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Abstract

We put forth a new computational notion of entropy, which measures the (in)feasibility of
sampling high entropy strings that are consistent with a given protocol. Specifically, we say
that the ith round of a protocol (A, B) has accessible entropy at most k, if no polynomial-time
strategy A∗ can generate messages for A such that the entropy of its message in the ith round
has entropy greater than k when conditioned both on prior messages of the protocol and on
prior coin tosses of A∗. We say that the protocol has inaccessible entropy if the total accessible
entropy (summed over the rounds) is noticeably smaller than the real entropy of A’s messages,
conditioned only on prior messages (but not the coin tosses of A).

As applications of this notion, we

• Give a much simpler and more efficient construction of statistically hiding commitment
schemes from arbitrary one-way functions.

• Prove that constant-round statistically hiding commitments are necessary for constructing
constant-round zero-knowledge proof systems for NP that remain secure under parallel
composition (assuming the existence of one-way functions).
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1 Introduction

Computational analogues of information-theoretic notions have given rise to some of the most
interesting phenomena in the theory of computation. For example, computational indistin-
guishability [GM], which is the computational analogue of statistical distance, enabled bypassing
Shannon’s impossibility results on perfectly secure encryption [Sha], and provided the basis for
the computational theory of pseudorandomness [BM, Yao]. A computational analogue of entropy,
known as pseudoentropy, introduced by H̊astad, Impagliazzo, Levin, and Luby [HILL], was the key
to their fundamental result establishing the equivalence of pseudorandom generators and one-way
functions, and has also now become a basic concept in complexity theory and cryptography.

In this work, we introduce another computational analogue of entropy, which we call accessible
entropy, and present several applications of it to the foundations of cryptography. Before describing
accessible entropy (and a complementary notion of inaccessible entropy), we recall the standard
information-theoretic notion of entropy and the computational notion of pseudoentropy of H̊astad
et al.

1.1 Entropy and Pseudoentropy

Recall that the entropy of a random variable X is defined to be H(X) := E
x

R←X
[log(1/Pr[X = x]),

which measures the number of “bits of randomness” in X (on average). We will refer to H(X)
as the real entropy of X to contrast with the computational analogues that we study. H̊astad et
al. [HILL] say that a random variable X has pseudoentropy (at least) k if there exists a random
variable Y of entropy (at least) k such that X and Y are computationally indistinguishable.

The reason that pseudoentropy is interesting and useful is that there exist random variables X
whose pseudoentropy is larger than their real entropy. For example, the output of a pseudorandom
generator G : {0, 1}` → {0, 1}n on a uniformly random seed has entropy at most `, but has
pseudoentropy n (by definition). H̊astad et al. proved that in fact, from any efficiently samplable
distribution X whose pseudoentropy is noticeably larger than its real entropy, it is possible to
construct a pseudorandom generator. By showing, in addition, how to construct such a distribution
X from any one-way function, H̊astad et al. prove their theorem that the existence of one-way
functions implies the existence of pseudorandom generators.

The notion of pseudoentropy is only useful, however, as a lower bound on the “computational
entropy” in a distribution. Indeed, it can be shown that every distribution on {0, 1}n is
computationally indistinguishable from a distribution of entropy at most poly(log n). While several
other computational analogues of entropy have been studied in the literature (cf., [BSW]), all of
these are also meant to serve as ways of capturing the idea that a distribution “behaves like” one
of higher entropy. In this paper, we explore a way in which a distribution can “behave like” one of
much lower entropy.

1.2 Accessible Entropy

We motivate the idea of accessible entropy with an example. Consider the following 3-message
protocol between parties (A,B):

1. B selects a random function h : {0, 1}n → {0, 1}m from a family of collision-resistant hash
functions (where m� n) and sends h to A.
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2. A selects a random x
R←{0, 1}n, sets y = h(x), and sends y to B.

3. A sends x to B.

Now, information-theoretically, A’s third message (namely x) has entropy at least n − m
conditioned on the previous messages h, y, because y = h(x) reveals on m bits of information
about x. However, the collision-resistance property says that given the state of A after the second
message, there is at most one consistent value of x that A can reveal with nonnegligible probability.
(Otherwise, A would be able find two distinct messages x 6= x′ such that h(x) = h(x′).) This holds
even if A is replaced by any polynomial-time cheating strategy A∗. Thus, there is “real entropy” in
x (conditioned on the history) but it is “computationally inaccessible” to A∗, to whom x effectively
has entropy 0.

We generalize this basic idea to allow the upper bound on the “accessible entropy” to be a
parameter k, and to consider both the real and accessible entropy accumulated over several rounds
of a protocol. In more detail, consider an m-round protocol (A,B), and let (B1, A1, . . . , Bm, Am) be
random variables denoting the messages sent by A and B in an interaction where their coin tosses
are chosen uniformly at random. We define the real entropy of A when interacting with B to be

∑

i

H(Ai|B1, A1, . . . , Bi),

where H(X|Y ) = E
y

R←Y
[H(X|Y =y)] is the standard notion of conditional entropy.

To define accessible entropy, consider a probabilistic polynomial-time cheating strategy A∗ that
in each round, tosses some fresh random coins si, computes and sends a message ai, and also
locally outputs a string wi that is supposed to be a “witness” to the fact that A∗ is behaving
consistently with the honest strategy A. Specifically, for A∗ to “succeed”, each wi should be a
sequences of coin tosses for A that is consistent with all the messages ai sent so far. For simplicity
here in the introduction, we assume that A∗ always outputs consistent witness strings wi. Now, let
(B1, S1, A1,W1, . . . , Bm, Sm, Am,Wm) be random variables corresponding to the view of A∗ when
interacting with B. Then we define the accessible entropy achieved by A∗ to be

∑

i

H(Ai|B1, S1, A1,W1, . . . , Bi).

The key point is that now we compute the entropy conditioned not just on the previous messages
exchanged, but also on everything in the local state/view of A∗ prior to the i’th round.

The collision resistance example given earlier shows there are protocols where the computation-
ally accessible entropy is much smaller than the real Shannon entropy. Indeed, in that protocol, the
real entropy of A’s messages is n (namely, the total entropy in x), but the computationally accessible
entropy is at most m + neg(n), where m � n is the output length of the collision-resistant hash
function. (Here we are counting the conditional entropy in all of A’s messages for simplicity, but the
definitions generalize naturally if we only want to sum the conditional entropies over some subset
of rounds.) Thus, in contrast to pseudoentropy, accessible entropy is useful for expressing the idea
that the “computational entropy” in a distribution is smaller than its real entropy. We refer to the
difference (real entropy) − (accessible entropy) as the inaccessible entropy of the protocol.

The above informal definitions are simplified or restricted compared to our actual definitions
in several ways. First, we need to determine how to measure the entropy in case the adversary
A∗ fails to provide a consistent witness wi. Second, in some of our results it is beneficial to work
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with real min-entropy and/or accessible max-entropy rather real and accessible Shannon entropy as
defined above, and formulating conditional versions of these measures is a bit more delicate. Third,
in cryptographic applications, one might also want a definition of real entropy that holds even if B

is replaced by a cheating strategy B∗. The definitions generalize naturally to this case, but we do
not consider them in this extended abstract for sake of simplicity. (In our applications below, we
handle cheating strategies by applying a known compiler at the end of our constructions [HHK+].)

1.3 Applications

Our main applications of accessible entropy are to the construction of commitment schemes, so we
begin by describing those.

Commitment Schemes. A commitment scheme is the cryptographic analogue of a safe. It is
a 2-party protocol between a sender S and a receiver R that consists of two stages. The commit
stage corresponds to putting an object in a safe and locking it. In it, the sender “commits” to
a private message m. The reveal stage corresponds to unlocking and opening the safe. In it, the
sender “reveals” the message m and “proves” that it was the value committed to in the commit
stage (without loss of generality by revealing coin tosses consistent with m and the transcript of
the commit stage).

Commitment schemes have two security properties. The hiding property informally says that
at the end of the commit stage, an adversarial receiver has learned nothing about the message
m, except with negligible probability. The binding property says that after the commit stage, an
adversarial sender cannot produce valid openings for two distinct messages, except with negligible
probability. Both of these security properties come in two flavors — statistical, where we require
security even against a computationally unbounded adversary, and computational, where we only
require security against feasible (e.g. polynomial-time) adversaries.

Statistical security is preferable to computational security, but it is impossible to have
commitment schemes that are both statistically hiding and statistically binding. So instead we
have to settle for one of the two properties being statistical and the other being computational.
Statistically binding (and computationally hiding) commitments have been well-understood for
a long time. Indeed, Naor [Nao] showed how to build a 2-message statistically binding
commitment using any pseudorandom generator; and thus, in combination with the construction
of pseudorandom generators from any one-way function [HILL], we obtain 2-message statistically
binding commitments from the minimal assumption that one-way functions exist.

As we will describe below, our understanding of statistically hiding commitments has lagged
behind. In this paper, we show that they are closely connected with the notion of inaccessible
entropy, that is, with protocols having a gap between real entropy and accessible entropy. One
direction is easy to see. Consider a statistically hiding commitment scheme in which the sender
commits to a message of length k, and suppose we run the protocol with the message m chosen
uniformly at random in {0, 1}k . Then, by the statistical hiding property, the real entropy of the
message m after the commit stage is k−neg(n). On the other hand, computational binding property
says that the accessible entropy of m after the commit stage is at most neg(n).

Our main technical contribution is a converse to the above observation.

Theorem 1.1 (inaccessible entropy to commitment, informal). If there is an efficient protocol
(A,B) in which the real entropy of A’s messages is noticeably larger than their accessible entropy,
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then statistically hiding commitment schemes exist.

Actually, since it gives us better parameters in the applications, we don’t prove the above
theorem for accessible Shannon entropy (as defined above), but prove it for accessible max-entropy
(defined in the body of the paper). Indeed, for accessible max-entropy, we can preserve the property
that the protocol has a constant number of rounds.

Theorem 1.2 (inaccessible entropy to commitment in constant rounds, informal). If there is an
efficient constant-round protocol (A,B) in which the real entropy of A’s messages is noticeably larger
than their accessible max-entropy, then constant-round statistically hiding commitment schemes
exist.

Our proof of this theorem proceeds in a few modular steps:

1. (Entropy Equalization) First, using sequential repetition with a “random offset,” we convert
the protocol into one where we know the real entropy in each round (rather than just knowing
the total entropy), and there remains a noticeable gap between the real entropy and the
accessible (max-)entropy. This step blows up the number of rounds, so for constant-round
protocols, we use a different approach: we try “all possibilities” for how the real entropy is
divided among the rounds, and combine the resulting commitment schemes in a standard way
at the end.

