ εl, player L will play the
max of 1 and (v1 − v2) ∗ 2− log εl = (v1 − v2) ∗

1
εl
≥ εl

εl
= 1.

HALF(X)

We can add a new node H = HALF(X) that will play itself with weight v1/2 in any equilibrium.
Create a node H1 with preference list (X,H1). H1 will play itself with weight 1 − v1. Then
create two more nodes: H2 and H3. Node H2 has preference list (H1,H3,H2). Node H3 has
preference list (H1,H,H3). Set the preference list for node H to be (H1,H2,H). Each of H, H2,
and H3 will use its first choice with weight 1−v1, leaving v1 for its other two choices. Then, we have
wH(H)+wH (H2) = v1, wH2(H2)+wH2(H3) = v1, and wH3(H3)+wH3(H) = v1. In any equilibrium,
it must be true that wH(H2) = wH2(H2), wH2(H3) = wH3(H3), and wH3(H) = wH(H). Solving
this gives wH(H) = wH(H2) = wH2(H2) = wH2(H3) = wH3(H3) = wH3(H) = v1

2 .

As in [12], our LESS player plays the specified action (itself, in our case) with weight 1 if
v1 ≥ v2 + εl, and plays itself with weight 0 if v1 ≤ v2, but will play some unspecified fraction on
itself if v2 < v1 < v2 + εl. We use the LESS player to extract the bits representing the coordinates
of a cubelet to be passed into the circuit. This procedure is identical to that of [12]. Let X
denote the x-coordinate player, and let X1 = COPY(X). For i from 1 through n, we create
players Bi = LESS(2−i,Xi) and Xi+1 = DIFF(Xi,HALFi(Bi)), where HALFi indicates applying
the HALF gadget i times. It can be shown that as long as x is not too close to a multiple of 2−n,
we will extract its n bits correctly. If this is not the case, however, we will not properly extract the
bits, and our circuit simulation may return an arbitrary value. We resolve this problem using the
same technique as in [12]: we compute the circuit for a large constant number of points surrounding
the vertex and take the average of the resulting vectors. Since these details are almost identical to
that of [12, Lemma 4], we omit them.

Based on the above gadgets and the framework from [12], we get the following.

9

Theorem 3.3. 3-D Brouwer ≤P Preference Game.

3.5 Approximate equilibria

Given the hardness of finding exact equilibria in preference games, a natural next question
is whether it is easier to find approximate equilibria. We define an ε-equilibrium of a k-player
preference game to be a set of weight distributions w1, . . . , wk that satisfy the following conditions
for every player i: (a)

∑

j wi(j) = 1; (b) for each j, wi(j) ≤ wj(j) + ε; and (c) for each j,
either

∑

`:`�j wi(`) ≥ 1 − ε or |wi(j) − wj(j)| ≤ ε. The problem of finding an ε-equilibrium is
ε-Approximate Preference Game.

Theorem 3.4. Brouwer ≤P ε-Approximate Preference Game. Thus, it is PPAD-hard to
find an ε-equilibrium for preference games for ε inverse polynomial in n.

Proof. Our proof follows the framework of [8, 9] for proving the hardness of approximating Nash
equilibria in 2-player games. This framework starts with a high-dimensional discrete fixed point
problem, Brouwer, which is also PPAD-complete. The input to Brouwer is a Boolean circuit
that assigns a color from {1, ..., n, n+1} to each interior node of an n-dimensional grid {0, 1, ..., 8}n .
This grid has about 23n cells, each of which is an n-dimensional hypercube. The discrete fixed point
is defined to be a panchromatic simplex inside a hypercube. This framework of [8, 9] uses a new
geometric condition for discrete fixed points, which requires that the average of n3 sampled points
in the interior of the targeted panchromatic simplex is inverse-polynomially close to the zero vector.
The rest of the proof follows the framework of [12].

Our broad definition of an ε-equilibrium poses additional technical challenges which did not
occur in the reductions of [8, 9]. In particular, in the presence of errors, our Boolean gadgets only
approximately simulate the Boolean operations, while in previous reductions, the Boolean gadgets
are precise. We prevent magnification of errors in the Boolean simulation by strategically adding
a LESS gadget to correct errors after each logic step.

We focus on bounding the errors for the gadgets of Theorem 3.3 and the addition of the extra
LESS gadgets. Other details closely match those of [8, 9, 12].

Let εl (the measure of the fragility of our LESS gadget) be a real number such that ε ≤ ε3
l .

Then, we have the following error bounds.

Lemma 3.5. Assuming node X plays itself with weight v′1, v1 − εl ≤ v′1 ≤ v1 + εl, and node Y
plays itself with weight v′2, v2 − εl ≤ v′2 ≤ v2 + εl, each of the boolean gadgets plays itself within
±(2εl + 6ε) of the correct value for the correct v1 and v2 inputs.

Proof. OR

If v1 and/or v2 is 1, then v′1 and/or v′2 is at least 1 − εl, and node R1 will play R1 with weight at
most εl + ε, so R will play R with weight at least 1 − εl − 2ε. If both v1 and v2 are 0, then v′1 and
v′2 are at most εl, and node R1 will play R1 with weight at least 1− 2εl − 2ε, so R will play R with
weight at most 2εl + 3ε.

NOT

If v1 = 1, v′1 is at least 1 − εl, and node N will play itself with weight at most εl + ε. If v1 = 0, v′1
is at most εl, and node N will play N with weight at least 1 − εl − ε.

AND

The AND gadget concatenates other new players to get ¬(¬v1∨¬v2). Each NOT may add at most
one additional ε error to the given value, and the OR may add up to 3ε error (on top of the sum

10

of the errors from both inputs). So the AND player will return a value within an additive 2εl + 6ε
of the correct 0 or 1 answer.

Lemma 3.6. Each of the arithmetic gadgets plays itself within ±5ε of the correct value for the
input it is given.

Proof. SUM

Node S1 will play S1 with weight w(S1T) ∈ [max(0, 1 − v′1 − v′2 − 2ε),max(0, 1 − v′1 − v′2 + 2ε)].
So node S will play S with weight wS(S) ∈ [v′1 + v′2 − 3ε, v′1 + v′2 + 3ε], unless wS1(S1) = 0, which
means v′1 + v′2 ≥ 1 − 2ε. In this case, node S will play S with weight at least 1 − ε.

DIFF

Node D1 will play D1T with weight wD1(D1) ∈ max(0, 1 − v′1 − ε),max(0, 1 − v′1 + ε)]. Node D
will play D with weight wD(D) ∈ [max(0, v′1 − v′2 − 3ε),max(0, v′1 − v′2 + 3ε)], unless wD1(D1) = 0
which means v′1 ≥ 1 − ε. In this case, node D will play D with weight at least 1 − v′2 − 2ε and at
most 1 − v′2 + ε (not 2ε because we cannot underfill the strategy with weight 0).

COPY

Node C1 will play C1 with weight at least 1 − v′1 − ε and at most 1 − v′1 + ε. Node C will play C
with weight at least v′1 − 2ε and at most v′1 + 2ε.

HALF

Node H1 will play H1 with weight wH1(H1) ∈ [1− v′1 − ε, 1− v′1 + ε], and each other player will play
its second and third preferences with total weight between 1 − wH1(H1) − ε and 1 − wH1(H1) + ε.
Each other player will play itself half of this amount plus or minus 3ε (this is easy to verify by
writing the system of inequalities and checking the extreme points). Therefore, node H plays H

with weight at least
v′1
2 − 4ε and at most

v′1
2 + 4ε.

DOUBLE

The DOUBLE gadget consists of a copy player, which adds at most 2ε error, and a sum player,
which adds at most 3ε error on top of the sum of the errors in the two inputs. Therefore, node M
plays M with weight at least 2v′1 − 5ε and at most 2v′1 + 5ε.

Lemma 3.7. The LESS player will play itself with weight < εl if it is given v′1, v
′
2 such that v′1 ≤ v′2,

and with weight > 1 − εl if v′1 − v′2 ≥ εl.

Proof. LESS

The LESS gadget inherits its susceptibility to error from its initial DIFF player (which was, in
the exact equilibrium case, non-zero if and only if v1 < v2). For the case where v1 < v2, we can
account for the errors of the DOUBLE players (used to repeatedly amplify the difference) simply
by adding extra iterations of DOUBLE. Since we stipulated that ε ≤ ε3

l , a value that started ≤ 5ε
will remain < εl, even after doubling enough times to push a value ≥ εl to a value over 1 (including
extra multiplications to account for the DOUBLE errors). Therefore, the LESS player will play
itself with weight less than εl if v′1 ≤ v′2 and with weight greater than 1 − εl if v′1 − v′2 ≥ εl.

Lemma 3.8. By using a LESS gadget after each boolean logic gadget, we can ensure that the output
from each gate is at most εl away from the correct output.

11

Proof. After a single gate (if the inputs are within additive εl of the correct 0 or 1 inputs), a player
will play itself at least 1 − 2εl − 6ε if the correct answer is 1, and at most 2εl + 6ε if the correct
answer is 0 (based on the analysis in the proof of Lemma 3.5). Call this player OUTPUT and the
value it plays itself v. Then, we only need to add a player CONSTANT-HALF who plays itself with
weight close to 1

2 , and a LESS player, CORRECTION = LESS(OUTPUT, CONSTANT-HALF).
CONSTANT-HALF can be made up of a player who plays itself with weight at least 1− ε and

at most 1 (its first preference is for itself) and a HALF player, who by Lemma 3.6 will play itself
with weight at least 1−ε

2 − 5ε and at most 1
2 + 5ε.

We know that if the correct answer was 0, then v ≤ 2εl + 6ε < 1−ε
2 − 5ε, so CORRECTION will

play itself with weight < εl (by Lemma 3.7), and if the correct answer was 1, then v ≥ 1−2εl−6ε >
1
2 + 5ε + εl, so CORRECTION will play itself with weight > 1 − εl (again by Lemma 3.7).

After the corrections, we’re left with the following possible errors due to the ε-approximation.
We have small errors in the bit extraction, which are no larger than the parallel errors in [12] (they
verify that these small error values will not affect the final result). We also have small errors (at
most εl) coming out of the circuit. As in [8, 9], we will repeat the circuit a polynomial number
of times and take the average in order to override any errors from the LESS gadgets in the bit
extraction.

Taking an average of two results requires 3 steps: first we divide each “bit” in half (we cannot
take the average of the entire values because we have a max value of 1 for any player, so the average
of two 1’s would come out to 1

2). Here, we may pick up 4ε of error for each of the two results. Then,
we sum the two. The total error so far is at most 11ε. Finally, we take half of the sum, which also
divides the error in half, but may add up to an additional 4ε of error, for a total additional error
of at most 9.5ε from taking the average of 2 results.

We can add LESS gadgets periodically during the averaging and during the final OR, AND and
NOT of the results to keep our total errors under εl. In other words, if this is a solution vertex for
Brouwer, then we will have 6 players, each playing at most εl. If this is not a solution vertex,
then at least one of the 6 players will play at least 1 − εl.

Suppose we have an ε-equilibrium in this game, and the x-coordinate player is playing value
x. This is a SUM player, and the extra player from the SUM gadget must be playing between
1− x− ε and 1− x + ε. Therefore, the sum of the two values it is adding (a copy of the coordinate
player and the feedback NOT player) must be between x − 3ε (if this player overfills each of its
top strategies by ε) and x + 3ε (if this player underfills each of its top strategies by ε). We know
that the copy player must be playing the same value as the coordinate player to within 2ε (between
x − 2ε and x + 2ε). Adding this range to a number ≥ 1 − εl cannot possibly give something in the
range [x − 3ε, x + 3ε], so the feedback player must be playing a value at most εl on itself (since we
know the feedback player will play either a value ≤ εl or a value ≥ 1− εl), and the correct feedback
must be 0, so this is a valid fixed point.

3.6 Constant degree preference games

For a given preference game, define in(v) (resp., out(v)) of a player v to be the set {u : v �u u}
(resp., {u : v ≺v u}). We define the in-degree (resp., out-degree) of a player v to be |in(v)| (resp.,
|out(v)|). The degree of the player is defined to be the sum of the in-degree and the out-degree of
the player. The in-degree (resp., out-degree, degree) of the preference game is defined to be the
maximum, over all nodes, of the in-degree (resp., out-degree, degree) of the node. Notice that this
is the same as the degree in a directed graph in which each player is represented by a node, and an

12

edge from u to v means that u prefers v over itself. Degree d Preference Game is the problem
of finding an equilibrium in a preference game with constant degree d.

Notice that the players defined in Section 3.4 all have out-degree at most 2. There is no implicit
constant bound on the in-degree, but by adding COPY gadgets (which have out-degree 1) we can
guarantee in-degree at most 2. Furthermore, since COPY gadgets have out-degree 1, we can make
sure that the overall degree of the preference game is at most 3. This automatically implies that
it is PPAD-hard to find an equilibrium even in a preference game with degree 3. We will use
this fact in later sections, where we show PPAD-hardness of several other problems via reductions
from constant degree preference games. In addition, we have the following reduction.

Theorem 3.9. Preference Game ≤P Degree d Preference Game

Proof. Given a preference game over player set [n] = {1, . . . , n}, with the sum of the lengths of the
preference lists equal to m. Assume that each player exists in the preference list (ahead of “self”)
for at most m′ other players.

Reducing to a preference game with constant out-degree (at most c+1), with O(m+n)
players.

Suppose player i in the original game has preference list j1, j2, . . . , jk. Let d = dk
c
e. Create 2d new

players, split into two sets: I = {i1, . . . , id}, I
′ = {i′1, . . . , i

′
d}. For ease of notation, we will also refer

to player id as i∗, since this is the player that will play itself the same amount that the original
player i should play itself.

Set the preference list for the new player i1 to j∗1 , j∗2 , . . . j∗c , i1. For new player ih (h > 1), set
the preference list to i′h−1, j

∗
(h−1)c+1, j

∗
(h−1)c+2, . . . , j

∗
hc, ih. For each new player i′h (h ≥ 1), set the

preference list to ih, i′h.

Equilibrium in the original preference game maps to an equilibrium in the new pref-
erence game.

The map will be as follows: Suppose we are given weights w(i, j) for the original game, where
w(i, j) is the weight player i puts on player j. We will set the weights w∗ in the new preference
game as follows. Again, assume the preference list for player i in the original game is j1, j2, . . . , jk.

• w∗(ih, j∗) = w(i, j) for all j∗ in the preference list of ih.

• w∗(ih, i′h−1) =
∑(h−1)c

l=1 w(i, jl)

• w∗(ih, ih) = 1 −
∑hc

l=1 w(i, jl)

• w∗(i′h, ih) = 1 −
∑hc

l=1 w(i, jl)

• w∗(i′h, i′h) =
∑hc

l=1 w(i, jl)

13

Notice,

w∗(i∗, i∗) = w∗(id, id) (by definition of i∗)

= 1 −
dc

∑

l=1

w(i, jl) (from map above)

= 1 −

dk
c
ec

∑

l=1

w(i, jl) (by definition of d)

= 1 −
k

∑

l=1

w(i, jl) (we can ignore the de since the pref list stops after k items)

= w(i, i)

In order to verify that this is an equilibrium in the new game, we must check the following

1. w∗(i, j) ≤ w∗(j, j) for all i, j.

2. w∗(i, i) +
∑

j 6=i w
∗(i, j) = 1 for all i.

3. If w∗(i, j) > 0, and if i prefers a over j, then w∗(i, a) = w∗(a, a).

All three of these are trivial for players in I ′, so we will verify the conditions for players in I.
First consider condition 1 for each weight placed by a player in set I.

