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Abstract

The main result of this paper is a simple, yet generic, composition theorem for low error
two-query probabilistically checkable proofs (PCPs). Prior to this work, composition of PCPs
was well-understood only in the constant error regime. Existing composition methods in the
low error regime were non-modular (i.e., very much tailored to the specific PCPs that were
being composed), resulting in complicated constructions of PCPs. Furthermore, until recently,
composition in the low error regime suffered from incurring an extra ‘consistency’ query, resulting
in PCPs that are not ‘two-query’ and hence, much less useful for hardness-of-approximation
reductions.

In a recent breakthrough, Moshkovitz and Raz [In Proc. 49th IEEE Symp. on Foundations
of Comp. Science (FOCS), 2008] constructed almost linear-sized low-error 2-query PCPs for
every language in NP. Indeed, the main technical component of their construction is a novel
composition of certain specific PCPs. We give an alternate, modular and, considerably sim-
pler proof of their result by repeatedly applying the new composition theorem to known PCP
components.

To facilitate the new modular composition, we introduce a new variant of PCP, which we
call a decodable PCP (dPCP). A dPCP is an encoding of an NP witness that is both locally
checkable and locally decodable. The dPCP verifier in addition to verifying the validity of the
given proof like a standard PCP verifier, also locally decodes the original NP witness. Our
composition is generic in the sense that it works regardless of the way the component PCPs are
constructed.
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1 Introduction

Probabilistically checkable proofs (PCPs) provide a proof format that enables verification with only
a constant number of queries into the proof. This is formally captured by the (by now standard)
notion of a probabilistic verifier.

Definition 1.1 (PCP Verifier). A PCP verifier V for a language L is a polynomial time probabilistic
algorithm that behaves as follows: On input x, and oracle access to (proof) string π (over an alphabet
Σ), the verifier reads the input x, tosses some random coins r, and based on x and r computes a
window I = (i1, . . . , iq) of indices to read from π, and a predicate f : Σq → {0, 1}. The verifier
then accepts iff f(πI) = 1.

• The verifier is complete if for every x ∈ L there is a proof π accepted with probability 1. I.e.,
∃π, PrI,f [f(πI) = 1] = 1.

• The verifier is sound with soundness error δ < 1 if for any x 6∈ L, every proof π is accepted
with probability at most δ. I.e., ∀π, PrI,f [f(πI) = 1] ≤ δ.

The celebrated PCP Theorem [AS98, ALM+98] states that every language in NP has a verifier
that is complete and sound with a constant δ < 1 soundness error while using only a logarithmic
number of random coins, and reading only q = O(1) proof symbols. Naturally, (and motivated by
the fruitful connection to inapproximability due to [FGL+96]), much attention has been given to
obtaining PCPs with “good” parameters, such as q = 2, smallest possible soundness error δ, and
smallest possible alphabet size |Σ|. These are the parameters of focus in this paper.

How does one construct PCPs with such remarkable proof checking properties? In general, it is
easier to construct such PCPs if we relax the alphabet size |Σ| to be large (typically super-constant,
but sub-linear). This issue is similar to a well-known issue that arises in coding theory; wherein it is
relatively easy to construct codes with good error-correcting properties over a large, super constant
sized, alphabet (e.g., Reed-Solomon codes). Codes over a constant-sized alphabet (e.g., GF(2))
are then obtained from these codes by (repeatedly) applying the “code-concatenation” technique of
Forney [For66]. The equivalent notion in the context of PCP constructions is the paradigm of “proof
composition”, introduced by Arora and Safra [AS98]. Informally speaking, proof composition is a
recursive procedure applied to PCP constructions to reduce the alphabet size. Proof composition is
applied (possibly several times over) to PCPs over the large alphabet to obtain PCPs over a small
(even binary) alphabet.

Proof composition is an essential ingredient of all known constructions of PCPs. Composition
of PCPs with high soundness error (greater than 1/2) is by now well understood due to the works
of Szegedy [Sze99], Ben-Sasson et al. [BGH+06] and Dinur and Reingold [DR06]. These works
introduce the notion of PCPs of proximity [BGH+06] (called assignment testers in [DR06]) which
allow for extremely modular composition, in the high soundness error regime which in turn led
to alternate proofs of the PCP Theorem and constructions of shorter PCPs [BGH+06, Din08,
BS08]. However, these composition theorems are inapplicable when constructing PCPs with low-
soundness error (arbitrarily small soundness error or even any constant less than 1/2). (See survey
on constructing low error PCPs by Dinur [Din08] for a detailed explanation of this limitation).

Our first contribution is a definition of an object which we call a decodable PCP, which allows
for clean and modular composition in the low error regime.
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1.1 Decodable PCPs (dPCPs)

Consider a probabilistically checkable proof for the language CircuitSat (the language of all
satisfiable circuits). The natural NP proof for CircuitSat is simply a satisfying assignment. An
intuitive way to construct a PCP for CircuitSat is to encode the assignment in a way that enables
probabilistic checking. This intuition guides all known constructions, although it is not stipulated
in the definition.

In this work, we make the intuitive notion of proof encoding explicit by introducing the notion
of a decodable PCP (dPCP). A dPCP for CircuitSat is an encoding of the satisfying assignment
that can be both verified and decoded locally in a probabilistic manner. In this setting, the verifier
is supposed to both verify that the dPCP is encoding an satisfying assignment, as well as to decode
a symbol in that assignment. More precisely, we define a PCP decoder for CircuitSat to be (along
the lines of Definition 1.1) a probabilistic algorithm that is given an input circuit C, oracle access
to a dPCP π, and, in addition, an index i. Based on C, i and the randomness r it computes a
window I and a function f (rather than a predicate). This function is supposed to evaluate to the
i-th symbol of a satisfying assignment for C; or to reject.

• The PCP decoder is complete if for every y such that C(y) = 1 there is a dPCP π such that
Pri,I,f [f(πI) = yi] = 1.

• The PCP decoder has soundness error δ and list size L if for any (purported) dPCP π there is
a list of ≤ L valid proofs such that Pri,I,f [f(πI) inconsistent with the list, but not reject] ≤ δ.

The list of valid proofs can be viewed as a “list decoding” of the dPCP π. Since we are interested
in the low soundness error regime, list-decoding is unavoidable. Of course, we can define dPCPs
for any NP language and not just CircuitSat, but we focus on CircuitSat since it suffices for
the purpose of composition.

The notion of dPCPs allows for clean and modular composition in the case of low soundness
error (described next) in analogy to the way PCPPs and assignment testers [BGH+06, DR06] allow
for modular composition in the case of high soundness error. Moreover, using dPCPs we show a two
query composition that yields an alternate completely modular proof of the recent breakthrough
result of Moshkovitz and Raz [MR08b].

Finally, we note that decodable PCPs are not hard to come by. Decodable PCPs or variants
of them are implicit in many PCP constructions [AS03, RS97, DFK+99, BGH+06, DR06, MR07,
MR08b] and existing PCP constructions can often be easily adapted to yield decodable PCPs (c.f.,
Section 6).

1.2 Composition with dPCPs

There is a natural and modular way to compose a PCP verifier1 V with a PCP decoder D. The
composed PCP verifier V ′ begins by simulating V on a probabilistically checkable proof Π. It
determines a set of queries into Π (a local window I), and a local predicate f . Instead of directly
querying Π and testing if f(ΠI) = 1, V ′ relies on the inner PCP decoder D to perform this action.
For this task, the inner PCP decoder D is supplied with a dedicated proof that is supposedly an
encoding of the relevant local view ΠI . The main issue is consistency: the composed verifier V ′

must ensure that the dedicated proofs supposedly encoding the various local views are consistent

1The verifier needs to be a robust PCP as in Definition 2.3, but we gloss over this issue in the introduction.
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with the same Π (i.e. they should be encodings of local views coming from a single valid PCP
for V ). This is achieved easily with PCP decoders: the composed verifier V ′ asks D to decode a
random value from the encoded local view, and compares it to the appropriate symbol in Π.

The above description of composition already appears2 to lead to a modular presentation of the
composition performed in earlier low-error PCP constructions [AS03, RS97, DFK+99, MR07]. But
at the same time, like these compositions, it incurs an additional query per composition, namely
the “consistency” query to the outer PCP Π. (The queries made by V ′ are the queries of D plus
the one additional consistency query to Π).

Nevertheless, inspired by [MR08b] and equipped with a cleaner understanding of composition
in the low soundness error case, we are in a better position to remove this extra consistency query.

1.3 Composition with only two queries

Our main contribution is a surprisingly simple composition theorem that does not incur an extra
query. The extra query was incurred in the above described composition as the composed verifier
needed to verify that all the inner PCP decoders decode to the same symbol. This check was
performed by comparing the decoded symbol to the symbol in the outer PCP Π. Instead, we verify
consistency by invoking all the inner PCP decoders that involve this symbol in parallel, and then
checking that they all decode to the same symbol. This avoids the necessity to query the outer
PCP Π for this symbol and saves us the extra query.

We describe our new composed verifier V ′ more formally below. As before, let V be a PCP
verifier, and D a PCP decoder.

1. The composed PCP verifier simulates V on a hypothetical PCP Π; it chooses a random index
i in Π, and then determines all the possible random strings R1, . . . , RD that cause V to query
this index.

2. For each random string Rj (j = 1 . . . D), V ′ needs to check that the corresponding local
view of Π would have lead V to accept. This is done by running D, for each j = 1 . . . D,
on a dedicated proof π(Rj) that is supposedly the encoding of the j-th local view (i.e., the
one generated by V on random string Rj) into Π. Furthermore, V ′ expects D to decode the
symbol Πi.

3. Finally V ′ accepts if and only if all the D parallel runs of D accept and output the same
symbol.

Observe that the composed verifier V ′ does not access the PCP for V (i.e., Π) at all, rather only
the dedicated proofs for the inner PCP decoders. The outer PCP Π is only “mentally” present in
order to compute R1, . . . , RD. A few important points are in order.

• Two Queries and Robust Soundness: As described, V ′ makes many queries rather than
just two. This is fixed by the following easy transformation: the first query will supposedly
be answered by the complete local view V ′ expects to read, and the second query will consist
of one random symbol in the local view of V ′. The soundness of the resulting two-query PCP
is equal to the robust soundness of V ′: an upper bound on the average agreement between a
local view read by V ′ and an accepting local view. This interesting correspondence between
two query PCPs and robust PCPs is true in general and described in full in Section 2.2.

2We have not verified the details.
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Thus, drawing on the above correspondence, the fact that V ′ has low robust soundness implies
the required two-query composition. Of course, the composition could have been described
entirely in the 2-query PCP language.

• Size of alphabet or window size: The purpose of composition is to reduce the alphabet
size, or, in the language of robust PCPs, to reduce the window size, that is, the number of
queries made by V ′. Recall that V ′ runs D in parallel on all D local views corresponding
to R1, . . . , RD. Thus, the window size equals the query complexity of D multiplied by the
number D of local views (which we refer to as the proof degree of V ). Hence composition
is meaningful only if the proof degree is small to begin with (otherwise, the local window
of V ′ is not smaller than that of V and we haven’t gained anything from composition). In
general PCPs, the proof degree is very high. In fact, this has been one of the obstacles to
achieving this result prior to [MR08b]. However, a key observation of [MR08b] is that it is
easy to reduce the proof degree using standard tools from derandomization (i.e., expander
replacement).