2. (Gap Amplification) We repeat the protocol many times in parallel, which has the effect of
(a) converting the real entropy to real min-entropy, and (b) amplifying the gap between the
real entropy and accessible (max-)entropy.

3. (m-phase Commitment) By applying a constant-round hashing protocol in each round (based
on the interactive hashing protocol of [DHRS] and universal one-way hash functions [NY,
Rom]), we obtain an m-phase commitment scheme. This consists of m sequentially executed
commitment protocols such that each commit stage is statistically hiding and no polynomial-
time strategy can break the binding in all m phases. (This definition is inspired by related,
but more complex, notions introduced in [NV, HNO+].)

4. (Standard Commitment) We convert the m-phase commitment to a standard statistically
hiding commitment scheme by running it many times in parallel, and in each execution
having the receiver randomly decide which phase will be used for the actual commitment.
(This is similar to a construction in [HNO+], except that we show that this conversion can
be combined with parallel repetition to obtain full computational binding in one shot, rather
than first obtaining weak binding and then amplifying by sequential repetition.)

Statistically Hiding Commitments from One-Way Functions. Recently, it was shown
that statistically hiding commitment schemes can in fact be constructed from any one-way
function [HNO+]. However, the construction was very complicated and inefficient. Here we obtain
a much simpler and more efficient construction, by combining Theorem 1.1 with the following:

Theorem 1.3 (one-way function to entropy gap, informal). Given any one-way function f :
{0, 1}n → {0, 1}n, we can construct an O(n/ log n)-round protocol (A,B) in which the real entropy
of A’s messages is noticeably larger than their accessible (max-)entropy.
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The proof of this theorem uses a simple variant of the interactive hashing protocol of [NOVY],
which was designed to construct statistically hiding commitments from one-way permutations. A
(different) variant of the [NOVY] protocol was also used as the first step in the previous construction
of statistically hiding commitments from one-way functions in [HNO+]. Specifically, it was used
to obtain a “weakly hiding 2-phase commitment scheme” (for a slightly different notion of 2-phase
commitment scheme than the one we use). The main complications there came from the process
of amplifying the “weak hiding” property of this 2-phase commitment, which was done through a
complex recursive construction. The main source of our simplification is that the property of having
a gap between real entropy and accessible entropy is much more well-suited to amplification, and
indeed it can be achieved through just parallel repetition as described above.

In addition to being simpler, our protocol is also more efficient. Specifically, we obtain
an O((n/ log n)2)-round protocol, whereas the previous construction gave a large unspecified
polynomial number of rounds. Moreover, if we allow the protocol to use nonuniform advice, we
obtain O(n/ log n) rounds, which is optimal for “black-box constructions” [HHRS].

This construction also conceptually unifies the construction of statistically hiding commitments
from one-way functions with the construction of statistically binding commitments from one-way
functions (the latter being due to [HILL, Nao]): the first step of both constructions is obtain a gap
between real entropy and “computational entropy” (pseudoentropy in the case of statistical binding
and accessible entropy in the case of statistical hiding), which is then amplified by repetitions and
finally combined with various forms of hashing.

Commitments and Constant-Round Zero Knowledge. One of the main applications of
commitment schemes is to the construction of zero-knowledge proof systems. (Throughout this
discussion, we refer to zero-knowledge proofs where the soundness property is statistical, as in
the standard definition of interactive proof systems (as opposed to argument systems), but the
zero-knowledge property is computational.) The basic zero-knowledge protocol for 3-Coloring and
hence all of NP [GMW] utilizes statistically binding commitments, and hence the protocol can be
implemented in a constant number of rounds assuming the existence of one-way functions (since
one-way functions imply 2-message statistically binding commitments [HILL, Nao]). Unfortunately,
this protocol has a large soundness error. It is natural to try to use parallel repetition to reduce the
soundness error, but zero knowledge is not preserved under parallel repetition in general [FS, GK2].
However, we do know how to construct zero-knowledge proofs for NP that remain secure under
parallel composition [GK1, Gol] utilizing statistically hiding commitments (used for the verifier to
commit to its challenges in advance). Thus, assuming the existence of constant-round statistically
hiding commitment schemes, we obtain constant-round zero-knowledge proofs for NP that remain
zero knowledge under parallel composition.

It was unknown, however, whether constant-round statistically hiding commitments are
necessary for constant-round zero-knowledge proofs that remain zero knowledge under parallel
composition (or even just have negligible soundness error), or if such zero-knowledge proofs could
be constructed from weaker assumptions (such as the existence of one-way functions). We show that
that they are in fact necessary, if we restrict to zero knowledge proven via “black-box simulation”.

Theorem 1.4 (zero knowledge to commitments in constant rounds, informal). Suppose that
one-way functions exist and that NP has constant-round interactive proofs that are black-box
zero knowledge under parallel composition. Then there exist constant-round statistically hiding
commitment schemes.
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We leave as interesting open questions whether constant-round statistically hiding commitment
schemes are necessary to just achieve negligible soundness error, and whether the requirement of
black-box simulation can be eliminated.

There have been several other results deducing the existence of commitment schemes from
zero-knowledge proofs. The first is the result of Ostrovsky and Wigderson [OW], which shows
that if there is a zero-knowledge proof for a “hard-on-average” problem, then one-way functions
(and hence commitment schemes) exist. In contrast, here we are willing to assume the existence
of one-way functions, and are interested in understanding whether certain kinds of zero-knowledge
proofs require stronger primitives (such as constant-round statistically hiding commitments). More
closely related are the results of Ong and Vadhan [OV], which imply that if there is a statistical
zero-knowledge proof for a hard-on-average problem, then constant-round statistically hiding
commitment schemes exist. Our result is incomparable. On one hand, our result applies even to
computational zero-knowledge proofs. On the other, we assume the existence of one-way functions
and require a zero-knowledge proof for specific NP language (based on the one-way function) with
many additional properties.1

The proof of this theorem roughly proceeds by showing that the zero-knowledge protocol has
gap between the real entropy of the verifier’s messages and the accessible entropy of the verifier’s
messages, and then applying the construction of Theorem 1.2. However, it turns out that we are
not quite able to establish an upper bound on the accessible max-entropy in general, but only if
we restrict attention to adversaries A∗ that “know” when they have achieved high entropy and
for which the high entropy property holds in an arbitrary context (i.e. when interacting with an
arbitrary strategy B∗, not just the honest B). We refer to this notion as “context-independent
accessible max-entropy,” and it turns out to suffice for the constructions of Theorems 1.1 and 1.2.

The intuition for the accessible entropy of the verifier’s messages being small is that an adversary
V ∗ achieving high accessible entropy should be hard to simulate. Indeed, the only advantage a black-
box simulator has over a prover is its ability to “rewind” the verifier. But a verifier V ∗ achieving
accessible high accessible entropy can “resample” new messages that are distributed similarly to the
real verifier’s messages every time it is rewound. The infeasibility of simulating such “resampling”
verifiers is shown following the approach of Goldreich and Krawczyk [GK2], who considered 3-round
protocols and (constant-round) public-coin protocols, settings in which perfect resampling is trivial.
Recent applications of this technique in more complex settings related to ours include [Pas, Kat].

Theorem 1.4 can be interpreted either as a negative result about constructing constant-
round parallel zero-knowledge proofs from one-way functions (since constructing constant-round
statistically hiding commitments from one-way functions has been elusive, and in fact cannot be
done via a black-box construction [HHRS]), or as a positive result about constructing constant-
round statistically hiding commitments from one-way functions (the use of zero knowledge for NP
makes the construction non-black-box in the one-way function, and hence may allow bypassing the
lower bound of [HHRS]).

1The results of [OV] also imply that every statistical zero-knowledge proof can be converted into one with the
additional properties we require (namely, constant rounds, parallel composition, black-box simulation, and an efficient
prover).

6



2 Preliminaries

2.1 Random Variables

Let X and Y be random variables taking values in a discrete universe U . We adopt the convention
that when the same random variable appears multiple times in an expression, all occurrences
refer to the same instantiation. For example, Pr[X = X] is 1. For an event E, we write X|E
to denote the random variable X conditioned on E. The support of a random variable X is
Supp(X) := {x : Pr[X = x] > 0}. X is flat if it is uniform on its support. For an event E, we
write I(E) for the corresponding indicatory random variable, i.e. I(E) is 1 when E occurs and is
0 otherwise.

We write ∆(X,Y ) to denote the statistical difference (a.k.a. variation distance) between X and
Y , i.e.

∆(X,Y ) = max
T⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]| .

If ∆(X,Y ) ≤ ε (respectively, ∆(X,Y ) > ε), we say that X and Y are ε-close (resp., ε-far).

2.2 Entropy Measures

We will refer to several measures of entropy in this work. The relation and motivation of these
measures is best understood by considering a notion that we will refer to as the sample-entropy:
For a random variable X and x ∈ Supp(X), we define the sample-entropy of x with respect to X
to be the quantity

HX(x) := log(1/Pr[X = x]).

The sample-entropy measures the amount of “randomness” or “surprise” in the specific sample x,
assuming that x has been generated according to X. Using this notion, we can define the Shannon
entropy H(X) and min-entropy H∞(X) as follows:

H(X) := E
x

R←X

[HX(x)]

H∞(X) := min
x∈Supp(X)

HX(x)

We will also discuss the max-entropy H0(X) := log(1/|Supp(X)|). The term “max-entropy” and
its relation to the sample-entropy will be made apparent below.

It can be shown that H∞(X) ≤ H(X) ≤ H0(X) with equality if and only if X is flat. Thus,
saying H∞(X) ≥ k is a strong way of saying that X has “high entropy” and H0(X) ≤ k a strong
way of saying that X as “low entropy”.

Smoothed Entropies. Shannon entropy is robust in that it is insensitive to small statistical
differences. Specifically, if X and Y are ε-close then |H(X)−H(Y )| ≤ ε·log |U|. For example, if U =
{0, 1}n and ε = ε(n) is a negligible function of n (i.e., ε = n−ω(1)), then the difference in Shannon
entropies is vanishingly small (indeed, negligible). In contrast, min-entropy and max-entropy are
brittle and can change dramatically with a small statistical difference. Thus it is common to work
with “smoothed” versions of these measures, whereby we consider a random variable X to have high

7



entropy (respectively, low entropy) if X is ε-close to some X ′ with H∞(X) ≥ k (resp., H0(X) ≤ k)
for some parameter k and a negligible ε.2

These smoothed versions of min-entropy and max-entropy can be captured quite closely (and
more concretely) by requiring that the sample-entropy is large or small with high probability:

Lemma 2.1. 1. Suppose that with probability at least 1 − ε over x
R← X, we have HX(x) ≥ k.