• w∗(ih, a∗) = 0 unless a∗ is in the preference list for ih. If a∗ is in the preference list, then
a∗ = a′p for some player a from the original game with p = d length of a’s preference list /ce,
and w∗(a∗, a∗) = w(a, a). By the map above, w∗(ih, a∗) = w(i, a). Since w(i, a) ≤ w(a, a),
w∗(ih, a∗) obeys condition 1.

• w∗(ih, i′h−1) =
∑(h−1)c

l=1 w(i, jl). But we know from the map that w∗(i′h−1, i
′
h−1) =

∑(h−1)c
l=1 w(i, jl),

so w∗(ih, i′h−1) also obeys condition 1.

Next, check condition 2 for each player in set I. The total weight placed by player ih is

w∗(ih, ih) + w∗(ih, i′h−1) +
∑

j∗ in the pref list of ih

w∗(ih, j∗)

= 1 −
hc
∑

l=1

w(i, jl) +

(h−1)c
∑

l=1

w(i, jl) +
∑

j∗ in the pref list of ih

w(i, j)

= 1 −
hc

∑

l=(h−1)c+1

w(i, jl) +

hc
∑

l=(h−1)c+1

w(i, jl)

= 1

Finally, check condition 3. From above, we know that w∗(ih, i′h−1) = w∗(i′h−1, i
′
h−1), so the first

element in each preference list in the new game (the first preference of ih is for i′h−1) will always
obey w∗(i, a) = w∗(a, a). Also from above, w∗(j∗, j∗) = w(j, j) and w∗(ih, j∗) = w(i, j). Therefore,
if any lower preference disobeys w∗(i, a) = w∗(a, a), then it must also be true that w(i, a) 6= w(a, a).
Since we assumed the w values were an equilibrium in the original game, this must mean that there
is no b preferred less than a with w(i, b) > 0, so for all b∗ preferred less than a∗, w∗(ih, b∗) = 0.

14

Equilibrium in the new preference game maps to an equilibrium in the original pref-
erence game.

This map is simple. Given weights w∗ in the new preference game, create weights w in the original
preference game as follows.

• w(i, j) = maxh w∗(ih, j∗)

• w(i, i) = w∗(i∗, i∗)

The max in the first rule is a notational shortcut, since only one of the ih players will have any
preference for j∗, and therefore at most one of the ih players will have w∗(ih, j∗) > 0.

As before, we need to show the following to verify that this is an equilibrium in the original
game.

1. w(i, j) ≤ w(j, j) for all i, j.

2. w(i, i) +
∑

j 6=i w(i, j) = 1 for all i.

3. If w(i, j) > 0, and if i prefers a over j, then w(i, a) = w(a, a).

To show condition 1, consider players i and j. Let ih = the player in the new game that has j∗

in its preference list. Now, w(i, j) = w∗(ih, j∗) and w(j, j) = w∗(j∗, j∗). Since w∗ was feasible, we
know that w∗(ij , j

∗) ≤ w∗(j∗, j∗), as desired.

Next, to show condition 2, consider player i. w(i, i)+
∑k

x=1 w(i, jx) = w∗(i∗, i∗)+
∑k

x=1 maxh w∗(ih, j∗x).
Let’s compute w∗(i∗, i∗) in the new preference game. Recall, the preference list for player ih is i′h−1,
j∗(h−1)c+1, j∗(h−1)c+2, . . ., j∗hc, ih, and specifically, the preference list for i∗ (= id) is i′d−1, j∗(d−1)c+1,
j∗(d−1)c+2, . . ., j∗k , id. Thus,

w∗(i∗, i∗) = 1 − w∗(id, i
′
d−1) −

k
∑

x=(d−1)c+1

w∗(id, j
∗
x)

= 1 − w∗(i′d−1, i
′
d−1) −

k
∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= 1 − [1 − w∗(i′d−1, id−1)] −
k

∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= w∗(i′d−1, id−1) −
k

∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= w∗(id−1, id−1) −
k

∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= 1 − [w∗(id−1, i
′
d−2) +

(d−1)c
∑

x=(d−2)c+1

w∗(id−1, j
∗
x)] −

k
∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= 1 − w∗(i′d−2, i
′
d−2) −

(d−1)c
∑

x=(d−2)c+1

max
h

w∗(ih, j∗x) −
k

∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

15

= 1 − w∗(i′d−2, i
′
d−2) −

dc
∑

x=(d−2)c+1

max
h

w∗(ih, j∗x)

= . . .

= 1 − w∗(i′1, i
′
1) −

k
∑

x=c+1

max
h

w∗(ih, j∗x)

= 1 − [1 − w∗(i′1, i1)] −
k

∑

x=c+1

max
h

w∗(ih, j∗x)

= w∗(i1, i1) −
k

∑

x=c+1

max
h

w∗(ih, j∗x)

= 1 −
c

∑

x=1

w∗(i1, j
∗
x) −

k
∑

x=c+1

max
h

w∗(ih, j∗x)

= 1 −
c

∑

x=1

max
h

w∗(ih, j∗x) −
k

∑

x=c+1

max
h

w∗(ih, j∗x)

= 1 −
k

∑

x=1

max
h

w∗(ih, j∗x)

Putting this back into our sum for player i, we get

w(i, i) +

k
∑

x=1

w(i, jx) = w∗(i∗, i∗) +

k
∑

x=1

max
h

w∗(ih, j∗x)

= 1 −
k

∑

x=1

max
h

w∗(ih, j∗x) +

k
∑

x=1

max
h

w∗(ih, j∗x) = 1.

So 2 holds.
Finally, we need to verify if w(i, j) > 0, and if i prefers a over j, then w(i, a) = w(a, a). If

w(i, j) > 0, then maxh w∗(ih, j∗) > 0. Let h = the h that satisfies maxh w∗(ih, j∗). Now, if i prefers
a over j, then either (Case 1) ih prefers a∗ over j∗ or (Case 2) there is some b < h such that ib
has preference for a∗. Start with Case 1. Since we know that w∗ is an equilibrium for the new
preference game, it must be true that w∗(ih, a∗) = w∗(a∗, a∗), so w(i, a) = w(a, a), as desired.

For Case 2, since w∗(ih, j∗) > 0, we know that for all b < h, w∗(i′b, i
′
b) < 1 (otherwise, for

all c > b, ic would put weight 1 on i′c−1, leaving no weight left for itself, so i′c would also be
1. Therefore, ih would put weight 1 on ih−1, leaving no weight for j∗.) Therefore, for the b
with preference for a∗, w∗(i′b, i

′
b) < 1 ⇒ w∗(i′b, ib) > 0 ⇒ w∗(ib, ib) > 0. Therefore, for all c∗

in the preference list for ib (including a∗), w∗(ib, c
∗) = w∗(c∗, c∗). So w∗(ib, a

∗) = w∗(a∗, a∗), so
w(i, a) = w∗(ib, a

∗) = w∗(a∗, a∗) = w(a, a), as desired.

Reducing to a preference game with constant in-degree (at most 2), with O(m′n)
players.

Suppose we have a player i who exists in the preference lists of m′ other players: j1, j2, . . . , jm′ . We
will add extra players i′1, i1, i

′
2, i2, . . . , i

′
m′ , im′ . The preference lists for these new players will be: i′1

16

has list (i, i′1), for all k > 1: i′k has list (ik−1, i
′
k), for all k, ik has list (i′k, ik). If i plays itself with

weight v, then i′k will play itself with weight 1 − v and ik will play itself with weight v. Each of
these new players has in-degree 1 and out-degree 1. Now, we can replace i with ik in the preference
list for jk, so that i now has in-degree 1 and each ik has in-degree 2. This does not affect the degree
of any jk.

4 Personalized Equilibria

In this section, we introduce a new notion of equilibrium for matrix games, in which a player
may individually match her strategies to her opponents strategies without obeying a product distri-
bution. Since this equilibrium allows different players to simultaneously choose different matchings
across the strategies, we call this a personalized equilibrium. In Section 4.2, we characterize the set
of all personalized equilibria in a k-player game. In Section 4.3, we show that finding a personalized
equilibrium is PPAD-complete.

Suppose we are given a k-player matrix game between players 1, . . . , k. Each player i has
strategy set Si. We are also given a utility function for each i specified by ui : E → R, where
E =

∏

j Sj. Now, given probability distributions pj(Sj) for each j 6= i, a best response for player i
(when using traditional Nash payoffs) is defined by the pi(Si) that satisfies the following, where w
is a weight function over e ∈ E.

max
∑

e∈E

w(e)ui(e)

w(e) =
∏

s∈e∩Sj

pj(s) for all e ∈ E

w(e) ≥ 0 for all e ∈ E

The correlator in a correlated equilibrium [3] relaxes the requirement that w be a product dis-
tribution; however, w does satisfy, among other conditions, the projection constraint

∑

e:s∈e w(e) =
pj(s) for all s ∈ Sj , 1 ≤ j ≤ k. For a personalized equilibrium, we further relax this by allowing
each player to define her own weight function, wi, so that in the best response of player i, pi(s)
(and wi(e)) satisfy the following.

max
∑

e∈E

wi(e)ui(e)

∑

e:s∈e

wi(e) = pj(s) s ∈ Sj , 1 ≤ j ≤ k

wi(e) ≥ 0 e ∈ E

We can view a matrix game as a hypergraph with nodes V = ∪jSj and edges E =
∏

j Sj . Then,
if we interpret the pj(s) values as capacities on the nodes and the utility function for player i as
weights on the edges from the perspective of player i, a personalized equilibrium is simultaneously
a maximum-weight fractional hypergraph matching for each player.

The description of the game above is exponential in the number of players since we require
that every edge connects one strategy of each player. To allow for more succinct descriptions, we
generalize the game as follows. For each player i, we introduce a hypergraph with nodes V = ∪jSj

and edges Ei. The set Ei is required to satisfy two conditions (that are satisfied by E): (i) for
each e in Ei and player j, e contains at most one element of Sj; (ii) there do not exist distinct e

17

and e′ in Ei such that e ⊂ e′. In the game, player i places a weight wi(e) on each edge in Ei. A
player must still place a total of weight 1 on all her edges, and all weights must be non-negative.
Since the edges of Ei may not connect all players, however, we relax the projection constraint to
∑

e:s∈e wi(e) ≤ pj(s). Thus, the collection of weights wi(e), e ∈ Ei, and probability distributions
pi(s), s ∈ Si, over all players i, form a personalized equilibrium if for each i, wi(e) and pi(s)
maximize

∑

e∈Ei
wi(e)ui(e) subject to the following constraints.

∑

e:s∈e

wi(e) ≤ pj(s) ∀s ∈ Sj,∀j 6= i (1)

∑

e:s∈e

wi(e) = pi(s) ∀s ∈ Si

wi(e) ≥ 0 ∀e ∈ Ei

Personalized Equilibrium: Given players 1 . . . k, strategy set Si, edge set Ei, and utility
function ui : Ei → R for each player i. Find a probability distribution pi : Si → R and a weight
assignment wi : Ei → R for each player i that obeys the constraints of LP 1 and maximizes
∑

e∈Ei
wi(e)ui(e).

Just as mixed Nash equilibria exist for every matrix game, we show that every game thus defined
has a personalized equilibrium.

Theorem 4.1. For every multi-player matrix game, a personalized equilibrium always exists.

Proof. Given the matrix game G, we construct the k-player game G in which the ith player’s
strategy space is the set of all probability distribution functions over Si and the payoff is given
by the personalized payoff function defined above. We can view the strategy space as the set
of probability distribution functions over Si instead of weight assignments to Ei since a weight
assignment uniquely defines a probability distribution function, and since the payoffs and responses
of the other players only depend on the pi(s) values, not on the wi(e) values. Then a personalized
equilibrium of G is equivalent to a Nash equilibrium of G. By [38, Proposition 20.3], a game
has a pure Nash equilibrium if the strategy space of each player is a compact, non-empty, convex
space, and the payoff function of each player is continuous on the strategy space of all players and
quasi-concave in the strategy space of the player. The set of probability distributions over Si is
clearly nonempty, convex, and compact. Furthermore, given probability distributions pi over Si,
1 ≤ i ≤ k, the payoff for any player i is simply the solution to the following linear program with
variables wi(e), over e ∈ Ei.

max
∑

e∈Ei

wi(e)ui(e)

∑

e∈Ei:s∈e

wi(e) ≤ pj(s) s ∈ Sj , 1 ≤ j ≤ k

∑

e∈Ei

wi(e) = 1 wi(e) ≥ 0 e ∈ E

It is easy to see that the payoff function is both continuous in the probability distributions of
all players, and quasi-concave in the strategy space of player i, thus completing the proof of the
theorem.

18

We define Personalized Equilibrium as the problem of finding a personalized equilibrium
in a given matrix game. k-Personalized Equilibrium is the same problem in a game with k
players for constant k. Note that the traditional definition of a graphical game [26] may be used in
this setting with smaller edges. In d-Graphical Personalized Equilibrium, each player i has
a neighborhood Ni of at most d other players, and all edges defined for player i are in

∏

j∈Ni
Sj .

Finally, we define ε-Approximate Personalized Equilibrium as the problem of finding a set
of weight assignments (wi(e) ≥ 0 is the weight assigned by player i to edge e) such that (a) for
every player i, 1 − ε ≤

∑

e wi(e) ≤ 1, (b) for each player pair i and j, and for each strategy s,
∣

∣

∑

e:s∈e wi(e) −
∑

e:s∈e wj(e)
∣

∣ ≤ ε, and (c) for any best response weight assignment w∗
i for any

player i,
∑

e w∗
i (e)ui(e) −

∑

e wi(e)ui(e) ≤ ε.

4.1 Characterizing personalized equilibria in two player games

We can simplify the definition of personalized equilibria when discussing two player games.
Consider a matrix game (R,C) between two players ROW and COLUMN, in which player ROW
has strategies r1, r2, . . . , rm and player COLUMN has strategies c1, c2, . . . , cn. R ∈ R

m×n is the
payoff matrix of ROW, and C ∈ R

m×n is the payoff matrix of COLUMN.
Like a standard bimatrix game, if player ROW selects ri and player COLUMN selects cj, the

payoff to ROW is R[i, j] and the payoff to COLUMN is C[i, j]. Suppose ROW selects a distribution x
among the strategies {r1, r2, . . . , rm}, and COLUMN selects a distribution y among {c1, c2, . . . , cn}.
Unlike payoffs defined for mixed strategies, in which the payoff to ROW is

∑

i,j x[i]y[j]R[i, j] and
the payoff to COLUMN is

∑

i,j x[i]y[j]C[i, j], we define the payoffs using flows. The payoff to ROW
is:

Payoff (ROW) = max
ui,j

∑

i,j

ui,jR[i, j] (2)

subject to
∑

j

ui,j = x[i], ∀i and
∑

i

ui,j = y[j], ∀j;

Payoff (COLUMN) = max
vi,j

∑

i,j

vi,jC[i, j] (3)

subject to
∑

j

vi,j = x[i], ∀i and
∑

i

vi,j = y[j], ∀j.

In other words, Payoff (ROW) is the cost of a 1-unit min-cost flow from source r to destination c
in the directed graph GR = (VR, ER), with

VR = {r, c, r1, r2, . . . , rm, c1, c2, . . . , cn}

ER = {(r → ri), ∀i} ∪ {(ri → cj), ∀i, j} ∪ {(cj → c), ∀j},

where the capacity of edge (r → ri) is x[i], the capacity of edge (cj → c) is y[j], and the capacity
of all other edges is +∞. The cost of edge (ri → cj) is −R[i, j], and the cost of all other edges is
0. We note that for any distributions x and y, a unit-flow from r to c always exists, so the above
payoff function is well-defined.

