
Direct Sums in Randomized Communication Complexity

Boaz Barak∗ Mark Braverman Xi Chen Anup Rao

May 6, 2009

Abstract

We prove a direct sum theorem for randomized communication complexity. Ignoring loga-
rithmic factors, our results show that:

• Computing n copies of a function requires
√

n times the communication.

• For average case complexity, given any distribution µ on inputs, computing n copies of the
function on n independent inputs sampled according to µ requires

√
n times the commu-

nication for computing one copy.

• If µ is a product distribution, computing n copies on n independent inputs sampled ac-
cording to µ requires n times the communication.

We also study the complexity of computing the parity of n evaluations of f , and obtain
results analogous to those above.

Our results are obtained by designing new compression schemes that can compress the com-
munication in interactive processes that do not reveal too much information about their inputs.
This generalizes the notion of traditional compression, which can be viewed as compressing
protocols that involve only one way communication.

∗Department of Computer Science, Princeton University, boaz@cs.princeton.edu. Supported by NSF grants
CNS-0627526, CCF-0426582 and CCF-0832797, US-Israel BSF grant 2004288 and Packard and Sloan fellowships.

1

Electronic Colloquium on Computational Complexity, Report No. 44 (2009)

ISSN 1433-8092

1 Introduction

Does computing n copies of a function require n times the computational effort? In this paper,
we give the first non-trivial answer to this question for the model of randomized communication
complexity.

Communication complexity measures the complexity of a function f(x, y) in terms of the number
of bits that two parties need to communicate with each other to determine the value of the function,
if each party knows one of the inputs. The study of communication complexity has had many
applications. We refer the reader to the book [KN97] for an introduction.

Known results prior to our work applied to more restricted models of communication. Feder
et al. [FKNN95] showed that in the model of deterministic communication complexity, where
the participants are not allowed to use random bits, computing n copies requires at least n

√
c

bits of communication, where c is the deterministic communication complexity of one copy of the
function. Earlier results were obtained for the randomized model under strong restrictions, for
example restricting the number of rounds of communication to be a constant [CSWY01, JRS03,
JRS05, HJMR07].

It turns out that the direct sum question is related to the problem of compressing the communi-
cation in an interactive protocol. It is well known how to compress a message from a distribution X
so that the average length of the message is the Shannon entropy H(X). In this paper we address
the analogous question for the case of interactive communication protocols. A single message is
simply the case of an interactive protocol with one way communication.

1.1 Our Results

1.2 The Direct Sum Question

We give new bounds on the randomized communication complexity of the direct sum of any func-
tion.

Given a function f : X × Y → Z, we define the function fn : X n × Yn → Zn to be the
concatenation of the evaluations:

fn(x1, . . . , xn, y1, . . . , yn)
def
= (f(x1, y1), f(x2, y2), . . . , f(xn, yn)).

Denote by Rρ(f) the communication complexity of the best randomized public coin protocol
for computing f that errs with probability at most ρ. In this paper we show:

Theorem 1.1 (Direct Sum for Randomized Communication Complexity). For every α > 0,

Rρ(f
n) · log (Rρ(f

n)/α) ≥ Ω
(

Rρ+α(f)α
√

n
)

Theorem 1.1 is obtained using Yao’s min-max principle from an analogous theorem for distri-

butional communication complexity. For a distribution µ on the inputs X × Y, we write Dµ
ρ (f) to

denote the communication complexity of the best protocol (randomized or deterministic) that com-
putes f with probability of error at most ρ when the inputs are sampled according to µ. We write
µn to denote the distribution on n inputs, where each is sampled according to µ independently.
Our direct sum for result for distributional complexity is stated in the following theorem:

Theorem 1.2 (Direct Sum for Distributional Communication Complexity).

Dµn

ρ (fn) · log
(

Dµn

ρ (fn)/α
)

≥ Ω
(

D
µ
ρ+α(f)α

√
n
)

1

The communication complexity bound of Theorem 1.2 only grows as the square root of the
number of repetitions. However, in the case that the distribution on inputs is a product distribution,
we obtain a direct sum theorem that is optimal up to logarithmic factor:

Theorem 1.3 (Direct Sum for Product Distributions). If µ is a product distribution, then

Dµn

ρ (fn) · polylog
(

Dµn

ρ (fn)/ρ
)

≥ Ω
(

D
µ
4ρ(f)ρn

)

1.3 XOR Lemma for communication complexity

When n is very large in terms of the other quantities, the above theorems can be superseded by
trivial arguments, since fn must require at least n bits of communication just to describe the
output. Our next set of theorems show that almost the same bounds apply to the complexity of
the XOR (or more generally sum modulo K) of n copies of f , where the trivial arguments do not
hold. Assume that the output of the function f is in the ring ZK for some integer K, and define

f+n(x1, . . . , xn, y1, . . . , yn)
def
=

n
∑

i=1

f(xi, yi).

We have the following results for the complexity of f+n:

Theorem 1.4 (XOR Lemma for Randomized Communication Complexity).

Rρ(f
+n) · log

(

Rρ(f
+n)/α

)

≥ Ω
(

(Rρ+α(f) − 2 log K)α
√

n
)

Theorem 1.5 (XOR Lemma for Distributional Communication Complexity).

Dµn

ρ (f+n) · log
(

Dµn

ρ (f+n)/α
)

≥ Ω
((

D
µ
ρ+α(f) − 2 log K

)

α
√

n
)

Theorem 1.6 (XOR Lemma for Product Distributions). If µ is a product distribution, then

Dµn

ρ (f+n) · polylog
(

Dµn

ρ (f+n)/ρ
)

≥ Ω
((

D
µ
4ρ(f) − 2 log K

)

ρn
)

Remark 1.7. If f : ZK ×ZK → ZK is itself the sum function, then the communication complexity
of f+n does not grow at all, since there is a trivial protocol to compute

∑

i(xi +yi) =
∑

i xi +
∑

j yj

using 2 log K bits. This suggests that some kind of additive loss (like the log K term above) is
necessary in the above theorems.

1.4 Compressing Communication Protocols

An important step towards proving our results is something that may be of independent interest.
We give new way to compress the communication in a communication protocol. Essential to our
results is an information theory based measure of the complexity of a protocol that we call the
information content of a protocol. Given a protocol π and random variables that denote inputs
X,Y , let π(X,Y) denote the random variable of the concatenation of the public randomness in the
protocol with the messages that are transmitted when it is run. One natural way to measure the
information revealed by a protocol, used by several earlier works [CSWY01, BYJKS04, SS02, Abl93],
is to measure the mutual information of the messages and public randomness in the protocol with
the inputs, i.e. I(XY ;π(X,Y)). The measure we use is slightly different, though it turns out to be
the same as the one above when the inputs X,Y are independent of each other:1

1The measure we use here was also considered by Bar-Yossef et al. [BYJKS04] but was not explicitly defined.

2

Definition 1.8. Given a distribution µ on inputs X,Y , and protocol π, we call the quantity

ICµ(π)
def
= I(X;π(X,Y)|Y) + I(Y ;π(X,Y)|X)

the information content of π.

The first term in the above sum intuitively measures the information about X contained in
the messages that the second player doesn’t already know. Similarly, the second term measures
the information about Y that is revealed to the player holding X that she didn’t already know.
Note that the information content of a protocol can be very different from the mutual information
of the messages and the inputs. For example, if µ is a distribution where X = Y always, then
the information content is always 0, though the mutual information between the messages and
the inputs can be very large. However, it is easy to check that ICµ(π) = I(XY ;π(X,Y)), in
the case that µ is a product distribution. It is also easy to check that if π is deterministic, then
ICµ(π) = H(π(X,Y)|Y)+H(π(X,Y)|X), which is the same as H(π(X,Y)) if X,Y are independent.

We shall then prove:

Theorem 1.9. For every distribution µ, every protocol π, and every ε > 0, there exists func-

tions πx, πy, and a protocol τ such that |πx(X, τ(X,Y)) − π(X,Y)| < ε, Pr[πx(X, τ(X,Y)) 6=
πy(Y, τ(X,Y))] < ε and CC(τ) ≤

√

CC(π) · ICµ(π) log(CC(π)/ε)
ε .

The condition |πx(X, τ(X,Y))−π(X,Y)| < ε ensures that the transcript of τ specifies a unique
leaf in the protocol tree for π in such a way that this leaf is ε-close to the leaf sampled by π. The
condition that Pr[πx(X, τ(X,Y)) 6= πy(Y, τ(X,Y))] < ε guarantees that with high probability both
players achieve a consensus on what the sampled leaf was. Thus, the triple τ, πx, πy specify a new
protocol that can be viewed as a compression of π.