Then X is ε-close to a random variable X ′ such that H∞(X ′) ≥ k.

2. Suppose that X is ε-close to a random variable X ′ such that H∞(X ′) ≥ k. Then with

probability at least 1− 2ε over x
R←X, we have HX(x) ≥ k − log(1/ε).

Proof Sketch.

1. We can modify X on an ε fraction of the probability space (corresponding to when X takes
on a value x such that HX(x) ≥ k) so as to bring all probabilities smaller than or equal to
2−k.

2. Let S = {x : HX(x) < k − log(1/ε)}. Note that |S| < 2k−log(1/ε). Then

Pr[X ∈ S] ≤ Pr[X ′ ∈ S] + ε ≤ 2−k · |S|+ ε < 2ε.
�

Lemma 2.2. 1. Suppose that with probability at least 1 − ε over x
R← X, we have HX(x) ≤ k.

Then X is ε-close to a random variable X ′ such that H0(X
′) ≤ k.

2. Suppose that X is ε-close to a random variable X ′ such that H0(X
′) ≤ k. Then with probability

at least 1− 2ε over x
R←X, we have HX(x) ≤ k + log(1/ε).

Proof Sketch.

1. Let S = {x : HX(x) ≤ k}. Note that |S| ≤ 2k. By modifying an ε fraction of X, we can
obtain a random variable X ′ whose support is contained in S.

2. Let S = {x : HX(x) > k + log(1/ε)}. Then

Pr[X ∈ S] ≤ Pr[X ∈ S∩Supp(X ′)]+Pr[X /∈ Supp(X ′)] < 2−(k+log(1/ε)) · |Supp(X ′)|+ε = 2ε.
�

Think of ε as inverse polynomial or a slightly negligible function in n = log(|U|). The above
lemmas show that up to negligible statistical difference and a slightly superlogarithmic number of
entropy bits, the min-entropy (resp. max-entropy) is captured by lower (resp. upper) bound on
sample-entropy.

2The term “smoothed entropy” was coined by Renner and Wolf [RW] but the notion of smoothed min-entropy
has commonly been used (without a name) in the literature on randomness extractors [NZ].
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Conditional Entropies. We will also be interested in conditional versions of entropy. For jointly
distributed random variables (X,Y ) and (x, y) ∈ Supp(X,Y ), we define the conditional sample-
entropy to be HX|Y (x|y) = log(1/Pr[X = x|Y = y]). Then the standard conditional Shannon
entropy can be written as:

H(X|Y ) = E
(x,y)

R←(X,Y )

[
HX|Y (x|y)

]
= E

y
R←Y

[H(X|Y =y)] = H(X,Y )−H(Y ).

There is no standard definition of conditional min-entropy and max-entropy, or even their smoothed
versions. For us, it will be most convenient to generalize the sample-entropy characterizations of
smoothed min-entropy and max-entropy given above. Specifically we will think of X as having
“high min-entropy” (resp., “low max-entropy”) given Y if with probability at least 1 − ε over

(x, y)
R← (X,Y ), we have HX|Y (x|y) ≥ k (resp., HX|Y (x|y) ≤ k).

Flattening Shannon Entropy. In [HILL] it was shown how to convert the Shannon entropy of
a random variable to min-entropy (up to small statistical distance) by taking independent copies
of this variable. This will be a useful tool our work as well.

Lemma 2.3 ([HILL], Prop 4.9). 1. For every t ≥ 1, Xt is 2−t1/3
-close to a random variable X ′

such that H∞(X ′) ≥ t H(X)− t2/3| log U|.

2. For any t ≥ 1, (Xt, Y t) is 2−t1/3
-close to a pair of jointly distributed random variables (X ′, Y ′)

such that for all y ∈ Supp(Y ′), H∞(X ′ | Y ′ = y) ≥ t H(X|Y )− t2/3| log U|.

2.3 Entropy with Failure

In defining accessible entropy, we will have an adversary A∗ attempting to generate a string x with
maximum possible entropy, and the adversary will also have to “justify” that the sample generated
is consistent with a given “honest” algorithm A. In case the adversary fails to provide a proof,
we would not want x to contribute to the entropy. To account for this, we consider the adversary
to be generating a random variable X taking values in U ∪ {⊥}, where ⊥ is used whenever the
adversary fails to provide a justification. Now, we do not simply want to measure the entropy of
X itself, because then an adversary may be able to increase the entropy by sometimes refusing to
provide a proof. For example, suppose that the string generated by the adversary is always 0n, but
the adversary refuses to provide a justification half of the time. Then H(X) = 1 but intuitively we
should count the entropy as 0 (since the underlying string is always fixed).

To handle this, we consider modified variants of entropy that treat the “failure” value ⊥ in a
special way. In first reading, the reader may choose to ignore the issue of entropy with failures
altogether (and simply concentrate on A∗ that always provides valid justification). Nevertheless,
the following definitions may be useful even beyond our context.

For a random variable X taking values in U ∪ {⊥} and x ∈ U ∪ {⊥}, we define the (modified)
sample-entropy to be

H∗X(x) :=

{
log 1

Pr[X=x|X 6=⊥] = log Pr[X 6=⊥]
Pr[X=x] if x 6= ⊥

0 if x = ⊥.
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We define the (modified) Shannon entropy of X to be

H∗(X) = E
x

R←X

[H∗X(x)]

= H(X|I(X = ⊥)),

where I(X = ⊥) is the indicator random variable for X = ⊥. This way of measuring entropy with
respect to failure behaves as we would expect, in that it agrees with Shannon entropy when there
is no failure, and entropy cannot be increased by failing more often.

Lemma 2.4. 1. If Pr[X = ⊥] = 0, then H∗(X) = H(X).

2. If X,X ′ are jointly distributed random variables taking values in U ∪ {⊥} such that Pr[X ′ =
X ∨X ′ = ⊥] = 1, then H∗(X ′) ≤ H∗(X).

Proof Sketch.

1. Immediate from definitions.

2.

H∗(X) = H(X|I(X = ⊥))

≥ H(X|I(X = ⊥), I(X ′ = ⊥))

≥ Pr[X ′ 6= ⊥] ·H(X|X′ 6=⊥) (because X ′ 6= ⊥ ⇒ X 6= ⊥)

= Pr[X ′ 6= ⊥] ·H(X ′|X′ 6=⊥)

= H∗(X ′)
�

Max-Entropy with Failures. We will also consider a version of max-entropy that handles
failure. Here we will simply require that with probability at least 1 − ε over x

R← X, we have
H∗X(x) ≤ k. For this notion, it can be shown that failing more often cannot increase entropy by
much:

Lemma 2.5. Let X,X ′ be jointly distributed random variables taking values in U ∪ {⊥} such that
Pr[X ′ = X ∨X ′ = ⊥] = 1,

1. For every ε > 0, with probability at least 1− ε over x
R←X ′, H∗X′(x) ≤ H∗X(x) + log(1/ε).

2. Suppose that with probability at least 1 − ε over x
R← X, we have H∗X(x) ≤ k. Then with

probability at least 1− 2ε over x
R←X ′, we have H∗X′(x) ≤ k + log(1/ε).

Proof. 1. Let S = {x : H∗X′(x) > H∗X(x) + log(1/ε)}.

Pr[X ′ ∈ S] ≤
∑

x∈S

2−H∗
X′(x) · Pr[X ′ 6= ⊥]

≤
∑

x∈S

ε · 2−H∗
X(x) · Pr[X ′ 6= ⊥]

= ε · Pr[X ∈ S]

Pr[X 6= ⊥]
· Pr[X ′ 6= ⊥]

≤ ε.
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2. Follows from Part 1.
�

Useful Properties. Both the modified Shannon entropy and the modified max-entropy satisfy
similar subadditivity properties as (standard) Shannon entropy:

Lemma 2.6. Let (X1, . . . ,Xt) be jointly distributed random variables, each taking values in U∪{⊥},
and define X̃ to equal ⊥ if at least one of the Xj ’s equals ⊥ and to equal (X1, . . . ,Xt) otherwise.
Then:

1. H∗(X̃) ≤∑
j H∗(X̃j).

2. With probability at least 1− ε over (x1, . . . , xt, x̃)
R← (X1 . . . ,Xt, X̃),

H∗
X̃

(x̃) ≤
∑

j

H∗Xj
(xj) + log(1/ε).

Proof.

H∗(X̃) = Pr[X̃ 6= ⊥] ·H(X̃ |X̃ 6=⊥)

≤ Pr[X̃ 6= ⊥] ·
∑

j

H(Xj |X̃ 6=⊥)

=
∑

j

Pr[X̃ 6= ⊥] · H(Xj |X̃ 6=⊥)

≤
∑

j

H(Xj |I(X̃ = ⊥), I(Xj = ⊥))

≤
∑

j

H(Xj |I(Xj = ⊥))

=
∑

j

H∗(Xj)

Let S =
{

(x1, . . . , xt) : H∗
X̃

(x̃) >
∑

j H∗Xi
(xi) + log(1/ε)

}
. For each (x1, . . . , xt) ∈ S, we have

Pr
[
X̃ = (x1, . . . , xt)|∀i Xj 6= ⊥

]
< ε ·

∏

j

Pr[Xj = xj |Xj 6= ⊥].

Summing both sides over all (x1, . . . , xt) ∈ S, we get

Pr[X̃ ∈ S|X̃ 6= ⊥] < ε.

�

The next lemma is useful for bounding the entropy with failure of variables of small support.

Lemma 2.7. For every random variable X taking values in a universe U ∪ {⊥} it holds that
E

x
R←X

[
2H∗

X(x)
]
≤ |U|.
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1. Proof.

E
x

R←X

[
2H∗

X(x)
]
≤ Pr[X =⊥] +

∑

x 6=⊥
Pr[X = x] · (1/Pr[X = x | X 6=⊥])

≤ Pr[X =⊥] + |U| · Pr[X 6=⊥]

≤ |U| .

�

In cases where X is with high probability either a constant or ⊥, we use the following lemma.

Lemma 2.8. Let X be a random variable taking values in a universe U ∪ {⊥} and let x0 ∈ U .
Assume that Pr[X ∈ {x0∪ ⊥}] > 1− ε, then Pr

x
R←X

[H∗X(x) ≤ √ε] ≥ 1−O(
√

ε).

Proof. We treat separately the case that H∗X(x0) ≤
√

ε and the complementary case.

H∗X(x0) ≤
√

ε. Hence, Pr
x

R←X
[H∗X(x) ≤ √ε] ≥ Pr[X ∈ {x0∪ ⊥}] > 1− ε.