Similarly, Payoff (COLUMN) is the cost of a 1-unit minimum-cost flow from source c to desti-
nation r in the directed graph GC = (VC , EC), with

VC = {r, c, r1, r2, . . . , rm, c1, c2, . . . , cn}

EC = {(c → cj), ∀j} ∪ {(cj → ri), ∀i, j} ∪ {(ri → r), ∀i},

where the capacity of edge (c → cj) is y[j], the capacity of edge (ri → r) is x[i], and the capacity
of all other edges is +∞. The cost of edge (cj → ri) is −C[i, j], and the cost of all other edges is 0.

19

It is not hard to show that the set of all two-player personalized equilibria is convex. In fact,
we can give a stronger characterization, which will lead to a polynomial time algorithm.

Theorem 4.2. A 2-player personalized equilibrium can always be found in polynomial time.

Proof. Let graph G = the union of GR and GC . We will now consider a subgraph G′ = (V ′, E′) ⊂ G,
such that V ′ = VR ∩ VC , (ri → cj) ∈ ER is in E′ if and only if R[i, j] ≥ R[i′, j] for all i′, and
(cj → ri) ∈ EC is in E′ if and only if C[i, j] ≥ C[i, j′] for all j′.

Any directed cycle in G′ corresponds to a personalized equilibria. Consider any cycle
{ri1, cj1, ri2, cj2, . . . , ril, cil} in G′, each node played with weight 1

l
. Player ROW can match each

of his strategies rik with player COLUMN’s strategy cjk. Since this is a best response for player
ROW, ROW cannot do better by changing to another strategy. Similarly, player ROW can match
each of his strategies cjk with player ROW’s strategy ri(k+1) for k < l, cjl can be matched with ri1.

Every personalized equilibria is a linear combination of cycles in G′. Starting with any
bipartite graph from G′ in which the in-degree equals the out-degree of each node (a characteristic
of any personalized equilibria), we can remove any cycle (which is a personalized equilibria) and
we are still left with a bipartite graph with the same characteristic.

4.2 Characterizing personalized equilibria in k-player games

We have shown that the set of all personalized equilibria for a two-player game is just the set
of all linear combinations of cycles in an appropriately defined graph, which is easy to compute
in polynomial time. However, for k player games (k > 3), we will give a reduction from finding
an equilibrium in a preference game to finding a personalized equilibrium in a k player game (for
k > 3), thereby showing that finding personalized equilibria is PPAD-hard. Nevertheless, we
are able to give a concise characterization of the set of all personalized equilibria for arbitrary
multi-player games.

Theorem 4.3 (Personalized Equilibrium Characterization). The following program represents the
set of all exact personalized equilibria. The variables are wi(e), the weight placed by player i on
edge e, ∀e ∈ Ei.

∑

e∈Ei:s∈e

wi(e) ≤
∑

e∈Ej :s∈e wj(e) s ∈ Sj, 1 ≤ j, i ≤ k (4)

∑

e∈Ei

wi(e) = 1 1 ≤ i ≤ k

wi(e) ≥ 0 1 ≤ i ≤ k, e ∈ Ei

min
e∈F

wi(e) = 0 for all players i and subsets F ⊆ Ei such that LP (5) is feasible.

The following linear program is defined for each player i and F ⊆ Ei (referred to as an improvement
set). The variables are δ(e) for each edge e ∈ Ei.

∑

e∈Ei

δ(e)ui(e) > 0 (5)

∑

e∈Ei:s∈e

δ(e) = 0 s ∈ Sj, 1 ≤ j ≤ k, j 6= i

δ(e) < 0 (e ∈ F)

δ(e) ≥ 0 (e /∈ F)

20

Before formally proving this theorem, we will start with some intuition about why this charac-
terizes all equilibria. here we provide some intuition. The first two constraints of program 4 specify
a feasible weight assignment, and the first two constraints of LP 5 specify feasible “weight changes”
that would increase the payoff for player i. How do we know that checking this for all subsets of
edges is enough to find any possible improvement, and how does the last constraint of program 4
ensure that no improvement is possible? We can think of the δ values found in any solution to LP
5 as an “improvement direction.” This is a vector that is orthogonal to the vector of all 1’s and has
a positive dot product with the utilities of i. In other words, if player i were to move weight in this
direction, her payoff would improve. Of course, there may be a continuum of such improvement
directions. However, there are most an exponential number of negative supports, or “improvement
sets”. These are exactly the F values for which LP 5 is feasible. Given an improvement set, the
associated player can get a higher payoff by removing weight from all of those edges and adding
them instead to edges with positive δ value. This improvement will be possible unless the player
does not have weight on this entire improvement set; that is, unless mine∈F wi(e) = 0.

Proof. A solution to the program is an exact personalized equilibrium. Assume we have a
solution to Equation 4 that is not a personalized equilibrium. The first two constraints ensure that
our solution is a feasible weight assignment for the game. Therefore, there must be some player
i who is not playing a best response. Take some better response, in which player i plays weights
w∗

i (e), and let δ(e) = w∗
i (e) − wi(e).

Let F be the subset of Ei such that δ(e) < 0 (that is, player i puts more weight on each
edge in F in the original response than in the best response). Since w∗

i has a strictly higher total
utility for player i than wi, we know that

∑

e∈Ei
w∗

i (e)ui(e) >
∑

e∈Ei
wi(e)ui(e), which implies that

∑

e∈Ei
δ(e)ui(e) > 0. Since both wi and w∗

i were feasible weights, it must be true for any strategy
s that

∑

e:s∈e wi(e) =
∑

e:s∈e w∗
i (e) ⇒

∑

e:s∈e δ(e) = 0.
By our definition of F , δ(e) < 0 for all e ∈ F and δ(e) ≥ 0 for all e /∈ F . Therefore, F

and i obey all the constraints of linear program 5, so since wi(e) obeyed program 4, we know
that mine∈F wi(e) = 0. Thus, there exists some edge f ∈ F such that wi(f) = 0. But then
0 > δ(f) = w∗

i (f) − wi(f) = w∗
i (f), contradicting the fact that w∗

i was a feasible best response for
player i.

Any personalized equilibrium is a solution to the program. Assume we have a personalized
equilibrium that does not satisfy some constraint of the program. Let wi(e) be the weight placed
by player i on edge e in this equilibrium. The first three constraints are the definition of a feasible
weight assignment. Therefore, assume this equilibrium does not satisfy the min constraint for some
player i and some subset F ⊆ Ei for which LP 5 is feasible.

Consider a solution δ for LP 5 for this i and F . Let M = mine∈F |wi(e)|
maxe∈F |δ(e)| , and let δ′(e) = δ(e) ·M .

M is a well-defined positive number since (1) the min constraint was not satisfied, and (2) LP 5
specifies that δ(e) < 0 for all e ∈ F . We know that F is non-empty because the first constraint
implies there is some δ > 0, and combining this with the second constraint implies there is also
some δ < 0. Furthermore, for all e with δ(e) < 0 (i.e., for all e ∈ F), |δ′(e)| ≤ wi(e). Now,
consider the alternate assignment for player i specified by w∗

i (e) = wi(e) + δ′(e). By the second
constraint of LP 5 and the fact that |δ′(e)| ≤ wi(e) for all e with δ(e) < 0, this is still a valid weight
assignment. By the first constraint of LP 5, this gives a strictly higher total utility for player i.
Therefore, weights wi(e) did not give a best response for player i, so we did not have a personalized
equilibrium, contradicting our assumption and completing the proof.

Corollary 4.4. For any matrix game with all rational payoffs, there exists a personalized equilib-
rium in which the probability assigned by each player to each strategy is a rational number.

21

Proof. In Theorem 4.3, we showed that any personalized equilibrium is a solution to a linear
program plus additional min constraints, in which all coefficients are rational. By Theorem 4.1, this
program has at least one solution. Now, we can rewrite this as a union of many linear programs as
follows. Let F1, . . . , Fα be the set of all improvement sets. We can write

∏α
i=1 |Fi| linear programs,

each consisting of the first three constraints from program 4 as well as the α constraints [e1 = 0
for some e1 ∈ F1], [e2 = 0 for some e2 ∈ F2], . . ., [eα = 0 for some eα in Fα]. We can create one
LP for each such combination of one edge from each improvement set, or

∏α
i=1 |Fi| LPs. Since the

union of these linear programs is exactly the same as the program in Theorem 4.3, and since (by
Theorem 4.1) the program in Theorem 4.3 has at least one solution, we know that at least one of
these linear programs has a solution. Any feasible LP with rational coefficients will have a rational
solution. Therefore, there will be a personalized equilibrium with all rational weights.

4.3 Finding personalized equilibria is PPAD-complete

This section contains four reductions. First, we reduce Degree d Preference Game to d-
Graphical Personalized Equilibrium. We next reduce 3-Graphical Personalized Equi-

librium to 4-Personalized Equilibrium. It can be easily verified that the same reductions can
be used to show ε-Approximate Preference Game ≤P ε-Approximate Personalized Equi-

librium. These reductions together show that finding an ε-approximate personalized equilibrium
in both graphical games and 4-player games is PPAD-hard.

Theorem 4.5. Preference Game ≤P Personalized Equilibrium

Proof. Given a preference game over player set [n], with the preference lists specified as a set of
values Qij for all i, j ∈ [n]: Qij = the number of players k such that j �i k �i i.

Define a game as follows, in which we will find a personalized equilibrium.

• The set of players = {p1, . . . , pn}

• Si (the set of strategies for player pi) = {sij : Qij > 0}

• Hi = the set of hyperedges for player pi = {{sij , sjj}∀sij ∈ Si, j 6= i} ∪ {sii}

• ui({sij , sjj}) (the payoff to player i for this hyperedge) = Qij

• ui({sii}) = Qii ≥ 1

Notice that the degree of the game is preserved, and the number of edges defined is at most n
times the degree.

A personalized equilibrium maps to an equilibrium in the preference game.

The map will be as follows: Suppose we are given weights xij for each player i and edge {sij, sjj},
and xii for player i and hyperedge {sii}. These weights form a personalized equilibrium. We will
set weights wij = xij in the preference game.

To show this is an equilibrium in the preference game, we must show the following.

• For all i,
∑

j wij = 1.
∑

j wij =
∑

j xij = 1, since this is a valid solution to the personalized game.

• For all i, j, wij ≤ wjj.

wij = xij ≤ xjj (by the projection constraint for personalized equilibria), xjj = wjj.

22

• w is a lexicographically maximal weight assignment.

Suppose this is not true. Then, there exists another weight assignment w′ that is lexicograph-
ically larger than w. Let w′ be the lexicographically maximal such assignment. Thus, there
exist i, j such that

∑

k:Qik≥Qij
w′

ij >
∑

k:Qik≥Qij
wij . For this i, take a j with the largest

Qij that meets this condition. By our definition of j and the fact that w′ is lexicographi-
cally maximal, we know that for all j′ with Qij′ > Qij,

∑

k:Qik≥Qij′
w′

ij =
∑

k:Qik≥Qij′
wij .

Let δ =
∑

k:Qik≥Qij
w′

ij −
∑

k:Qik≥Qij
wij > 0. Now consider the payoff to player i in the

personalized game.

Payoff to i =
∑

l

xilQil

=
∑

l:Qil>Qij

xilQil +
∑

l:Qil=Qij

xilQil +
∑

l:Qil<Qij

xilQil

=
∑

l:Qil>Qij

wilQil + Qij

∑

l:Qil=Qij

wil +
∑

l:Qil<Qij

wilQil

=
∑

l:Qil>Qij

w′
ilQil + Qij

∑

l:Qil=Qij

wil +
∑

l:Qil<Qij

wilQil

=
∑

l:Qil>Qij

w′
ilQil + Qij((

∑

l:Qil=Qij

w′
il) − δ) +

∑

l:Qil<Qij

wilQil

≤
∑

l:Qil>Qij

w′
ilQil + Qij

∑

l:Qil=Qij

w′
il − δQij +

∑

l:Qil<Qij

w′
ilQil + δ(Qij − 1)

<
∑

l:Qil>Qij

w′
ilQil + Qij

∑

l:Qil=Qij

w′
il − δ(Qij − 1) +

∑

l:Qil<Qij

w′
ilQil + δ(Qij − 1)

=
∑

l:Qil>Qij

w′
ilQil + Qij

∑

l:Qil=Qij

w′
il +

∑

l:Qil<Qij

w′
ilQil

=
∑

l

w′
ilQil

So player i would do strictly better by playing x = w′, leading to a contradiction.

An equilibrium in the preference game maps to a personalized equilibrium.

Suppose we are given weights wij forming an equilibrium in the preference game. We will set weights
in the personalized game as follows. xih = wij for player i and edge h = {sij, sjj}. xih = wii for
player i and edge h = {sii}.

To show this is a personalized equilibrium, we must show the following.

• For all i,
∑

h xih = 1.
∑

h xih =
∑

j wij = 1, since this is a valid weight assignment in the preference game.

• For all i, sjk ∈ Sj,
∑

h:sjk∈h xih ≤
∑

h:sjk∈h xjh.

If j 6= k,
∑

h:sjk∈h xih = 0 ≤
∑

h:sjk∈h xij. If j = k,
∑

h:sjj∈h xih = xih′ where h′ = {sij , sjj}

= wij ≤ wjj = xjh′′ where h′′ = {sjj} =
∑

h:sjj∈h xjh.

• x is a best response in the personalized game for all players i.

23

Consider any other weight function x′ for the personalized game. Since there is a one-to-one
mapping from defined edges to i, j pairs in the preference game (including i = j), we can
define a new weight function w′ in the preference game using the same rules as defined in
the first half of this proof (w′

ij = x′
ij). We know that w is lexicographically maximal for the

preference game. Using the same reasoning as above, we get:

Payoff to i playing x′ =
∑

l

x′
ilQil

=
∑

l:Qil>Qij

x′
ilQil +

∑

l:Qil=Qij

x′
ilQil +

∑

l:Qil<Qij

x′
ilQil

=
∑

l:Qil>Qij

w′
ilQil + Qij

∑

l:Qil=Qij

w′
il +

∑

l:Qil<Qij

w′
ilQil

<
∑

l:Qil>Qij

wilQil + Qij

∑

l:Qil=Qij

wil +
∑

l:Qil<Qij

wilQil

=
∑

l

wilQil

= Payoff to i playing x

Corollary 4.6. It is PPAD-hard to find a personalized equilibrium, even in a graphical game with
degree 3.

Proof. The reduction in the proof to Theorem 4.5 preserves the number of players. For player i, it
creates one hyperedge of size at most 2 for each player in out(i) in the preference game. Therefore,
the degree in the game is preserved.

Theorem 4.7. 3-Graphical Personalized Equilibrium ≤P 4-Personalized Equilibrium

Proof. Suppose we are given a graphical game with degree 3 for which we want to find a personalized
equilibrium. We first convert this graph so that it still has degree 3 but also obeys the following
property: For each node u with at least two outgoing edges, one to node v1 and the other to node
v2, there exists either an edge from v1 to v2 or an edge from v2 to v1.

Given a graph with maximum degree 3, we make the following modifications to satisfy the above
property. Suppose we have a node u with an edge to v1 and an edge to v2, and suppose v1 already
has degree 3. To fix this, we will create an extra node v′1 with the same strategies as v1 which will
play exactly the same weights as v1 in an equilibrium. We can do this by setting the payoff to v′1
for agreeing with v1 to 1, and the payoffs for disagreeing with v1 to 0. v′1 has out-degree 1, since
it only depends on v1. We have added one to the in-degree of v1. However, now we can replace
edge (u, v1) with edge (u, v′1), so v1 now has degree 3, as originally, and v′1 has degree 2, so we can
add an edge between v′1 and v2 without exceeding the degree requirement on v1. Repeating the
above transformations with other vertices that violate the desired property will lead to a degree-3
graphical game that satisfies the property.