Thus, our results can be viewed as some kind of generalization of the traditional notion of
compression, which applies to the more restricted case of deterministic one way protocols.

1.5 Techniques

The high level approach that we use was introduced in the work of Chakrabarti, Shi, Wirth and Yao
[CSWY01]. We shall focus on the approach to proving Theorem 1.2 (direct sum for distributional
complexity), since this is where most of the challenges arise. We prove Theorem 1.2 via a reduction
— we first show that if there is a protocol that computes fn (resp. f+n) under the distribution
µn with small communication complexity, then we can use it to obtain a protocol that computes a
single copy with small information content (though its communication complexity remains as large
as in the original protocol). The following theorem was implicit in the work of Bar-Yossef et al.
[BYJKS04], though for completeness we shall write the proof in this paper.

Theorem 1.10. For every µ, f, ρ there exists a protocol τ computing f on inputs drawn from µ with

probability of error at most ρ and communication at most D
µn

ρ (fn) such that ICµ(τ) ≤ 2Dµn

ρ (fn)
n .

The key idea involved in proving the above theorem is a way to split dependencies between the
inputs that arose in the study of lowerbounds for the communication complexity of disjointness
and in the study of parallel repetition [KS92, Raz92, Raz98]. We give the proof in Section 4.

Once we have a theorem of the above type, we show how to take any protocol whose information
content is small, and compress it. There are several challenges that need to be overcome in doing

3

this. An interesting case to consider is a protocol where the players alternate sending each other
messages, and transmitted message is just a bit with information content ε � 1. In this case, we
cannot afford to even transmit one bit to simulate each of the messages, since that would incur
an overhead of 1/ε, which would be too large for our application. This barrier was one of the big
stumbling blocks for earlier works, which is why their results applied only when the number of
rounds in the protocols were forced to be small.

We give two protocols to solve this problem. Our more efficient solution, which gives a protocol
with communication complexity within polylogarithmic factors of the information content only
applies when the input distribution µ is a product distribution. The idea here is to have the
players use shared randomness to guess entire blocks of messages that they might have exchanged.
Given a particular sequence of messages, the players can then communicate to estimate the correct
probability with which this sequence was supposed to occur. The players can then either accept
the sequence or resample a new sequence in order to get a final sample that behaves in a way that
is close to the distribution of the original protocol. There are several technical challenges involved
in getting this to work. The fact that the inputs of the players are independent is important for
the players to decide how many messages the players should try to sample at once. When the
players’ inputs are dependent, they cannot estimate how many messages they should sample before
the information content becomes too high, and we are unable to make this approach work.

In the above simulation, the sampled messages will not come from a distribution that is the
same as the original one, or even close to it. Instead, what we are able to guarantee is that no
particular outcome is more than a constant factor (say 4 times) more likely than in the original
protocol. Thus, if the original protocol had a probability of error of at most ρ, our simulation must
have a probability of error of at most 4ρ.

Our general solution, that applies even to non-product distributions, is quite different. In this
simulation, we have each of the players sample each of their potential transmissions ahead of time.
In other words, for every prefix v of messages, each player samples the next bit of the interaction
according to the best guess that they have for how this bit is distributed. The players do this using
shared randomness, in a way that guarantees that if their guesses are close, then the probability
that they sample the same bit is high. Once they have each sampled the possible interactions, we
show how the players can communicate a few bits with each other to resolve the inconsistencies in
their samples in such a way that the final outcome is actually statistically close to the distribution
of the original protocol. Unfortunately, in this case, the cost of the simulation is not close to the
information content of the original protocol, but can only be bounded in terms of the geometric
mean between the information content and the communication complexity of the original protocol.

We get around this issue by having the players each guess the entire transcript of the protocol
in a correlated way, using public randomness. Since each player does not have enough information
to correctly sample a transcript, the players will necessarily make many mistakes in their guesses.
The players will then communicate with each other to fix the inconsistencies in their transcripts,
until they have converged to a transcript that is consistent with both of their inputs.

2 Preliminaries

Notation. We reserve capital letters for random variables and distributions, calligraphic letters
for sets, and small letters for elements of sets. Throughout this paper, we often use the notation |b
to denote conditioning on the event B = b. Thus A|b is shorthand for A|B = b. Given a sequence

4

of symbols A = A1, A2, . . . , Ak, we use A≤j denote the prefix of length j.
We use the standard notion of statistical/ total variation distance between two distributions.

Definition 2.1. Let D and F be two random variables taking values in a set S. Their statistical

distance is

|D − F | def
= max

T ⊆S
(|Pr[D ∈ T] − Pr[F ∈ T]|) =

1

2

∑

s∈S
|Pr[D = s] − Pr[F = s]|

If |D − F | ≤ ε we shall say that D is ε-close to F . We shall also use the notation D
ε≈ F to mean

D is ε-close to F .

2.1 Information Theory

Definition 2.2 (Entropy). The entropy of a random variable X is H(X)
def
=
∑

x Pr[X = x] log(1/Pr[X =
x]). The conditional entropy H(X|Y) is defined to be Ey∈

R
Y [H(X|Y = y)].

Fact 2.3. H(AB) = H(A) + H(B|A).

Definition 2.4 (Mutual Information). The mutual information between two random variables
A,B, denoted I(A;B) is defined to be the quantity H(A) − H(A|B) = H(B) − H(B|A). The
conditional mutual information I(A;B|C) is H(A|C) − H(A|BC).

In analogy with the fact that H(AB) = H(A) + H(B|A),

Proposition 2.5. Let C1, C2,D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

The previous proposition immediately implies the following:

Proposition 2.6 (Super-Additivity of Mutual Information). Let C1, C2,D,B be random variables

such that for every fixing of D, C1, C2 are independent. Then

I(C1;B|D) + I(C2;B|D) ≤ I(C1C2;B|D).

We also use the notion of divergence, which is a different way to measure the distance between
two distributions:

Definition 2.7 (Divergence). The informational divergence between two distributions is D (A||B)
def
=

∑

x A(x) log(A(x)/B(x)).

For example, if B is the uniform distribution on {0, 1}n then D (A||B) = n − H(A).

Proposition 2.8. D (A||B) ≥ |A − B|2.

Proposition 2.9. Let A,B,C be random variables in the same probability space. For every a in

the support of A and c in the support of C, let Ba denote B|A = a and Bac denote B|A = a,C = c.
Then I(A;B|C) = Ea,c∈

R
A,C [D (Bac||Bc))]

The above facts imply the following easy proposition:

5

Proposition 2.10. With notation as in Proposition 2.9, for any random variables A,B, Ea∈
R

A [|(Ba) − B|] ≤
√

I(A;B).

Proof.

E
a∈

R
A

[|(Ba) − B|] ≤ E
a∈

R
A

[

√

D (Ba||B)
]

≤
√

E
a∈

R
A

[D (Ba||B)] by convexity

=
√

I(A;B) by Proposition 2.9

2.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name Px, Py. In this paper2,
we view a private coins protocol for computing a function f : X × Y → ZK as a binary tree with
the following structure:

• Each node is owned by one of Px or by Py

• For every x ∈ X , each internal node v owned by Px is associated with a distribution Ov,x

supported on the children of v. Similarly, for every y ∈ Y, each internal node v owned by Py

is associated with a distribution Ov,y supported on the children of v.

• The leaves of the protocol are labelled by output values.

On input x, y, the protocol π is executed as in Figure 1.

Generic Communication Protocol

1. Set v to be the root of the protocol tree.

2. If v is a leaf, the computation ends with output the value in the label of v. Otherwise,
the player owning v samples a child of v according to the distribution associated with her
input for v and sends a bit to the other player to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Figure 1: A communication protocol.

A public coin protocol is a distribution on private coins protocols, run by first using shared
randomness to sample an index r and then running the corresponding private coin protocol πr.
Every private coin protocol is thus a public coin protocol. The protocol is called deterministic if
all distributions labeling the nodes have support size 1.

2The definitions we present here are equivalent to the classical definitions and are more convenient for our proofs.

6

Definition 2.11. The communication complexity of a public coin protocol π, denoted CC(π), is
the maximum depth of the protocol trees in the support of π.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness with all the
messages that are sent during the execution of π. We call this the transcript of the protocol. We
shall use the notation π(x, y)j to refer to the j’th transmitted bit in the protocol. We write π(x, y)≤j

to denote the concatenation of the public randomness in the protocol with the first j message bits
that were transmitted in the protocol. Given a transcript, or a prefix of the transcript, v, we write
CC(v) to denote the number of message bits in v (i.e. the length of the communication).