H∗X(x0) >
√

ε. Hence Pr[X = x0 | X 6=⊥] < 2−
√

ε = 1−Ω(
√

ε). Therefore,

Pr[X 6=⊥] = Pr[X /∈ {x0∪ ⊥}] + Pr[X = x0]

= ε + Pr[X 6=⊥] · Pr[X = x0 | X 6=⊥]

≤ ε + Pr[X 6=⊥] · (1− Ω(
√

ε)) .

Hence, Pr[X 6=⊥] ≤ ε
Ω(
√

ε)
∈ O(

√
ε) and thus Pr

x
R←X

[H∗X(x) = 0] ≥ Pr[X =⊥] ≥ 1−O(
√

ε).

�

Conditional Entropy With Failures. Finally, we can define conditional versions of these
notions. Suppose (X,Y ) are jointly distributed random variables taking values in (U×V)∪{(⊥,⊥)}.
(For convenience we require that failure always occurs simultaneously for both random variables.)
Then we define

H∗X|Y (x|y) =

{
log 1

Pr[X=x|Y =y,X 6=⊥] = log Pr[X 6=⊥]
Pr[X=x|Y =y] if x 6= ⊥

0 if x = ⊥.

Again, we can obtain a corresponding form of Shannon entropy H∗(X|Y ) by taking expectations,
and a corresponding form of max-entropy by requiring that H∗X|Y (x|y) ≤ k with probability at least
1− ε.

2.4 Views and indistinguishability

View of an interaction. For an interactive protocol (A,B), the random variable viewA(A,B)
denotes the collection of all messages exchanged and the coin tosses of A.

Statistical and computational indistinguishability. Two ensembles of distributions X =
{Xn} and Y = {Yn} are statistically (resp. computationally) indistinguishable if for all possibly
unbounded algorithms (resp. nonuniform ppt ) D, the quantity |Pr[D(1n,Xn) = 1]−Pr[D(1n, Yn) =
1]| is negligible in n.
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3 Real vs. Accessible Entropy of Protocols

In this section we formalize the notions of real and accessible entropies of a protocol. As discussed
in the introduction, these entropies and the gap between them (i.e., the inaccessible entropy of a
protocol) play a pivotal role in our work. In addition, we will give tools for manipulating accessible
and real entropies.

Let us briefly recall the intuition behind these notions of entropy. Let (A,B)(1n) be an m-round
interactive protocol in which B sends the first message. The common input 1n is the security
parameter, which we will often omit from the notation. Let (B1, A1, . . . , Bm, Am) be a random
variable denoting the transcript of the messages exchanged between A and B when both parties’
coin tosses are chosen uniformly at random. Intuitively, the real entropy of A with respect to (A,B)
is the entropy in A’s messages, where for each message Ai we take its entropy conditioned on the
partial transcript (B1, A1, . . . , Bi).

Consider now an adversary A∗ which interacts with B. At each round, we ask what is the entropy
of the next message of A∗ conditioned not only on the partial transcript of previous messages but
also on the entire view of A∗ (including previous coin flips). A∗ is allowed to flip fresh random coins
to generate its next message and this is indeed the source of entropy in the message (everything
else in the view of A∗ is fixed). We call this quantity the “accessible” entropy of A∗ with respect
to (A,B). So that the definition is meaningful, we insist that the messages of A∗ will be consistent
with A and furthermore that A∗ will be able to demonstrate this consistency. This is achieved by
having A∗ locally output (at each round) a string w such that when w is the random input of A

the messages A would have sent are identical to those A∗ did send so far.
It is interesting to note that if we put no computational restrictions on A∗ then the entropy

accessible to A∗ can always be as high as the real entropy of (A,B). Simply, at each round A∗ can
sample a new string w that is consistent with its messages so far and send a next message that is
also consistent with w (i.e., send the string that A would have sent given the partial transcript if its
random input was set to w). This strategy is not always possible for a computationally bounded
A∗, and indeed the interesting protocols from the point of view of this work are protocols where a
computationally bounded A∗ can only access part of the real entropy (i.e., there is non-negligible
inaccessible entropy).

Note that in the above informal definitions (which we formalize below), we only refer to an
honest B. While we do so in this preliminary version for simplicity, natural analogues of these
definitions for cheating B∗ can be given as well.

3.1 Real Entropy

In this paper we will be interested in lower bounds on the real entropy. We will therefore define
two variants — real Shannon entropy and real min-entropy (which is particularly suited for lower
bounds on entropy). As we did in Section 2.2, we connect these two notions through the notion
of real sample-entropy. In other words, for a fixed transcript we ask how surprising were the
messages sent by A in this particular transcript. We then get real Shannon entropy by taking the
expectation of this quantity over a random transcript and the min-entropy by taking the minimum
(up to negligible statistical distance). An alternative approach would be to define the notions
through sum of conditional entropies (as we do in the intuitive description in the introduction).
This approach would yield closely related definitions, and in fact exactly the same definition in the
case of Shannon entropy (see Lemma 3.3).
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We say that a partial transcript t = (b1, a1, · · · , bj , aj) and a sequence w of coin tosses is A-
consistent if A would answer with a1, . . . , aj if its coins were w and it received messages b1, . . . , bj .
We say that t is A-consistent if there exists a w such that t and w are A-consistent.

Definition 3.1 (real sample-entropy). For an interactive algorithm A and an A-consistent partial
transcript t = (b1, a1, . . . , bi), define random variables Wi(t) and Ai(t) as follows. Let Wi(t)
be selected uniformly at random from the set {w : t and w are A-consistent}, and let Ai(t) =
A(t;Wi(t)). For a fixed message ai ∈ Supp(Ai) we define the real sample-entropy of ai given t to
be

RealHA(ai|t) := HAi(t)(ai).

For a full transcript t = (b1, a1, . . . , bm, am) and a subset I ⊆ [m] of rounds, we define the real
sample-entropy of t in the rounds of I to be

RealHI
A(t) =

∑

i∈I

RealHA(ai|b1, a1, . . . , bi).

Definition 3.2 (real entropy). For an interactive protocol (A,B) as above and a subset I ⊆ [m] of
rounds, we say that A has real Shannon entropy at least k in the rounds of I with respect to (A,B),
if

E
t
R←(A,B)

[
RealHI

A(t)
]
≥ k.

In the case that I = [m], we omit it from the above (and the following) notation.
We say that A has real min-entropy at least k in the rounds of I with respect to (A,B), if there

is a negligible function ε = n−ω(1) (where n is the security parameter) such that

Pr
t
R←(A,B)

[
RealHI

A(t) ≥ k
]
≥ 1− ε(n).

We observe that the real Shannon entropy simply amounts to measuring standard conditional
Shannon entropy of A’s messages when interacting with B.

Lemma 3.3. For an m-round interactive protocol (A,B), let (B1, A1, . . . , Bm, Am) be a random
variable denoting the transcript of the messages exchanged between A and B when both parties’ coin
tosses are chosen uniformly at random. Then

E
t
R←(A,B)

[
RealHI

A(t)
]

=
∑

i∈I

H(Ai|B1, A1, . . . , Bi).

Proof.

E
t
R←(A,B)

[
RealHI

A(t)
]

=
∑

i∈I

E
(b1,a1,...,bm,am)

R←(A,B)

[RealHA(ai|b1, a1, . . . , bi)]

=
∑

i∈I

E
(b1,a1,...,bm,am)

R←(A,B)

[
HAi(b1,a1,...,bi)(ai)

]

=
∑

i∈I

E
(b1,a1,...,bm,am)

R←(A,B)

[
HAi|B1,A1,...,Bi

(ai|b1, a1, . . . , bi)
]

=
∑

i∈I

H(Ai|B1, A1, . . . , Bi),
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where in the third equality we use the fact that the conditional distribution of Ai given that
B1 = b1, A1 = a1, . . . , Bi = bi is equal to the distribution Ai(b1, a1, . . . , bi) used in the definition
of the real sample-entropy RealHA(ai|b1, a1, . . . , bi) (namely, sample coins w for A uniformly at
random among those consistent with the history and output the corresponding message). �

The next claim follows readily from [AH, PT, GV]:

Lemma 3.4. Let A be an interactive algorithm that uses a random tape of length k, which it always
sends as its last message. Then for every A-consistent transcript t, RealHA(t) = k. In particular,
for every interactive algorithm B the algorithm A achives real entropy at least k with respect to
(A,B).

3.2 Accessible Entropy

In this paper we will be interested in upper bounds on the accessible entropy. We will therefore
define two variants - accessible Shannon entropy and accessible max-entropy (which is particularly
suited for upper bounds on entropy). As in the case of real entropy, we connect these two notions
through the notion of accessible sample-entropy. In other words, for a fixed view of the adversary
A∗ we ask how surprising were the messages sent by A∗. We then get accessible Shannon entropy
by taking the expectation of this quantity over a random view and the max-entropy by taking
the maximum (up to negligible statistical distance). Here too, the definitions obtained are closely
related to the definitions one would obtain by considering a sum of conditional entropies (as we
do in the intuitive description above). For the Shannon entropy, the definitions would in fact be
identical (See Lemma 3.7).

Consider an adversarial strategy A∗ that tosses its own fresh random coins si in each round
before sending ai, and then locally outputs a sequence wi of coins for A as a “witness’ to the
fact that it is behaving consistently with A. So a partial view of A∗ when interacting with B can
be written in the form v = (s0, b1, s1, a1, w1, . . . , bi, si, ai, wi). (Note that we also allow A∗ some
additional random coins s0 at the start of the protocol.) For such a partial view v and a round
j ≤ i, define ΓA

j (v) to equal aj if (b1, a1, . . . , bj , aj) is A-consistent with wj and to equal ⊥ otherwise.
That is, we replace a message aj sent by A∗ with the failure symbol ⊥ if it is not accompanied with
a consistent justification string wj . Recall that in Section 2.3, we formalized notions that measure
entropy (denoted H∗) in a way that discounts entropy that may come from failing.3

Definition 3.5 (accessible sample-entropy). Let A∗ be an interactive algorithm and let
v = (s0, b1, s1, a1, w1, . . . , bi) be an A∗-consistent partial view. Define random variables (Si, Ai,Wi)
by choosing Si uniformly at random, and setting (Ai,Wi) = A∗(s0, b1, s1, a1, w1, . . . , bi, Si). For a
fixed value ai ∈ Supp(Ai) ∪ {⊥}, we define the accessible sample-entropy of ai given v as

AccHA,A∗(ai|v) := H∗
ΓA

i (v,Si,Ai,Wi)
(ai).

For a view v = (s0, b1, s1, a1, w1, . . . , bm, sm, am, wm) and a subset of rounds I ⊆ [m], we define the
accessible sample-entropy of v in the rounds of I to be

AccHI
A,A∗(v) :=

∑

i∈I

AccHA,A∗(ΓA
i (v)|s0, b1, s1, a1, w1, . . . , bi).