Alternatively, one can handle V of arbitrarily high proof degree by making the following
change to V ′. Instead of running D to verify the local tests corresponding to all of R1, . . . , RD,
V ′ can pseudo-randomly choose a small number of these and run D only on the selected ones.

The fact that the query complexity is at least D is an inherent bottleneck in our composition
method. Combined with the bound of D ≥ 1/δ, this poses a limitation of this technique
towards achieving exponential dependence of the error probability on alphabet size, a point
discussed later in this introduction.

The new composition is generic in the sense that it works regardless of how the original com-
ponents V and D are constructed.

1.4 Background and Motivation

Let us step back to give some motivation for obtaining PCPs with small soundness and two queries
(for a more comprehensive treatment, see [MR08b]). Two is the absolute minimal number of queries
possible for a non-trivial PCP. Thus, it is interesting to find what are the strongest 2-query PCPs
that still capture NP. However, the main motivation for two query PCPs is for proving hardness of
approximation results.

Two query PCPs with soundness error δ are (more or less) equivalent to Label-Coverδ, which
is a promise problem defined as follows3: The input is a bipartite graph and an alphabet Σ, and
for each edge e there is a function fe : Σ → Σ, which we think of as a constraint on the labels of the
vertices. The constraint is satisfied by values a and b iff fe(a) = b. The problem is to distinguish
between two cases: (1) there exists a labeling of the vertices satisfying all constraints, or (2) every
labeling satisfies at most δ fraction of the constraints.

Label-Coverδ is probably the most popular starting point for hardness of approximation
reductions. In particular, even though there are 3-query PCPs with much smaller soundness error,
they currently have far fewer applications to inapproximability.

The fact that Label-Coverα is NP-hard for some constant α < 1 (and constant alphabet size)
is nothing but a reformulation of the PCP Theorem [AS98, ALM+98]. Strong inapproximability

3We focus on the important special case of projection constraints. For a more accurate definition, see Definition 2.2.
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results, however, require4 NP-hardness of Label-Coverδ for arbitrarily small, sometimes even
sub-constant soundness error δ. There are two known routes to obtaining hardness results for
Label-Coverδ with small soundness δ. The first, is via an application of the parallel repetition
theorem of Raz [Raz98] to the Label-Coverα instance produced by the PCP Theorem. However,
this application of the repetition theorem blows up the size of the problem instance from n to
nO(log(1/δ)) and thus remains polynomial only for constant, though arbitrarily small, δ. One might
try to get a polynomial sized construction by carefully choosing a subset of the entire parallel
repetition construction. This is known as the problem of “derandomizing the parallel repetition
theorem”. Feige and Kilian [FK95] showed that such derandomization is impossible under certain
(rather general) conditions. Nevertheless, in a recent paper, Impagliazzo et. al. [IKW09] obtained
a related derandomization. While their derandomization result applies only to direct products and
not to the construction of PCPs, this direction seems promising. Another potential direction is
to use the gap-amplification technique of Dinur [Din07], however as shown by Bogdanov [Bog05]
gap-amplification fails below a soundness error of 1/2.

The second route to sub-constant δ goes through the classical (algebraic) construction of PCPs.
Indeed, hardness for label cover with sub-constant error can be obtained from the low soundness
error PCPs of [RS97, AS03, MR08a], more or less by omitting the composition steps, and care-
fully combining queries. The following “manifold vs. point” PCP construction has been folklore
since [RS97, AS03], and formally described in [MR08b].

Theorem 1.2 (Manifold vs. Point PCP). There exists a constant c > 1 such that the following
holds: For every 1

n ≤ δ ≤ 1
(log n)c , there exists an alphabet Σ of size at most exp(poly(1/δ)) such

that Label-Coverδ over Σ is NP-hard.

The above result is unsatisfactory as the size of the alphabet |Σ| is super-polynomial. Combined
with the fact that hardness-of-approximation reductions are usually exponential in |Σ| (and always
at least polynomial in |Σ|) the super polynomial size of Σ renders the above theorem useless. The
situation can be redeemed if the theorem could be extended to the entire range of smaller |Σ| (with
a corresponding increase in δ).

A natural way to perform this extension would be to apply the composition paradigm to the
PCPs constructed in Theorem 1.2 and reduce the alphabet size. Indeed, this is how one constructs
PCPs with sub-constant error and a constant number of queries for the entire range of Ω(1) ≤ |Σ| ≤
exp((log n)1−ε) [RS97, AS03, DFK+99]. However, the composition a la [RS97, AS03, DFK+99]
incurs at least one additional query, which means that the final PCP is no longer “two-query”, so
it does not lead to a hardness result for label cover. Alternatively, the composition technique of
[BGH+06, DR06] using PCPs of proximity or assignment testers is inapplicable in this context as it
fails to work for soundness error less than 1/2. Thus, all earlier composition techniques are either
inapplicable in the low error regime or if applicable, incur an extra query and thus, are no longer
in the framework of the Label-Cover problem.

1.5 The Two-Query PCP of Moshkovitz and Raz [MR08b]

In a recent breakthrough, [MR08b] show that the above theorem can in fact, be extended to the
entire range of δ and |Σ| (and maintaining |Σ| ≈ exp(poly(1/δ))). This is done by composing

4In some cases the hardness gap is inversely proportional to δ, and in others, it is the sum of two terms: a
problem-dependent term (e.g. 7/8 in H̊astad’s hardness result [H̊as01] for 3-SAT), and a “low order” term that is
polynomial in δ.
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certain specific 2-query PCPs with low soundness error without incurring an additional query per
composition.

Theorem 1.3 ([MR08b]). For every δ ∈ (1/polylogn, 1), there exists an alphabet Σ of size at most
exp(poly(1/δ)) such that Label-Coverδ over Σ is NP-hard (in fact, even under nearly length
preserving reductions).

The main technical component of their construction is a novel composition of certain specific
PCPs. However, the construction is so organically tied to the specific algebraic components that
are being composed, as to make it extremely difficult to differentiate between the details of the
PCP, and what it is that makes the composition go through.

We give an alternate, modular and, in our view, a considerably simpler proof of this theorem
using our composition theorem in Section 6. Our proof relies on a PCP system based on the
manifold vs. point construction (as in Theorem 1.2). The parameters we need are rather weak: it
is enough that on input size n the PCP decoder / verifier makes nα queries and has soundness error
δ = 1/nβ , for small constants α, β. After one composition step the number of queries goes (roughly)
from nα to nα2

, and so on. After each composition step we add a combinatorial step, consisting
of degree and alphabet reduction, that prepares the verifier for the next round of composition.
After i rounds the number of queries is about nαi

, and the soundness error is about δ = 1/nO(αi).
Choosing 1 ≤ i ≤ log log n appropriately gives us the result.

The modular composition theorem allows us to easily keep track of a super-constant number of
steps, thus avoiding the need for another tailor-made Hadamard-based PCP which was required in
the proof of [MR08b]. (The later approach could also be implemented in our setting).

Generic transformations on Label-Cover: We also give generic transformations on Label-Cover,
such as alphabet reduction, degree reduction, and regularization, which are needed before applying
composition. These transformations incur only a moderate cost to the other parameters. To the
best of our knowledge, the alphabet reduction and the regularizing transformations are new, and
may be of independent interest.

Randomness and the length of the PCP: The above discussion completely ignores the ran-
domness complexity of the underlying PCPs. However, it is easy to verify that the composition
described above is, in fact, randomness efficient; this is because the same inner randomness can
be used for all the D parallel runs of the inner PCP decoder. Thus, if we start from a version of
the Theorem 1.2 (the manifold vs. point PCP) based on an almost linear-size low-degree test (c.f.,
[MR08a]), we obtain a nearly length preserving version of Theorem 1.3 (i.e., a reduction taking
instances of size n to instances of size almost linear in n). Furthermore, the fact that we account for
the input index i separately from the inner randomness r of the PCP decoder leads to an even more
randomness-efficient composition, however, we do not exploit this fact in the proof of Theorem 1.3.

Polynomial dependence of soundness error on alphabet size: Theorem 1.3 suffers from the
following bottleneck: the error probability δ is inverse logarithmic (and not inverse-polynomial)
with respect to the size of the alphabet Σ. This limitation is inherent in our composition method
as discussed above. Thus, the “sliding-scale conjecture” of Bellare et al. [BGLR93] that for every
|Σ| ∈ (1, n), Label-Coverδ over Σ is NP-hard for δ = poly(1/|Σ|) remains open.
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Organization

The rest of the paper is organized as follows. In Section 2 we define the known notions of robust
PCPs and label cover, and describe the syntactic equivalence between them. We introduce decod-
able PCPs in Section 3. The main result of the paper, two-query composition theorem, is then
presented in Section 4. This is then followed by Section 5 which contains various basic transforma-
tions of label cover such as degree reduction, alphabet reduction, etc. In Section 6, we construct
the building blocks for composition and then repeatedly compose them to obtain Theorem 1.3.
Various extensions of decodable PCPs are discussed in Appendix A.

2 Preliminaries

2.1 Notation

We begin by formalizing our notation while dealing with strings over some alphabet Σ. For any
string π ∈ Σn and I ⊆ [n], a subset of indices, we refer by πI , the restriction of π to the indices in
I. In other words, if I =

{

i1 < i2 < . . . < i|I|
}

, then πI , πi1πi2 · · · πi|I| . For any subset of indices

I =
{

i1 < i2 < . . . < i|I|
}

and index i ∈ I such that ik = i, we refer to k as the index of i within
I and denote the same by indexi∈I . Observe that this re-indexing satisfies the property that for
any string π ∈ Σn, we have (πI)(indexi∈I) = πi. We will reserve the symbol ⊥, which will not be a
member of any of the alphabets we use, to denote “reject” or “fail”.

For any two strings x, y ∈ Σn, the (relative) agreement between x and y, denoted by agr(x, y),
is defined as the fraction of locations on which x and y agree (i.e., agr(x, y) , Pri∈[n][xi = yi]).
The agreement between a string and a set of strings L ⊆ Σn is defined in the natural manner:
agr(x,L) = maxy∈L(agr(x, y)). For any set of strings L ⊆ Σn and index i ∈ [n], we denote by Li

the set of symbols obtained by restricting the strings in L to the ith index, i.e., Li = {wi | w ∈ L}.
The following fact about agreement of strings will come useful.

Fact 2.1. Let L ⊆ Σn and s ∈ Σn. Then agr(s, L) ≥ |L|−1 · Pri[si ∈ Li].

Proof. The event si ∈ Li is the union of the events {si = wi} for all w ∈ L, hence

|L|−1 · Pr
i
[si ∈ Li] ≤ |L|−1 ·

∑

w∈L

Pr
i
[si = wi] = E

w∈L
[agr(s,w)] ≤ agr(s, L)

Now, for some terminology for circuits. Unless otherwise stated, all circuits in this paper will
have fan-in 2 and fan-out 2 and we allow arbitrary unary and binary Boolean operations as internal
gates. The size of a circuit is the number of gates. The typical NP-complete language we will
refer to is CircuitSat, the set of satisfiable Boolean circuits, defined as follows: CircuitSat =
{C | ∃w,C(w) = 1} . Note that the instance C is specified as a circuit and not a truth-table in the
above definition.