We often assume that every leaf in the protocol is at the same depth. We can do this since if
some leaf is at depth less than the maximum, we can modify the protocol by adding dummy nodes
which are always picked with probability 1, until all leaves are at the same depth. This does not
change the communication complexity.

Definition 2.12 (Communication Complexity notation). For a function f : X × Y → ZK , a
distribution µ supported on X × Y, and a parameter ρ > 0, Dµ

ρ (f) denotes the communication
complexity of the cheapest deterministic protocol for computing f on inputs sampled according to
µ with error ρ. Rρ(f) denotes the cost of the best randomized public coin protocol for computing
f with error at most ρ on every input.

We shall use the following simple fact, first observed by Yao:

Fact 2.13 (Yao’s Min-Max). Rρ(f) = maxµ Dµ
ρ (f).

Remark 2.14 (Information content of private vs. public coins protocols.). Another way to view
the difference between public coins and private coins protocols is that the public randomness is
considered part of the protocol’s transcript. But even if the randomness is short compared to the
overall communication complexity, making it public can have a dramatic effect on the information
content of the protocol. (As an example, consider a protocol where one party sends a message
of x ⊕ r where x is its input and r is random. If the randomness r is private then this message
has zero information content. If the randomness is public then the message completely reveals
the input. (This protocol may seem trivial since its communication complexity is larger than the
input length, but in fact we will be dealing with exactly such protocols, as our goal will be to
“compress” communication of protocols that have very large communication complexity, but very
small information content.)

2.3 Finding differences in inputs

We use the following lemma of Feige et al. [FPRU94]:

Lemma 2.15 ([FPRU94]). There is a randomized public coin protocol τ with communication com-

plexity O(log(k/ε)) such that on input two k bit strings x, y, it outputs the first index i ∈ [k] such

that xi 6= yi with probability at least 1 − ε, if such an i exists.

For completeness, we include the proof (based on hashing) in Appendix C.

7

3 Proof of main theorem

In this section, we prove Theorem 1.2, showing a direct sum for distributional communication
complexity even in the case where the input distribution is not necessarily a product distribution.
By Yao’s minimax principle, for every function f , Rρ(f) = maxµ Dµ

ρ . Thus Theorem 1.2 implies
Theorem 1.1 and Theorem 1.5 implies Theorem 1.4. So we shall focus on proving Theorem 1.2 and
its XOR Lemma analaog Theorem 1.5.

By Theorem 1.9, the main step to establish Theorem 1.2 is to give an efficient simulation of a
protocol with small information content by a protocol with small communication complexity. We
shall thus prove

Theorem 3.2 (Restated). For every distribution µ, every protocol π, and every ε > 0, there exists

functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y)) − π(X,Y)| < ε, Pr[πx(X, τ(X,Y)) 6=
πy(Y, τ(X,Y))] < ε and CC(τ) ≤

√

CC(π) · ICµ(π) log(CC(π)/ε)
ε .

Proof of direct sum theorem from Theorem 3.2. Before proving Theorem 3.2, let’s see
how we can use it to get our main result (Theorem 1.2). Let π be any protocol computing fn on
inputs drawn from µn with probability of error less than ρ. Then by Theorem 1.9, there exists a
protocol τ1 computing f on inputs drawn from µ with error at most ρ with CC(τ1) ≤ CC(π) and
ICµ(τ1) ≤ 2CC(π)/n. Next, applying Theorem 3.2 to the protocol τ1 gives that there must exist a
protocol τ2 computing f on inputs drawn from µ with error at most ρ + α and

CC(τ2) ≤ O

(

√

CC(τ1)ICµ(τ1) log(CC(τ1)/α)/α

)

= O
(

√

CC(π)CC(π)/n log(CC(π)/α)/α
)

= O

(

CC(π) log(CC(π)/α)/α√
n

)

This proves Theorem 1.2.

Proof of the XOR Lemma. The proof for Theorem 1.5 (XOR Lemma for distributional com-
plexity) is very similar. First, we show an XOR-analog of Theorem 1.9:

Theorem 3.1. For every distribution µ, there exists a protocol τ computing f with probability of

error ρ over the distribution µ with CC(τ) ≤ D
µn

ρ (f+n) + 2 log K such that if τ ′ is the protocol that

is the same as τ but stops running after D
µn

ρ (f+n) message bits have been sent, then ICµ(τ ′) ≤
2Dµn

ρ (fn+)
n .

Now let π be any protocol computing f+n on inputs drawn from µn with probability of error
less than ρ. Then by Theorem 3.1, there exists a protocol τ1 computing f on inputs drawn from
µ with error at most ρ with CC(τ1) ≤ CC(π) + 2 log K and such that if τ ′

1 denotes the first CC(π)
bits of the message part of the transcript, ICµ(τ ′

1) ≤ 2CC(π)/n. Next, applying Theorem 3.2 to the
protocol τ ′

1 gives that there must exist a protocol τ ′
2 simulating τ ′

1 on inputs drawn from µ with

8

error at most ρ + α and

CC(τ ′
2) ≤ O

(

√

CC(τ ′
1)ICµ(τ ′

1) log(CC(τ ′
1)/α)/α

)

= O
(

√

CC(π)CC(π)/n log(CC(π)/α)/α
)

= O

(

CC(π) log(CC(π)/α)/α√
n

)

Finally we get a protocol for computing f by first running τ ′
2 and then running the last 2 log K

bits of π. Thus we must have that O
(

CC(π) log(CC(π)/α)/α√
n

)

+ 2 log K ≤ Dµ
ρ+α(f), as in the theorem.

4 Reduction to Small Information Content

We now prove Theorems 1.9 and 3.1, showing that the existence protocol with communication
complexity C for fn (or f+n) implies a protocol for f with information content roughly C/n.

Theorem 1.9 (Restated). For every µ, f, ρ there exists a protocol τ computing f on inputs drawn

from µ with probability of error at most ρ and communication at most D
µn

ρ (fn) such that ICµ(τ) ≤
2Dµn

ρ (fn)
n .

Theorem 3.1 (Restated). For every distribution µ, there exists a protocol τ computing f with

probability of error ρ over the distribution µ with CC(τ) ≤ D
µn

ρ (f+n) + 2 log K such that if τ ′ is the

protocol that is the same as τ but stops running after D
µn

ρ (f+n) message bits have been sent, then

ICµ(τ ′) ≤ 2Dµn

ρ (fn+)
n .

Proof. Fix, µ, f, n, ρ, ε as in the statement of the theorems. We shall prove Theorem 1.9 first.
Theorem 3.1 will easily follow by the nature of our proof. To prove Theorem 1.9, we show how to
use the best protocol for computing fn to get a protocol with small information content computing
f . Let π be a deterministic protocol with communication complexity D

µn

ρ (fn) computing fn with
probability of error at most ρ.

Let (X1, Y1), . . . , (Xn, Yn) denote random variables distributed according to µn. Let π(Xn, Y n)
denote the random variable of the transcript (which is just the concatenation of all messages, since
this is a deterministic protocol) that is obtained by running the protocol π on inputs (X1, Y1), . . . , (Xn, Yn).
We define random variables W = W1, . . . ,Wn where each Wi takes values in the disjoint union X]Y
so that each Wi = Xi with probability 1/2 and Wi = Yi with probability 1/2. Let W−i denote
W1, . . . ,Wi−1,Wi+1, . . . ,Wn.

Our new protocol τ shall operate as in Figure 2.
The probability that the protocol τ makes an error on inputs sampled from µ is at most the

probability that the protocol π makes an error on inputs sampled from µn. It is also immedi-
ate that CC(τ) = CC(π). All that remains is to bound the information content ICµ(τ). We do
this by relating it to the communication complexity of π. Given any fixing of i, w−i, we use
τi,w−i(X,Y) to denote the messages sent during the private randomness phase of the protocol. As
usual, τ(X,Y) = I,W−I , τI,W−I

(X,Y) denotes the concatenation of the public randomness used in
τ with the messages sent during its execution.

9

Protocol τ

Public Randomness Phase :

1. The players sample i, w−i ∈
R

I,W−I using public randomness.