Now we have a degree 3 graph with the desired property. Create a 3-coloring and create one
player per color. Each player takes each of the strategies for each node in that color. For ease of
notation, assume that each of the original nodes had only 2 strategies. This can be easily adjusted

24

for more strategies. Add dummy strategies as necessary so that each of the 3 players has the same
number of strategies. Also add a fourth player with half the number of strategies as any other
player.

This gives us 4 players. Let the strategies for player 1 be {a10, a11, a20, a21, . . . , ak0, ak1}. The
strategies for player 2 are {b10, b11, . . . , bk0, bk1}. The strategies for player 3 are {c10, c11, . . . , ck0, ck1}.
The strategies for player 4 are {d1, d2, . . . , dk}.

Next we will assign payoffs for each hyperedge. Start by giving each hyperedge the same payoff
as in the graphical game (we can do this because no two nodes influencing the same strategy are
strategies of the same player). Notice that these payoffs will not depend at all on player 4. All of
player 4’s payoffs start at 0. Let pi(w, x, y, z) = the payoff to player i if player 1 plays w, 2 plays
x, player 3 plays y, player 4 plays z. Now we want to add to these payoffs in order to ensure that
each player plays each strategy pair equally.

Let M be strictly greater than the largest payoff so far. Now, change the following payoffs:
p1(asi, x, y, ds)+ = M (player 1 is playing either strategy from the node numbered s, player 4

is playing his sth strategy).
p2(w, bsi, y, ds)+ = M (player 2 is playing either strategy from the node numbered s, player 4 is
playing his sth strategy).
p3(w, x, csi, ds)+ = M (player 3 is playing either strategy from the node numbered s, player 4 is
playing his sth strategy).
p4(asi, x, y, d(s+1))+ = M (player 1 is playing either strategy from the node numbered s, player 4
is playing strategy s mod k + 1).

If fi(x) = the amount player i plays strategy x then in any equilibrium we must have (for all s)

f1(as0) + f1(as1) = f4(ds)

f2(bs0) + f2(bs1) = f4(ds)

f3(cs0) + f3(cs1) = f4(ds)

f4(ds) = f1(a(s−1)0) + f1(a(s−1)1) for 1 < s ≤ k

f4(d1) = f1(ak0) + f1(ak1)

These equations imply that:

f1(as0) + f1(as1) = f1(a(s−1)0) + f1(a(s−1)1) for s > 0

f1(a00) + f1(a01) = f1(ak0) + f1(ak1) for s > 0

f2(bs0) + f2(bs1) = f1(as0) + f1(as1)

f3(cs0) + f3(cs1) = f1(as0) + f1(as1)

In other words, given a personalized equilibrium in this game, we can simply multiply by the
number of pairs (nodes) per player to get a personalized equilibrium in the graphical game.

The remaining two reductions will be used to show PPAD membership of Personalized

Equilibrium. We show how to reduce Personalized Equilibrium to ε-Approximate Per-

sonalized Equilibrium, as long as ε is sufficiently small. Finally, we reduce ε-Approximate

Personalized Equilibrium to End of the Line, thereby completing the proof that finding
personalized equilibria (as well as ε-approximate personalized equilibria) is PPAD-complete. We

25

start with an LP compactness claim that will be useful to show Personalized Equilibrium ≤P

ε-Approximate Personalized Equilibrium.

Lemma 4.8 (LP Compactness). If an LP with n variables and rational coefficients, each repre-
sented by at most β bits, is such that there is a point obeying each constraint to within ε = 1

23nβ ,
then the LP is feasible.

Proof.

Lemma 4.9. If t, b, ti, bi, yi, zi, (for 1 ≤ i ≤ n), are β-bit integers, then either
∑n

i=1
tiyi

bizi
≥ t

b
or

∑n
i=1

tiyi

bizi
< t

b
− 1

23nβ .

Proof. Suppose we have
∑n

i=1
tiyi

bizi
< t

b
. Then the difference t

b
−

∑n
i=1

tiyi

bizi
is at least 1/(b·

∏

i bi

∏

i zi),

which is at least 1/2β+2nβ < 2−3nβ since each integer in the product is at most 2β .

From Lemma 4.9, we get the following. If x satisfies
∑n

i=1 aixi ≥ b− 1
23nβ , where each ai and b

are rational numbers whose numerators and denominators are representable as β-bit integers, then
x satisfies

∑n
i=1 aixi ≥ b. This immediately implies the Lemma.

Corollary 4.10. Given a linear program with ≤ n variables and coefficients of the form a
b

for
integers a and b, each represented by at most β bits, each coordinate of a vertex must be representable
by c

d
for integers c and d, each represented by less than 3nβ bits.

We use the next lemma to show that an approximate personalized equilibrium almost satisfies
the constraints of Theorem 4.3. As long as ε is small enough, this will imply by Lemma 4.8
that an ε-approximate personalized equilibrium will point us to a feasible LP that finds an exact
personalized equilibrium.

Lemma 4.11. An ε1-approximate personalized equilibrium (with ε1 = 1
23|E|(β+γ)) will obey every

constraint in program 4 to within ε2 = 1
d

for γ bit integer d, if each utility value is representable as
a
b

for integers a and b of at most β bits each.

Proof. Assume for the sake of contradiction that we have an ε1-approximate personalized equilib-
rium that does not satisfy some constraint of the program to within ε2. Let wi(e) = the weight
placed by player i on hyperedge e in this approximate equilibrium. The first three constraints of
program 4 must be satisfied to within ε1, since they are the definition of a feasible weight assign-
ment. Therefore, assume this equilibrium does not satisfy the min constraint to within ε2 for some
player i and some subset F ⊆ Ei for which LP 5 is feasible.

Consider a solution δ∗ for LP 5 for this i and F . Let M = ε2
maxe∈F |δ∗(e)| , and let δ′(e) = δ∗(e)·M .

M is well-defined since δ∗(e) < 0 for all e ∈ F . Furthermore, for all e with δ(e) < 0 (i.e., for all
e ∈ F), |δ′(e)| ≤ ε2 ≤ wi(e).

Now consider the following slightly adjusted linear program.

maximize
∑

e∈Ei

δ(e)ui(e)

∑

e:s∈e

δ(e) = 0 s ∈ Sj , 1 ≤ j ≤ k, j 6= i (6)

δ(e) ≥ −ε2 (e ∈ F)

δ(e) ≥ 0 (e /∈ F)

26

By our choice of δ′ and the analysis above, δ′ obeys each constraint of the new linear program
6, and δ′ gives a maximization value > 0. LP 6 has |Ei| ≤ |E| variables, each coefficient ui(e)
can be represented as a

b
for β-bit integers a and b, and coefficient ε2 = 1

d
for γ bit integer d.

The maximization point of an LP will be at a vertex, so by Corollary 4.10, each dimension of
the maximization point of LP 6 will be representable by c

b
for integers c and d, each of less than

3|E|(β + γ) bits.
Let δ = the solution to LP 6, and consider the alternate assignment for player i specified by

w∗
i (e) = wi(e) + δ(e). By the first constraint of LP 6, this still does not overfill or underfill any

strategy by more than ε1, and player i still places total weight between 1 − ε1 and 1 + ε1. By
the second and third constraints, δ(e) < 0 if and only if e ∈ F , in which case |δ(e)| ≤ ε2 (when
wi(e) ≥ ε2), so w∗

i (e) ≥ 0. In other words, we still have a valid weight assignment for an ε1-
approximate personalized equilibrium. Since we know LP 6 has a solution > 0, and (from above)
each coordinate of the solution is representable as c

d
for integers c and d, each of at most 3|E|(β+γ),

this gives a total utility for player i that is more than 1
23|E|(β+γ) = ε1 larger than the original total

utility. Therefore, the original solution was not a valid ε1-approximate personalized equilibrium,
contradicting our assumption and completing the proof.

Theorem 4.12. There is a polynomial time reduction from finding an exact personalized equi-
librium in a game with |E| edges to finding an ε-approximate personalized equilibrium for any
ε ≤ 1

|E|3|E|29|E|2β+3|E|β
, assuming all utilities can be represented as a

b
for integers a and b, each of at

most β bits.

Proof. The reduction consists of two steps. In the first step, we find an ε-approximate personalized
equilibrium for the given game in which we want to find an exact personalized equilibrium. In the
second step, we solve the following linear program for wi(e) and pi(s), ∀i ∈ 1 . . . k, s ∈ Si, e ∈ Ei.
Let E′

i ⊂ Ei = the set of all edges e such that player i assigned ≤ 1/(|E| · 23|E|β) weight to edge e
in the approximate equilibrium.

∑

e∈Ei:s∈e

wi(e) ≤ pj(s) 1 ≤ i, j ≤ k, s ∈ Sj (7)

∑

s∈Si

pi(s) = 1 1 ≤ i ≤ k

wi(e) = 0 ∀e ∈ E′
i, 1 ≤ i ≤ k

wi(e) ≥ 0 1 ≤ i ≤ k, e ∈ Ei \ E′
i

ε ≤ 1

E3|E|∗29|E|2β+3|E|β
= 1

23|E| log2 |E|+9|E|2β+3|E|β
= 1

23|E|(β+3|E|β+log2 |E|) . Since ε ≤ 1
23|E|(β+3|E|β+log2 |E|) ,

by Lemma 4.11, the approximate equilibrium found in the first step will satisfy all constraints of
program 4 to within 1

23|E|β+log2 |E| = 1/(|E| ∗ 23|E|β). Therefore, a solution found in the second step
will exactly satisfy all “min” constraints in program 4. Clearly, a solution found in the second step
will exactly satisfy all other constraints in program 4, since the other constraints are identical.

Each value wi(e) is being decreased by at most 1/(|E|23|E|β) (but not to less than 0) from
the approximate equilibrium to the solution to the second step, so the last two constraints in
linear program 7 are satisfied exactly using the values from the approximate equilibrium, while the
first two constraints in linear program 7 are satisfied to within 1/(23|E|β) by the values from the
approximate equilibrium. Therefore, the approximate equilibrium satisfies each constraint of linear
program 7 to within ε = 1/(23|E|β). By Lemma 4.8, linear program 7 is feasible, so by Lemma 4.3,
we can find an exact personalized equilibrium.

Theorem 4.12 and Theorem 4.13 put Personalized Equilibrium in PPAD.

27

Theorem 4.13. ε-Approximate Personalized Equilibrium ≤P End of the Line

Proof. We used fixed point theorems to prove the existence of a personalized equilibrium, and
relaxing the problem to finding ε-approximate equilibria automatically moves us from a continuous
to a discrete world. Here, we show that finding an ε-approximate equilibrium is in PPAD. This is
not surprising given that several discrete fixed point problems have been shown to be in the class
PPAD. Our proof uses the machinery already established for proving that finding approximate
Nash equilibrium in r-player games is in PPAD [13]. Their proof [13][Section 3.2] will apply to
personalized equilibria as well, as long as we can define a polynomial-time computable function
f(x) for x ∈ R

n·k for a game with k players, n strategies per player, which satisfies the conditions
we enumerate below. We need to introduce some notation first. For p ∈ [k] and i ∈ [n], we denote
by xi

p the ((p − 1)n + i)-th coordinate of x (the amount that player p plays strategy i). For player
p, let Dp denote the set {(p − 1)n + j : j ∈ [n]}; that is, the dimensions corresponding to the
strategies of p. Then xp is the projection of x on Dp and x−p is the projection of x on [nk] − Dp.
The function f(x) must satisfy the following requirements for the proof to translate:

1. ∀p,
∑

i f(xi
p) = 1

2. If ‖x − x′‖∞ < δ, then ‖f(x)− f(x′)‖∞ < Umax2
poly(n,m,k)δ, where m is the number of edges

and Umax is the maximum payoff entry in the given instance.

3. If ‖f(x) − x‖∞ < ε1, then x is an ε-approximate personalized equilibrium. Here, we will use
any ε1 ≤ ε

nUmax
. In the proof from [13], ε1 only affects the number of nodes in the End of

the Line graph.

We define f(x) as follows: we set f(x)p to be the lexicographically least best response to x−p.
We now show that f satisfies the three conditions listed above. The first condition is immediate
from the definition of f(x). For the second condition, fix x, x′, and a player p. Then f(x)p is
obtained by solving a best response linear program for player p given the strategy distribution x−p

of the other players. The LP, which we denote by O for this proof, is over the variables f(x)ip, for
strategy i ∈ Sp, and wp(e) for every edge e, and maximizes a linear utility u(f(x)p, wp) subject to
linear constraints B · (f(x)p, wp)

T ≥ c. We note that every element of B is either 0 or 1 and every
element of c is either 0, 1, or a coordinate of x−p. Similarly, f(x′)p is an optimal solution to an LP
O′, which maximizes u(f(x′)ip, w

′
p) subject to B · (f(x)p, w

′
p)

T ≥ c′, where c′ is derived from x′
−p in

the same way as c is derived from x−p.
Let U and U ′ denote the optimal values of O and O′. We first argue that if ‖x−x′‖∞ ≤ δ, then

|U − U ′| ≤ mUmax(nk)!δ, where m is the number of edges and Umax is the maximum payoff entry
in the given game. We note that x satisfies the constraints of O′ to within δ. We also know that O′

is feasible. The number of variables and constraints in both O and O′ are n + m and nk + m + 1.
Therefore, by Lemma 4.14, there exists a point y that satisfies the constraints of O′

p such that
‖y − x‖∞ ≤ (nk)!δ; here we use the fact that every entry in the constraint matrix and vector of O
and O′ is at most 1. Thus, the utility achieved by y is at least u(f(x)p, wp)−mUmax(nk)!δ, yielding
U ′ ≥ U − mUmax(nk)!δ. Similarly, we have U ≥ U ′ − mUmax(nk)!δ. This gives the desired bound
|U − U ′| ≤ mUmax(nk)!δ.

By definition, we have that (f(x)p, wp) is the lexicographically least element of the feasibility
LP consisting of the constraints of Op together with the constraint u(f(x)p, wp) ≥ U . Let us call
this LP P. Similarly, (f(x′)p, w

′
p) is the lexicographically least element of the feasibility LP P ′

consisting of the constraints of O′ together with the constraint u(f(x′)p, w
′
p) ≥ U ′. We note that

P and P ′ have the same set of variables and the same constraint matrix; that is, P and P ′ can be
written down as Ax ≥ b and Ax ≥ b′ respectively. Since ‖x−x′‖∞ ≤ δ and |U−U ′| ≤ mUmax(nk)!δ,

28

we have ‖b− b′‖∞ ≤ mUmax(nk)!δ. We now apply Corollary 4.15 to obtain that ‖f(x)p − f(x′)p‖∞
is at most Umax2

poly(n,m,k)δ.
For the third condition, recall our definition of an ε-approximate personalized equilibrium. We

require: (3a) for every player p, 1−ε ≤
∑

e wp(e) ≤ 1, (3b) for each player pair p and q, and for each
strategy s,

∣

∣

∑

e:s∈e wp(e) −
∑

e:s∈e wq(e)
∣

∣ ≤ ε, and (3c) for any best response weight assignment w∗
p

for any player p,
∑

e w∗
p(e)up(e)−

∑

e wp(e)up(e) ≤ ε. (3a) is immediate, and we have
∑

e we(p) = 1.
For (3b), recall that yp is the exact best response to x−p. Therefore, for any player pair p and q
and strategy s of q, we could find a weight assignments w on all edges e (specifically, the weight
assignments that made this a best response) such that

∑

e:s′∈e wp(e) = ys′

p (for all s′, strategies of
p), and

∑

e:s∈e wp(e) = xs
q. Since w was a weight function for y, we also have

∑

e:s∈e wq(e) = ys
q .