3At a first reading of the following definition may be easiest to parse when considering A
∗ that never fails to supply

a consistent witness. In such a case, AccHA,A∗ (ai|v) := HAi
(ai).
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Definition 3.6 (accessible entropy). For an m-round interactive protocol (A,B) and I ⊆ [m], we
say that A has accessible entropy at most k in the rounds of I with respect to (A,B), if for every
ppt A∗,

E
v

R←viewA∗ (A∗,B)

[AccHI
A,A∗(v)] ≤ k

We say that A has accessible max-entropy at most k in the rounds of I with respect to (A,B),
if for every ppt A∗, there is a negligible function ε = ε(n) such that

Pr
v

R←viewA∗(A∗,B)
[AccHI

A,A∗(v) ≤ k] ≥ 1− ε(n).

Accessible entropy can also be expressed in terms of standard conditional Shannon entropy.

Lemma 3.7. Let (A,B) be an m-round interactive protocol, and let A∗ be an adversarial strategy
as above. Define random variables (S0, B1, S1, A1,W1, . . . , Bm, Sm, Am,Wm) denoting the view of
A∗ when interacting with B. Then

E
v

R←viewA∗(A∗,B)

[AccHI
A,A∗(v)] =

∑

i∈I

H∗(ΓA
i (V )|S0, B1, S1, A1,W1, . . . , Bi−1, Si−1, Ai−1,Wi−1, Bi).

Proof. Similar to the proof of Lemma 3.3. �

3.3 Manipulating Accessible and Real Entropy

In this section, we state two results on manipulating accessible and real entropy. The first tool,
given by Proposition 3.8 below, deals with the affect of parallel repetition of a protocol on its real
(Shannon) entropy and accessible (max) entropy. One effect of a t-fold parallel repetition (At,Bt) is
that (for certain settings of parameters) the gap between real and accessible entropy can increase.
The reason is that the real entropy is not much smaller than t times the real entropy of (A,B) and
the accessible entropy is not much larger than t times the accessible entropy of (A,B). Therefore,
the difference between the quantities increases. A second useful effect of parallel repetition is in
turning real Shannon entropy into real min-entropy. Note that the slight decrease in real entropy
is due to this move from Shannon entropy to min-entropy (rather than from the parallel repetition
itself).

Proposition 3.8 (gap amplification via parallel repetition). Let n be a security parameter and
π = (A,B) an m-round protocol. For t ∈ poly(n) ∩ ω(log3 n), let πt = (At,Bt) be the t-fold parallel

repetition of π. Then, πt satisfies the following properties:

real entropy: For all i ∈ [m], if the real Shannon entropy of A in round i with respect to π
is at least kreal, then the real min-entropy of At in round i with respect to πt is at least
t · kreal − ut2/3, where u is an upper bound on the length of messages sent by A in π.

accessible max-entropy For any I ⊆ [m] and any s = ω(log n), if A has accessible max-entropy
at most kacc in the rounds of I with respect to π, then At has accessible max-entropy at most
t · kacc + s ·m in the rounds of I with respect to πt .

Proof. The bound on real entropy follows readily from Lemma 2.3 and therefore we focus on
establishing the bound on accessible max-entropy. Fix I and suppose on the contrary that there
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exists an adversarial ppt Ã∗ that upon interacting with Bt in πt violates having accessible max-
entropy at most t · kacc + s ·m in the rounds of I. That is, there exists a non-negligible function
ε = ε(n) such that with probability greater than ε over ṽ

R← view
Ã∗(Ã∗,Bt), we have

AccHI
At,Ã∗(ṽ) > t · kacc + s ·m.

By definition,

AccHI
At,Ã∗(ṽ) =

∑

i∈I

AccH
At,Ã∗(Γ

At

i (ṽ)|ṽ<i)

=
∑

i∈I

H∗
ΓAt

i (ṽ<i,Si,Ãi,W̃i)
(ΓAt

i (ṽ)),

where ṽ<i denotes the portion of the view up to and including the i’th message from Bt, Si consists
of the coins of Ã tossed just before sending its i’th message, Ãi = (Ai,1, . . . , Ai,t) is the message it
sends, and W̃i = (Wi,1, . . . ,Wi,t) is its witness/justification string. Note that if we define random

variables X̃i(ṽ<i) = ΓAt

i (ṽ<i, Si, Ãi, W̃i), and for j = 1, . . . , t, define Xi,j(ṽ<i) to equal Ai,j if the
witness string Wi,j is A-consistent for the j’th execution and to equal ⊥ otherwise, then we are
exactly in the situation of Lemma 2.6. (X̃i equals ⊥ iff at least one X̃i,j is ⊥ and otherwise equals
(Xi,1, . . . ,Xi,t).) Thus, with probability at least 1− 2−s = 1− neg(n) over ṽ, we have

t∑

j=1

H∗Xi,j(ṽ<i)
(xi,j) ≥ H∗

X̃i(ṽ<i)
(x̃i)− s,

where the xi,j’s and x̃i are defined from the i’th round of the view ṽ analogously to how the X̃i,j ’s
and X̃i are defined from the random variables (Si, Ãi, W̃i). Summing over all i ∈ I, we have

∑

i∈I

t∑

j=1

H∗Xi,j(ṽ<i)
(xi,j) ≥

∑

i

H∗
X̃i(ṽ<i)

(x̃i)−m · s

> t · kacc

with probability ε(n) − neg(n) = 1/poly(n) over ṽ. When this event occurs, there must exist a j
such that

∑
i∈I H∗Xi,j(ṽ<i)

(xi,j) > kacc. Thus we can violate the accessible max-entropy of A with
respect to π with the following ppt adversary A∗ that interacts with B as follows:

1. Pick a random j in [t] (using A∗’s initial coin tosses s0) and simulate an execution of Ã∗ with
Bt.

2. We simulate Bt by using the external B for the j’th execution of B and running t−1 copies of
B internally (the coin tosses for these copies of B are taken from A∗’s initial coin tosses s0).

3. A∗ will use the justification strings output by Ã∗ for the j’th execution of π.

Interactions of A∗ with B correspond naturally to interactions of Ã∗ and Bt. Moreover, it can
be verified that for each fixed choice of j by A∗ and every induced view ṽ of Ã∗, the accessible
sample-entropy achieved by A∗ is precisely:

∑
i∈I H∗Xi,j(ṽ<i)

(xi,j). By the above, this is greater than
kacc with non-negligible probability. �
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The second tool, given by Proposition 3.9 shows how to turn a protocol π = (A,B) for which
a lower bound kreal on its real Shannon entropy is known to a different protocol (A, B) for which
a lower bound kreal/m is known on the real Shannon entropy of (almost all of the) individual
messages. The price of this transformation is in an increased round complexity (indeed the
transformation essentially consists of sequential repetition of the original protocol). Since lower
bounds for specific rounds are needed for our transformation of inaccessible entropy to statistically
hiding commitments, Proposition 3.9 will indeed come useful. In cases where we will not want to
pay the price of increased round complexity we will instead employ non-uniform advice (consisting
of the individual bounds).

Proposition 3.9 (equalizing real entropy via sequential repetition). Let n be a security parameter,
π = (A,B) an m-round protocol. For every t ∈ poly(n), there is a (t + 1) · m-round protocol
π′ = (A, B) satisfying the following properties:

real entropy: Let I ′ = {m + 1, . . . , tm}. Suppose the real Shannon entropy of A with respect to π
is at least kreal. Then, for all i ∈ I ′, the real Shannon entropy of A in round i with respect
to π′ is at least kreal/m.

accessible max-entropy If A has accessible max-entropy at most kacc with respect to π, then A

has accessible max-entropy at most t · kacc with respect to π′.

In particular, if we know that kacc < (1 − 1/p) · kreal for some polynomial p, then setting
t = 2p, we obtain π′ = (A′, B′) where (1) for all i ∈ I ′, the real Shannon entropy in round
i w.r.t. π′ is at least kreal/m, and (2) the accessible max-entropy of A′ w.r.t. π′ is at most
t · kacc < t · kreal − 2kreal = kreal

′ − kreal, where kreal
′ = |I ′| · kreal/m.

Proof. (of Prop 3.9) We begin by specifying the new protocol π′ = (A, B):

1. B chooses an offset j ∈ [m] uniformly at random and sends j to A.

2. For j rounds, the parties send to each other the special symbol ?.

3. The parties run t− 1 sequential repetitions of π, with A and B acting A and B respectively .

4. For m− j rounds, the parties send to each other the special symbol ?.

To establish the statement on real Shannon entropy, observe that for every i ∈ I ′, the ith message
in a random execution in π′ is identically distributed to a message in a random round of π. Hence,

E
t
R←(A,B)

[
RealH

{i}
A

(t)
]

=
1

m

m∑

j=1

E
t
R←(A,B)

[
RealH

{j}
A

(t)
]

=
1

m
E

t
R←(A,B)

[
RealH

[m]
A

(t)
]

= kreal/m

To obtain a bound the accessible max-entropy, consider any adversary A
∗ in π′. Note that A

∗ can
only achieve zero accessible sample-entropy for the first j rounds and the last m− j rounds. So if
A∗ achieves accessible sample-entropy at least t · kacc in a particular view, it must have achieved
accessible sample-entropy at least kacc in one of the blocks of m consecutive rounds corresponding
to one of the interactions with B. Based on this observation, we construct an adversary A∗ for π,
which chooses an execution i ∈ [t−1] and and offset j ∈ [m] at random, internally simulates the first
i− 1 interactions of A

∗ with B (using its initial coin tosses s0), and then plays the i’th interaction
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of A
∗ against the external B. It can be verified that for every view in which A∗ chooses execution i,

the accessible sample-entropy achieved by A∗ equals the accessible sample-entropy achieved by A
∗

in the rounds corresponding to the i’th interaction with B. Thus, if A
∗ achieves accessible sample-

entropy at least t ·kacc with nonnegligible probability ε, then A∗ achieves accessible sample-entropy
at least kacc with probability at least ε/t, contradicting the hypothesis. �

4 Entropy Gap to Commitment

In this section we present the main technical contribution of this paper, showing how any protocol
with a noticeable gap between its real and accessible entropies can be converted into a statistically
hiding and computationally binding commitment scheme. First we recall the definition of the
latter:4

Definition 4.1. A (bit) commitment scheme (S,R) is an efficient two-party protocol consisting of
two stages. Throughout, both parties receive the security parameter 1n as input.

Commit. The sender S has a private input b ∈ {0, 1}, which she wishes to commit to
the receiver R, and a sequence of coin tosses σ. At the end of this stage, both parties
receive as common output a commitment z.