Private Randomness Phase :

1. Px sets xi = x, Py sets yi = y.

2. For every j 6= i, Px samples Xj conditioned on the value of w−i.

3. For every j 6= i, Py samples Yj conditioned on the value of w−i.

4. The players simulate π on the inputs x1, . . . , xn, y1, . . . , yn and output the i’th output
of π.

Figure 2: A protocol simulating π

Then we have that:

n
∑

i=1

I(XiYi;π(Xn, Y n)|W)

≤ I(X1 · · ·XnY1 · · · Yn;π(Xn, Y n)|W) by Proposition 2.6

≤ CC(π) since H(π(Xn, Y n)|W) ≤ CC(π)

= Dµn

ρ (fn) (1)

For any index i, we have that

I(XiYi;π(Xn, Y n)|W) = I(XiYi;π(Xn, Y n)|WiW
−i)

= E
wi∈R

Wi

[

I(XiYi;π(Xn, Y n)|wiW
−i)
]

=
Exi∈R

Xi

[

I(XiYi;π(Xn, Y n)|xiW
−i)
]

+ Eyi∈R
Yi

[

I(XiYi;π(Xn, Y n)|yiW
−i)
]

2

=
I(Yi;π(Xn, Y n)|XiW

−i) + I(Xi;π(Xn, Y n)|YiW
−i)

2
(2)

Now note that in our protocol, for every i, we have that X,Y, τi,W−i(X,Y),W−i have exactly
the same distribution as Xi, Yi, π(Xn, Y n),W−i. Thus

nICµ(τ) = n(I(X; τ(X,Y)|Y) + I(Y ; τ(X,Y)|X))

=

n
∑

i=1

I(Y ; τi,W−i(X,Y)|XW−i) + I(X; τi,W−i(X,Y)|Y W−i)

=

n
∑

i=1

I(Yi;π(Xn, Y n)|XiW
−i) + I(Xi;π(Xn, Y n)|YiW

−i) (3)

10

Equation 1, Equation 2 and Equation 3 imply that

Dµn

ρ (fn) ≥ nICµ(τ)

2

Remark 4.1. The analysis above can be easily improved to get the bound ICµ(τ) ≤ CC(τ)/n by
taking advantage of the fact that each bit of the transcript gives information about at most one of
the players’ inputs, but for simplicity we do not prove this here.

This completes the proof for Theorem 1.9. The proof for Theorem 3.1 is very similar. As above,
we let π denote the best protocol for computing f+n on inputs sampled according to µn. Analogous
to τ as above, we define the simulation γ as in Figure 3.

Protocol γ

Public Randomness Phase :

1. The players sample i, w−i ∈
R

I,W−I using public randomness.

Private Randomness Phase :

1. Px sets xi = x, Py sets yi = y.

2. For every j 6= i, Px samples Xj conditioned on the value of w−i.

3. For every j 6= i, Py samples Yj conditioned on the value of w−i.

4. The players simulate π on the inputs x1, . . . , xn, y1, . . . , yn to compute z ∈ ZK .

5. Px computes
∑

j 6=i,wj=yj
f(xj, wj) and sends this sum to Py

6. Py outputs the value of the function as z−∑j 6=i,wj=yj
f(xj, wj)−

∑

j 6=i,wj=xj
f(wj , yj).

Figure 3: A protocol simulating π

As before, the probability that the protocol γ makes an error on inputs sampled from µ is at
most the probability that the protocol π makes an error on inputs sampled from µn, since there is
an error in γi,w−i if and only if there is an error in the computation of z. It is also immediate that
CC(γ) = CC(π) + 2 log K.

Let γ′(X,Y) denote the concatenation of the public randomness and the messages of γ upto
the computation of z. Then, exactly as in the previous case, we have the bound:

ICµ(γ′) ≤ 2CC(γ)/n

This completes the proof.

11

5 Small information complexity → small communication complex-

ity

We now prove our main technical theorem, Theorem 3.2:

Theorem 3.2 (Restated). For every distribution µ, every protocol π, and every ε > 0, there exists

functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y)) − π(X,Y)| < ε, Pr[πx(X, τ(X,Y)) 6=
πy(Y, τ(X,Y))] < ε and CC(τ) ≤

√

CC(π) · ICµ(π) log(CC(π)/ε)
ε .

Proof. In order to prove the theorem, we consider the protocol tree T for πr, for every fixing of
the public randomness r. If R is the random variable for the public randomness used in π, we have
that

Claim 5.1. ICµ(π) = ER [ICµ(πR)]

Proof.

ICµ(π) = I(π(X,Y),X|Y) + I(π(X,Y), Y |X)

= I(RπR(X,Y),X|Y) + I(RπR(X,Y), Y |X)

= I(R,X|Y) + I(R,Y |X) + I(πR(X,Y),X|Y R) + I(πR(X,Y), Y |XR)

= I(πR(X,Y),X|Y R) + I(πR(X,Y), Y |XR)

= E
R

[ICµ(πR)]

It will be convenient to describe protocol πr in a non-standard, yet equivalent way in Figure 4.

Protocol πr

Sampling Phase :

1. For every non-leaf node w in the tree, the player who owns w samples a child according
to the distribution given by her input and the public randomness r. This leaves each
player with a subtree of the original protocol tree, where each node has out-degree 1
or 0 depending on whether or not it is owned by the player.

Path Finding Phase :

1. Set v to be the root of the tree.

2. If v is a leaf, the computation ends with the value of the node. Else, the player to
whom v belongs communicates one bit to the other player to indicate which of the
children was sampled.

3. Set v to the sampled child and return to the previous step.

Figure 4: π restated

12

For some error parameters β, γ, we define a randomized protocol τβ,γ that will simulate π and
use the same protocol tree. The idea behind the simulation is to avoid communicating by guessing
what the other player’s samples look like. The players shall make many mistakes in doing this, but
they shall then use Lemma 2.14 to correct the mistakes and end up with the correct transcript.
Our simulation is described in Figure 5.

Protocol τβ,γ

Public Sampling Phase :

1. Sample r according to the distribution of the public randomness in π.

Correlated Sampling Phase :

1. For every non-leaf node w in the tree, let κw be a uniformly random element of [0, 1]
sampled using public randomness.

2. On input x, y, player Px (resp. Py) defines the tree Tx (resp. Ty) in the fol-
lowing way: for each node w, Px (resp. Py) includes the edge to the left child
if Pr[πr(X,Y) reaches the left child|πr(X,Y) reaches w and X = x] > κw (resp. if
Pr[πr(X,Y) reaches the left child|πr(X,Y) reaches w and Y = y] > κw). Otherwise,
the right child is picked.

Path Finding Phase :

1. Each of the players computes the unique path in their trees that leads from the root to
a leaf. The players then use Lemma 2.14, communicating O(log(n/β) bits to find the
first node at which their respective paths differ, if such a node exists. The player that
does not own this node corrects this edge and recomputes his path. They repeatedly
correct their paths in this way

√

CC(π) · ICµ(π)/γ times.

Figure 5: The simulation of π

Define πx(x, τβ,γ(x, y)) (resp. πy(y, τβ,γ(x, y))) to be leaf of the final path computed by Px (resp.
Py) in the protocol τβ,γ (see Figure 5). The definition of the protocol τβ,γ implies immediately the
following upper bound on its communication complexity

CC(τβ,γ) = O(
√

CC(π) · ICµ(π) log(CC(π)/β)/γ) . (4)

Let V = V0, . . . , VCC(π) denote the “right path” in the protocol tree of τβ,γ . That is, every i,
Vi+1 is the child of Vi that is sampled by the owner of Vi. Observe that this path has the right
distribution, since every child with exactly the right conditional probability by the corresponding
owner. That is, we have the following claim:

Claim 5.2. For every x, y, r, the distribution of V |xyr as defined above is the same as the distri-

bution of the sampled transcript in the protocol π.

This implies in particular, that

I(X;V |rY) + I(X;V |rY) = ICµ(πr) .

13

Given two fixed trees Tx,Ty as in the above protocol, we say there is a mistake at level i if the
out-edges of Vi−1 are inconsistent in the trees. We shall first show that the expected number of
mistakes that the players make is small.

Lemma 5.3. E [# of mistakes in simulating πr|r] ≤
√

CC(π) · ICµ(πr).

Proof. For i = 1, . . . ,CC(π), we denote by Cir the indicator random variable for whether or not a

mistake occurs at level i in the protocol tree for πr, so that the number of mistakes is
∑CC(π)

i=1 Cir.
We shall bound E [Ci] for each i. A mistake occurs at a vertex w at depth i exactly when

Pr[Vi+1 = 0|x ∧ V≤i = w] ≤ κw < Pr[Vi+1|y ∧ V≤i = w] or Pr[Vi+1 = 0|y ∧ V≤i = w] ≤ κw <
Pr[Vi+1|x∧V≤i = w]. Thus a mistake occurs at v≤i with probability at most |(Vi|xv<ir)−(Vi|yv<ir)|.