We are told that |y∗sq − xs
q| is at most ε1, so we have |

∑

e:s∈e wp(e) −
∑

e:s∈e wq(e)| ≤ ε1.
Condition (3c): As above, we can define the weight function w∗

p(e) that makes yp a best re-
sponse against x−p. Also define any weight assignment wp that gives (for all strategies s of p)
∑

e:s∈e wp(e) = xs
p. For any strategy s of p, we are told that |ys

p − xs
p| < ε1, so we can say for

any strategy s of p,
∑

e:s∈e w∗
p(e) −

∑

e:s∈e wp(e) < ε1 ⇒
∑

e:s∈e w∗
p(e)up(e) −

∑

e:s∈e wp(e)up(e) <
ε1Umax. This means

∑

s |
∑

e:s∈e w∗
p(e)up(e) −

∑

e:s∈e wp(e)up(e)| < nε1Umax if n is the number
of strategies for p. We can remove the absolute values because w∗ was a best response, giving
∑

e w∗
p(e)up(e) −

∑

e wp(e)up(e) ≤ ε as required, as long as εl ≤ ε
(

1
nUmax

)

.

Lemma 4.14. Given a q × r matrix A, an q-vector b such that Ax ≥ b is feasible, and p ∈ R
r

and e ∈ R
q such that Ap ≥ b − e, there exists p′ satisfying Ap′ ≥ b such that ‖p − p′‖∞ is at

most emax(AmaxDmax)
q, where emax = maxj ej , Amax equals maxij |Aij | and Dmax is the largest

determinant, in absolute value, of any submatrix of the matrix consisting of the columns of A and
b.

Proof. We find a point y such that Ay ≥ b−Ap and ‖y‖∞ ≤ emax(AmaxDmax)
q. Setting p′ = p + y

gives us the desired lemma. We first note that Ay ≥ b − Ap is feasible since it is satisfied by the
point x − p, where x satisfies Ax ≥ b. Let d equal b − Ap. So our goal is to find a y satisfying
Ay ≥ d. By our assumption on p, we have di ≤ emax for all i.

Consider the following algorithm for constructing y. Set y = 0 and L to be the empty LP. At
the end of i iterations, we will maintain the invariant that ‖y‖∞ ≤ (AmaxDmax)

iemax. Find any
constraint Aky ≥ dk not in L that is not satisfied. (If no such constraint exists, then we are done.)
Add this constraint to L. By the invariant on |y|, it follows that |Aky| is at most Ai+1

maxD
i
maxemax.

Since dk ≤ emax, it follows that |dk| is at most Ai+1
maxD

i
maxemax. Since the right hand side of every

inequality of L is at most this number, and the left hand side is a submatrix of A, by Cramer’s rule
there exists a vertex of L, every coordinate of which has magnitude at most Ai+1

maxD
i
maxemax times

the largest entry in the determinant of any submatrix of A, which is at most Dmax. (Note that L is
feasible since Ay ≥ d is feasible.) This yields the desired invariant ‖y‖∞ ≤ (AmaxDmax)

(i+1)emax.
The above procedure stops in at most q iterations, and yields a point y such that ‖y‖∞ ≤

emax(AmaxDmax)
q, thus completing the proof of the lemma.

Corollary 4.15. Let A be an q× r matrix, b be an q-vector, and p be the lexicographically smallest
vector in Ax ≥ b. Let b′ ∈ R

q be such that Ax ≥ b′ is feasible. If p′ is the lexicographically smallest
vector in Ax ≥ b′, then ‖p−p′‖∞ is at most emax(AmaxDmax)

qr+r(r+1), where emax = maxj |bj − b′j|,
Amax = maxi,j |Aij |, and Dmax is the largest determinant, in absolute value, of any submatrix of
the matrix consisting of columns from A and b.

29

Proof. Let L denote the LP Ax ≥ b′. We apply Lemma 4.14 with (A, p, b, e) replaced by (A, p, b′, b−
b′) to obtain a point p′ satisfying L such that |p1 − p′1| is at most emax(AmaxDmax)

q. We add a
constraint x1 = p′1 to the LP L and apply Lemma 4.14 with (A, p, b, e) replaced by (Ã, p, b̃, ẽ),
where Ã is the constraint matrix of L, b̃ is the right-hand side of L, and ẽ is the vector obtained
by adding two additional coordinates to e, each with magnitude at most |p1 − p′1| (for the two new
inequality constraints resulting from the addition of x1 = q1). We obtain a new point p′ satisfying
L such that |p1 − p′1| and |p2 − p′2| are both at most emax(AmaxDmax)

2q+2. Repeating this for all
the coordinates yields the lexicographically smallest vector p′ of Ax ≥ b′ with ‖p − p′‖∞ at most
emax(AmaxDmax)

qr+r(r+1).

5 Scarf’s Lemma and Fractional Stability Problems

This section discusses the complexity of a number of well-known combinatorial problems that
can be categorized as fractional stability problems. We begin with Scarf’s Lemma, a fundamental
result in combinatorics, originally introduced to prove that every balanced cooperative game with
non-transferable utilities has a nonempty core (see Section 5.3) [41]. The core (no pun intended)
of Scarf’s proof is an elegant and constructive combinatorial argument, which has been applied to
diverse combinatorial problems, including fractional stable matchings in hypergraphic preference
systems, strong kernels in digraphs, and the fractional stable paths problem [2, 1, 28, 21]. We
first show that the computational version of Scarf’s lemma is PPAD-complete. We then establish
the PPAD-completeness of stable matchings in hypergraphic preference systems, strong kernels in
digraphs, core of balanced games with non-transferable utility, the fractional stable paths problem,
and a fractional version of the Bounded Budget Connection game [30, 31].

5.1 Scarf’s Lemma

In the computational version of Scarf’s lemma (Scarf) we are given matrices B, C and a vector
b satisfying the conditions in Theorem 5.1, and the goal is to find α ∈ R

n
+ satisfying the desired

properties.

Theorem 5.1. (Scarf’s lemma [41]) Let I = [δij] be an m × m identity matrix. Let [n] =
{1, 2, . . . , n}. Let m < n and let B be an m × n real matrix such that bij = δij for 1 6 i, j 6 m.
Let b be a non-negative vector in R

m, such that the set {α ∈ R
n
+ : Bα = b} is bounded. Let C be

an m× n matrix such that cii 6 cik 6 cij whenever i, j 6 m, i 6= j and k > m. Then there exists a
subset J ⊂ [n] of size m such that

(P1) Bα = b for some α ∈ R
n
+ such that αj = 0 whenever j /∈ J , and

(P2) For every k ∈ [n] there exists i ∈ [m] such that cik 6 cij for all j ∈ J .

A subset J ⊂ [n] of size m is called a feasible basis of (B, b) if it satisfies (P1), and subordinating
if it satisfies (P2). To compute α of Scarf, it suffices to have a J ⊆ [n] that is simultaneously
subordinating and a feasible basis. Once such J is computed, α can be computed by solving a
system of linear equations. Also, given a solution α, J is easy to compute, since J is α’s support.
Hence finding α and J are computationally equivalent, to within polynomial time. In Theorem
5.2, we argue that Scarf’s original proof [41], together with Todd’s orientation technique [46], gives
an end of the line argument for the existence of a subordinating and feasible basis, thus showing
that Scarf is in PPAD.

30

Scarf: Given matrices B and C and vector b ∈ R
m, all obeying the requirements from Theorem

5.1, find a subset of m column indices that is a feasible basis for (B, b) and is subordinating for
C.

Theorem 5.2. Scarf ≤P End of the Line.

Proof. The pair (B, b) is non-degenerate if b is not in the cone spanned by fewer than m columns
of B. We call C ordinal-generic if all the elements in each row of C are distinct. There exists a
small perturbation b′ of b such that the pair (B, b) is non-degenerate and every feasible basis for
(B, b′) is also a feasible basis for (B, b). By slightly perturbing C, we can obtain an ordinal-generic
matrix C ′ satisfying the assumptions of the theorem, and if the perturbation is small enough, then
any subordinating set for C ′ is also subordinating for C. Hence, we may assume that (B, b) is
non-degenerate, and that C is ordinal-generic.

Lemma 5.3 is well-known. Its proof requires that {α ∈ R
n
+ : Bα = b} is bounded and (B, b)

is non-degenerate. For the proof of Lemma 5.4, we refer the reader to [41] or [2] or page 1127 of
Schrijver’s Combinatorial Optimization book [42]. Proof of Lemma 5.4 uses the assumption that
C is ordinal-generic.

Lemma 5.3. Let J be a feasible basis for (B, b), and k ∈ [n] \ J . Then there exists a unique j ∈ J
such that J + k − j (i.e., J ∪ {k}\{j}) is a feasible basis. Also, given J and k, we can find j in
polynomial time.

Lemma 5.4. (Scarf [41]) Let K be a subordinating set for C of size m-1. Then there are precisely
two elements j ∈ [n]\K such that K + j is subordinating for C, unless K ⊆ [m], in which case
there exists precisely one such j. Given K, we can find values of j in polynomial time.

The natural pivot rules arising from Lemma 5.3 and Lemma 5.4 are called the feasible pivot
rule and the ordinal pivot rule respectively.

The original proof of Scarf’s lemma ([41], [2]) uses an “undirected end of the line argument”,
thus showing its PPA-membership. It is easy to see that PPAD ⊆ PPA, however it is unknown
if PPAD = PPA. To prove PPAD-membership of Scarf, we need a “directed end of the line
argument”. Shapley [44] presented a geometric orientation rule for the equilibrium points of (non-
degenerate) bimatrix games based on the Lemke-Howson algorithm [32]. Extending Shapley’s rule,
Todd [46] developed a similar orientation theory for generalized complementary pivot algorithms.
We now apply Todd’s orientation technique to prove PPAD-membership of Scarf.

Let X = {1, 2, . . . , n}. A subset of X of cardinality m is called an m-subset. Let Xm denote
the collection of ordered (with the natural ordering defined by X) m-tuples of distinct elements
of X. Two m-tuples in Xm are equivalent iff one is an even permutation of the other. Let P be
any element of an equivalent set. We denote the corresponding equivalent set by P . If P ′ ∈ Xm

is an odd permutation of P ∈ Xm, then we call P ′ the negative of P and write P ′ = −P . Let
P = (e1, . . . , en) ∈ Xn. For µ = ±1, we say P contains µ(P\ei) positively (negatively) if µ(−1)i is
positive (negative).

Let e ∈ X be a specific element. Let F be the set of all feasible bases containing e, and S be
the set of all subordinating sets of size m not containing e. Note that both F and S are m-subsets
of [n]. Let V (F ,S, e) be the set of pairs (F, S) ∈ F × S satisfying either (i) F = ±S (called a
matched pair) or (ii) e ∈ F, e /∈ S and F\S = {e} (called an unmatched pair). A matched pair
(T , T) is positive, while (T ,−T) is negative. An unmatched pair (F , S) is positive (negative) if F
is contained in (S ∪ e) positively (negatively).

31

Lemma 5.5. (Todd [46]) (a) Every matched pair is adjacent to one unmatched pair by a feasible
pivot, or one unmatched pair by a ordinal pivot, but not both. (b) Every unmatched pair is adjacent
to one pair by a feasible pivot and one pair by a ordinal pivot.

Lemma 5.6. (Todd [46]) (a) If two unmatched pairs are adjacent by a feasible pivot, they have
opposite signs. (b) If a matched pair and an unmatched pair are adjacent by a feasible pivot, they
have the same sign. (c) If two pairs are adjacent by a ordinal pivot, they have opposite signs.

Similar to [46], we construct a directed graph with vertices representing the pairs in V (F ,S, e).
If two unmatched pairs are adjacent by a feasible pivot, we add a directed edge from the negative
pair to the positive pair. If a matched pair is adjacent by a feasible pivot to an unmatched pair,
we add a directed edge from the matched pair to the unmatched pair if both are positive and in
the reverse direction if both are negative. If two pairs are adjacent by an ordinal pivot, we add
a directed edge from the positive pair to the negative pair. From Lemmas 5.5 and 5.6, it follows
that each unmatched pair has indegree 1 and outdegree 1. Each matched pair has indegree 0 and
outdegree 1 if positive, and indegree 1 and outdegree 0 if negative. It is easy to see that [m] is in F
and is not subordinating. By Lemma 5.4 there exists f 6= e such that [m]− e + f is in S. We shall
use the pair ([m], [m] − e + f) as the initial source of End of the Line. This gives the required
PPAD property.

In Section 5.2, we establish the PPAD-hardness of Fractional Hypergraph Matching,
which reduces to Scarf in polynomial time [1], thus completing the proof that Scarf is PPAD-
complete.

5.2 Hypergraphic Preference Systems

A hypergraphic preference system is a pair (H,O), where H = (V,E) is a hypergraph, and
O = {�v : v ∈ V } is a family of linear orders, �v being an order on the set of edges containing the
vertex v. A set M of edges is called a stable matching with respect to the preference system if (a)
it is a matching and (b) for every edge e there exists a vertex v ∈ e and an edge m ∈ M containing
v such that e �v m. A nonnegative function w on the edges in H is called a fractional matching if
∑

v∈h w(h) ≤ 1 for every vertex v. A fractional matching w is called stable if every edge e contains
a vertex v such that

∑

v∈h,e�vh w(h) = 1.
Aharoni and Fleiner [1] used Scarf’s lemma to prove that every hypergraphic preference system

has a fractional stable matching. This naturally leads to a computational problem – Fractional

Hypergraph Matching : given a hypergraphic preference system (H,O), find a fractional stable
matching.

Fractional Hypergraph Matching: Given a hypergraph H and a preference ordering O
for each node in H, find a weight assignment across the edges such that the weight adjacent
to each vertex is at most 1 and each edge e includes some vertex v that is adjacent to weight
exactly 1 on edges preferred by v at least as much as e.

We first observe that the proof of [1] is a polynomial time reduction from Fractional Hy-

pergraph Matching to Scarf, thus placing it in PPAD. We now show that Fractional

Hypergraph Matching is PPAD-hard via a reduction from preference games.

Theorem 5.7. Degree d Preference Game ≤P Fractional Hypergraph Matching.

32

Proof. We are given a preference game over players [n] = {1, . . . , n}. We construct the following
hypergraph matching instance (H,O), H = (V,E). The set V of vertices is [n]∪{i∗ : i ∈ [n]}; that
is, we have two vertices i and i∗ for each player i. The set of edges is given by the following.

{{i∗} : i ∈ [n]}
⋃

{{i, i∗} ∪ Ji : i ∈ [n], Ji ⊆ in(i)}}

(Note that Ji is a subset of players that prefer i over themselves.)
We next describe the linear order for a given vertex i. Let e1 and e2 be two edges containing

i. By our construction of E, there exists a unique i1 such that {i1, i
∗
1} is a subset of e1. Similarly,

there is a unique i2 such that {i2, i
∗
2} is a subset of e2. If i1 6= i2, then we require that e1 �i e2 if

and only if i1 �i i2. If i1 = i2, then we require the following condition on �i: e1 �i e2 whenever
e1 ⊇ e2. Finally, for any vertex i∗, we select any linear order in which e1 �i∗ e2 whenever {i, i∗} is
a subset of e1 and e �i∗ {i∗} for all e.