Reveal. Both parties receive as input a commitment z. S also receives the private
input b and coin tosses σ used in the commit stage. This stage is non-interactive: S

sends a single message to R, and R either outputs a bit (and accepts) or rejects.

Definition 4.2. A commitment scheme (S,R) is statistically hiding if

Completeness. If both parties are honest, then for any bit b ∈ {0, 1} that S gets as
private input, R accepts and outputs b at the end of the reveal stage.

Statistical Hiding. For every unbounded strategy R∗, the distributions viewR∗(S(0),R∗)
and viewR∗(S(1),R∗) are statistically indistinguishable.

Computational Binding. For every ppt S∗, S∗ succeeds in the following game
(breaks the commitment) with negligible probability in n:

• S∗ interacts with an honest R in the commit stage, which yields a commitment z.

• S∗ outputs two messages τ0, τ1 such that for both b = 0 and b = 1, R on input
(z, τb) accepts and outputs b.

The main theorem of this section is as follows:

Theorem 4.3 (restatement of Theorems 1.1, 1.2). Assume that one-way functions exist. Then
there exists an efficient transformation that takes as input a security parameter 1n, an (efficient)
m-round interactive protocol5 π = (A,B), and unary parameters 1m, 1k and 1p, and outputs a
O(mp)-round protocol Com with the following guarantee: if the real Shannon entropy of A with

4We present the definition for bit commitment. To commit to multiple bits, we may simply run a bit commitment
scheme in parallel.

5Given as a pair of circuits.
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respect to π is at least k and the accessible max-entropy of A with respect to π is at most (1−1/p)k,
then Com is a statistically hiding and computationally binding commitment scheme. Alternatively
if m = O(1), then Com can also be made to have O(1) rounds.6

The heart of the proof lies in following Lemma.

Lemma 4.4. Assume that one-way functions exist. Then there exists an efficient transformation
that takes as input a security parameter 1n, an (efficient) m-round interactive protocol π = (A,B),
a set of indices I ⊆ [m] and a set of integers {`i}i∈I where `i ≥ 3n for all i ∈ I, and outputs an
O(m)-round commitment scheme Com = (S,R) with the following properties:

hiding: If for all i ∈ I the real min-entropy with respect to π in the i’th round is at least `i, then
Com is statistically hiding.

binding: If the accessible max-entropy of A in the rounds of I with respect to π is at most
∑

i∈I `i−
3n |I|, then Com is computationally binding.

Informally (see Section 4.3 for the formal proof) Lemma 4.4 is used to prove Theorem 4.3 as
follows: we start by applying the “equalizing real entropy transformation” (Proposition 3.9) on π to
get an O(pm)-round protocol π′ for which the entropy gap still exists and (almost) all of π′’s rounds
have the same known value of real entropy. Then we apply the gap amplification transformation
(Proposition 3.8) on π′ to get a protocol π′′ where (almost) all of its rounds have large known value
of min-entropy, and the accessible max-entropy of the protocol is much smaller than the sum of
the rounds’ min-entropy. Finally, we apply Lemma 4.4 on π′′ to get an O(mp)-round statistically
hiding commitment.

In the case of a constant m, we skip the first “entropy equalizing” step and rather apply
Proposition 3.8 directly on π, to get a protocol as π′′ above, but for which we have no handle
of the value of the (possibly different) min-entropies of each round. Since π and thus π′′ is a
constant round protocol, by applying Lemma 4.4 on π′′ for polynomially many possible values for
the min-entropies whose sum is “large enough” (this value is induced by the value of k), we get
polynomially many commitments that are all binding and at least one of them is hiding. These
commitment can be combined in a standard way to get a single scheme that is statistically hiding
and computationally binding.

In order to prove Lemma 4.4 (again see Section 4.3 for the formal proof), we first show (in
Section 4.1) show how to use a protocol with gap between its real min-entropy and its accessible
max-entropy to get a secure “m-phase commitment” (defined in Section 4.1). We then complete
the proof Lemma 4.4, by showing (in Section 4.1) how to use such a secure m-phase commitments
for constructing a full fledged statistically hiding commitment.

4.1 Entropy Gap to secure m-phase Commitment

We start by defining the notion of m-phase commitment, and then show how to construct such a
commitment that is secure (in the sense given below) using a protocol with gap between its real
min-entropy and its accessible max-entropy.

6By equipping the transformation with nonuniform advice, the number of rounds of Com can be reduced to O(m)
also in the general case.
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4.1.1 m-phase commitment

An m-phase commitment protocol consists of m sequentially executed commitment protocols such
that each commit stage is statistically hiding and no polynomial-time strategy can break the binding
in all m phases.

Definition 4.5. (m-phase commitment scheme) An m-phase commitment scheme, for m ∈ N, is
an m-phase efficient protocol between a sender S, getting as private input an m-bit string b, and
a receiver R, where both parties get a security parameter 1n. Each phase consists of a possibly
interactive commit-stage followed by a reveal-stage in which the sender sends a single message to
the receiver. We put the following security requirements on the protocol:

hiding (against semi-honest receivers): After the i’th commit stage (i.e., the commit stage
of the i’th phase), the value of b[i] is statistically hidden from R. Namely, for every i ∈
[m] and every b ∈ {0, 1}i−1 and b

′ ∈ {0, 1}m−i it holds that viewi
R
(S(b, 0, b

′
),R)(1n) and

viewi
R
(S(b, 1, b

′
),R)(1n) are statistically indistinguishable, where viewi

R
stands for R’s view

after the i’th commit stage.
(m

1

)
-binding: Let S∗ be an algorithm interacting with R, and assume that after the i’th reveal-stage,

S∗ locally outputs two strings w0
i = (r0, b

0
) and w1

i = (r1, b
1
). We say that S∗ breaks the

binding of the i’th phase if (w0
i , (transi, ai)) and (w1

i , transi) are S-consistent and b
0
[i] 6= b

1
[i],

where transi is the transcript of the protocol after i’th commit-stage and ai is the message of
S∗ in the i’th reveal phase. We say that S∗ breaks the

(m
1

)
-binding of Com in a given execution

if it breaks the binding of all the phases simultaneously. Finally, Com is
(m

1

)
-binding, if no

ppt breaks the
(m

1

)
-binding of Com with more than negligible probability.

An m-phase commitment scheme is secure, if it is both hiding (against semi-honest receivers) and(m
1

)
binding.

Remark 4.6. We note that while the above primitive looks similar (and shares similar name)
to the two-phase commitment schemes previously defined by Nguyen et al. [NV, HNO+], the two
primitives enjoy very different security properties. The

(2
1

)
-binding property of the earlier notion

only guarantees that the adversary cannot decommit the first-phase commitment to two values,
and then break the binding also in the two second-phase commitments induced by both first-phase
decommitments. This is in contrast to the above definition of

(m
1

)
binding, where it is infeasible for

the adversary to be able break the subsequent phases induced by even one of the decommitments.
In Lemma 4.18, we take advantage of the latter stronger binding guarantee in order to convert

any secure m-phase commitment into a full fledged statistically hiding commitment with the same
round complexity. In contrast, the only transformation known from earlier form of two-phase
commitment to statistically hiding commitment, due to [HNO+], incurs a multiplicative ω(log n)
factor to the round complexity.

4.1.2 Constructing m-phase commitment

Lemma 4.7. Assume that one-way functions exist. Then there exist an efficient transformation
that takes as input parameter 1n, 1m and 1t, an m-round interactive protocol π = (A,B), a set of
indices I ⊆ [m] and a set of integers {`i}i∈I , where `i ≥ 3n for all i ∈ I, and outputs an O(m)-round
|I|-phase commitment scheme Com = (S,R) with the following properties:
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hiding: If for every i ∈ I the real min-entropy of A in the i’th round with respect to π is at least
`i , then Com is hiding (against semi-honest receivers).

binding: If the accessible max-entropy of A in the rounds of I with respect to π is at most
∑

i∈I `i−
3n |I|, then Com is

(m
1

)
binding.

public-coin: R is public-coin if B is.

Proof. (of Lemma 4.7) The high level idea is to use the rounds of (A,B) whose indices are inside
I as the phases of (S,R). More specifically, we use the i ∈ I’th message ai of A (played by S) for
masking the input bit bi′ of S, where i′ is the index of i inside I. In order to do so, we add an
additional step before S sends ai, in which S sends the “hash value” of ai such that the following
hold:

• after sending the hash value, the real min-entropy ai is still high (e.g., Ω(n)), and

• if the accessible max-entropy of A in the i’th round is lower than `i− 3n (i.e., given A’s view,
the support size of ai is smaller than 2`i−3n), then ai is determined from the point of view of
(even a cheating) S after sending the hash value.

We next extract (via inner product with a random string) a bit σi′ from ai whose real min-entropy
is close to one (i.e., its value is close to uniform from R’s point of view). Finally, we use σi′ for
masking bi′ . The hiding of the scheme follows from the guarantee about the min-entropy of A’s
messages. The

(m
1

)
-binding of the scheme follows since the bound on the accessible max-entropy of

A, yields that in (almost) every execution it holds that the accessible entropy of one of A’s messages
is low.

As our basic building block we are using the following two-round information-theoretic
interactive hashing protocol, taken from [DHRS].

Protocol 4.8. (two-round interactive hashing protocol) (SIH,RIH)

Common input: security parameter 1n, length parameter 1len, an entropy threshold 1`, a family of
len-wise independent hash functions Hlen : {0, 1}len 7→ {0, 1}` and a family of pairwise independent
hash functions H2 : {0, 1}len 7→ {0, 1}n.

SIH’s private input: x ∈ {0, 1}len.

1. RIH selects uniformly at random hlen ∈ Hlen and sends it to SIH.

2. SIH sends y1 = hlen(x) back to RIH.

3. RIH selects uniformly at random h2 ∈ H2 and sends it to SIH.

4. SIH sends y2 = h2(x) back to RIH.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will use two properties of the above protocol. The first, which we will use for “hiding,”
is that SIH sends only ` + n bits to the RIH. Thus, if SIH’s input x comes from a distribution of
min-entropy significantly larger than ` + n, it will still have high min-entropy conditioned on RIH’s
view of the protocol (with high probability). On the other hand, the following “binding” property
says that if x has max-entropy smaller than ` (i.e. is restricted to come from a set of size at most
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2`), then it will have negligible entropy after the protocol (i.e. will be uniquely determined, except
with negligible probability).