If vi−1 is owned by Px, then Vi|xv<ir has the same distribution as Vi|xyv<ir. In this case
Proposition 2.10 gives that

E
xyv<i∈R

XY V<i

[|(Vi|xv<ir) − (Vi|yv<ir)|]

= E
xyv<i∈R

XY V<i

[|(Vi|xyv<ir) − (Vi|yv<ir)|]

≤ E
v<i∈R

V<i

[

√

I(X;Vi|Y v<ir)
]

by Proposition 2.10

≤
√

E
v<i∈R

V<i

[I(X;Vi|Y v<ir)] by convexity

≤
√

E
v<i∈R

V<i

[I(X;Vi|Y v<ir) + I(Y ;Vi|Xv<ir)]

=
√

I(X;Vi|Y V<ir) + I(Y ;Vi|XV<ir)

Similarly, we see that the same inequality holds if vi−1 is owned by Py.
Thus we get that

E [Cir] ≤
√

I(X;Vi|Y Vi−1r) + I(Y ;Vi|XVi−1r)

=
√

I(X;Vi|Y V<ir) + I(Y ;Vi|XV<ir)

where the last equality follows from the fact that V<i−1 is determined by Vi−1. Finally we apply
the Cauchy Schwartz inequality to conclude that

E





CC(π)
∑

i=1

Cir



 =

CC(π)
∑

i=1

E [Cir]

≤

√

√

√

√CC(π)

CC(π)
∑

i=1

E [Cir]
2

≤

√

√

√

√CC(π)

CC(π)
∑

i=1

I(X;Vi|Y V<ir) + I(Y ;Vi|XV<ir)

=
√

CC(π)
(

I(X;V CC(π)|Y r) + I(Y ;V CC(π)|Xr)
)

=
√

CC(π) · ICµ(πr)

14

We then get that overall the expected number of mistakes is small:

Lemma 5.4. E [# of mistakes in simulating π] ≤
√

CC(π) · ICµ(π).

Proof.

E [# of mistakes in simulating π] = E
R

[# of mistakes in simulating πR]

≤ E
R

[

√

CC(π) · ICµ(πR)

]

≤
√

E
R

[CC(π) · ICµ(πR)]

=
√

CC(π) · ICµ(π)

Lemma 5.5. The distribution of the leaf sampled by τβ,γ is γ + β

√
CC(π)·ICµ(π)

γ -close to the distri-

bution of the leaf sampled by π.

Proof. We show that in fact the probability that both players do not finish the protocol with the

leaf VCC(π) is bounded by γ + β

√
CC(π)·ICµ(π)

γ . This follows from a simple union bound — the leaf
VCC(π) can be missed in two ways: either the number of mistakes on the correct path is larger than
√

CC(π) · ICµ(π)/γ (probability at most γ by Lemma 5.6 and Markov’s inequality) or our protocol
fails to detect all mistakes (for each mistake this happens with probability β).

We set β = γ2/CC(π). Then, since CC(π) ≥ ICµ(π), we get that the protocol errs with probabil-
ity at most ρ+2γ. On the other hand, by (5.2), the communication complexity of the protocol is at
most O(

√

CC(π) · ICµ(π) log(CC(π)/β)/γ) = O(
√

CC(π) · ICµ(π) log(CC(π)/γ)/γ). Setting ε = 2γ
proves the theorem.

6 Proofs for the Product Case

In this section we argue how to get a linear bound in the case that µ is a product distribution. We
shall prove Theorem 1.3.

Throughout this section we assume that the distribution on X,Y is a product distribution.
Again, we prove this via a reduction. We start with a protocol π with CC(π) = Dµn

ρ (fn) such
that π computes fn with probability of error at most ρ on inputs sampled according to µn. Our
first step shall be to get a protocol that computes fn but whose messages are smoothed out in the
sense that every bit in the protocol is relatively close to being unbiased. We define a protocol that
is a simulation of π in the following way: for a parameter β that we shall fix later, every time a
player wants to send a bit in π, she instead sends 1000 log(CC(π)/γ)

β2 bits which are each independently

chosen to be the correct value with probability 1/2 + β. The receiving player takes the majority of
the bits sent to reconstruct the intended transmission. By the Chernoff bound, we have that the
probability that any transmission is received incorrectly is at most γ/CC(π). By the union bound,
this means that for every input, the distribution of the simulated transcript is γ-close to the correct
distribution. We have thus argued the following claim:

15

Claim 6.1. For every f, µ, ρ, γ, there exists a protocol π computing fn with probability of error

ρ + γ on the distribution µ such that

CC(π) = O

(

Dµn

ρ (fn) log(Dµn

ρ (fn)/γ)

β2

)

and for every x, y, v, i we have that

Pr[π(x, y)i+1 = 1|vi] ∈ [1/2 − β, 1/2 + β].

In analogy with Theorem 1.9 and Theorem 3.1, Claim 6.1 leads to the following results:

Theorem 6.2 (Reduction to Small Information Content). For every γ, β, µ, f, ρ there exists a

protocol τ computing f on inputs drawn from µ with probability of error at most ρ + γ, such that

CC(τ) ≤ O

(

Dµn

ρ (fn) log(Dµn

ρ (fn)/γ)

β2

)

and

ICµ(τ) ≤ O

(

CC(τ) log CC(τ)

n

)

.

Further, for every x, y, j, t, we have the j’th bit of the messages satisfies

Pr[τ(x, y)j = 1|τ(x, y)≤j−1 = t] ∈ [1/2 − β, 1/2 + β].

For f+n we have the following theorem:

Theorem 6.3 (Reduction to Small Information Content). For every distribution µ, there exists a

protocol τ computing f with probability of error ρ + γ over the distribution µ with

CC(τ) ≤ O

(

Dµn

ρ (f+n) log(Dµn

ρ (f+n)/γ)

β2

)

+ 2 log K

such that if τ ′ is the protocol that simulates all but the last 2 log K bits of τ , then

ICµ(τ ′) ≤ O

(

CC(τ ′) log CC(τ ′)
n

)

Further, for every x, y, j, t, we have the j’th bit of the messages satisfies

Pr[τ ′(x, y)j = 1|τ(x, y)≤j−1 = t] ∈ [1/2 − β, 1/2 + β].

To complete the proof, we need to show how to simulate the protocols τ in the above theorems
with small communication complexity. We shall do this by proving the following theorem:

Theorem 6.4. There exists a constant k such that for every ε > 0, if π is a protocol such that for

every x, y, v, i we have that

Pr[π(x, y)i+1 = 1|v≤i] ∈
[

1

2
− 1

k log(CC(π)/ε)
,
1

2
+

1

k log(CC(π)/ε)

]

Then for every product distribution µ on inputs X,Y there exists a protocol τ and a function p
such that for every x, y and every transcript l of π,

Pr[p(τ(x, y)) = l]

Pr[π(x, y) = l]
≤ exp(O(ε))

and the expected communication complexity of τ under the distribution µ is at most exp(O(ε))ICµ(π).

16

We use the above theorems to prove our final theorem about product distributions:

Proof of Theorem 1.3. Let π be a protocol satisfying the conclusions of Theorem 6.2 with β set to
1

k′ log(Dµn

ρ (fn)/ε)
for some constant k′. k′ can be chosen to be large enough so that β = 1

k′ log(Dµn

ρ (fn)/ε)
≤

1
k log(CC(π)/ε) as in Theorem 6.4.

By Theorem 6.4, we get a protocol computing f on the distribution µ with error (ρ+γ) exp(O(ε))
and expected communication exp(O(ε))Dµn

ρ (fn) polylog(Dµn

ρ (fn)/γ)/n. Markov’s inequality im-
plies that by interrupting the protocol if it runs for too long, we can get a protocol that errs with
probability (ρ+γ) exp(O(ε))+λ and has communication complexity exp(O(ε))Dµn

ρ (fn) polylog(Dµn

ρ (fn)/γ)/λn.
Set λ = γ = ρ and let exp(O(ε)) be a small enough constant to prove the theorem.

The proof for Theorem 1.6 is almost exactly the same, so we omit it.