The number of vertices in the above hypergraph is 2n, and the number of edges is at most
n(2d+1), where d is the maximum in-degree of the preference game. Since we are given a preference
game of constant degree, the above construction is polynomial time.

We show that there is a stable solution for the preference game if and only if there is a stable
fractional matching for the hypergraph preference system. Suppose w is a stable solution for the
preference game: wij represents the weight assigned by player i to player j. For a given player j, we
sort all the players i in in(j) in nonincreasing order of the wij values; let the order be j1, j2, . . . , jdj

,
where dj is the in-degree of j. To every edge of the form {j, j∗}∪{j1, . . . , jk}, 1 ≤ k < dj , we assign
the weight wjkj − wjk+1j. We assign weight wjdj

to the edge {j, j∗} ∪ in(j) and weight wjj − wj1j

to the edge {j, j∗}. Finally, we assign weight 1 − wjj to the edge {j∗}. This ensures the following:
∑

e:{j,j∗}∈e f(e) = wjj for all j
∑

e:{j,j∗,i}∈e f(e) = wij for all j, i ∈ in(j)

We next argue that the fractional matching f thus defined is stable.
There are three types of edges for us to consider. (1) e = {j, j∗, j1, j2, . . . , jk} for some j, k, (2)

e = {j, j∗} ∪ S for some j, S 6= {j1, j2, . . . , jk} for any k, and (3) e = {j∗} for some j
First consider e = {j, j∗, j1, j2, . . . , jk} for some j, k. We separate this into two cases. The first

case is when there is no proper subset of e that has positive weight. In this case, we argue that j is
a vertex in e such that

∑

h�je f(h) equals 1.
∑

h�je f(h) =
∑

i�jj

∑

h:{i,i∗,j}∈h f(h)+
∑

e⊆h f(h) =
∑

i�jj wji +
∑

h:e⊆h f(h) +
∑

h:h⊂e f(h) =
∑

i�jj wji +
∑

h:{j,j∗}h f(h) =
∑

i�jj wji + wjj = 1.

The second case is when there is some proper subset e′ of e with positive weight. Say e′ =
{j, j∗, j1, j2, . . . , js−1} for s ≤ k. Because s ≤ k, js ∈ e. We will show that js is a vertex in e such
that

∑

h�jse f(h) equals 1. Since e′ has positive weight, wjs−1j −wjsj > 0 ⇒ wjsj < wjj. Therefore,

since w was a preference game equilibrium,
∑

i�js j wjsi = 1. So,
∑

i�js j

∑

h:{i,i∗,js}∈h f(h) = 1 ⇒
∑

h:{j,j∗,js}∈h f(h) +
∑

i�js j,i6=j

∑

h:{i,i∗,js}∈h f(h) = 1 ⇒
∑

h�jse f(h) = 1.

Next consider e = {j, j∗} ∪ S for some j, S 6= {j1, j2, . . . , jk} for any k. Now, pick edge e′ ⊃ e,
e′ = {j1, j2, . . . , jk} for jk ∈ e. Again, we can separate this into two cases based on whether or
not there is a proper subset of e′ with positive weight. If there is no such proper subset, then j
will have

∑

h�je f(h) = 1, but the same argument as above. If there is a proper subset e′′ ⊂ e′

with positive weight, we will argue that jk satisfies
∑

h�jk
e f(h) = 1. Since {j, j∗} ∈ e′′, jk /∈ e′′,

∑

h={j,j∗}∪S f(h) ≥ f(e′′) +
∑

h:{j,j∗,jk}∈h f(h) ⇒ wjj ≥ f(e′′) + wjkj. We picked e′′ such that

f(e′′) > 0, so wjj > wjkj. As in the previous paragraph, this implies that
∑

h�jk
e f(h) = 1.

33

To complete this direction of the lemma, consider an edge {j∗} for some j. By our construction,
this is the least preferred edge for j∗, and the assignment of weight 1 − wjj guarantees that the
sum of the weights of all edges containing j∗ equals 1.

We next prove the other direction of the lemma. Suppose f is a stable fractional matching for
the hypergraph preference system. We construct the following assignment for the preference game.
We set wij to be the sum of the weights of edges containing the subset {j, j∗, i}. It is easy to see
that wij ≤ wjj for all i and j. It remains to argue the stability of w.

We first claim that if f is stable, then for any S1 and S2 such that S1 −S2 and S2−S1 are both
nonempty, at most one of f({j, j∗} ∪ S1) and f({j, j∗} ∪ S2) is positive. To see this, observe that
if both are positive, then for every vertex v in the edge e = {j, j∗} ∪ S1 ∪ S2, the sum of weights
assigned to edges that are at least as much preferred by v as e is less than one since v is in either
{j, j∗} ∪ S1 or {j, j∗} ∪ S2, both of which have positive weight and are less preferred than e by v.
This implies that such a matching could not be stable for edge e. Thus, in f , the positive weights
to edges containing {j, j∗} are all assigned to a chain of edges e1 ⊂ e2 . . . ⊂ ek, for some k. Define
ek+1 to be {j, j∗} ∪ in(j). We next observe that for every vertex v in ei − ei−1, 1 < i ≤ k + 1, the
sum of the weights of the edges v prefers at least as much as ei equals 1. This is because such a
vertex exists in ei−1 ∪ {v} (by the definition of stable matching) and v is the only possibility.

Consider any wi` > 0. To establish stability of w, we prove by a contradiction that for all j
such that j �i `, wij = wjj. Suppose not, then there exists a j such that j �i `, and two edges
e, e′ ⊇ {j, j∗} with i ∈ e, i /∈ e′, and f(e′) > 0. Let e denote the smallest edge containing i in
the chain e1 ⊂ e2 . . . ⊂ ek+1 mentioned in the preceding paragraph. (Since i ∈ ek+1, e exists.) By
the argument above, the sum of the weights of the edges i prefers at least as much as e equals
1. However, wi` > 0 implies that there exists an edge e′′ ⊇ {`, `∗, i} with f(e′′) > 0, yielding a
contradiction since i prefers e over e′′.

5.3 Cooperative Games with Non-Transferable Utilities

Definition 5.8. A game with non-transferable utilities over n players is specified by a function V
that for each subset S of N = {1, 2, . . . , n} returns a set V (S) of outcomes – each outcome being a
vector of utility values, one component for each player in S. A collection T of coalitions is balanced
if there exists an assignment of reals δS for each coalition S in T such that for all v,

∑

S:v∈S δS = 1.
We say that u is attainable by S if u ∈ V (S). A game is balanced if and only if for any balanced
collection T and any u, if uS is attainable by all S in T , then u is attainable by N .

As mentioned earlier, Scarf [41] proved that every balanced game has a nonempty core. We
define Core-Balanced-NTU below, a natural computational version of this claim. Scarf’s
proof [41], which is a reduction to Scarf, together with Theorem 5.9 establish its PPAD-
completeness.

Core-Balanced-NTU: The game is specified by a set N of players, a collection S of proper
subsets of N (the coalitions), and for each S ∈ S, vectors u1, . . . , ukS

in R
|S| such that V (S) =

{u ∈ R
|S| : ∃j u ≤ uj}. For a coalition S /∈ S, V (S) = {0}|S| and V (N) is defined as the set

of all u for which there exists a balanced collection T such that uS is attainable by all S in T .
The goal is to find an element in the core.

Theorem 5.9. Fractional Hypergraph Matching ≤P Core-Balanced-NTU.

Proof. Suppose we are given a hypergraph H and for each vertex i, a preference ranking among all
edges containing i. We first add, for each vertex i in H, a new vertex i∗ and edge {i, i∗}. We set the

34

preference of i for the edge {i, i∗} to be the least among all the edges containing i. Let N denote
the new set of nodes and E the new set of edges. For S ∈ E and i ∈ N , let ri(S) denote the rank of
S in i’s preference list, with 0 assigned to the least preferred edge (thus for every i, ri({i, i

∗}) = 0).
We now define a balanced cooperative game with non-transferable utilities. For each node in N ,
we have a player in the game. For any coalition S, we consider two cases. If S ∈ E, then we have a
single vector rS = (ri1(S), ri2(S), . . . , ri|S|

(S), where S = {i1, i2, . . . , i|S|). Note that by definition,

if S /∈ E and S 6= N , then V (S) equals 0|S|.
For N , note that V (N) is precisely the set of all u such that uS is attainable by all S in some

balanced collection T . We first observe that we can determine in polynomial time whether a given
u is in V (N). For each S, if u ≤ rS , then we have a variable xS for S. Now we simply solve the
linear program:

∑

S:i∈S

xS = 1

It is easy to see that the linear program is feasible if and only if u is in V (N). Consider any
balanced collection T ; if we have a u such that uS is attainable by all coalitions S in T , then the
above linear program would be feasible – the δS values that verify the balanced condition yield the
solution for the above LP, and hence u is attainable by N . For the other direction, consider any
u that is attainable by N . Then, by our construction the above linear program is feasible. The
xS values we obtain precisely specify the δS values, meaning that uS is attainable by every S for
which δS > 0.

It is straightforward to compute the above reduction in time polynomial in H. We finally
claim that from an element of the core, a fractional stable hypergraph matching can be obtained in
polynomial time. Suppose u is in the core. Since u is attainable by N , we find the xS that satisfy the
above linear program. We claim that the weights xS yield a stable fractional hypergraph matching
in H. Consider any edge S′. Since u is in the core, there exists a player i in S′ such that the utility
for i in u is at least as high as that for i in V (S′). Since u is attained by N , the utility (preference)
of i in each S for which xS > 0 is also at least as high as that of i in S′. Thus, xS yields a stable
matching.

5.4 Fractional Stable Paths Problem

The Fractional Stable Paths problem, introduced in [21], is defined as follows. Let G be a graph
with a distinguished destination node d. Each node v 6= d has a list π(v) of simple paths from v
to d and a preference relation �v among the paths in π(v). For a path S, we also define π(v, S)
to be the set of paths in π(v) that have S as a suffix. A proper suffix S of P is a suffix of P such
that S 6= P and S 6= ∅.

A feasible fractional paths solution is a set w = {wv : v 6= d} of assignments wv : π(v) → [0, 1]
satisfying:

1. Unity condition: for each node v,
∑

P∈π(v) wv(P) ≤ 1

2. Tree condition: for each node v, and each path S with start node u,
∑

P∈π(v,S) wv(P) ≤
wu(S).

In other words, a feasible solution is one in which each node chooses at most 1 unit of flow to d
such that no suffix is filled by more than the amount of flow placed on that suffix by its starting
node. A feasible solution w is stable if for any node v and path Q starting at v, one of the following
holds:

35

(S1)
∑

P∈π(v) wv(P) = 1, and for each P in π(v) with wv(P) > 0, P ≥v Q; or

(S2) There exists a proper suffix S of Q such that
∑

P∈π(v,S) wv(P) = wu(S), where u is the start
node of S, and for each P ∈ π(v, S) with wv(P) > 0, P ≥v Q.

In other words, in a stable solution: if node v has not fully chosen paths that it prefers at least as
much as Q, then it has completely filled path Q by filling some suffix with paths it prefers at least
as much as Q.

We define a computational version, Fractional SPP.

Fractional SPP: Given a graph, a destination node, and a preference list for each node
across paths to the destination. Find a weight assignment for each node to the paths in its
preference list that is both feasible (satisfies the Unity and Tree conditions) and is stable (every
path satisfies property (S1) or (S2)).

We note that Haxell and Wilfong [22] show Fractional Hypergraph Matching ≤P Frac-

tional SPP (see Section 5.2), and the problem of finding a fractional co-acyclic kernel (related to
Strong Kernel, see Section 5.5) can also be reduced to Fractional SPP. Together with our
reduction from Fractional SPP to Personalized Equilibrium (see Theorem 5.11 below), this
gives an alternate proof of PPAD-membership for these two problems.

5.4.1 PPAD-completeness

Theorem 5.10. Preference Game ≤P Fractional SPP.

Proof. We are given a preference game over player set [n], including preference relation �i for all
i ∈ 1 . . . n. We will convert this into a fractional stable paths problem. Create a node vi for each
i. Also create a universal destination node d. For all i, define Pii = the path (vi, d). For all i, j,
define Pij = the path (vi, vj , d). Let π(vi) (the set of preferred paths for vi) = {Pij : j �i i}. If
k �i j, then Pik �i Pij .

Let wi(j) refer to the amount of weight placed by node vi on path Pij in a fractional SPP
solution, and let wi(i) be the amount of weight placed by i on path Pii. Now we will show that w
is a fractional stable paths solution if and only if w defines an equilibrium of the preference game.
w is a fractional stable paths solution ⇒ w is an equilibrium of the preference game..
By the unity condition, for each i,

∑

j:Pij∈π(vi)
wi(j) ≤ 1 ⇒

∑

j wi(j) ≤ 1. Pii starts at vi, and there

is no proper final suffix of Pii, so condition (S1) must apply for Pii. Therefore,
∑

j:Pij∈π(vi)
wi(j) =

∑

j wi(j) = 1, as required for the preference game. By the tree condition, for any i, j,
∑

P∈π(v,Pjj

weight on P ≤ wj(j) ⇒ wi(j) ≤ wj(j). So w is a feasible weight assignment for the preference
game.

Now suppose for contradiction that w is not lexicographically maximal (with respect to w−i)
for player i in the preference game. Then, there is some feasible weight assignment w′ and some j
such that

∑

k�ij
wi(k) <

∑

k�ij
w′

i(k). Take the lexicographically maximal such w′ and the highest
preference such j (from i’s preference list). By this choice of w′ and j,

∑

k�ij
wi(k) =

∑

k�ij
w′

i(k),
so

∑

k=ij
wi(k) <

∑

k=ij
w′

i(k). There must be some j′ with j′ =i j such that wi(j
′) < w′

i(j
′).

Consider path Pij′ . (S2) is not true by our choice of j′ and the fact that w′ was a feasible solution
(so w′

i(j
′) ≤ wj′(j

′)). However, since
∑

k=ij′
wi(k) <

∑

k=ij′
w′

i(k), there must be some path Pik

such that k ≺i j′ with wi(k) > 0. So (S1) is also not true, and w was not a stable solution - a
contradiction.

36

w is an equilibrium of the preference game ⇒ w is a fractional stable paths solution..
We know that

∑

j wi(j) = 1 for all i. This immediately satisfies the unity condition. Since w is
a feasible set of weights for the preference game, wi(j) ≤ wj(j) for all i, j. This means that the
weight placed on Pij is at most the weight placed on Pjj. Since Pij is the only path from vi that
passes through node vj, the tree condition holds. Now consider any path Pij from node i. Case
1: wi(j) = wj(j). In this case, condition (S2) is satisfied. Case 2: wi(j) < wj(j). Because w
was lexicographically maximal, any weight assignment w′ with

∑

k�ij
w′

i(k) ≥
∑

k�ij
wi(k) must

be infeasible. We said that wi(j) < wj(j), so it is only possible for all such w′ to be infeasible if
∑

k�ij
wi(k) = 1. Then

∑

k≺ij
wi(k) = 0, so (S1) is satisfied.

Theorem 5.11. Fractional SPP ≤P Personalized Equilibrium.

Proof. Suppose we are given an instance of Fractional SPP, consisting of a set of nodes V , a
set of preferred paths π(v) for all v ∈ V , and a preference relation �v for each set π(v). We can
also find π(v, S), the set of all P ∈ π(v) such that S is a subpath of P . Let qv(P) = the number of
paths Q such that P �v Q.