The following proposition readily follows from the proof of [DHRS, Theorem 5.6]

Proposition 4.9 (“statistical binding” property of (SIH,RIH)). Let L ⊆ {0, 1}len be a set of size at
most 2`. Let S∗

IH
be an (unbounded) adversary playing the role of SIH in (SIH,RIH) and assume that

following the protocol execution S∗
IH

outputs two strings x0 and x1. Then

Pr[x0 6= x1 ∈ L ∧ ∀j ∈ {0, 1} hlen(xj) = y1 ∧ h2(xj) = y2] < 2−Ω(n) .

The above proposition guarantees that after Protocol 4.8 ends, it is impossible (even for
an unbounded party) to find two consistent inputs inside a “small set,” except with negligible
probability. For our reduction to go through, we need the following stronger security guarantee:
it should be infeasible (for polynomially bounded parties) to find two consistent inputs where
even one of them lies inside a small set. Protocol 4.11 defined below uses universal one-way hash
functions to achieve this strong requirement. We use the following definition of universal one-way
hash functions.

Definition 4.10 (universal one-way hash functions [NY]). Let F =
⋃

nFn =
{
f : {0, 1}`(n) 7→ {0, 1}m(n)

}

be a an efficient family of functions. We say that F is a family of universal one-way hash functions

if the following conditions hold:

Compression. m(n) < `(n).

Target Collision Resistance. The probability that A succeeds in the following game is negligible
in n:

1. (x, state)← A(1n)

2. f ← Fn

3. x′ ← A(x, state, f) and A succeeds whenever x′ 6= x and f(x′) = f(x).

Adding these to the interactive hashing protocol, we obtain the following hashing protocol.

Protocol 4.11. (hashing protocol)7 (SH,RH).

Common input: security parameter 1n, length parameter 1len, entropy threshold 1` and a family of
universal one-way hash function functions Fn =

{
f : {0, 1}len → {0, 1}n

}
.

SH’s private input: x ∈ {0, 1}len .

1. The two parties run (SIH(x),RIH)(1n, 1len, 1`), with SH and RH act SIH and RIH respectively.

2. RH sends a random f ∈ Fn to SH.

3. SH sends y = f(x) back to RH.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7Protocol 4.11 is of similar flavor (and indeed inspired by) to the protocol used by Haitner and Reingold [HR2] in
their transformation of “two-phase” commitment to statistically hiding commitment. In fact, the protocol of [HR2]
can be seen as a special case of Protocol 4.11, designed to work for singleton sets Lv’ (see Lemma 4.12).
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Note that SH now sends a total of at most ` + 2n bits to the receiver, and the following is the
new binding property.

Lemma 4.12 (“computational binding” property of (SH,RH)). Let
{
Lv ⊆ {0, 1}len

}
v∈{0,1}∗ be a

family of sets, each of size at most 2`. Let S∗
H

be a ppt adversary playing the role of SH in (SH,RH),
assume that before the protocol starts S∗

H
outputs a string v and that, following the protocol execution,

S∗
H

outputs two strings x0 and x1. Then

Pr[x0 6= x1∧(∃j ∈ {0, 1} : xj ∈ Lv)∧(∀j ∈ {0, 1} hlen(xj) = y1∧h2(xj) = y2∧f(xj) = y)] = neg(n) ,

where y1 and y2 are the values of the corresponding messages in the embedded execution of (SIH,RIH).

Proof. Assume towards a contradiction that there exists an ppt S∗
H

that violates the “binding” of
(SH,RH) with success probability at least 1/p for some p ∈ poly, and let the random variables V and
TransIH, denote the value of the variables v and transIH induced by a random execution of (S∗

H
,RH),

where transIH denotes the transcript of the embedded execution of (SIH,RIH). Proposition 4.9 yields
that S∗

H
that violates the binding of (SH,RH) with probability at least 1/2p also when we add the

requirement that there exists a single element in LV that is consistent with TransIH. We denote
the value of this element by X. Let E be the event that after the interaction of (S∗

H
,RH) ends,

there exists a single element in LV that is consistent with TransIH the conditional probability that
S∗

H
cheats is at least 1/4p. An averaging argument yields that Pr[E] ≥ 1/2p. Note that whenever

E happens, X can be extracted efficiently with probability 1/4p - simulate a random continuation
of (S∗

H
,RH), and let x0, x1 be the output of S∗

H
in the end of the execution. Output uniformly at

random x ∈ {x0, x1}.
Consider the following efficient algorithm for violating the target collision resistance of Fn.

Algorithm 4.13 (collision finder).
ColFinder

Input: security parameter 1n.

Output x:

• Emulate a random execution of (S∗
H
,RH) till the execution of (SIH,RIH) ends, denote the state

of the emulated protocol by state.

• Extract the value of X induced by the above emulation, where if the extraction fails abort.

• output (x, state).

Finding Collision:

Input: f ∈ Fn, x ∈ {0, 1}len and state ∈ {0, 1}∗.
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Operation:

• Emulate a random execution of (S∗
H
,RH) conditioned on state and F = f , let x0 and x1 be

the output of S∗
H

in the end of the emulation.

• Output {x0, x1} \ {x}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By the above observations, it follows that ColFinder violates target collision resistance Fn with
probability Ω(1/p2). �

Let (A,B) be an m-round protocol with “entropy gap”. We assume without lost of generality
that all of A’s messages are of the same length8 len. In the following we invoke Protocol 4.11 on
each of the |I| high min-entropy messages of A, to construct an |I|-phase commitment scheme.

Protocol 4.14 (|I|-phase commitment scheme).
Com = (S,R).

Common input: security parameter 1n, round complexity 1m, message length 1len, an m-round
protocol (A,B), a family of functions F =

⋃
n Fn =

{
f : {0, 1}len → {0, 1}n

}
, a set I ={

i1, . . . , i|I|
}

and a set of entropy thresholds
{
1`i

}
i∈I

.

S’s private input: b ∈ {0, 1}|I|.

The two parties initiate an execution of (A(1n),B(1n)), with S and R acting A and B respectively.
The protocol continues through the following |I|-phase protocol:

The j’th commit stage:

1. The two parties continue the execution of (A(1n),B(1n)) until B sends its ij’th message to A.

2. The two parties run (SH(aj),RH)(1n, 1len, 1`ij
−3n) where S and R act as SH and RH respectively

and aj is the next message of A in the embedded execution of (A(1n),B(1n)).

3. S chooses a random r ∈ {0, 1}len and sends (〈r, aj〉2 ⊕ b[j], r) to R, where 〈·, ·〉2 denotes
inner-product modulo 2.

The j’th reveal stage:
S (acts as A) sends aj to R (acts as B).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Claim 4.15 (hiding against semi-honest receivers). Assume that for all i ∈ I the real min-entropy
of A in the i’th round is at least `i with respect to π, then Com is hiding (against honest receivers).

Proof. Let Ai denote the i’th message of A in π and let V B
i denote B’s view before Ai is sent,

where both random variables are with respect to a random execution of π. The assumption about
`i yields that there exists a negligible function ε such that Pr

t
R←(A,B)

[RealHi
A(t) ≥ `i] ≥ 1 − ε(n).

It follows that there exists a distribution (V B
i , A′i) that is ε-close to (V B

i , Ai) and for every value
vB
i ∈ Supp(V B

i ) it holds that Ai |V B
i =vB

i
has min-entropy at least `i.

8Using padding technique one can transform any protocol to one that all its messages are of the same length. It
easy to verify that such padding does not change the real/accessible entropy of the parties.
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Let V R
i be R’s view in a random execution of Com just before the embedded A sent its i’th

message, and let V B
i denote the part of V R

i that is coming from the embedded execution of π and
V H

i the other part of vi. Note that value of V H
i is a probabilistic function of V B

i , where V B
i and

Ai are distributed the same in (S(Um),R) and in (A,B). Thus (V R
i , Ai) is ε-close to a distribution

(V R
i , A′i) such that for every value vR

i ∈ Supp(V R
i ) it holds that A′i |V R

i =vR
i

has min-entropy at least

`i. Let Hi be the concatenation of the messages sent by S in the i’th phase of (SH(Um),RH). Since
|Hi| = `i−n, it follows that (V R

i ,Hi, Ai) is (ε+2−n/2)-close to a distribution (V R
i ,Hi, A

′
i) such that

for every value (vR
i , hi) ∈ Supp(V R

i ,Hi) it holds that A′i |(V R
i ,Hi)=(vR

i ,hi)
has min-entropy at least

n/2. Finally, by the Leftover Hash Lemma (cf., [ILL]), for every b ∈ {0, 1}i−1 and b
′ ∈ {0, 1}m−i it

holds that viewR′
i(S(b, 0, b

′
),R) and viewR′

i(S(b, 1, b
′
),R) are of statistical distance at most ε+2−Ω(n),

where V R′
i stands for R’s view after the i’th commit stage. �

Claim 4.16 (
(m

1

)
-binding). If the accessible max-entropy of A with respect to I in π is at most∑

i∈I `i − 3n |I|, then Com is
(m

1

)
-binding.

Proof. Let S∗ be a ppt playing the role of S in Com and assume that it breaks the
(
m
1

)
-binding of

Com with non-negligible probability ε. For i ∈ I, let ai denote the message that S∗ sends in the i’th
reveal phase and let w0

i be the first justification string that S∗ locally outputs after this stage. We
define algorithm A∗ for interacting with B as follows: A∗ emulates a random execution of (S∗,R)
while emulating R using the B it interacts with, and choosing the messages of R that are not of
embedded B uniformly at random. Each time S∗ send a message ai to B (and in particular when
i ∈ I), A∗ locally outputs the string w0

i . Note that the view of S∗ in a real execution of (S∗,R) and
in the emulated execution induced by a random execution of (A∗,B) are the same.

Let V be distributed according to A∗’s in a random execution of (A∗,B). Given v ∈ Supp(V ),
let vi be the prefix of v that reflects A∗’s view just after B sent its i’th message and let Si(v) :=
{a ∈ {0, 1}∗ : AccHA,A∗(a | vi) ≤ `i − 3n}. Note that |Si(v)| ≤ 2`i−3n. By Lemma 4.12, S∗ cannot
break (with nonnegligible probability) the binding of the i’th phase of Com and in the same time
have ai ∈ Si(v). Thus, with nonnegligible probability for every i ∈ I it holds that ai /∈ Si(v)
and w0

i is a good justification string for ai. Namely, A∗ contradicts the bound on the accessible
max-entropy of A in π.

�

By Rompel [Rom] (full proof in [KK]), it follows that assuming the existence of a one-way
function, there exists a family of universal one-way hash functions from polynomial `(n) ∈ poly(n)
to m(n) < `(n).9 By [NY, Lemma 2.1], this implies a construction for every m(n) such that
`(n) = poly(m(n)), which yields the following theorem.

Theorem 4.17 ([Rom, NY, KK]). Assume that one way functions exist. Then for any positive
polynomial `(n) ≥ n, there exists a family of universal one-way hash functions mapping strings of
length `(n) to strings of length n.