6.1 Proof of Theorem 6.4

It only remains to prove Theorem 6.4. Set β = 1/k log(CC(π)/ε). We need the following definition:

Definition 6.5 (Conditional Divergence). Given a protocol π, a prefix v of the transcript and
j ∈ [CC(v)], we define the j’th step divergence cost as

D
π
x,j(v)

def
= D ((π(x, Y)j |v≤j−1)||(π(X,Y)j |v≤j−1))

D
π
y,j(v)

def
= D ((π(X, y)j |v≤j−1)||(π(X,Y)j|v≤j−1))

We define the divergence cost for the whole prefix as the sum of the step divergence costs

D
π
x(v)

def
=

CC(v)
∑

j=1

D
π
x,j(v), D

π
y (v)

def
=

CC(v)
∑

j=1

D
π
y,j(v)

It is easy to check that

E
X,Y,π(X,Y)

[Dπ
X(π(X,Y)) + D

π
Y (π(X,Y))] = ICµ(π)

Thus the conditional divergence is in some sense a measure of the amount of information revealed
by the relevant prefix of the transcript. Observe that D

π
x(v) is a function only of x and v. Further,

we have that if the node corresponding to v≤j−1 is owned by x, then D
π
y,j(v) = 0, since conditioned

on v≤j−1, Y is independent of Vj.
We use the fact that the bits in our protocol are close to uniform to show that the step divergence

is at most O(β) for each step:

Proposition 6.6. For every j, D
π
x,j(v) and D

π
y,j(v) are bounded by O(β).

Proof. This follows from the fact that all probabilities for each step lie in [1/2 − β, 1/2 + β]. The

worst the divergence between two distributions that lie in this range can be is clearly log
(

1/2+β
1/2−β

)

=

log (1 + O(β)) = O(β).

17

Next, for every prefix v of the transcript, and inputs x, y, we define a subset of the prefixes of
potential transcripts that start with v, Bvxy in the following way: we include w in Bvxy if and only
if for every w′ that is a strict prefix of w,

max







CC(w′)
∑

j=CC(v)+1

D
π
x,j(w

′),
‖w′‖
∑

j=CC(v)+1

D
π
y,j(w

′)







< β,

and we have that w itself is either a leaf or satisfies

max







CC(w)
∑

j=CC(v)+1

D
π
x,j(w),

‖w‖
∑

j=CC(v)+1

D
π
y,j(w)







≥ β.

The set Bvxy has the property that every path from v to a leaf of the protocol tree must intersect
exactly one element of Bvxy, i.e. if we cut all paths at the point where they intersect Bvxy, we
get a protocol tree that is a subtree of the original tree. We define the distribution Bvxy on the
set Bvxy as the distribution on Bvxy induced by the protocol π. Namely we sample from Bvxy by
sampling from π(x, y)|v and then taking the unique vertex of Bvxy that the sampled path intersects.
Similarly, we define the distributions Bvx, Bvy , Bv on Bvxy to be the distributions obtained by first
sampling a path according to π(x, Y)|v, π(X, y)|v, π(X,Y)|v and then taking the unique vertices
in Bvxy that these paths intersect. For every transcript w, the players can compute the element of
Bvxy that intersects the path w by communicating 2 log CC(π) bits.

Given, these definitions, we are now ready to describe our simulation protocol. The proto-
col proceeds in rounds. In each round the players shall use rejection sampling to sample some
consecutive part of the transcript.

6.1.1 A single round

The first protocol, shown in Figure 6 assumes that we have already sampled the prefix v. We define
the protocol for some constant t that we shall set later.

Note that Bv(w) =
∏CC(w)

i=CC(v)+1 Pr[π(X,Y)≤i+1 = w≤i+1|π(X,Y)≤i = w≤i]. We write Bx
v (w) to

denote the part of this product that corresponds to nodes sampled by Px, and By
v (w) to denote the

part that corresponds to nodes sampled by Py. Thus Bv = Bx
v By

v . We use Bx
vx, By

vx etc to denote
the analogous functions. Then note that since X,Y are independent, we have that By

vx = By
v . Thus

we get

(

Bvx

Bv

)(

Bvy

Bv

)

=

(

By
vBx

vxy

Bx
v By

v

)(

By
vxyBx

v

Bx
v By

v

)

=
Bx

vxyB
y
vxy

Bx
v By

v
=

Bvxy

Bv
(5)

This suggests that our protocol should pick a transcript distributed according to Bvxy. We shall
argue that the subsequent prefix of the transcript sampled by the protocol in Figure 6 cannot be
sampled with much higher probability than what it is sampled with in the real distribution. Let
B′

vxy denote the distribution of the accepted prefix of τv,t.

Claim 6.7 (No sample gets undue attention). For every prefix w,

B′
vxy(w)/Bvxy(w) ≤ 2 exp

(

−Ω

(

log t − O(β)

β

))

18

Protocol τv,t

1. Both players use public randomness to sample a path according to π(X,Y)|v and com-
municate 2 log CC(π) bits to sample an element w of Bvxy according to the distribution
Bv.

2. Px samples a bit a1 which is 1 with probability

min

{

Bvx(w)

tBv(w)
, 1

}

.

3. Py samples a bit a2 which is 1 with probability

min

{

Bvy(w)

tBv(w)
, 1

}

.

4. If both a1 and a2 were 1, they accept w. Else they repeat the protocol.

Figure 6: The protocol to sample a subsequent part of the transcript

We shall also show that the expected communication complexity of this protocol is not too high:

Claim 6.8 (Small number of rounds). The expected communication complexity of τv is at most

O(t2)

1 − exp
(

−Ω
(

log t−O(β)
β

))

Claim 6.7 and Claim 6.8 will follow from the following claim:

Claim 6.9.

Pr
w∈

R
Bvxy

[

Bvx(w)

Bv(w)
≥ t

]

≤ exp

(

−Ω

(

log t − O(β)

β

))

, Pr
w∈

R
Bvxy

[

Bvy(w)

Bv(w)
≥ t

]

≤ exp

(

−Ω

(

log t − O(β)

β

))

Let us first argue that Claim 6.7 follows from Claim 6.9.

Proof of Claim 6.7. Set a to be the function that maps any w ∈ Bvxy to min
{

(1/t)Bvx(w)
Bv(w) , 1

}

·

min
{

(1/t)
Bvy(w)
Bv(w) , 1

}

. Set a′ = (1/t)Bvx(w)
Bv(w) (1/t)

Bvy(w)
Bv(w) . Then clearly a′(w) ≥ a(w) for every w.

Applying Equation 4, we get

a′ = (1/t2)

(

Bvx

Bv

)(

Bvy

Bv

)

= (1/t2)
Bvxy

Bv

Thus Bvxy = βa′ · Bv for some constant β. By Proposition B.3, applied to a′, a and the
distributions D = Bvxy,D

′ = B′
vxy, we have that for every w,

B′
vxy(w)

Bvxy(w)
≤ 1

1 − Prw∈
R

Bvxy [a
′(w) ≥ a(w)]

19

On the other hand, by the union bound and Claim 6.9,

Pr
w∈

R
Bvxy

[a′(w) ≥ a(w)] ≤ Pr
w∈

R
Bvxy

[

Bvx(w)

Bv(w)
≥ t ∨ Bvy(w)

Bv(w)
≥ t

]

≤ 2 exp

(

−Ω

(

log t − O(β)

β

))

Since 1/(1 − z) ≤ 1 + O(z) for z ∈ (0, 1/10), we get Claim 6.7.

Now we show Claim 6.8 assuming Claim 6.9.

Proof of Claim 6.8. We shall use Proposition B.4. We need to estimate the probability that the
first round of τv,t accepts its sample. This probability is exactly

∑

w∈Bvxy

Bv(w)min

{

(1/t)
Bvx(w)

Bv(w)
, 1

}

· min

{

(1/t)
Bvy(w)

Bv(w)
, 1

}

Let A ⊂ Bvxy denote the set {w : Bvx(w)
Bv(w) ≤ t ∧ Bvy(w)

Bv(w) ≤ t}. Then we see that the above sum
can be lower bounded:

∑

w∈Bvxy

Bv(w)min

{

(1/t)
Bvx(w)

Bv(w)
, 1

}

· min

{

(1/t)
Bvy(w)

Bv(w)
, 1

}

≥ (1/t2)
∑

w∈A

Bv(w)

(

Bvx(w)

Bv(w)

)(

Bvy(w)

Bv(w)

)

= (1/t2)
∑

w∈A

Bvxy,

where the last equality follows from Equation 4.

Finally, we see that Claim 6.9 implies that
∑

w∈A Bvxy ≥ 1−exp
(

−Ω
(

log t−O(β)
β

))

. Proposition B.4

then gives the bound we need.

Next we prove Claim 6.9. To do this we shall need to use a simple generalization of Azuma’s
inequality, which we prove in Appendix A.