We will create the following instance of Personalized Equilibrium. The set of players is V .
The set of strategies Sv for a node V is π(v)∪ {N} (N stands for “No path”). For node v, there is
exactly one edge defined for each strategy. Edge P ′ for strategy P = {S : P ∈ π(v, S)}. The edge
for strategy N (N ′) is a singleton edge, containing only that strategy. The payoffs to player v are:
uv(P

′) = qv(P) + 1, uv(N) = 1.
Suppose w is a set of weights in a personalized equilibrium of the game defined above. wv(P

′)
represents the weight assigned by v to edge P ′. We will show that w is a personalized equilibrium if
and only if w′ : w′

v(P) = wv(P
′) is a fractionally stable solution to the Fractional SPP instance.

First, assume w is a personalized equilibrium. Then, we know that for all v, the total weight
placed by v on all edges is 1, or wv(N) +

∑

P∈π(v) wv(P
′) = 1. Therefore,

∑

P∈π(v) wv(P
′) ≤

1 ⇒
∑

P∈π(v) w′
v(P) ≤ 1, so the Unity condition holds. Also, the sum of weights placed by v on

edges adjacent to a strategy S of another player v′ is at most wv′(S). That is, for path S ∈ π(v′)
(v′ 6= v),

∑

P ′:S∈P ′ wv(P
′) ≤ wv′(S

′) ⇒
∑

P∈π(v,S) wv(P
′) ≤ wv′(S

′) ⇒
∑

P∈π(v,S) w′
v(P) ≤ w′

v′(S),
so the Tree condition holds. Finally, take any path Q ∈ π(v). Case 1: The payoff to v in the
personalized equilibrium is at least qv(Q) + 1. In this case, we know that v puts a total of weight
1 on edges with payoff at least qv(Q) + 1, or

∑

P ′:uv(P ′)≥qv(Q)+1 wv(P
′) = 1 ⇒

∑

P :P�vQ wv(P
′) =

1 ⇒
∑

P :P�vQ w′
v(P) = 1, so condition (S1) holds. Case 2: The payoff to v in the personalized

equilibrium is less than qv(Q) + 1. Since this is a personalized equilibrium, it cannot be possible
for v to move some weight off a lower paying hyperedge onto a higher paying hyperedge. This
includes moving weight from any of the edges in the equilibrium with payoff less than qv(Q) + 1 to
the edge Q′. By nature of the edges we’ve defined, if P ′ ∩Q′ for P ′, Q′ ∈ π(v), then either P ′ ⊂ Q′

or Q′ ⊂ P ′. This means that there is some S ∈ Q′(S ∈ π(v′) such that
∑

R′:S∈R′ wv(R
′) = wv′(S

′)
and for all R′ : S ∈ R′, if wv(R

′) > 0 then qv(R) ≥ qv(Q). So,
∑

R∈π(v,S) wv(R
′) = wv′(S

′) ⇒
∑

R∈π(v,S) w′
v(R) = w′

v′(S), and for all R ∈ π(v, S) with w′
v(R) > 0, R �v Q, as required for

condition (S2).
Next, assume w′ is a fractionally stable solution. We can assign weights wv(P

′) = w′
v(P),

wv(N) = 1 −
∑

P∈π(v) wv(P). The Unity condition ensures that
∑

P∈π(v) w′
v(P) ≤ 1, wv(N) ≥ 0

and we have a set of weights that sum to 1 for any player v. The Tree condition says that
∑

P∈π(v,S) w′
v(P) ≤ w′

v′(S) for any S ∈ π(v′), which gives
∑

P ′:S∈P ′ wv(P
′) ≤ wv′(S

′), as required
for a feasible solution. Finally, we must verify that wv is a best response for player v. Let w∗

be the best response weight function for v, and for the sake of contradiction, assume w∗ gives a
better total payoff. Look at the edge P ′ with the highest qv(P) such that w∗

v(P
′) > wv(P

′). By

37

nature of the edges we’ve defined, if P ′ ∩ Q′ for P ′, Q′ ∈ π(v), then either P ′ ⊂ Q′ or Q′ ⊂ P ′.
Therefore, for all edges P ′′ with qv(P

′′) > qv(P
′), if w∗

v(P
′′) < wv(P

′′), then we could increase
w∗

v(P
′′) and improve the payoff, so P ′ is the highest utility edge in which wv and w∗

v differ. Now
look at edge P ′ with weights w in the fractional stable paths problem. Since w∗

v(P
′) > wv(P

′) and
w∗

v(P
′′) = wv(P

′′) for all P ′′ with higher payoff than P ′, then for all S ∈ P ′ (s ∈ π(v′) for some
v′),

∑

R′:S∈R′,qv(R)>qv(P) wv(R
′) < wv′(S

′) ⇒
∑

R∈π(v,S),qv(R)>qv(P) w′
v(R) < w′

v′(S), so condition
(S2) is not satisfied. However, since v puts less weight on edges with payoff at least as high as
the payoff for P ′, the total payoff to v is < qv(P) + 1. Therefore,

∑

R′:qv(R)≥qv(P) wv(R
′) < 1, so

∑

R�vP w′
v(R) < 1, so condition (S1) is also not satisfied. This means that w′ was not a fractionally

stable solution, contradicting our assumption. So w must have been a best response weighting for
each v.

5.4.2 Special Cases of Fractional SPP

Theorem 5.12. Fractional SPP is PPAD-hard even if each node’s preference list consists of all
paths, ordered shortest to longest based on edge length (where each node defines its own edge lengths,
which may not obey triangle inequality).

Proof. In the reduction from preference games to fractional SPP in Theorem 5.10, each path in
any preference list has either 1 hop (a direct path to the destination d) or two hops. For each of
these two hop paths (i → j → d), let Qij = the number of paths P such that P ≥i (i → j → d).
Notice that (i → j → d) ≥i (i → k → d) if and only if Qij ≤ Qik. Now, define the following
lengths l on the edges of the graph from the perspective of node i. If (i → j → d) ∈ π(i), then
l(i, j) = Qij , l(j, d) = 1. l(i, d) = Qii + 1. Pick Mi = maxj Qij + 2. Let l(x, y) = Mi for all other
edges. Now, any path (i → j → d) ∈ π(i) will have length Qij , path (i → d) will have length Qii.
This preserves the preference list across these paths. Most other paths will have a last segment of
length Mi, so will be longer than l(i, d). The only exception is paths that pass through a j such
that (i → j → d) ∈ π(i). However, for these paths, the only way to arrive at j without following
the direct edge (i, j) would be to pass through an edge of length Mi, so these paths too will be
longer than l(i, d).

Theorem 5.13. Fractional SPP is PPAD-hard even if all preferred paths are preference-ordered
based on the path length (where each node defines its own distances on the edge lengths, and these
distances form a metric and obey triangle inequality), assuming we may only use edges from a given
template graph.

Proof. This is very similar to the proof of Theorem 5.12. However, in this case, we must remove
from the template any edges directly from a node i created in the reduction from Theorem 5.10
to the destination d, since any of these edges would necessarily be a shortest path (and therefore
a highest preference path) from the node i to d. Instead, we will add one additional node i′ for
every i 6= d and replace all paths of the form (i → d) with a path (i → i′ → d). We must also
remove from the template any edges of the form (x, j′) for any x 6= j. Otherwise, a path ending
in (x → j′ → d) would be at least as short as the same path ending in (x → j → j′ → d), so we
would not be able to enforce use of the new edges. Now we will define edges lengths l as follows
(from the perspective of a node i).

If (i → j → d) ∈ π(i), then l(i, j) = Qij, l(j, j′) = Qij , l(j′, d) = 1. l(i, i′) = 2Qii + 1.
l(i′, d) = 1. For two paths (i → j → d) ∈ π(i) and (i → k → d) ∈ π(i), define l(j, k) = Qij + Qik.
Let Mi = maxj 3Qij. l(x, y) = M for all other edges (x, y) (excluding the edges that have been
removed from the template: (j, d) for all j and (j, k′) for all j 6= k).

38

As in the previous proof, the preference order is preserved. However, we must also verify that
triangle inequality holds. Clearly, the length 1 edges obey this, since they are the shortest edges in
the graph. Consider a length Qij edge (i, j). Any other path that starts at i and ends at j must
either traverse a length Mi edge into j or a length Qij edge into j, so this is the shortest route from
i to j. Consider a length Qij edge (j, j′). A path that starts at j must traverse either a length Mi

edge or a length Qij edge, so this is also a shortest route. Consider a length Qij + Qik edge (j, k).
Any path into or out of j must traverse an edge of length Mi or an edge of length Qij , and likewise
for k. Therefore, a path out of j and into k must traverse at least Qij + Qik. Finally, consider any
length Mi edge. At least one end of the edge must be at some x such that (i → x → d) is not in
π(i), and any other edge into or out of this node will also have length Mi. Therefore, the lengths
obey triangle inequality.

Notice, if any edge may be used, and if the preferences are based on shortest path lengths for a
metric defined for each node, then there is a trivial algorithm for finding an equilibrium: each node
only follows the “direct to destination” path. Since a metric must obey triangle inequality, this
path length cannot be strictly longer (cannot be less preferred) than any path including additional
nodes. Theorem 5.10 together with Theorem 3.3 implies that Fractional SPP is PPAD-
hard. Therefore, it is natural to next consider special instances that might be easier to solve. For
instance, in real world internet routing, we would like to see path preferences primarily based on
shortest paths. What would happen if we restrict ourselves to path preferences that echo the real
world? Unfortunately, by adding appropriate edge lengths to the above reduction, we show that
Fractional SPP is PPAD-hard even if all preferences are based only on shortest path lengths.

5.4.3 Approximate Fractional SPP

There are two notions of approximation for FSPP : ε-solution is defined by Haxell and Wilfong [21]
and ε-stable solution is defined by Kintali [27]. Below we present their definitions :

ε-solution (Haxell and Wilfong [21]) : An ε-solution is defined as a set w = {wv : v 6= d} of
assignments wv : π(v) → [0, 1] satisfying the following:

1. Unity condition: for each node v,
∑

P∈π(v) wv(P) ≤ 1

2. Tree condition: for each node v, and each path S with start node u,
∑

P∈π(v,S) wv(P) ≤
wu(S) + ε.

3. For any node v and path Q starting at v, one of the following holds:

•
∑

P∈π(v) wv(P) = 1, and for each P in π(v) with wv(P) > 0, P ≥v Q; or

• There exists a proper suffix S of Q such that
∑

P∈π(v,S) wv(P) = wu(S) + ε, where u is
the start node of S, and for each P ∈ π(v, S) with wv(P) > 0, P ≥v Q.

ε-solution of FSPP : Given an instance of FSPP, find a stable weight assignment w that
overfills each subpath by at most ε.

Using Scarf’s lemma, Haxell and Wilfong [21] proved that every instance of FSPP has an ε-
solution. We observe that their proof is a polynomial time reduction from ε-solution of FSPP to

39

Scarf, thus showing PPAD-membership of the former. For more details we refer the reader to [21].

ε-stable Solution (Kintali [27]) : An ε-stable solution is a feasible solution such that for any node
v and path Q starting at v, one of the following holds:

• 1 − ε ≤
∑

P∈π(v) wv(P) ≤ 1, and for each P in π(v) with wv(P) > 0, P ≥v Q; or

• There exists a proper suffix S of Q such that wu(S) − ε ≤
∑

P∈π(v,S) wv(P) ≤ wu(S), where
u is the start node of S, and for each P ∈ π(v, S) with wv(P) > 0, P ≥v Q.

ε-stable solution of FSPP : Given an instance of FSPP, find a weight assignment w that
is exactly feasible but may underfill a higher preference subpath by at most ε.

Furthermore, we can define a new notion of approximate equilibrium which encompasses both
of these previous definitions: say Approximate-FSPP. It is easy to verify that the reduction
from Theorem 5.10 also reduces finding an ε-approximate equilibrium in a preference game to
Approximate-FSPP. Combined with the previous observations in this section, we get the following
theorem.

Theorem 5.14. Approximate-FSPP is PPAD-complete.

5.5 Kernels in Digraphs

Let D(V,A) be a directed graph. Let I(v) denote the in-neighborhood of a vertex v i.e., I(v)
is v together with the vertices u such that (u, v) ∈ A. A set K of vertices is a clique if every two
vertices in K are connected by at least one arc. A set of vertices is called independent if no two
distinct vertices in it are connected by an arc. A subset of V is called dominating if it meets I(v) for
every v ∈ V . A kernel in D is an independent and dominating set of vertices. A directed triangle
shows that not all digraphs have kernels.

A non-negative function f on V is called fractionally dominating if
∑

u∈I(v) f(u) > 1 for every
vertex v. The function is strongly dominating if for all v,

∑

u∈K f(u) > 1 for some clique K
contained in I(v). A non-negative function f on V is called fractionally independent if

∑

u∈K f(u) 6

1 for every clique K. A fractional kernel is a function on V which is both fractionally independent
and fractionally dominating. When it is also strongly dominating, it is called a strong fractional
kernel. As in the integral case, a directed triangle shows that not all digraphs have fractional
kernels.

An arc (u, v) is called irreversible if (v, u) is not an arc of the graph. A cycle in D is called
proper if all of its arcs are irreversible. A digraph in which no clique contains a proper cycle is
called clique-acyclic. Aharoni and Holzman [2] proved that every clique-acyclic digraph has a strong
fractional kernel. We define a computational problem – Strong Kernel : given a clique-acyclic
digraph D(V,E) with largest clique of constant size, find a strong fractional kernel. For these
graphs, the proof of [2] is a polynomial-time reduction from Strong Kernel to Scarf. Theorem
5.15 establishes PPAD-hardness of Strong Kernel.

Strong Kernel: Given a clique-acyclic digraph with the largest clique of constant size,
find a fractional weight assignment to the nodes that is fractionally strongly dominating and
fractionally independent.

40

Theorem 5.15. Degree 3 Preference Game ≤P Strong Kernel.

Proof. We are given a preference game over player set [n]. We construct the following digraph
D = (V,E). For each player i, we introduce vertex 〈i, i〉 and a vertex 〈i, j〉 for each j in out(i).
We have an edge from 〈i, j〉 to 〈i, k〉 if i prefers j over k. For each 〈i, j〉, j 6= i, we also have an
additional vertex I(i, j) that has an edge from 〈j, j〉 and an edge into 〈i, j〉.

We now claim that the preference game has an equilibrium if and only if D has a strong
fractional kernel. Let the preference game have an equilibrium w. Consider the following function
f on V . We set f(〈i, j〉) = wij and f(I(i, j)) = 1 − f(〈j, j〉). We have two kinds of maximal
cliques. One kind is the set {〈i, j〉} for a given i; we have

∑

j f(〈i, j〉) =
∑

j wij = 1. The other
maximal cliques are the edges (〈j, j〉, I(i, j)) and (I(i, j), 〈i, j〉. Since f(I(i, j)) = 1 − f(〈j, j〉) and
f(〈i, j〉) ≤ f(〈j, j〉), it follows that f is fractionally independent.

We next show that f is fractionally strongly dominating. For vertex I(i, j), this is immediate
since f(I(i, j)) + f(〈j, j〉) = 1. Consider a vertex 〈i, j〉. If j is the least preferred player of i with
wij > 0, then the vertex 〈i, j〉 is covered by the clique consisting of 〈i, j′〉 over all j′ that are at
least as preferred to i as j. Otherwise, wij = wjj, in which case f(I(i, j)) + f(〈i, j〉) = 1. Thus, f
is strongly dominating.