Sometimes, we will refer to circuits computing a function over a non Boolean alphabet Σ and
outputting a symbol from a (possibly different) non-Boolean alphabet σ, such as f : Σn → σ.
This is merely shorthand for the equivalent function f ′ : {0, 1}n·log|Σ| → {0, 1}log|σ|, where Σ
and σ are viewed as bit-strings of length log |Σ| and log |σ| respectively. The circuit complex-
ity of such a function f is defined to be the circuit complexity of f ′. When working with the

7



alphabet Σ, we will frequently refer to the corresponding NP-complete language, CircuitSatΣ,
the set of satisfiable Boolean circuits over the alphabet Σ, defined as follows: CircuitSatΣ =
{f : Σn → {0, 1} | ∃w ∈ Σn, f(w) = 1} . As in the Boolean setting, the instance f : Σn → {0, 1} is
specified as a circuit Cf : {0, 1}n·log|Σ| → {0, 1}.

2.2 Label Cover and Robust PCPs

In this section, we point to an interesting correspondence between two known objects, namely, the
Label-Cover problem and robust PCPs. We first define these two objects (in Section 2.2.1 and
Section 2.2.2), and then (in Section 2.2.3) show the equivalence of the following two statements
(a) a language L is reducible to Label-Coverδ and (b) L has a robust PCP with soundness
error δ. This equivalence is very important in this paper, as we move back and forth between
the two views: the composition theorem is more natural to describe in terms of robust PCPs,
while the other manipulations (such as degree and alphabet reduction) are easier to describe in
terms of Label-Cover. (The application of the final result for inapproximability also requires the
Label-Cover formulation).

A weak equivalence of this nature has been implicitly observed (at least in one direction) earlier,
but, to the best of our knowledge, this is the first time a formal syntactic equivalence between the
two notions has been established.

2.2.1 Label Cover

We begin with the definition of the Label-Cover problem. Formally defined by Arora et al. [ABSS97],
but implicit in several earlier hardness reductions, the Label-Cover problem has been the starting
point of a long list of hardness reductions.

Definition 2.2 (Label-Cover). An instance of the Label-Cover problem is specified by a
quadruple (G,Σ1,Σ2, F ) where G = (U, V,E) is a bipartite graph, Σ1 and Σ2 are two finite sized
alphabets and F = {fe : Σ1 → Σ2 | e ∈ E}, is a set of functions (also called projections), one for
each edge.

A labeling L = (ΣU
1 ,ΣV

2 ), (i.e., a pair of labelings L1 : U → Σ1 and L2 : V → Σ2) is said to
satisfy an edge (u, v) iff f(u,v)(L1(u)) = L2(v). The value of an instance is the maximal fraction of
edges satisfied by any such labeling.

For any δ ∈ (0, 1), the gap problem Label-Coverδ is the promise problem of deciding if a given
instance has value 1 or at most δ.

We refer to U and V as the “left” and “right” vertices, and to Σ1 and Σ2 as the “left” and
“right” alphabets. The left degree of an instance (resp. the right degree) is defined naturally as
the maximum degree of a left vertex (resp. of a right vertex). In general, we will assume that all
the Label-Cover instances we construct are regular (i.e, the left (right) degree of all left (right)
vertices are the same), unless explicitly stated otherwise. In fact, in Section 5 we show how to
“regularize” any Label-Cover instance without altering its other parameters very much

The Label-Cover problem is often viewed as a “two-query” PCP. This is because a reduction
from L to Label-Cover can be converted into a two-query PCP verifier: the verifier expects a
labeling as a proof and checks that a random edge is satisfied by reading its two endpoints.
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2.2.2 Robust PCPs

Next, we recall the notion of robust PCPs, which has been very useful in PCP constructions.
Formally defined in [BGH+06, DR06], robust PCPs have been implicit in all PCP constructions
since the original proof of the PCP Theorem [AS98, ALM+98] (especially in PCP constructions
which involve composition). The only difference between robust PCPs and regular PCPs is in the
soundness condition: while the standard soundness condition measures how often the PCP verifier
accepts a false proof, the robust soundness condition measures the average distance between the
local view of the verifier and an accepting local view.

Definition 2.3 (robust PCPs). For functions r, q,m, a, s : Z
+ → Z

+ and δ : Z
+ → [0, 1], a

verifier V is a robust probabilistically checkable proof (robust PCP) system for a language L with
randomness complexity r, query complexity q, proof length m, alphabet size a, decision complexity
s and robust soundness error δ if V is a probabilistic polynomial-time algorithm that behaves as
follows: On input x of length n and oracle access to a proof string π ∈ Σm(n) over the (proof)
alphabet Σ where |Σ| = a(n), V reads the input x, tosses at most r = r(n) random coins, and
generates a sequence of locations I = (i1, . . . , iq) ∈ [m]q(n) and a predicate f : Σq → {0, 1} of
decision complexity s(n), which satisfy the following properties.

Completeness: If x ∈ L then there exists π such that

Pr
(I,f)

[f(πI) = 1] = 1.

(Robust) Soundness: If x 6∈ L then for every π,

E
(I,f)

[

agr
(

πI , f
−1(1)

)]

≤ δ. (2.1)

where the distribution over (I, f) is determined by x and the random coins of V .

Robust soundness must be contrasted with soundness of standard PCP verifiers in which (2.1)
is replaced by

Pr
I,f

[f(πI) = 1] ≤ δ

(in fact, this is the only difference between the above definition and the standard definition of a
PCP system). The robust soundness states that not only does the local view violate the local
predicate f , but in fact has very little agreement with any of the satisfying assignments of f .

Remark 2.4. For readability, our notation does not reflect the fact that I and f depend on both x
and the random coins r. When not clear from the context we may write I(x, r) or I(r) to highlight
this dependence. Note that as usual, all of the parameters (r, q,m, |Σ| , s, δ) are functions of the
input length |x| = n, but not of the input itself. We will find it convenient to refer to the sequence
of locations I = I(r) as the local window, f as the local predicate and the proof restricted to the
local window, i.e., πI , as the local view of the proof.
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2.2.3 Correspondence between Label-Cover and robust PCPs

We now proceed to describe the correspondence between the notions of Label-Cover and robust
PCPs.

If a language L has a robust PCP, then here is a reduction from L to Label-Cover: the set of
left vertices is the set of random strings of the robust PCP, the set of right vertices is the set of the
proof locations. An edge (r, i) exists if the proof location i is probed on random string r. The label
to a left vertex r is an accepting local view of the verifier on random string r while a label to the
right vertex i is the proof symbol in the corresponding proof location i. An edge (r, i) is consistent
if the local view is consistent with the proof symbol.

Conversely, a reduction from L to Label-Cover defines a robust PCP verifier as follows: the
verifier expects as proof a labeling of the set of right vertices, the verifier chooses a random left
vertex, queries all its neighbors and accepts iff there exists a label to the left vertex that satisfies
all the corresponding edges.

This correspondence is summarized more formally in the following lemma statement. Note that
this correspondence is akin to the correspondence between bipartite graphs with left degree q and
q-uniform hyper-graphs. The proof is straightforward. One direction is proved along the lines of
Fortnow, Rompel and Sipser’s result [FRS94] that every language in MIP has a 2-prover MIP. (cf.,
[BGH+06, Proposition 2.14]).

Lemma 2.5 (Robust PCP ≡ Label-Cover). For every δ : Z
+ → R

+, and r, q,m, a : Z
+ → Z

+,
the following two statements are equivalent:

1. Label-Coverδ is NP-hard for instances with the following parameters

• left degree at most q(n),

• right alphabet Σ(n) with |Σ| = a(n),

• left alphabet Σ′(n),

• size of right vertex set at most m(n), and

• size of left vertex set at most 2r(n).

2. Every L ∈ NP has a robust PCP with robust soundness error δ and the following parameters

• query complexity q(n),

• proof alphabet Σ(n) with |Σ| = a(n),

• maximum number of accepting local views5 |Σ′(n)|,
• proof length m(n), and

• randomness complexity at most r(n).

Proof Sketch: (1 → 2) : Given a reduction from L ∈ NP to Label-Coverδ, we construct a verifier
for L as follows. The verifier, on input x, computes (using the reduction) a Label-Cover instance
I = ((U, V,E),Σ,Σ′, F ). The verifier expects the proof to contain a labeling of V , and uses its
random bits to select a random left vertex u ∈ U and reads the labels of every neighbor of u. It
accepts iff there exists a label for u that, together with labels of its neighbors given by the proof,

5This is sometimes called the free bit complexity. More precisely, |Σ′(n)| = 2fb where fb is the free bit complexity.
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satisfies all the constraints adjacent to u. Given a proof, i.e., a right labeling L2 : V → Σ′ which
has robust soundness error δ, then there exists a left labeling L1 : U → Σ such that the labeling
L = (L1, L2) satisifies exactly δ fraction of the edge constraints.

(2 → 1) : Given a robust verifier for L we construct a reduction from L to Label-Cover. The
reduction maps an input x to an instance I = ((U, V,E),Σ,Σ′, F ) where U has a vertex per random
string of the verifier, and V has a vertex per proof symbol. A vertex u ∈ U will be adjacent to all
proof symbols that the verifier reads when given the corresponding random string. A label a ∈ Σ
will describe an entire accepting view of the verifier, and the constraints will check consistency.
Given a labeling L = (L1, L2) of the Label-Cover instance that satisfies at least δ fraction of the
edges, it is easy to see that the proof given by L2 : V → Σ′ has robust soundness error at least
δ.

It is important to note that this is a syntactic correspondence between the notions of Label-Cover

and robust PCPs and there is no loss of parameters in going from one framework to another.
In particular, going from Label-Cover to a robust PCP and back, one gets back the original
Label-Cover instance.

To get comfortable with this correspondence, let us see how composition of two-query PCPs
(i.e., verifiers derived from Label-Cover) looks in terms of robust PCPs. In the Label-Cover

world the aim of composition is to reduce the alphabet size. (In fact, the main issue is to reduce
the left alphabet, since reducing the right alphabet is much easier, see Section 5). When translating
to a robust PCP, the alphabet size is the free bit complexity. So the aim of composition for robust
PCPs would be to reduce the free bit complexity. We will actually be more stringent in our demands
from composition of robust PCPs and expect composition to reduce the query complexity which
upper bounds the free-bit complexity.

We end this section with a definition.

Definition 2.6 (Proof degree). Given a robust PCP system, we will refer to the maximum number
of local windows any index in the proof participates in, as the proof degree, denoted by d(n). More
precisely, for each i ∈ [m(n)], if we let

Ri =
{

r ∈ {0, 1}r(n)
∣

∣

∣
i ∈ I(r)

}

,

then d(n) = maxi |Ri|. Furthermore, if |Ri| = d(n) for all i, we will say the PCP system is regular.

Observe that the notion of proof degree exactly corresponds to the right degree of the Label-Cover

instance according to the equivalence in Lemma 2.5. Furthermore, the PCP system is regular iff the
corresponding Label-Cover instance is right-regular. In general, all the PCP systems (and hence
Label-Cover instances) we will dealing with will be regular, unless explicitly stated otherwise.
In fact, in Section 5, we give a reduction that “regularizes” a robust PCP.