Proof of Claim 6.9. Let W be a random variable distributed according to Bvxy. Set ZCC(v)+1, . . . , ZCC(π)

to be real valued random variables such that if i ≤ CC(W),

Zi = log

(

Pr[π(x, Y)i = Wi|vW≤i−1]

Pr[π(X,Y)i = W≤i|vW≤i−1]

)

.

If i > CC(W), set Zi = 0. Observe that E [Zi|w≤i−1] = D
π
x,i(w). We also have that

CC(π)
∑

i=CC(v)+1

Zi = log

(

Pr[π(x, Y)CC(w) = w|v]

Pr[π(X,Y)CC(w) = w|v]

)

= log

(

Bvx(w)

Bvw

)

(6)

20

Next set Ti = Zi − E [Zi|Zi−1, . . . , Z1]. Note that E [Ti|Ti−1, . . . , T1] = 0 (in fact the stronger
condition that E [Ti|Zi−1, . . . , Z1] = 0 holds). For every w ∈ Bvxy, we have that

sup(Ti|w≤i−1) ≤ max

{

log

(

Pr[π(x, Y)i = 0|w≤i−1]

Pr[π(X,Y)i = 0|w≤i−1]

)

, log

(

Pr[π(x, Y)i = 1|w≤i−1]

Pr[π(X,Y)i = 1|w≤i−1]

)}

inf(Ti|w≤i−1) ≥ min

{

log

(

Pr[π(x, Y)i = 0|w≤i−1]

Pr[π(X,Y)i = 0|w≤i−1]

)

− D
π
x,i(w), log

(

Pr[π(x, Y)i = 1|w≤i−1]

Pr[π(X,Y)i = 1|w≤i−1]

)

− D
π
x,i(w)

}

By Proposition 2.8 and using the fact that π(x, Y) = 1 ∈ [1/2 − β, 1/2 + β] we can bound

sup(Ti|w≤i−1) ≤ log





1/2 − β +
√

Dπ
x,i(w)

1/2 − β





= log
(

1 + O
(√

Dπ
x,i(w)

))

= O
(√

Dπ
x,i(w)

)

(7)

inf(Ti|w≤i−1) ≥ log





1/2 − β

1/2 − β +
√

Dπ
x,i(w)



− D
π
x,i(w)

= log
(

1 − O
(√

Dπ
x,i(w)

))

= −O
(√

Dπ
x,i(w)

)

, (8)

as long as β < 1/10.
Equation 6 and Equation 7 imply that for w ∈ Bvxy,

CC(π)
∑

i=CC(v)+1

(sup(Ti) − inf(Ti)|w≤i−1)
2 ≤

CC(π)
∑

i=CC(v)+1

O(Dπ
x,i(w)) = O(β) (9)

For every w,





CC(π)
∑

i=CC(v)+1

Ti



 |w =





CC(π)
∑

i=CC(v)+1

Zi



 |w −
CC(π)
∑

i=CC(v)+1

E [Zi|w≤i−1]

=

CC(w)
∑

i=CC(v)+1

log

(

Pr[π(x, Y)i = wi|vπ(x, Y)≤i−1 = w≤i−1]

Pr[π(X,Y)i = wi|π(X,Y)≤i−1 = vw≤i−1]

)

−
CC(w)
∑

i=CC(v)+1

D
π
x,i(w)

≥ log

(

Bvx(w)

Bvw

)

− O(β) (10)

where the last inequality follows from the definition of Bvxy, Proposition 6.6 and Equation 5.

21

Thus we can use Theorem A.1 to bound

Pr
w∈

R
Bvxy

[

Bvx(w)

Bv(w)
≥ t

]

≤ Pr
w∈

R
Bvxy

[

log

(

Bvx(w)

Bv(w)

)

≥ log t

]

≤ Pr





CC(π)
∑

i=CC(v)+1

Ti ≥ log t − O(β)



 by Equation 9

≤ exp



−Ω





log t − O(β)
∑CC(π)

i=CC(v)+1
(sup(Ti) − inf(Ti)|w≤i−1)2









≤ exp

(

−Ω

(

log t − O(β)

β

))

by Equation 8

6.1.2 The whole protocol

Our final protocol for computing f is shown in Figure 7.

Protocol τt

1. The players publicly sample the public randomness v ∈
R

R for π.

2. The players repeatedly run τv,t to get a new prefix v. They stop only when they reach a
leaf of the protocol tree for π.

Figure 7: The protocol to sample a subsequent part of the transcript

We first argue that our simulation returns the correct answer with decent probability. We shall
actually argue that the probability for any returned transcript does not increase by too much. To
ease notations, let us set

α
def
= exp

(

−Ω

(

log t − O(β)

β

))

Set t to be a large enough constant so that α = exp(−Ω(1/β)) = exp(−Ω(log(CC(π)k/εk))).
Set k to be large enough so that α ≤ ε/ log CC(π).

Let L denote the random variable of the sampled transcript returned by τt. Then by Claim 6.7,
we get that for every leaf l,

Pr[L = l|xy]

Pr[π(x, y) = l]
≤ (1 + α)CC(π) = exp(O(ε)) (11)

22

Next we bound the expected communication of the protocol. First observe that if the protocol
accepts a leaf l, then the protocol must have involved O(Dπ

x(l) + D
π
y (l)) rounds. The expected

number of bits communicated in each of these rounds is independent of l by Proposition B.1, and is
t2

1−α by Claim 6.8. Thus the expected communication complexity of the protocol can be bounded

E
x,y,l∈

R
X,Y,L

[

O

(

(Dπ
x(l) + D

π
y (l))

t2

1 − α

)]

=
O(t2)

1 − α
E

x,y∈
R

X,Y

[

∑

l

Pr[L = l|x, y](Dπ
x(l) + D

π
y (l))

]

≤ O(1) E
x,y∈

R
X,Y

[

∑

l

exp(O(ε)) Pr[π(x, y) = l](Dπ
x(l) + D

π
y (l))

]

by Equation 10

= exp(O(ε)) E
X,Y

[Dπ
X(π(X,Y)) + D

π
Y (π(X,Y))]

= exp(O(ε))ICµ(π)

This completes the proof of Theorem 6.4.

7 Acknowledgements

We thank Noga Alon, Emanuel Milman, Alex Samorodnitsky, Avi Wigderson and Amir Yehudayoff
for useful discussions.

A A simple generalization of Azuma’s inequality

We shall need the following theorem, whose proof appears in [JHM+98]. For completeness, we
reproduce the part of the proof we need here:

Theorem A.1 (Azuma). Let T1, . . . , Tk be real valued random variables such that for every i, we

have E [Ti|Ti−1, . . . , Ti] ≤ 0. Set Ai = (sup(Ti) − inf(Ti)|Ti−1, . . . , T1)
2
. Then if

∑k
i=1 A2

i ≤ c, for

every α > 0,

Pr

[

k
∑

i=1

Ti ≥ α

]

≤ exp(2α2/c).

To prove the theorem, we need the following lemma appearing as Lemma 2.6 in [JHM+98]:

Lemma A.2. Let X be a real valued random variable with E [X] = 0 and X ∈ [a, b] almost surely.

Then E [exp(X)] ≤ exp
(

(b−a)2

8

)

.

Proof of Theorem A.1. First, we assume without loss of generality that E [Ti|Ti−1, . . . , Ti] ≤ 0. We
can do this by changing each random variable Ti to Ti − E [Ti|Ti−1, . . . , T1]. This does not change
any of the conditions above, and only increases Pr[

∑

i Ti ≥ α].
By Markov’s inequality, for every positive λ we have

23

Pr

[

k
∑

i=1

Ti ≥ α

]

= Pr

[

exp

(

λ
k
∑

i=1

Ti

)

> exp(λα)

]

≤ E

[

exp

(

λ
k
∑

i=1

Ti

)]

exp(−λα)

Next we show by induction on k that E

[

exp
(

λ
∑k

i=1 Ti

)]

≤ sup
(

∏k
i=1 E [exp(λTi)|Ti−1, . . . , T1]

)

.