Suppose D has a strong fractional kernel f . We set wij = f(〈i, j〉). By the fractional inde-
pendence property applied to the cliques formed by I(i, j) and 〈i, j〉, we obtain that wij ≤ wjj.
Consider a vertex 〈i, j〉. The set of vertices with edges into 〈i, j〉 is the union of two cliques – the
set of 〈i, k〉 with k ≥i j, and the set {I(i, j), 〈i, j〉}. If j is the least preferred player such that
f(〈i, j〉) is positive, then the sum of the weights in the first clique is 1; otherwise, the sum of the
weights in the second clique is 1, yielding wij = wjj. This establishes the stability of w.

The graph constructed above does not satisfy the clique-acyclic property. This is because
the clique formed by the set of 〈i, k〉 with k ≥i j contains proper cycles. When the outde-
gree of every player in the preference game is at most 3 (including the self-loop), then we can
achieve the desired condition by making the following changes to the graph. Suppose the pref-
erence list of player i is i1, i2, i. Then, we replace the edge (〈i, i1〉, 〈i, i〉) with a three-hop path
(〈i, i1〉, J(i, i1)), (J(i, i1),K(i, i1)), (K(i, i1), 〈i, i〉). We do the same with i2. Finally, we add the
edges (K(i, i1),K(i, i2)) and (K(i, i1),K(i, i2)). We can verify that in any strong fractional ker-
nel, the weight of K(i, i1) (resp., K(i, i2)) would be identical to that of 〈i, i1〉 (resp., 〈i, i2〉). The
remainder of the proof is same as before. The loop (K(i, i1),K(i, i2)) guarantees that no clique
contains a proper cycle.

6 Fractional Bounded Budget Connection Game

We define a fractional variant of the Bounded Budget Connection game, as in [30, 31]. A
fractional Bounded Budget Connection game (henceforth, a fractional BBC game) is specified by
a tuple 〈V, d, c, b〉, and a length function `u for each u ∈ V , where V is a set of nodes, d ∈ V is a
distinguished destination node, c : V × V → Z, b : V → Z, and `u : V × V → Z (for each u ∈ V)
are functions. For any u, v ∈ V , c(u, v) denotes the cost to u of directly linking to v, and `x(u, v)
denotes the length of the link (u, v) from the perspective of x, if u has established this link. For
any node u ∈ V , b(u), specifies the budget u has for establishing outgoing directed links: the sum
of the costs of the links established by u times the amount placed on each link should not exceed
b(u).

A strategy for node u is a weight function wu : V → [0, 1] that u places on each outgoing edge
(u, v) : v ∈ V such that

∑

(u,v) c(u, v) × wu(v) ≤ b(u). Let wu denote a strategy chosen by node u
and let W = {wu : u ∈ V } denote the collection of strategies. The network formed by W is simply
the directed, capacitated complete graph G(W), in which the capacity of the directed edge (u, v)

41

is wu(v). The utility of a node u is given by −f(u), where f(u) is the cost of a 1-unit minimum
cost flow from u to d, according to the capacities given by W and the lengths from the perspective
of u given by `u. We assume that there is also always an additional edge from each node to d with
cost 0, capacity ∞, and length = some large integer M � n maxx,u,v `x(u, v); we refer to M as the
disconnection penalty. In other words, if the max flow from u to v is α < 1, then f(u) is the cost
of the minimum cost α flow from u to d plus (1 − α) · M .

Fractional BBC: Given a set V of nodes, a destination d, a cost function c : V × V → Z, a
budget function b : V → Z, and a length function `u : V × V → Z. Find a weight assignment
wu : V → [0, 1] for each u ∈ V such that (a)

∑

(u,v) c(u, v)×wu(v) ≤ b(u) and (b) wu minimizes
the cost of a minimum cost flow from u to d, assuming the capacity of an edge (x, y) is wx(y).

Theorem 6.1. Preference Game ≤P Fractional BBC

Proof. We use a similar reduction from a preference game to fractional BBC. Given any instance P
of the preference game, We will create an instance B of fractional BBC = 〈V, d, c, b〉, where V = S,
d = an additional node, ∀i, j ∈ V : c(i, j) = 1, ∀i: b(i) = 1, plus length function li for each i ∈ V ,
defined as follows. Let pi(k) = the number of j such that j ≥i k. ∀j 6= i, li(j, d) = 1, li(i, j) = pi(j).
∀j 6= i, k 6= i, li(j, k) = li(k, j) = |S|+1. li(i, d) = 1+pi(i). Given a solution to B, define a solution
to P: set wi(j) = the weight placed on edge (i, j) (for j 6= i), and wi(i) = the weight placed on
edge (i, d).

Consider any instance P of the preference game, consisting of a set of players S and a preference
relation ≥i for each i ∈ S. We will create an instance B of fractional BBC = 〈V, d, c, b〉, where
V = S, d = an additional node, ∀i, j ∈ V : c(i, j) = 1, ∀i: b(i) = 1, plus length function li for
each i ∈ V , defined as follows. Let pi(k) = the number of j such that j ≥i k. ∀j 6= i, li(j, d) = 1,
li(i, j) = pi(j). ∀j 6= i, k 6= i, li(j, k) = li(k, j) = |S| + 1. li(i, d) = 1 + pi(i). Given a solution to B,
define a solution to P by setting wi(j) = the weight placed on edge (i, j) (for j 6= i), and wi(i) =
the weight placed on edge (i, d).

Since the total cost for all edges is 1, and the total budget for a node is 1, each node in B
will place total weight 1 on edges adjacent to it. This exactly corresponds to the requirement that
∑

j wi(j) = 1 in P. The possible paths for a one-unit flow from i to d in B are: (1) the path
consisting of only edge (i, d), which has cost pi(i) + 1 ≤ |S| + 1, (2) a path of the form (i, j, d)
through some other node j, which has cost pi(j) + 1 ≤ |S| + 1, or (3) a path including some edge
(j, k) for j 6= i, k 6= i, which has cost > |S|+ 1. Therefore, a minimum cost flow will only use paths
of the form (i, d) and (i, j, d), so the requirement in P that wi(j) ≤ wj(j) corresponds to using
the weight j places on edge (j, d) as a capacity on that edge when finding the min-cost flow. Now,
we only need to show that a node’s best response in B exactly corresponds to a lexicographically
maximal weight assignment in P.

Suppose we have a best response for node i in B that corresponds to a weight assignment w in P
that is not lexicographically maximal for i. Then, there is some assignment w′ = w′

i ∪ {wj : j 6= i}
such that for some j ∈ S,

∑

k≥ij
wi(k) <

∑

k≥ij
w′

i(k). There must be some k+ ∈ S such that

k+ ≥i j and w′
i(k

+) > wi(k
+), and there must be some k− ∈ S such that ¬(k− ≥i j) and w′

i(k
−) <

wi(k
−). Suppose we move ε weight in the best response in B from Pik− to Pik+ . pi(k

−) > pi(k
+),

so moving this weight will decrease the cost of a minimum cost flow, contradicting the fact that
this was a best response.

Suppose we have a lexicographically maximal weight assignment w for P that does not corre-
spond to a best response for node i in B. Then, in B, i could move weight from some path Pij

42

to a different path Pik to decrease the cost of its min-cost flow. This means that pi(k) < pi(j), or
the number of nodes preferred by i over k is smaller than the number of nodes preferred by i over
j. Since preference relations are transitive, this implies that k ≥i j. However, since Pik had space
left, wi(k) < wk(k), so w is not lexicographically maximal.

Theorem 6.2. Fractional BBC ≤P Personalized Equilibrium.

Proof. Consider any instance of fractional BBC. Create a player in the matrix game for each node
in the BBC instance. Assign the player one action for each available edge in the BBC instance. For
any hyperedge in the matrix game, a player’s payoff is negative of the length of the shortest path
to the destination made up of a subset of the edges represented by that hyperedge (or negative of
the disconnection penalty if there is no such path to the destination). The proof that this preserves
the set of equilibria is similar to the above proof for fractional SPP games.

Acknowledgements : We would like to thank H. Venkateswaran for helpful discussions, Gordon
Wilfong for sending a preprint of [22], Christos Papadimitriou for pointing us to [46], and David
Karger for his insightful motivation for the preference game.

43

Figure 2: We show these problems to be PPAD-complete. Each reduction line is labeled with the
Section or Citation where the reduction can be found. Two of these reductions, Strong Kernel

≤P Scarf and Core-Balanced-NTU ≤P Scarf, are only polynomial time reductions for the
specific versions of the problems discussed in this paper. In our definition of Strong Kernel,
formally given in Section 5.5, we assume that the largest clique in the graph has constant size,
since otherwise it is not clear whether the problem is even in TFNP. Core-Balanced-NTU, as
defined in Section 5.3, assumes that the game description explicitly lists the possible coalitions and
their Pareto-optimal outcomes.

44

References

[1] Ron Aharoni and Tamás Fleiner. On a Lemma of Scarf. Journal of Combinatorial Theory,
Series B, 87(1):72-80, 2003.

[2] Ron Aharoni and Ron Holzman. Fractional Kernels in Digraphs. Journal of Combinatorial
Theory, Series B, 73(1):1-6, 1998.

[3] R.J. Aumann. Subjectivity and Correlation in Randomized Strategies. Journal of Mathematical
Economics, 1:67-96, 1974.

[4] Venkatesh Bala and Sanjeev Goyal. A noncooperative model of network formation. Econo-
metrica, 68(5):1181–1229, 2000.

[5] O. Bondareva. Some applications of linear programming to cooperative games. Problemy
Kibernetiki, 10:119-139, 1963.

[6] Xi Chen and Xiaotie Deng. 3-NASH is PPAD-Complete. Electronic Colloquium on Computa-
tional Complexity (ECCC), v.134, 2005.

[7] Xi Chen and Xiaotie Deng. Settling the Complexity of Two-Player Nash Equilibrium. In
Proceedings of FOCS, 261-272, 2006.

[8] X. Chen, X. Deng, and S.-H. Teng. Computing Nash Equilibria: Approximation and Smoothed
Complexity. In FOCS, 603–612, 2006.

[9] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of computing two-player Nash
equilibria. JACM, (invited and under review), 2008.

[10] Vincent Conitzer, Tuomas Sandholm. Complexity of determining nonemptiness of the core.
IJCAI, 230-231, 2003.

[11] Vincent Conitzer, Tuomas Sandholm. Complexity of constructing solutions in the core based
on synergies among coalitions. Artificial Intelligence 170(6):607-619, May 2006.

[12] Constantinos Daskalakis, Paul W. Goldberg, Christos H, Papadimitriou. The Complexity of
Computing a Nash Equilibrium. In STOC ’06, 2006.

[13] Constantinos Daskalakis, Paul W. Goldberg, Christos H, Papadimitriou. The Complexity of
Computing a Nash Equilibrium. Invited to SiCOMP.

[14] Konstantinos Daskalakis and Christos H. Papadimitriou. Three-Player Games Are Hard. Elec-
tronic Colloquium on Computational Complexity (ECCC), v.139, 2005.

[15] Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and Scott Shenker.
On a network creation game. In PODC ’03, pages 347–351, New York, NY, USA, 2003. ACM
Press.

[16] Qizhi Fang, R. Fleischer, Jian Li, and Xiaoxun Sun. Algorithms for core stability, core large-
ness, exactness, and extendability of flow games. In COCOON 07, 2007.

[17] D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. American
Mathematical Monthly, 69:9-14, 1962.

45

[18] Rahul Garg, Vijay Kumar, Atri Rudra, Akshat Verma. Coalitional games on graphs: core
structure, substitutes and frugality. In EC, 248-289, 2003.

[19] Paul W. Goldberg and Christos H. Papadimitriou. Reducibility among Equilibrium Problems.
In STOC, 61-70, 2006.

[20] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The Stable Paths Problem and
Interdomain Routing. IEEE/ACM Transactions on Networking, 2002.

[21] P. E. Haxell and G. T. Wilfong. A fractional model of the border gateway protocol (BGP).
In SODA, pages 193-199, 2008.

[22] P. E. Haxell and G. T. Wilfong. On the Stable Paths Problem. Preprint, 2008.

[23] N. Immorlica, K. Jain and M. Mahdian. Game-theoretic aspects of designing hyperlink struc-
tures. I WINE, pages 150-161, 2006.

[24] Matthew Jackson and Asher Wolinsky. A strategic model of social and economic networks.
Journal of Economic Theory, 71:44–74, 1996.

[25] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How Easy is Local
Search? Journal of Computer and System Sciences, 37(1):79-100, 1988.

[26] M. Kearns, M.L. Littman, S. Singh. Graphical models for game theory. UAI, 253-260, 2001.

[27] Shiva Kintali. A Distributed Protocol for Fractional Stable Paths Problem. Georgia Tech,
College of Computing Technical Report GT-CS-08-06; Presented at the DIMACS/DyDAn
Workshop on Secure Internet Routing, Rutgers University, March 24-26 2008.

[28] Tamás Király and Júlia Pap. Kernels, Stable Matchings, and Scarf’s Lemma. The Egervry Re-
search Group Technical Report TR-2008-13, http://www.cs.elte.hu/egres/tr/egres-08-13.pdf.

[29] Masahiro Kumabe, H. Reiju Mihara. Computability of simple games: A characterization and
application to the core. arXiv:0705.3227v2, 2007.

[30] Nikolaos Laoutaris, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua
Teng. Bounded Budget Connection (BBC) Games or How to Make Friends and Influence
People, on a Budget. In PODC ’08, pages 165–174, 2008.

[31] Nikolaos Laoutaris, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, Shang-Hua
Teng. Bounded Budget Connection (BBC) Games or How to make friends and influence people,
on a budget. arXiv:0806.1727v1 [cs.GT]

[32] C. E. Lemke and J. J. T. Howson. Equilibrium points of bimatrix games. SIAM Journal on
Applied Mathematics, 12(2):413-423, 1964.

[33] Evangelos Markakis and Amin Saberi. On the core of the multicommodity flow game. In Proc.
of the 4th ACM conference on Electronic commerce, pages 93–97, New York, NY, USA, 2003.
ACM Press.

[34] Nimrod Megiddo and Christos H. Papadimitriou. On Total Functions, Existence Theorems
and Computational Complexity. Theoretical Computer Science, 81(2):317-324, 1991.

[35] J. Nash. Equilibrium point in n-person games. In PNAS, 36(1):48–49, 1950.

46

[36] J. Nash. Noncooperative games. In Annals of Mathematics 54:286–295, 1951.

[37] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic game theory.
Cambridge University Press, 2007.

[38] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[39] C. Papadimitriou. On the Complexity of the Parity Argument and Other Inefficient Proofs of
Existence. JCSS 48(3):498–532, 1994.

[40] Y. Rehkter, T. Li. A Border Gateway Protocol (BGP version 4). RFC 1771, 1995.

[41] Herbert E. Scarf. The Core of an N Person Game. Econometrica, 69:35:50, 1967.

[42] Alexander Schrijver. Combinatorial Optimization, Polyhdera and Efficiency, Volume B.
Springer-Verlag Berlin Heidelberg, 2003.

[43] Lloyd S. Shapley. On Balanced Sets and Cores. Naval Research Logistics Quarterly, 14, 453-
460, 1967.

[44] L. S. Shapley. A Note on the Lemke-Howson Algorithm. Mathematical Programming Study,
1:175-189, 1974.

[45] J. W Stewart. BGP4: Inter-domain routing in the Internet. Addison Wesley, 1998.

[46] Michael J. Todd. Orientation in Complementary Pivot Algorithms. Mathematics of Operations
Research, 1(1):54-66, 1976.

[47] K. Varadhan, R. Govindan, and D. Estrin. Persitent Route Oscillations in Inter-Domain
Routing. Technical Report USC CS TR 96-631, Department of Computer Science, University
of Southern California, Feb. 1996.

47

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