3 Decodable PCPs

Consider a PCP for some language in NP. Known PCP constructions have the property that the
PCP π is an encoding of the original NP proof. In fact, some constructions have the additional
property that every bit of the NP-proof can be locally decoded from the PCP π. We make this
notion explicit, in the form of PCP decoders and decodable PCPs. For example, consider the
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language CircuitSatΣ, which consists of circuits C : Σk → {0, 1} that are satisfiable (i.e., there
exists a string y that causes C to evaluate to true). The PCP for checking satisfiability of an
instance C of CircuitSat is typically a probabilistically checkable encoding of a string y such
that C(y) = 1. Such a y is called the NP-witness of the fact “C ∈ CircuitSat”. A PCP verifier
for the language CircuitSat would verify that the input circuit is satisfiable, with the help of a
PCP, which is typically (but not-necessarily) an encoding of the NP-witness y. A PCP decoder for
CircuitSatexpects the PCP to be an encoding of the NP witness. Like a PCP verifier, the PCP
decoder verifies with the help of the PCP that “C ∈ CircuitSat”, and furthermore decodes the
PCP back to the NP witness. Formally, the PCP decoder gets as additional input an index j, and
is supposed to either reject or return the jth symbol of the NP witness.

Definition 3.1 (PCP Decoders). A PCP decoder for CircuitSatΣ over a proof alphabet σ is
a probabilistic polynomial-time algorithm D that on input a circuit C : Σk → {0, 1} of decision
complexity n and an index j ∈ [k], tosses r = r(n) random coins and generates (1) a sequence of
q = q(n) locations I = (i1, . . . , iq) in a proof of length m(n) and (2) a (local decoding) function
f : σq → Σ ∪ {⊥} of decision complexity at most s(n).

For readability, our notation does not reflect the fact that I and f depend on C, r and j. When
not clear from the context we may write I(C, r, j) or I(r, j) to highlight this dependence (and
similarly for f). Clearly, neither I nor f depend on the proof string π.

We think of the PCP decoder D as representing a probabilistic oracle machine that based on its
input C, the index j and random coins queries its proof oracle π ∈ σm for the positions in the local
window I, receives the local view πI consisting of the q symbols (πi1 , . . . , πiq) and outputs f(πI).

All of the parameters |σ| , |Σ| ,m, k, r, q, s are understood to be functions of the input length n,
and not of the input itself. We call r the randomness complexity, q the query complexity, m the
proof length, a = |σ| the proof alphabet size, and s the decoding complexity of the PCP decoder D.
We refer to Σ as the input alphabet and σ as the proof alphabet of D.

Definition 3.2 (Decodable PCPs). For functions δ : Z
+ → [0, 1] and L : Z

+ → Z
+, we say that a

PCP decoder D is a decodable probabilistically checkable proof (dPCP) system for CircuitSatΣ

with soundness error δ and list size L if the following completeness and soundness properties holds
for every circuit C : Σk → {0, 1}:
Completeness: For any y ∈ Σk such that C(y) = 1 there exists a proof π ∈ σm, also called a

decodable PCP, such that
Pr

j,I,f
[f(πI) = yj] = 1

where j ∈ [k] is chosen uniformly at random and I, f are distributed according to C, j and
the verifier’s random coins.

Soundness: For any π ∈ σm, there is a list of 0 ≤ ` ≤ L strings y1, . . . , y` satisfying ∀i, C(yi) = 1
such that

Pr
j,I,f

[

f(πI) /∈
{

⊥, y1
j , . . . , y

`
j

}]

≤ δ, (3.1)

Robust Soundness: We say that D is a robust dPCP system for CircuitSatΣ with robust
soundness error δ, if the soundness criterion in (3.1) can be strengthened to the following
robust soundness criterion,

E
j,I,f

[agr (πI ,bad(f))] ≤ δ,
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where
bad(f) ,

{

w ∈ σq
∣

∣

∣
f(w) /∈

{

⊥, y1
j , . . . , y

`
j

}}

.

Note that the parameters δ,L are allowed to be functions of the input length n, but not the
input. As in the case of PCPs vs. robust PCPs, the only difference between a dPCP and a robust
dPCPs is that the soundness condition for dPCP is Pr[πI ∈ bad(f)] ≤ δ while that for robust
dPCPs is E[agr(πI ,bad(f))] ≤ δ.

The above definition of dPCP can be naturally extended to any pair language, where the first
part of the input should be viewed as the original input, and the second part as the NP witness
(see Appendix A). However, for the purpose of composition it suffices to work with dPCPs for
CircuitSat.

Decodable PCPs or its variants are implicit in most PCP constructions [AS03, RS97, DFK+99,
BGH+06, DR06, MR07] and can be easily obtained by adapting the existing PCP constructions as
we do in Section 6).

Decodable PCPs are very closely related to the locally decode/reject codes (LDRCs), introduced
by Moshkovitz and Raz [MR08b] and can be viewed as a natural extension of their definition. The
following summarizes the salient differences and similarities between these two objects.

1. LDRCs are a special case of dPCPs in the sense that LDRCs consider only those circuits
C which check membership in a particular code (eg., Reed-Muller, Hadamard) while dPCPs
consider any predicate C. This is the main difference between LDRCs and dPCPs. However,
it is to be added that [MR08b] did not require such a general definition that works with any
predicate C as they were interested in the composition of some very specific PCPs, while we
need to work with the more general definition as we need to be able to compose arbitrary
PCP verifiers.

2. LDRCs are defined in terms of the Label-Cover problem, while dPCPs are defined in
the language of proofs, but this is merely a difference in the underlying language used (see
Lemma 2.5).

3. LDRCs decode a k-tuple of elements from the proof while dPCPs decode just one symbol of
the proof. However, the definition of dPCP can be extended from decoding symbols of the
proof to decoding any function of the proof (and in particular k-tuples of the proof), as long
as the set of functions to be decoded is known in advance (see Appendix A).

4 Composition Theorem

In this section, we show how to compose an outer robust PCP verifier with an inner robust PCP
decoder, such that the resulting PCP verifier has low robust soundness. This gives a composition
theorem for two-query PCPs simply by the equivalence between robust PCPs and two-query PCPs
(see Lemma 2.5).

Before moving to our composition theorem, let us first explain why the earlier “natural” com-
position techniques [BGH+06, DR06, Sze99, RS97, AS03] did not give the result we claim here. As
described in Section 1.2, the straightforward way to compose an outer robust PCP verifier V with
an inner robust PCP decoder D is as follows. The composed PCP verifier V ′ begins by simulating
V on a probabilistically checkable proof Π. It determines a set of queries into Π (a local window I),
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and a local predicate f . Instead of directly querying Π and testing if f(ΠI) = 1, V ′ relies on the
inner PCP decoder D to perform this action. For this task, the inner PCP decoder D is supplied
with a dedicated proof that is supposedly an encoding of the relevant local view ΠI . To ensure
consistency (i.e. that the various dedicated proofs for D are encodings of local views coming from
a single valid PCP for V ) V ′ asks D to decode a value from the encoded local view, and compares
it to the appropriate symbol in Π.

The problem is that the robust soundness of V ′ is always at least 1/2, even if both V and D had
very small robust soundness parameters. The reason is that the local view of V ′ has two distinct
parts: the outer PCP part, and the inner dPCP part. Having fixed the view in one of the two
parts, it is easy to modify the second part to make the verifier accept. Thus, by taking completely
inconsistent inner dPCPs, still the average agreement of V ′ with an accepting view (namely, the
robust soundness) is at least 1/2, even if we allow for different weights on each part.

An alternate approach is to have V ′ check consistency by decoding the i-th symbol Πi from
two different randomly selected (encodings of) local views of Π, and avoiding the need for Π
altogether. Here too the robust soundness is at least 1/2, but now it is easy to correct: simply read
Πi simultaneously from many different local views, rather than just 2 ! This is the approach we
describe next.

Theorem 4.1 (Composition Theorem). Suppose L has a regular6 robust PCP verifier V with proof
alphabet Σ and robust soundness error ∆, and CircuitSatΣ has a robust PCP decoder D with input
alphabet Σ, robust soundness error δ and list size L. Then, L has a robust PCP verifier V ′ = V ~D,
with robust soundness error ∆L + δ and other parameters as stated in Figure 1. Furthermore, if
the PCP decoder D is regular, then so is the composed verifier V ′.

V D V ′ = V ~ D
proof alphabet Σ σ σ
randomness complexity R r log M + r

query complexity Q q Dq
decision complexity S s Ds + s(equal)
proof degree D d d
proof length M m 2R · m
robust soundness error ∆ δ ∆L + δ
list size - L -

input size n S(n) -

Figure 1: Parameters for Composition. All parameters in the V column are functions of n, and
all parameters in the D column are functions of S(n). For example, ∆L + δ should be read as
∆(n) · L(S(n) + δ(S(n))).

Proof. The proof π ∈ σ2R·m of the composed verifier V ′ is interpreted as a concatenation of the
proofs π(R) for each R ∈ {0, 1}R. V ′ acts as follows:

6The composition theorem works even if the robust PCP is not regular as long as one works with a suitable
weighted version of PCPs and chooses the probability distribution according to these weights instead of the uniform
distribution. However, we find it easier to work with the regular case and not worry about weights. Lemma 5.9
contains a generic reduction transforming any non-regular PCP system into a regular one.
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1. Choose i ∈ [M ] uniformly at random (recall that M is the length of the outer PCP). Let
R1, . . . , RD be all the random strings of the outer verifier V that generate local windows
I1, . . . , ID respectively such that i ∈ Ik for every k = 1, . . . ,D. Denote by f1, . . . , fD :
ΣQ → {0, 1} the corresponding local predicates computed by V and by j1, . . . , jD ∈ [Q] the
corresponding re-indexing of i within each Ik (i.e., jk = indexi∈Ik

as defined in Section 2.1).

2. Choose r ∈ {0, 1}r uniformly at random. For each k = 1, . . . ,D run the inner PCP decoder
D on input fk, index jk, random coins r, and proof π(Rk). Let (Jk, gk) be the local window
and local predicate computed by D.

3. Accept if and only if
g1(π(R1)J1

) = · · · = gD(π(RD)JD
) 6= ⊥.

In other words the local window is I ′ = ∪D
k=1Jk and the local predicate f ′ : σDq → {0, 1} is

defined by

f ′(w1, . . . , wD) =







1, g1(w1) = · · · = gD(wD) 6= ⊥

0, Otherwise.

The claims about V ′’s parameters (randomness, query, decision complexities, proof length and proof
degree) can be verified by inspection. Thus, we only need to check completeness and soundness.

Completeness: Suppose x ∈ L. Then, by completeness of V , there exists a proof Π causing V to
accept with probability 1. In other words, for every R ∈ {0, 1}R and corresponding (I, f) computed
by V , we have f(ΠI) = 1. We now invoke the inner PCP decoder D on the (input) circuit f(R).
By completeness of D, there exists a proof π(R) which encodes ΠI , causing D to always accept and
output the correct symbol of Π. More specifically for each i and for every r ∈ {0, 1}r , the verifier
computes J and g such that g(π(R)J ) = Πi. Since all the proofs π(R) of the various inner verifiers
encode different local views of the same outer proof Π, we have that the local view of the composed
verifier satisfies the computed predicate f ′ with probability 1.

Soundness: Suppose that x /∈ L. To prove soundness of the composed verifier Vcomp, we need to
show that for all proofs π,

E
(I′,f ′)∼V ′

[agr
(

πI′ , (f
′)−1(1)

)

] ≤ δ + L · ∆.