The case k = 1 is trivial. For general k we compute

E

[

exp

(

λ

k
∑

i=1

Ti

)]

= E

[

exp (λT1) E

[

exp

(

λ

k
∑

i=2

Ti

)

|T1

]]

≤ E [exp (λT1)] sup

(

k
∏

i=2

E [exp(λTi)|Ti−1, . . . , T1]

)

by induction

= sup

(

E [exp (λT1)]
k
∏

i=2

E [exp(λTi)|Ti−1, . . . , T1]

)

= sup

(

k
∏

i=1

E [exp(λTi)|Ti−1, . . . , T1]

)

Thus we can bound

Pr

[

k
∑

i=1

Ti ≥ α

]

≤ exp(−λα) sup

(

k
∏

i=1

E [exp(λTi)|Ti−1, . . . , T1]

)

≤ exp(−λα) sup

(

k
∏

i=1

exp

(

λ2A2
i

8

)

)

by Lemma A.2

= exp(−λα) sup

(

exp

(

∑k
i=1 λ2A2

i

8

))

= exp(−λα) exp

(

sup

(

∑k
i=1 λ2A2

i

8

))

≤ exp(−λα + λ2c/8)

Setting λ = 4α/c, we get that

Pr

[

k
∑

i=1

Ti ≥ α

]

≤ exp(−2α2/c)

B Analyzing Rejection Sampling

In this section we give some basic facts about rejection sampling. For a distribution C supported
on some finite set C and a function a : C → [0, 1], Figure 8 describes a generic rejection sampling
algorithm.

24

Algorithm Rejection Sampling.

1. Sample an element z ∈
R

C.

2. Accept it with probability a(z), else go to the first step.

Figure 8: Generic Rejection Sampling

We prove some simple properties of this kind of sampling. Let D′ denote the random variable of
the sampled element. Let R denote the random variable that counts the number of rounds before
the algorithm accepts the sample. Then we see that D′ is independent of R, since for any integers
c, c′, D′|R = c has the same distribution as D′|R = c′.

Proposition B.1. D′ is independent of R.

We then see that D′(w) = Pr[(R = 1) ∧ w is accepted]/Pr[R = 1] = C(w)a(w)/Pr[R = 1]. We
have shown the following claim:

Claim B.2. For some constant α, D′ = αa · C.

Set b = a′− a. Then D = βa′ ·C = βC · (a+ b). Thus, by Claim B.2, there exists a distribution
D′′ such that D′ is a convex combination D = β′D′′ + (1 − β′)D′. In particular, this implies that
D′(w)
D(w) ≤ 1

1−β′ . We bound β′ ≤ Pr[D′ ∈ Supp(D′′)] = Prw∈
R

D[a′(w) ≥ a(w)]. This gives us the
following two bounds:

Proposition B.3. Let D = βa′ ·C be a distribution such that a′(w) ≥ a(w) for every w. Then for

every w,
D′(w)
D(w) ≤ 1

1−Prw∈
R

D [a′(w)≥a(w)] .

Proposition B.4. The expected number of rounds that the above protocol runs for is 1/Pr[R = 1].

Proof. From the construction, we see that E [R] = Pr[R = 1]+(1−Pr[R = 1])(1+E [R]). Rewriting
this, we get E [R] = 1/Pr[R = 1].

C Finding The First Difference in Inputs

Proof Sketch for Lemma 2.14. Without loss of generality, we assume that k = 2t for an integer t (if
not, we can always pad the input strings with 0’s until the lengths are of this form before running
the protocol). For a parameter C, we define a labeled tree of depth C log(k/ε) = C(t + log(1/ε) as
follows. The root of the tree is labeled by the interval [1, 2t]. For i ranging from 0 to t − 1, every
node at depth i labeled by [a, b] has two children, corresponding to splitting the interval [a, b] into
equal parts. Thus the left one is labeled by the interval [a, b − 2t−i+1] and the right one is labeled
by [a + 2t−i+1, b]. Thus at depth t there are 2t nodes, each labeled by [a, a] for distinct a’s from
[2t]. Every node at depth ≥ t has exactly one child, labeled the same as the parent.

In the protocol, the players shall try to narrow down where the first difference in their inputs
is by taking a walk on the tree. At each step, the players first check that the interval they are
on is correct, and then try to narrow down their search. For any integer a ∈ [n], let xa denote

25

the prefix of x of length a. To check whether a given interval [a, b] contains the index that they
seek, the players will use public randomness to pick random functions h1 : {0, 1}a → [18] and
h2 : {0, 1}b → [18] and compare h1(xa) with h1(ya) and h2(xb) with h2(yb). The probability of
getting an incorrect answer is thus at most 1/9.

For a parameter C, the protocol works as follows:

1. The players set v to be the root of the tree.

2. The players run the tests described above to check whether the index with the first difference
lies in the interval corresponding to v and in those corresponding to v’s children. If the tests
are consistent, and indicate that the interval for v does not contain the index, the players
set v to be the parent of the old v (or leave it unchanged if v is the root). If the tests are
consistent and indicate that the interval of one of the children contains the index, the players
set v to be that child. If the tests are inconsistent, the players leave v unchanged.

3. Step 2 is repeated C(t + log(1/ε)) times.

4. If the final vertex is labeled by an interval of the form [a, a], output a. Else conclude that the
input strings are equal.

To analyze the protocol, fix x and y. Note that if x = y, then the protocol never fails. So let
us assume that x 6= y and assume that a is the first index at which x, y differ. Then let w denote
the vertex in the tree of largest depth that is labeled by [a, a]. Next we direct the edges of the
tree so that at every vertex, the only outgoing edge points to the neighbor that is closer to w in
terms of shortest path distance. Then observe that at every step of our protocol, v is changed to a
neighbor that is closer to w with probability at least 2/3. Further, our protocol succeeds as long as
the number of correct steps on the tree exceeds the number of incorrect steps by t. This happens as
long as the number of correct steps is at least C/2(t + log(1/ε)) + t/2. Since the expected number
of correct steps is 2C/3(t + log(1/ε)), we get that the bad event happens only when we deviate
from the expected number by C/6(t+log(1/ε))− t/2 > (C/6− 1/2)(t+log(1/ε)). By the Chernoff
bound, the probability that this happens is at most exp(Ω((C/6− 1/2)2(t + log(1/ε)))). Setting C
to be a large enough constant makes this error at most ε.

References

[Abl93] Farid Ablayev. Lower bounds for one-way probabilistic communication complexity. In
Andrzej Lingas, Rolf Karlsson, and Svante Carlsson, editors, Proceedings of the 20th

International Colloquium on Automata, Languages, and Programming, volume 700 of
LNCS, pages 241–252. Springer-Verlag, 1993.

[BYJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. Journal of Computer

and System Sciences, 68(4):702–732, 2004.

[CSWY01] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational com-
plexity and the direct sum problem for simultaneous message complexity. In Bob

26

Werner, editor, Proceedings of the 42nd Annual IEEE Symposium on Foundations of

Computer Science, pages 270–278, Los Alamitos, CA, October 14–17 2001. IEEE
Computer Society.

[FKNN95] Tomàs Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communica-
tion complexity. SIAM Journal on Computing, 24(4):736–750, 1995.

[FPRU94] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Computing with noisy
information. SIAM Journal on Computing, 23(5):1001–1018, 1994.

[HJMR07] Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan.
The communication complexity of correlation. In IEEE Conference on Computational

Complexity, pages 10–23. IEEE Computer Society, 2007.

[JRS03] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in
communication complexity via message compression. In Jos C. M. Baeten, Jan Karel
Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, ICALP, volume 2719 of
Lecture Notes in Computer Science, pages 300–315. Springer, 2003.

[JRS05] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Prior entanglement, message
compression and privacy in quantum communication. In IEEE Conference on Compu-

tational Complexity, pages 285–296. IEEE Computer Society, 2005.

[JHM+98] Mark Jerrum, Michel Habib, Colin McDiarmid, Jorge L. Ramirez-Alfonsin, and Bruce
Reed. Probabilistic Methods for Algorithmic Discrete Mathematics, volume 16 of Algo-

rithms and Combinatorics. Springer-Verlag, 1998.

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557,
November 1992.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, Cambridge, 1997.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
June 1998.

[Raz92] Razborov. On the distributed complexity of disjointness. TCS: Theoretical Computer

Science, 106, 1992.

[SS02] Michael Saks and Xiaodong Sun. Space lower bounds for distance approximation in the
data stream model. In ACM, editor, Proceedings of the 34th Annual ACM Symposium

on Theory of Computing, pages 360–369. ACM Press, 2002.

27

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Our Results
	Techniques

	Preliminaries
	Notation
	Statistical Distance
	Information Theory
	Communication Complexity
	Finding differences in inputs

	Proofs for the General Case
	Reduction to Small Information Content
	Small information complexity small communication complexity
	Proofs for the Product Case
	Proof of [theorem:productinfotoreal]Theorem 6.4
	A single round
	The whole protocol

	Acknowledgements
	A simple generalization of Azuma's inequality
	Analyzing Rejection Sampling
	Finding The First Difference in Inputs