Assume (for the purpose of contradiction) that this is not the case. In other words, there exists a

proof π ∈ σm2R

, such that E(I′,f ′)∼V ′ [agr
(

πI′ , (f
′)−1(1)

)

] > δ + L ·∆. We will then show that there
exists a proof Π for the outer verifier V such that E(I,f)∼V

[

agr
(

ΠI , f
−1(1)

)]

> ∆, contradicting
the soundness claim of the outer verifier V .

Let us write π = (π(R))R∈{0,1}R . Fix some R ∈ {0, 1}R, and let (I, f) be the local window and
local predicate generated by the outer verifier V on input x and randomness R. Consider the inner
PCP decoder D when run on the input f and the proof π(R).

It follows from the soundness of D, that for each π(R) there exist a set

list(R) = {y1, y2, . . . , y`} ⊆ f−1(1),

with 0 ≤ ` ≤ L, of supposed “plausible” decodings of π(R).
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Let us recall the following notation from the description of V ′. The random string of V ′ is
(i, r) ∈ [M ] × {0, 1}r. The pairs (I1, f1), . . . , (ID, fD) are such that i ∈ Ik for all 1 ≤ k ≤ D
and they are generated by the outer verifier on random strings R1, . . . , RD ∈ {0, 1}R respectively.
Furthermore, recall that {(Jk, gk)}k∈[D] were the pairs generated by D in step 2, i.e., on input fk,
random string r, and index jk where jk is the re-indexing of i within Ik (i.e., jk = indexi∈Ik

).
Finally, we denoted by (I ′, f ′) the local view and local predicate of V ′.

We will view all of Ik, fk, Rk, Jk, gk, f
′, I ′ as random variables over the probability space [M ]×

{0, 1}r (i.e., that depend on i, r).
The following captures the set of accepting local views of V ′:

(f ′)−1(1) =
{

w1w2 . . . wD ∈ σqD
∣

∣ g1(w1) = · · · = gD(wD) 6= ⊥
}

.

Let w = w1w2 · · ·wD ∈ (f ′)−1(1) be an accepting view that is closest (in Hamming distance) to πI′

(breaking ties lexicographically) and α the corresponding decoded value, i.e., α = g1(w1) = · · · =
gD(wD). Note that both w and α are random variables as well (i.e., w = w(i, r) and α = α(i, r)).
By assumption,

E
i,r

[agr(πI′ , w)] > δ + L∆. (4.1)

Recall that I ′ = ∪D
k=1Jk so

agr(πI′ , w) = E
k∈[D]

[agr(π(Rk)Jk
, wk)] . (4.2)

Hence,
E
i,r

E
k∈[D]

[agr(π(Rk)Jk
, wk)] > δ + L∆. (4.3)

We will split the above expression according to whether or not α is “consistent” with the list
list(Rk). For each k ∈ [D], let ck = ck(i, r) be an indicator random variable defined by

ck =







1, α ∈ list(Rk)jk

0, otherwise.

Surely,

E
i,r,k

[agr(π(Rk)Jk
, wk)] = E

i,r,k
[agr(π(Rk)Jk

, wk) · ck] + E
i,r,k

[agr(π(Rk)Jk
, wk) · (1 − ck)] (4.4)

≤ E
i,r,k

[ck] + E
i,r,k

[agr(π(Rk)Jk
, wk) · (1 − ck)]. (4.5)

where the last inequality follows since agr(·) ≤ 1.
We will now upper bound the second quantity in the above expression by δ, the robust soundness

of the inner PCP decoder D. For each outer random string R, the soundness of the inner PCP
decoder states that Er,j[agr(π(R)J ,bad(g))] ≤ δ, where bad(g) = {u | g(u) /∈ {⊥} ∪ list(R)j} .
Applying this to the outer random string Rk, we have

E
r,j

[agr(π(Rk)Jk
,bad(gk))] ≤ δ,

and by regularity of the outer verifier V , also,

E
i,r,k

[agr(π(Rk)Jk
,bad(gk))] ≤ δ.
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On the other hand, whenever ck = 0, we have by definition that α /∈ list(Rk)jk
whereas gk(wk) =

α 6= ⊥ which implies wk ∈ bad(gk). Hence we have

E
i,r,k

[agr(π(Rk)Jk
, wk) · (1 − ck)] ≤ E

i,r,k
[agr(π(Rk)Jk

,bad(gk))] ≤ δ.

Combining the above inequality with (4.5) and (4.3), we have

E
i,r,k

[ck] > L∆.

Or equivalently,
E
r

Pr
i,k

[α ∈ list(Rk)jk
] > L∆.

Recall that α = α(i, r) was defined independently of k, and hence of Rk and yet, the above
inequality shows that often α is consistent with the list-decoding list(Rk) of the proof π(Rk).
This reveals that the soundness assumption of the composed verifier translates into an underlying
consistency among the various list(Rk)’s. Stating the same in more words, we have that for average
i and r, α = α(i, r) often agrees with the list-decoding list(Rk)j where Rk is a random outer
random string that involves i and j is the re-indexing of i within I(Rk). This leads to the following
definition of a (randomized) proof Π for the outer verifier V . Choose a random r ∈ {0, 1}r and set
Πi = α(i, r). In other words, Πi is the common value decoded by the components of the closest
accepting view to the local view πI′ of the composed verifier V ′ on coin toss (i, r). From above, we
have that this proof Π satisfies

E
r

Pr
R,i

[Πi ∈ list(R)j ] > L∆ (4.6)

where R is a uniformly chosen random string in {0, 1}R, i a random location in I(R) and j the
re-indexing of i within I(R) (i.e., j = indexi∈I(R)). However, any proof Π that satisfies (4.6)
necessarily contradicts the soundness of the outer verifier V as seen from the following argument.

E
r

E
R
[agr(ΠI , f

−1(1))] ≥ E
r

E
R
[agr(ΠI , list(R))]

≥ E
r

E
R

[

L−1 · Pr
j∈[|I|]

[(ΠI)j ∈ list(R)j ]

]

= E
r

E
R

[

L−1 · Pr
i∈I

[Πi ∈ list(R)j]

]

[where j = indexi∈I ]

= L−1 · E
r

Pr
R,i

[Πi ∈ list(R)j ] > ∆

where the first inequality follows since list(R) ⊆ f−1(1), the second inequality is a consequence of
Fact 2.1, and the rest follows by changing summation order and (4.6). This completes the proof of
soundness of V ′.

5 Transformations on Label-Cover

In this section, we describe generic transformations on Label-Cover (or in its equivalent for-
mulation, robust PCPs): degree reduction, alphabet reduction and regularization. To the best of
our knowledge the alphabet reduction and regularization transformations are new, and may be of
independent interest.
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5.1 Degree Reduction

In this section, we show how we can lower the proof degree of a robust PCP at a very nominal cost
to the other parameters. To this end, we use expanders, specifically we employ the expander mixing
lemma. This proof is along the lines of degree reduction of LDRCs [MR08b], and is included for
completeness.

Definition 5.1 (Expanders). A d-regular graph G = (V,E) on n(= |V |) vertices is said to be a
[n, d, λ]-expander if the second eigen-value of its normalized adjacency matrix is at most λ.

Remark 5.2 (Ramanujan graphs). There exists a uniform algorithm (see [HLW06]) that when
given as input n, d > 3, and λ construct a [n, d, λ]-expander in time polynomial in n and d as long

as 1/λ = O(D
1

2 ). (Such graphs are called Ramanujan graphs.)

Lemma 5.3 (expander mixing lemma). Let G = (V,E) be a [N, d, λ]-expander. Then for any two
(possibly intersecting) sets X,Y ⊆ V , we have |E(X,Y ) − d|X||Y |/N | ≤ λ ·

√

|X||Y |.

We state (and prove) degree reduction in the language of the Label-Cover problem (as op-
posed to that of robust PCPs) as this is a more natural setting (in our view) to perform degree
reduction.

Theorem 5.4 (degree reduction). Suppose [n, d, λ]-expanders are efficiently constructible (in poly-
nomial time in the output length) where λ = λ(d) as stated in Remark 5.2. Then there exists a poly-
nomial time reduction transforming instances I = (G = (U, V,E),Σ1,Σ2, F ) of Label-Coverδ of
average right degree D to right-regular instances I ′ = (G′ = (U, V ′, E′),Σ1,Σ2, F

′) of Label-Coverδ+λ

of right degree d, such that |V ′| = D |V | = |E|.

Proof. Let I = (G = (U, V,E),Σ1,Σ2, F ) be the input instance with average right degree D. Let
us assume some numbering of the neighbors of each left vertex, and denote the i-th neighbor of v
by ΓG(v, i).

For each left vertex v ∈ V , let Dv denote the degree of v and let Hv = ([Dv], E
′′) be a [Dv, d, λ]-

expander as stated in the hypothesis of the theorem. Assume that the edges E′′ of H are specified
by the neighborhood function ΓHv : [Dv] × [d] → [Dv ], where ΓHv(i, k) denotes the kth neighbor of
i.

The target instance I ′ is obtained by replacing each vertex v ∈ V in the left vertex set by the
vertices of the expander Hv. Thus, each vertex v is replaced by a cloud of vertices [Dv ] and V ′ is
the disjoint union of [Dv] for all v ∈ V . Clearly |V ′| = D |V |. The edges E′ and the constraints F ′

are specified below.
The edges E′ of the (target) bipartite graph G′ = (U, V ′, E′) are defined by defining the k-th

neighbor of (v, i) in G′ to be the j-th neighbor of v in G, where j itself is the k-th neighbor of i in
Hv. In other words:

ΓG′((v, i), k) , ΓG (v,ΓHv (i, k)) .

The constraints F ′ = {fe′ | e′ ∈ E′} of the target instance I ′ are defined as follows: for each
edge e′ = (u, (v, i)) ∈ E′, the corresponding edge e = (u, v) is by definition an edge in E. The
constraint fe′ : Σ1 → Σ2 is then defined to be exactly the same as the corresponding function
fe : Σ1 → Σ2.

The target instance I ′ = (G′,Σ1,Σ2, F
′), by definition, is right regular with right degree d.

Furthermore, it is easy to see that if L = (L1 : U → Σ1, L2 : V → Σ2) is a labeling of vertices in
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G that satisfies all the edges in E, then the labeling L′ = (L1 : U → Σ1, L
′
2 : V ′ → Σ2) given by

L′
2(v, i) = L2(v) satisfies all the edges in E′. Thus, instances of value 1 are transformed to instances

of value 1.
We only need to show that instances I of value at most δ are transformed to instances I ′ of

value at most δ + λ. Suppose (for contradiction) that the target instance I ′ has value greater than
δ + λ while the input instance I has value less than or equal to δ. In other words, there exist
labelings L′

1 : U → Σ1 and L′
2 : V ′ → Σ2 that satisfy more than δ + λ fraction of the edges in E′.

For each v ∈ V and σ ∈ Σ2, define sets Xv,σ, Yv,σ ⊆ [Dv] as follows.

Xv,σ =
{

i ∈ [Dv]
∣

∣ L′
2(v, i) = σ

}

Yv,σ =
{

i ∈ [Dv]
∣

∣ f(u,v)(L
′
1(u)) = σ where u is defined by u = ΓG(v, i)

}

.

Thus, for each v ∈ V , the sets {Xv,σ | σ ∈ Σ2} corresponds to the partition of the cloud of vertices
[Dv] based on the labeling L′

2 while the sets {Yv,σ | σ ∈ Σ2} corresponds to the partition of the
cloud of vertices [Dv] based on the opinion (i.e., value of the function f) along the edge (ΓG(v, i), v)

It follows from a counting argument, that the fraction of edges satisfied by the labeling L′ is
given by the following expression, which by assumption is greater than δ + λ.

1

|E′|
∑

v∈V

∑

σ∈Σ2

E(Xv,σ , Yv,σ).

We now define a (randomized) labeling L for the input instance I as follows: for each u ∈ U ,
set L1(u) = L′

1(u) and for each v ∈ V , choose i ∈ [Dv] randomly and set L2(v) = L′
2(v, i). The

fraction of edges satisfied by this labeling is given by the following expression.

1

|E′|
∑

v∈V

∑

σ∈Σ2

|Xv,σ | · |Yv,σ|
d

Dv

Since this quantity lower bounds the value of the instance I, we have

value(I) ≥ 1

|E′|
∑

v∈V

∑

σ∈Σ2

|Xv,σ | · |Yv,σ|
d

Dv

≥ 1

|E′|
∑

v∈V

∑

σ∈Σ2

(

E(Xv,σ , Yv,σ) − λ ·
√

|Xv,σ | · |Yv,σ|
)

> (δ + λ) − λ

|E′| ·
∑

v∈V

∑

σ∈Σ2

√

|Xv,σ| ·
√

|Yv,σ|

(Cauchy − Schwarz) ≥ (δ + λ) − λ

|E′| ·
∑

v∈V

√

∑

σ∈Σ2

|Xv,σ| ·
√

∑

σ∈Σ2

|Yv,σ|

= (δ + λ) − λ = δ

The inequality in the second line follows from the expander mixing lemma, and the last equality
follows from

∑

Dv = |E′|. Thus, value of the input instance I is greater than δ, which is a
contradiction. Hence, instances I of value at most δ are transformed to instances I ′ of value at
most δ + λ.
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5.2 Alphabet Reduction

In this section, we show how to reduce the proof alphabet of the robust PCP at a nominal cost to
other parameters. First we need some preliminaries from coding theory.

A mapping C : Σ → σk is called a code with minimum relative distance 1 − δ if for every
a 6= b ∈ Σ the strings C(a) and C(b) differ in at least (1 − δ)k coordinates.

Fact 5.5. Suppose C ⊆ σk is a code with (relative) distance at least 1 − δ and η > 2
√

δ. Then,
there are at most 2/η codewords in C that agree with a given word w on at least η fraction of the
coordinates.

Proof. Suppose there exist a word w and a list of l = b2/ηc + 1 codewords in C that agree with w
on at least η fraction of the locations. Then, by inclusion exclusion,

Pr
i
[∃c ∈ list, wi = ci] ≥

∑

c∈list

Pr
i

[wi = ci] −
∑

c1 6=c2∈list

Pr
i

[wi = (c1)i = (c2)i] ≥ lη −
(

l

2

)

δ.

Since η > 2
√

δ, the above expression is greater than 1 for every l ∈ [2/η, 2/η + 1] and in particular
for l = b2/ηc + 1, which is a contradiction.

Remark 5.6. For every 0 < δ < 1 and alphabet Σ, there exists a code C : Σ → σk with relative
distance 1 − δ where |σ| = O(1/δ2) and k = O(log |Σ|/δ2).

Such codes can be constructed by concatenating the following two codes. As outer codes, we
take the rate optimal codes of [ABN+92] with relative distance 1 − δ/2, rate Ω(δ) and alphabet
size 2O(1/δ). As inner codes, we take Reed-Solomon codes with relative distance 1 − δ/2, rate δ,
and alphabet O(1/δ2).

Theorem 5.7 (alphabet reduction). Suppose C : Σ → σk is a code with (relative) distance 1 − η3

for some η < 1/4. Then there exists a polynomial time reduction transforming instances I =
(G = (U, V,E),Σ′,Σ, F ) of Label-Coverδ to instances I ′ = (G′ = (U, V × [k], E′),Σ, σ, F ′) of
Label-Coverδ+3η.

Proof. The reductions maps instances I = (G = (U, V,E),Σ′,Σ, F ) to instances I ′ = (G′ = (U, V ×
[k], E′),Σ, σ, F ′) where the set of edges E′ and the set of projections F ′ are defined as follows:
E′ = {(u, (v, i)) | (u, v) ∈ E, i ∈ [k]} and for each e = (u, (v, i)) ∈ E, the function f ′

e : Σ′ → σ is
defined as f ′

e(α) = C(f(u,v)(α))i.
Completeness is easy as instances of value 1 are mapped to instances of value 1. We will prove

soundness by showing that value(I ′) ≤ value(I) + 3η. To this end, let Π′ = (π1 : U → Σ′, π′
2 :

V × [k] → σ) be any labeling of the target instance I ′. For each v ∈ V and β ∈ Σ, define δv(β) as
follows:

δv(β) = Pr
u∈Γ(v)

[

f(u,v)(π1(u)) = β
]

.

It can be easily checked that the fraction of edges satisfied by the labeling Π′ is Ev∈V [δ′v ] where δ′v
is the following expression:

δ′v =
∑

β∈Σ

δv(β) · Pr
i

[

π′
2(v, i) = C(β)i

]

.
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Now, define a labeling Π = (π1 : U → Σ′, π2 : V → Σ) for the instance I by taking the same π1 and
setting π2(v) = argmaxβ δv(β). Clearly, the expected fraction of edges satisfied by Π is Ev∈V [δv ]
where δv = maxβ δv(β).

Since Π is a labeling of I, we have E[δv] ≤ value(I). Thus, to show value(I ′) ≤ value(I) + 3η,
it suffices to show that for each v ∈ V , we have δ′v ≤ δv + 3η. Fix a vertex v ∈ V . Define
list(v) = {β ∈ Σ | Pri[π

′
2(v, i) = C(β)i] ≥ η}. From Fact 5.5, we have that l = |list(v)| ≤ 2/η since

η > 2η3/2 for η < 1/4. We now, have

δ′v =
∑

β∈list(v)

δv(β) · Pr
i

[

π′
2(v, i) = C(β)i

]

+
∑

β /∈list(v)

δv(β) · Pr
i

[

π′
2(v, i) = C(β)i

]

<

(

max
β∈list(v)

δv(β)

)

·
∑

β∈list(v)

Pr
i

[

π′
2(v, i) = C(β)i

]

+



η ·
∑

β/∈list(v)

δv(β)





≤



δv ·
∑

β∈list(v)

Pr
i

[

π′
2(v, i) = C(β)i

]



 + η

≤ δv ·



Pr
[

∃β ∈ list(v), π′
2(v, i) = C(β)i

]

+
∑

β1 6=β2∈list(v)

Pr
[

π′
2(v, i) = C(β1)i = C(β2)i

]



 + η

≤ δv ·



1 +
∑

β1 6=β2∈list(v)

Pr [C(β1)i = C(β2)i]



 + η

≤ δv +

(

l

2

)

η3 + η

≤ δv + 3η

The inequality in the third line is due to the fact
∑

β δv(β) = 1, while the inequality in the fourth
line is due to the principle of inclusion-exclusion: Pr[∃β,A(β)] ≥ ∑

β Pr[A(β)]−∑

β1 6=β2
Pr[A(β1)∩

A(β2)]. The inequality in the sixth line follows from the fact that the distance of the code C is at
least 1 − η3 and the the last line follows from l ≤ 2/η. Thus, proved.

5.3 Reduced Verifier

In this section, we summarize the combined actions of performing alphabet reduction and degree
reduction on a Label-Cover instance. Let I = ((U, V,E),Σ′,Σ, F ) be a label cover instance
with |U | = n, |V | = m, the average left degree DA and the average right degree DB . Figure 2
summarizes the evolution of parameters of the Label-Cover instance when we perform first an
alphabet reduction using a code C : Σ → σk with distance 1− η3 and then a degree reduction using
a [D, d, λ]-expander.

Let ε : Z
+ → [0, 1] be any function. For the alphabet reduction, we take η = ε/4 and use the

codes mentioned in Remark 5.6, with relative distance 1 − (ε/4)3, alphabet size |σ| = O(1/ε6),
and k = O(log |Σ| /ε6). For the degree reduction, we take λ = ε/4, d = O(1/ε2), and use
[DB , O(1/ε2), ε/4]-expander, which are constructible for all DB (see Remark 5.2).

We summarize the outcome transformation in the following lemma (stated in the language of
robust PCPs).
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Label-Cover (robust PCP) I alphabet → σ degree → d

Number of left vertices (randomness) n n n
Number of right vertices (proof length) m mk mkDB

Left Degree (query complexity) DA * DAk * DAkd *
Right Degree (proof degree) DB * DB * d
Left Alphabet (num. accepting. conf.) Σ′ Σ′ Σ′

Right Alphabet (proof alphabet) Σ σ σ
Soundness error (robust soundness error) δ δ + 3η δ + 3η + λ

Figure 2: The evolution of parameters on performing alphabet reduction followed by degree reduc-
tion. An asterisk (*) indicates that the corresponding instance is not necessarily regular (right or
left-regular as the case may be) and the quantity mentioned is the average degree.

Lemma 5.8 (degree and alphabet reduced robust PCP). There exists a constant C > 0 such that
for all ε : Z

+ → [0, 1], the following holds. Suppose L has a robust PCP Verifier V with randomness
complexity r, query complexity q, proof length m, proof degree d, robust soundness error δ over a
proof alphabet Σ. Then, L has a reduced robust PCP verifier, which we shall denote by redε(V )
with

• randomness complexity r,

• query complexity Cq log |Σ|/ε8,

• proof length Cmd log |Σ|/ε6,

• proof degree C/ε2,

• proof alphabet σ of size at most C/ε6,

• and robust soundness error δ + ε.

5.4 Regularizing a Label Cover Instance

In this section, we show how to regularize a given Label-Cover instance. Since the degree
reduction transformation from Section 5.1 makes the graph right-regular, it can be used to make
a label cover regular on both sides. Given a Label-Cover instance I = ((U, V,E),Σ′,Σ, F ) with
|U | = n, |V | = m, average left degree DA and average right degree DB , we perform the following
steps:

1. Degree reduction to make the graph right-regular, with right degree d.

2. Flip sides: This is the only step not already described above. It amounts to mapping the
right-d-regular instance I = ((U, V,E),Σ′,Σ, F ) to I = ((V,U,E), (Σ′)d,Σ′, F ′). Note that
the underlying graph is almost unchanged, merely U and V are swapped. The constraints
F ′ are as follows. The value (a1, . . . , ad) ∈ (Σ′)d assigned to a vertex v is interpreted as an
assignment to all of its neighbors in the original instance. The constraint on an edge (v, u)
checks that there is some b ∈ Σ that, together with (a1, . . . , ad) would have satisfied the
edges (v, u1), . . . , (v, ud) coming out of v. It also checks that the value actually given to u
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is consistent with the appropriate ai. Soundness and completeness are straightforward. At
the end of this operation, the instance is left-regular with left degree d and the average right
degree is the earlier average left degree DAd.

3. Degree reduction to make the graph right-regular, with right degree d.

4. Alphabet reduction to reduce alphabet Σ′ to σ.

The evolution of the parameters over the four steps is summarized in Figure 3.

I degree → d flip degree → d alphabet → σ

Number of left vertices n n mDB mDB mDB

Number of right vertices m mDB n nDAd nDAdk
Left Degree DA * DAd * d d2 d2k
Right Degree DB * d DAd * d d
Left Alphabet Σ′ Σ′ (Σ′)d (Σ′)d (Σ′)d

Right Alphabet Σ Σ Σ′ Σ′ σ
Soundness error δ δ + λ δ + λ δ + 2λ δ + 2λ + 3η

Figure 3: The figure describes the evolution of parameters through the four steps: degree reduc-
tion, flipping sides, degree reduction, and alphabet reduction. An asterisk (*) indicates that the
corresponding instance is not necessarily regular (right or left-regular as the case may be) and the
quantity mentioned is the average degree.

The following lemma summarizes these parameter choices. For the degree reduction, we plug
in λ = ε/5 and d = O(1/ε2) using the [D,O(1/ε2), ε/5]-expanders from Remark 5.2. For the
alphabet reduction, we use the codes mentioned in Remark 5.6, with η = ε/5, distance 1 − O(ε3),
|σ| = O(1/ε6) and k = O(1/ε6) · log |Σ′| ≤ O(1/ε6) · q log |Σ|.

Lemma 5.9 (regularized robust PCP). There exists a constant C > 0 such that for all ε : Z
+ →

[0, 1], the following holds. Suppose L has a robust PCP Verifier V with randomness complexity
r, query complexity q, proof length m, average proof degree d, robust soundness error δ over a
proof alphabet Σ. Then, L has a regular reduced robust PCP verifier, which we shall denote by
regularε(V ) with

• randomness complexity log m + log d,

• query complexity Cq log |Σ|/ε10,

• proof length Cq22r log |Σ|/ε8,

• proof degree C/ε2,

• proof alphabet σ of size at most C/ε6,

• and robust soundness error δ + ε.

23



6 Proof of Result of [MR08b]

In this section, we give our proof for the result of [MR08b], namely Theorem 1.3. We first give a
more formal statement of this theorem, both in the language of Label-Cover as well as robust
PCPs.

Theorem 6.1 (Formal version of Theorem 1.3). There exists constants c > 0 and 0 < β < 1, such

that for every function 1 < g(n) ≤ 2O(logβ n), the following (equivalent) statements hold:

• There exists an alphabet Σ of size exp(g(n)c) such that Label-Cover1/g(n) over Σ is NP-
hard, even under nearly length preserving reductions. Furthermore, the size of the Label-Cover

instance produced by this reduction is at most n · 2O(logβ n) · g(n)c.

• CircuitSat has a robust PCP verifier with robust soundness error 1/g(n), query complexity
g(n)c, proof length n1+o(1) and randomness complexity log n + O(logβ n).

Theorem 6.1 is slightly stronger than the version (Theorem 1.3) stated in the introduction in

the sense that it works for the range 1 < g(n) ≤ 2O(logβ n) and not just 1 < g(n) ≤ polylogn as
indicated in the introduction. This stronger version is true both of our proof as well as that of
[MR08b].

We construct the robust PCP verifier stated in the theorem by repeatedly composing two
building blocks, both based on the “Manifold vs. Point” PCP (Theorem 1.2). We describe the
building blocks next, and prove the theorem in the following section. The equivalent Label-Cover

formulation follows from the equivalence lemma 2.5.
Before we proceed to the proof of the theorem, a couple of remarks regarding the tightness (or

lack thereof) of the parameters in this theorem are in order.

Remark 6.2.

• As discussed in the introduction, the relation δ = 1/g(n) and |Σ| = exp(poly(g(n))) in the
Label-Cover instance is exponentially worse than what is known, for example, for PCPs
with O(1) queries.

• Although the verifier is randomness-efficient, still, the relation between the randomness
complexity and the soundness error is not “optimal”. One could hope for proof length of
n · poly(g(n)), which comes closer to the following easy lower bound of n · Ω(g(n)):

Claim 6.3. If Label-Coverδ is NP-hard, then the produced instance size must be at least
O(n/δ) where n is the size of the shortest NP -witness for CircuitSat.

The claim holds because if D is the average left degree, it is easy to see that it is always
possible to satisfy O(1/D) fraction of edges (one neighbor per v ∈ V ), so the proof degree is
at least Ω(1/δ). On the other hand, the number of left vertices which comprises the PCP,
which being a NP-witness itself, is of size at least n (Note if NP = P , then n = 0). Thus,
the total number of edges, which is nD is at least Ω(n/δ).

We wonder whether a result of n · poly(g(n)) is attainable.
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6.1 Building Blocks

The two building blocks, we need for our construction, are a robust PCP and a decodable PCP.
Both are constructed from variants of the ‘Manifold vs. Point’ PCP of Theorem 1.2.

6.1.1 The outer (robust) PCP verifier

Theorem 6.4 (Robust PCP). There exist constants b0, b1, b2, b3 > 0 and 0 < β < 1 such that for

ε = 1/2b0 logβ n, CircuitSat has a robust verifier with robust soundness error ε, query complexity
1/εb1 , proof length n · 1/εb2 randomness complexity log n + b2 log 1

ε , and proof alphabet size at most
1/εb3 .

This theorem follows from a combination of known results. We do not provide a complete proof
of this theorem, rather an outline of how it is constructed (with pointers to the appropriate known
results).

1. Basic low-error PCP: Construct a PCP verifier based on the low degree extension over
a field F and the sum-check protocol (as done in [AS98, ALM+98, RS97, AS03]). We only
need the “basic part” of the construction, i.e. without performing composition at all. A
randomness efficient version of this PCP is given in [MR07].

At this point, the proof oracle has three parts. A “points table” describing a function f :
F

m → F supposedly of low degree, a “planes table”, supposedly describing the restriction of
f to affine planes, and a “curves” table supposedly describing the restriction of f to certain
degree d curves.

The soundness of the verifier says that for every ε ≥ 1/ |F|γ and ` = 2/ε the following holds
(where γ > 0 is some absolute constant).

Soundness: For every function f : F
m → F, there exists a list of low degree functions

P 1, . . . , P ` : F
m → F such that each P i is an honest encoding of a legal NP witness for the

original CircuitSat. In addition, the probability that V accepts even though its queries
(point, plane, or curve) disagree with the list P 1, . . . , P ` is at most ε. (In other words, except
with probability ε, V either rejects or only accepts values that are consistent with a short list
of encodings of valid NP witnesses).

2. Manifold vs. Point: It has been “folklore”, and formally described in [MR08b] that the
plane and the curve queries can be combined into one “manifold” query (where the manifold
is the O(1) dimensional manifold containing both the curve and the plane). Now the planes
and curves tables are replaced by a single manifold table. This transformation is even possible
with small randomness complexity, and we refer the reader to Lemma 8.2 in [MR08b]. (While
this theorem constructs an LDRC, it is easy to transform them into PCPs).

3. Robustness: The conversion to a robust verifier (from a “manifold vs. point” one) is
straightforward, as in Lemma 2.5: the proof now only consists of the function f , and the
verifier randomly selects a manifold and reads every point on the manifold (accepting iff the
point values are consistent with an accepting value for the entire manifold).

4. Parameters: The above construction in general works for a wide range of parameter choices.
The randomness efficient version due to [MR07] requires |F| = 2O((log n)β) for some β, so we
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follow this setting. Both ε and the query complexity are constant powers of |F|, so we choose
b0 small enough and b1 large enough.

It is to be noted that the randomness-efficient construction of the above robust PCP is not
regular, actually it is not regular in a very mild sense. We get around this by first regularizing the
verifier using the generic regularization transformation stated in Lemma 5.9.

6.1.2 The inner PCP decoder

Theorem 6.5 (dPCP). There exist constants a1, a2, α, γ > 0 such that for every δ ≥ n−α and
input alphabet Σ of size at most nγ, CircuitSatΣ has a robust decodable PCP system with robust
soundness error δ and list size L ≤ 2/δ, query complexity n1/8, proof alphabets nγ, proof length na1

and randomness complexity a2 log n.

The construction of such a dPCP is very similar to the construction of the robust verifier from
Theorem 6.4 above. The two modifications are as follows.

• First of all, we need to construct a PCP decoder D, rather than a PCP verifier. This means
that in addition to the regular input, the decoder also receives an index into the original proof
(the NP witness) that needs to be decoded. Observe that in the basic PCP described in step 1
above the function f is (by construction) an encoding of the original NP witness in the sense
that the restriction of f to certain points in F

m is the supposed NP witness. So, viewing the
input index as a point x ∈ F

m all we need is, in addition to the verification, to return the
value of f(x). This is done by modifying the manifold to also contain this point x (thereby
increasing its dimension by 1). Thus, for each input point x we have a separate collection
of manifolds, all of which contain x. By the soundness condition described above we know
that for every proof f : F

m → F, there is a list of at most ` ≤ 2/δ valid low degree encodings
P 1, . . . , P ` such that the probability that D does not reject but answers inconsistently with
all of P 1, . . . , P ` is at most δ.

• It is to be noted that even though the non-randomness efficient robust PCP verifier described
in the earlier section is regular, the PCP decoder is not regular because of the bias towards
the input points x. One can get around this irregularity by either querying all points in the
manifold but for the input point x or by weighting the input and proof points suitably. We
can thus assume that the constructed PCP decoder is, in fact, regular.

• The second modification is to the parameters. For this theorem we choose |F| = nγ for small
enough γ so that the query complexity is at most n1/8 (recall that it is a fixed power of |F|).
This in turn determines α, a1, a2. Observe that the proof alphabet is equal to F, which is of
size nγ . Furthermore, note that the PCP decoder can handle any input alphabet as long as
its size is at most that of the field F, which is nγ .

6.2 Putting it Together

Let D be the PCP decoder from Theorem 6.5, and let V be the robust PCP from Theorem 6.4 with
robust soundness error ε = 2O(logβ n), query complexity 1/εO(1), randomness complexity log n +
O(log 1/ε) and proof length n · (1/ε)O(1).
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Lemma 6.6. Let D, V, ε be as defined above and set εi = (ε)1/3i
. There exist constants c0, c1, c2, c3 >

0 such that for every i ≥ 0 as long as εi < c0, the following holds. CircuitSat has a regu-
lar robust PCP verifier Vi with query complexity 1/εi

c1, robust soundness error 2εi, proof degree
c3/εi

2, proof alphabet size c3/εi
6, randomness complexity log n + c2

∑i
j=0 log 1/εj and proof length

n · (∏i
j=0 1/εj)

c2 .

Proof of lemma. For i = 0 the claim follows by taking ε0 = ε and setting V0 = regularε(V ) for V
as in the hypothesis, where regularε(V ) is defined according to Lemma 5.9. Note that this process,
regularizes V as the robust PCP verifier V from Theorem 6.4 is not necessarily regular. By choosing
c1, c2, c3 large enough the inductive hypothesis is established. Assume that the claim holds for all
i ≥ 0, and let us prove it for i + 1. Define

Vi+1 = redεi+1
(Vi ~ D)

where Vi ~ D stands for the verifier that results from composing Vi with D as in Theorem 4.1.
We first check that Vi+1 is well defined and then compute its parameters. Composition requires

that both Vi and D are regular; the former is by the inductive hypothesis and the latter by con-
struction. Hence, both the composed verifier Vi ~D and the reduced verifier Vi+1 = redεi+1

(Vi ~D)
are also regular. The composition is defined as long as the input alphabet of D is large enough to
be able to encode a symbol from the proof alphabet of Vi. The input size on which D is run is

N = quasi linear(1/εi
c1) ≤ (1/εi)

c1+1 = (1/εi+1)
3(c1+1),

where we denote quasi linear(m) = m · poly log m. It will be convenient to assume that N =
(1/εi+1)

3(c1+1) by padding the input. The input alphabet is Nγ = (1/εi)
γ(c1+1). On the other

hand, the proof alphabet of Vi is c3/εi
6. This works out as long as c3/εi

6 ≤ 1/εi
γ(c1+1), which for

sufficiently small εi is true if 6 < γ(c1 + 1) which is settled by taking c1 large enough.
The transformation of Lemma 5.8 gives the required alphabet size and proof degree. We now

calculate the remaining parameters.

• Soundness error: Let us first compute the soundness error of Vi ~ D. It is

δ + L∆ = δ +
2

δ
· 2εi

where we can choose any δ = ε(N) ≥ N−α = εi
α(c1+1). We will bound each term by εi+1/2,

which is equivalent to 8εi
2/3 ≤ δ ≤ εi

1/3/2. Such a δ exists if N−α = εi
α(c1+1) ≤ εi

1/3/2,
and this holds if 3α(c1 + 1) > 1 for sufficiently small εi. Applying the transformation of
Lemma 5.8 increases the soundness error by another εi+1 which results in 2εi+1.

• Query complexity: For Vi ~ D the query complexity is the proof degree of Vi multiplied by
the query complexity of D, thus, it is,

c3/εi
2 · N1/8 = c3/εi

2 · (1/εi)
(c1+1)/8 = c3(1/εi+1)

3·(2+(c1+1)/8)

Now, after reducing according to Lemma 5.8, the query complexity of Vi+1 is multiplied by
C log |Σ|/εi+1

8 where |Σ| is the size of the proof of alphabet of Vi ~D, which is Nγ , Thus, the
new query complexity is Cc3γ(1/εi+1)

3(2+(c1+1)/8)+8 log N = 3Cc3(c1+1)γ(1/εi+1)
3(2+(c1+1)/8)+8 log(1/εi+1

Altogether, this is less than (1/εi+1)
c1 if εi+1 is sufficiently small and c1 > 3(2+(c1+1)/8)+8 =

113
8 + 3

8c1, or c1 > 113/5.
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• Proof length: The proof length of Vi ~ D is equal the number of possible random strings for
Vi multiplied by the proof length of D, so it is

2log n+c2
∑i

j=0
log 1/εj · Na1 = n ·

i
∏

j=0

(1/εj)
c2 · Na1

After applying the ‘Reduce’ transformation of Lemma 5.8, the proof length increases by a
factor corresponding to the degree of D times C log Nγ/εi+1

6. Trivially bounding the degree
of D by the number of possible random strings which is Na2 , we get a bound of

n·
i

∏

j=0

(1/εj)
c2·Na1 ·Na2 ·C log(Nγ)/εi+1

6 = n·
i

∏

j=0

(1/εj)
c2 ·3C(c1+1)γ/(εi+1)

3(c1+1)(a1+a2)+6 log(1/εi+1)

which gives the claimed bound if c2 > 3(c1 + 1)(a1 + a2) + 6, as long as εi+1 is sufficiently
small.

• Randomness: The ‘reduce’ transformation of Lemma 5.8 does not change the randomness
complexity, so we only need to find the randomness complexity of Vi ~ D. It is equal to log
the proof length of Vi plus the randomness of D,

log n + c2

i
∑

j=0

log 1/εj + a2 log N

Now if a2 log N = 3a2(c1 + 1) log 1/εi+1 ≤ c2 log 1/εi+1we are done.

6.3 Proof of Theorem 6.1

Let εi = ε
1/3i

0 and c0, c1, c2, c3 be as in the statement of Lemma 6.6. We take the verifier to be Vi

for i such that 1/εi = poly(g(n)). More precisely, such that εi ≤ min
{

1
2g(n) , c0

}

< εi+1 = εi
1/3.

Clearly there is a unique such i ≤ O(log log n). By Lemma 6.6, V = Vi has robust soundness error
2εi ≤ 1/g(n) and query complexity 1/εi

c1 ≤ (2g(n))3c1 . The randomness complexity is

log n + c2

i
∑

j=0

log 1/εj = log n + c2

i
∑

j=0

3−j log ε0 ≤ log n + O((log n)β)

Similarly, the proof length is easily seen to be n1+o(1). The equivalent statement about label cover
follows from Lemma 2.5.

We observe that the blowup in proof length and randomness complexity that is incurred by the
composition steps is of the same order of the blowup incurred by the initial robust verifier V0. This
gives the following corollary.

Corollary 6.7 (Even shorter PCPs). If CircuitSat has a robust verifier with randomness com-
plexity log n + `, robust soundness error δ, and query complexity poly(1/δ), then, for every δ′ > δ,
it also has a robust verifier with query complexity poly(1/δ′), robust soundness error δ′ and ran-
domness complexity log n + O(`).
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A Extensions of dPCPs

In this section, we give various extensions of decodable PCPs. The first, is to define the notion of
decodable PCPs for general pair languages, rather than just for CircuitSat. The second, is to
allow the PCP decoder to output not just a single symbol of the witness, but rather any polynomial-
time computable function of the witness. We provide sketches as to how constructions of dPCPs
for CircuitSat can be adapted to give these extensions.
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A.1 dPCPs for pair languages and functions

We defined, in Definition 3.1 and Definition 3.2, decodable PCPs for CircuitSat. According to
that definition, a PCP decoder for CircuitSat receives a circuit C as explicit input and then locally
decoded symbols of a satisfying assignment for C by locally accessing a proof π. However, we might
as well have defined dPCPs for any NP language L. The (explicit) input to the PCP decoder in
this case is an instance x of L, and the PCP decoder decodes symbols from the corresponding NP
witness. More generally, we can define dPCPs for any pair language. A pair language is a language
in which the input consists of pairs of strings of the form (x, y). For instance, the pair language
corresponding to CircuitSat is the P-complete language, Circuit-Value defined as follows:

CircuitVal = {(C, y) | C(y) = 1} .

Given a pair language L and any x, we define the language L(x) = {y | (x, y) ∈ L}. For instance,
for the pair language CircuitVal and any circuit C, CircuitVal(C) refers to the set of satisfying
assignments of C.

Maintaining the analogy with NP language and the set of witnesses, we will call the first part,
x, the actual input and the second part, y, the witness. Thus, the set L(x) can be viewed as the
set of witnesses to the fact that x is “in the language”. In general, the two parts x and y need
not be strings over the same alphabet. Since the PCP decoder will read the actual input x in full,
the alphabet of this part is unimportant and we might as well assume that the alphabet is {0, 1}.
On the other hand, since the PCP decoder will decode symbols of the witness y, the choice of
alphabet of the witness is important. To be as general as possible, we will let this alphabet be a
function of the length of the first input. More specifically, let {Σn}∞n=1 be a family of alphabets

and N : Z
+ → Z

+ any function. We will consider pair languages L ⊆
⋃

n

(

{0, 1}n × Σ
N(n)
n

)

. For

obvious reasons, we will refer to {Σn} as the witness alphabet and N = N(n) as the length of
the witness. For readability, we will use shorthand Σ and N for the witness alphabet and witness
length, bearing in mind that both Σ and N may depend on n.

Decodable PCPs can be defined in the obvious fashion for any pair language L. A dPCP decoder
for a pair language L, gets as input an actual input x of the pair language, it then locally queries
a dPCP π and is expected to decode a symbol of a witness y ∈ L(x). As before, the dPCP π is an
encoding of the witness y that enables both local checking and local decoding.

We can further generalize this notion of dPCPs for pair languages to allow local decoding, not
only of a single symbol of the witness y, but of an arbitrary function of y. More formally, we
wish to decode one of the functions in the vector of functions h = (h1, . . . , hk) : ΣN → Σk on the
witness. The PCP decoder explicitly knows h and, on input x and j and oracle access to a dPCP
π, is expected to output hj(y) where y ∈ L(x) is the witness supposedly encoded by π.

We refer to these extensions of dPCPs as “functional dPCPs”, defined formally below.

Definition A.1 (Functional dPCPs). Let H =
{

h(n)
}

n
be a family of functions where h(n) :

ΣN → Σk. An H-PCP decoder for a pair language L over witness alphabet Σ and proof alphabet
σ is a probabilistic polynomial-time algorithm D that on input x ∈ {0, 1}n and an index j ∈ [k],
tosses r random coins and computes a window I = (i1, . . . , iq) and a (local decoding) function
f : σq → Σ ∪ {⊥} of decision complexity at most s(n).

Completeness: We say that D is complete if for every input x and y ∈ L(x), there exists a proof
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π ∈ σm, also called a decodable PCP, such that

Pr
j,I,f

[f(πI) = hj(y)] = 1

where j ∈ [k] is chosen uniformly at random and I, f are distributed according to x, j and the
verifier’s random coins.

Robust Soundness: We say that D has robust soundness error δ and list size L, if for every x
and for any π ∈ σm, there is a list of 0 ≤ ` ≤ L strings y1, . . . , y` ∈ L(x) such that

E
j,I,f

[agr (πI ,bad(f))] ≤ δ,

where
bad(f) ,

{

w ∈ σq
∣

∣

∣
f(w) /∈

{

⊥, hj(y
1), . . . , hj(y

`)
}}

.

The special case in which the functions H being decoded are the symbols of the witness cor-
responds to the case where the vector of functions h : ΣN → Σk is the set of N projections
h(y1, . . . , yN ) = (y1, . . . , yN ). In this case, we will drop the H and refer to the H-PCP decoder for
L as just the PCP-decoder for the pair language L.

A.2 Constructions of functional dPCPs

We now show how existing constructions of dPCPs for CircuitSat yield functional dPCPs for any
pair language in NP and any vector of polynomial time computable functions H.

In the terminology of pair languages, a decodable PCP for CircuitSat is actually a decodable
PCP for the P-complete pair language CircuitVal. A closer look at the construction of dPCPs
(see Section 6.1.2) reveals that the constructions actually gives a dPCP for the NP-complete pair
language, non-deterministic Circuit-Value, defined as follows.

Nondeterministic-CircuitVal = {(C, y) | ∃z,C(y, z) = 1} .

We now derive the existence of functional dPCPs for any pair language in NP in two steps.

• The existence of a dPCP for Nondeterministic-CircuitVal implies the existence of dPCPs
for any pair language L ∈ NP : just take the polynomial size non-deterministic circuit that
checks the validity of the witness y for the fact that x ∈ L, and give it as input to the PCP
decoder for Nondeterministic-CircuitVal.

• The existence of dPCPs for any pair language in NP in turn implies the existence of functional
dPCPs for any pair language in NP and any polynomial time computable vector of functions
H. Let L be a pair language and suppose H =

{

h(n)
}

n
is a family of functions h(n) : ΣN → Σk

that are (polynomial time computable) functions of the witness y (Σ may also depend on n).
Define a pair language by

L′ = {(x, z) | ∃y ∈ L(x), s.t. z = h1(y) ◦ h2(y) ◦ . . . ◦ hk(y)} ,

where h(n) = (h1, . . . , hk), n = |x|, and ◦ denotes string concatenation. Clearly, if L ∈ NP
then L′ ∈ NP . A dPCP for L′ will give the desired outcome, since decoding the ith symbol
of z amounts to decoding the function hi of y.
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