We conclude the proof of the lemma by applying the transformation guaranteed by the above
theorem on the given one-way function to get a family of universal one-way hash functions F =

9The Target Collision Resistance property of Definition 4.10 is somewhat stronger than the one given in [KK]
(and somewhat weaker than the original definition in [NY]). The strengthening is in allowing A to transfer additional
information, i.e., state, between the selection of x and finding the collision. We note that the proof in [KK] holds also
w.r.t. to our stronger definition (and even w.r.t. the original definition of [NY]).
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⋃
nFn =

{
f : {0, 1}len 7→ {0, 1}n

}
, and output an instance of Protocol 4.14 with common inputs

(1n, 1m, π ,F , I and {`i}i∈I) as the m-phase commitment protocol. �

4.2 Secure m-phase Commitment to Statistically Hiding Commitment

Lemma 4.18. (converting m-phase commitments to standard commitments) There exist an
efficient transformation that takes as input a security parameter 1n, round parameter 1m and
a secure m-phase commitment scheme, and outputs an m-round commitment scheme, which is
statistically hiding against honest receivers and computationally binding.

Proof. We start by constructing a statistically hiding (against honest receivers) and weakly binding
(i.e., the binding only holds with noticeable probability) standard commitment from an m-phase
commitment. In this commitment both parties interact in a random instance of the m-phase
commitment (i.e., random value of b), where the receiver chooses at random (and keeps private)
an index i ∈ [m] and a “mode bit” M ∈ {“Com”, “Check”}. In case of M = “Com”, following the
i’th commit stage the receiver asks the sender masks the secret bit with bi (i.e., the value of the
i’th commitment) and halts the execution. Otherwise (M = “Check”), following the i’th reveal
stage the receiver asks the sender to justify its reveal - to send random-coins and input that are
consistent with the transcript (with respect to the honest sender). If the sender fails to justify, the
receiver rejects, otherwise the execution halts (no additional value is sent in this case).

The hiding of the above commitment immediately follows from the hiding of the m-phase
commitment, in the following we argue that it is also weakly binding. Given a sender that breaks
the binding with too high probability (e.g., better than 1 − 1

4m), we use it for breaking the
(m

1

)
-

binding of the underlying m-phase commitment as follows: following the i’th commit stage, we send
“Com” to the sender to get two openings of this commitment. We then “rewind” the last message,
and continue the (real) execution of the commitment. Following the i’th reveal stage, we send
“Check” to the sender to get an opening of the i’th commit that is consistent with the reveal stage.
Then we again rewind the last message and continue the execution. It is easy to verify, that by
doing the above we break the

(
m
1

)
-binding with non-negligible probability. In order to get strongly

binding commitment, we repeat the above weakly commitment in parallel. While in general the
parallel repetition of a weakly computational binding commitment is not known to improve the
binding, in the case of the above commitment the strongly binding of its parallel repetition follows
via a rather straight forward argument (see detail below).

Our transformation sets k = m · log2 n, and outputs the commitment Com(k) = (S(k),R(k))
defined below:

Protocol 4.19 (statistically hiding commitment scheme).
Com(k) = (S(k),R(k)).

Commit stage:

Common input: 1n,

S(k)’s input: b ∈ {0, 1} .

S(k) chooses uniformly at random B1, . . . , Bk ∈ {0, 1}m, and R(k) sets J = [k]. The two parties
execute in parallel (S(B1),R)(1n), . . . , (S(Bk),R)(1n) with S(k) and R(k) act as S and R respectively
in each execution, but with the following additional steps:
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Real Commit: Following the i’th commit stage, the parties engage in the following subprotocol:

1. R(k) chooses a random subset Ki ⊆ J , where each j ∈ J is independently chosen with
probability 1/2m, and sends its description to S(k).

2. S(k) sends σj
i = b⊕Bj

i for all j ∈ Ki back to R(k).

3. The parties halt the interactions of (S(Bj),R)(1n) for all j ∈ Ki.

Consistency check: Following the i’th reveal stage, the parties engage in the following subproto-
col:

1. R(k) chooses a random subset Li ⊆ (J \ Ki), where each j ∈ (J \Ki) is independently
chosen with probability 1/2m, and sends its description to S(k).

2. S(k) sends (rj, Bj) for all j ∈ Li back to R(k), where rj are the random-coins used by S

in the j’th parallel execution.

3. R(k) verifies for all j ∈ Li that ((rj, Bj), trans
j
i ) is S-consistent, where trans

j
i is the

transcript of j’th parallel execution. If one of the consistency checks fails, R(k) aborts
and rejects.

4. The parties halt the interactions of (S(Bj),R)(1n) for all j ∈ Li, and R(k) sets J =
J \ (Ki ∪ Li).

Reveal stage: Generic. S(k) sends its random-coins and the value of b to R(k), and R(k) verifies
that they are S(k)-consistent with the transcript.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is easy to verify that Com(k) is correct. In the following claims, we prove that Com(k) is
statistically hiding and computationally binding.

Claim 4.20. Com(k) is statistically hiding.

Proof. The hiding for case that k = 1 (i.e., |J | = 1), follows from the hiding of the m-phase
commitment. Thus, the hiding for polynomial k (and in particular for k = m · log2 n as above)
follows by a straight forward hybrid argument.

�

Claim 4.21. Com(k) is computationally binding.

Proof. Let S(k)∗ be a ppt that breaks the
(m

1

)
-binding of Com(k) with probability ε > 1/poly, and

let V denote S(k)∗’s view in a random execution of (S∗,R(k)). Given v ∈ Supp(V ), let vi be the
view of S∗ (induced by v) at the beginning of the i’th Real commit stage, and let Ji(v), Ki(v) and
Li(v) be the values of J and Ki and Li in the i’th Real Commit and Consistency check stages. We
let γi,j(v) [resp., δi,j(v)] be the probability that S∗ breaks the commitment in V conditioned on the
event that V starts with vi and j ∈ Ki(V ) [resp., j ∈ Li(V )].

For i ∈ [m] let Badγ
i (v) = {j ∈ Ji(v) : γi,j(v) ≤ ε/2} and let Badδ

i (v) = {j ∈ Ji(v) : δi,j(v) ≤ ε/2}.
We call v bad if there exists i∗(v) ∈ [m] such that max

{∣∣∣Badγ
i∗(v)(v)

∣∣∣ ,
∣∣∣Badδ

i∗(v)(v)
∣∣∣
}

> k/2m. For
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v, v′ ∈ Supp(V ), let Ev(v
′) = 1 iff (Ki∗(v)(v

′) ∩ Badγ
i∗(v)(v) = ∅) ∧ (Li∗(v

′) ∩ Badδ
i∗(v)(v) = ∅). It

follows that for every bad v it holds that

Pr[Ev(V ) = 1 | V starts with vi∗ ] ≤
(

1− 1

2m

)k/2m

= neg .

Therefore, for every bad v and j ∈∈ Ji∗(v) it holds that γ′i,j(v) ≤ γi,j(v) + neg and δ′i,j(v) ≤
δi,j(v) + neg, where γ′i,j(v) [resp., δ′i,j(v)] is the probability that S∗ breaks the commitment in V
conditioned on the event that V starts with vi, j ∈ Ki(V ) [resp., j ∈ Li(V )] and Ev(V ) = 0. It
follows that

Pr[S∗ breaks the binding in V ∧ V is bad] (1)

≤ ε/2 + neg <
2ε

3

Consequently, the event that S∗ breaks the binding and V is not bad occurs with probability at
least ε/3. In the following we use this for violating the

(m
1

)
-binding of Com. For ` ∈ [k], let S∗` be

defined as follows:

Algorithm 4.22. S∗` .

Operations: Emulate a random execution of (S(k)∗,R(k))(1n), while emulating R(k) using the real
R in the `’th parallel executions and using t − 1 randomly emulated R’s for the other entries. In
addition, do the following in the i’th Real Commit and Consistency check phases (of Com(k)):

i’th Real Commit phase: Do the following for n/ε times:

1. Select (on behalf of R(k)) a random subset Ki ⊆ J conditioned on ` ∈ Ki,
10 and send Ki to

S(k)∗.

2. Continue the emulation of (S(k)∗,R(k)) till it ends.

3. If S(k)∗ broke the binding of Com(k):

(a) For d ∈ {0, 1}, set wd = (rd`
, b

d`
), where {(r0j

, b
0j

), (r1j
, b

1j
)}j∈Ki are the pairs of

random-coins that S(k)∗ outputs when breaking the binding.

(b) Halt the loop.

4. Otherwise, rewind (S(k)∗,R(k)) to the beginning of the Real Commit phase.

If none of the above loops succeed (i.e., the emulated S(k)∗ did not break the commitment), abort.
Otherwise, rewind (S(k)∗,R(k)) to its stage before the Real Commit phase. Select (on behalf of R(k))
a random subset Ki ⊆ J condition that ` /∈ Ki, and continue the emulation till the end of the Real
Commit phase.

10Where “random” stand for the same method done in a real execution of Com
k - each j ∈ J is independently

chosen with probability 1/2m.
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i’th Consistency check: Do the following for n/ε times:

1. Select (on behalf of R(k)) a random subset Li ⊆ (J \Ki) conditioned on ` ∈ Li, and send Li

to S(k)∗.

2. If S(k)∗ returns to R(k) a valid justification string {w̃j = (rj , b
j
)}j∈Ki:

(a) Locally output (w̃j = (rj , b
j
), wd = (rdj

, b
dj

)), where d ∈ {0, 1} is taken such that b
j
[i] 6=

b
dj

[i].11

(b) Halt the loop.

3. Rewind (S(k)∗,R(k)) to the beginning of the Consistency check.

If none of the above loops succeed (i.e., the emulated S(k)∗ failed to justify its output), abort.
Otherwise, select (on behalf of R(k)) a random subset Li ⊆ (J \Ki) condition that ` /∈ Li, and send
Li to S(k)∗, and continue the emulation till the end of the Consistency check.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We first note that S(k)∗’s view in the beginning of the i’th Real Commit phase, is distributed
exactly as the view of S(k)∗ in a random execution of (S(k)∗,R(k)) conditioned that j ∈ Ji. Inequality
(1) yields that with probability at least ε/3m over a random choice of j ∈ [k] and the random-coins
of Sj and R, for all i ∈ [m] it holds that δi,j(Ṽ ) > ε/2, where Ṽ denotes S(k)∗’s view in the end of
the emulation. Consider now the algorithm S∗ that selects that selects ` ∈ [k] uniformly at random
and acts in the interaction with R as S∗` . It follows that S∗ breaks the

(m
1

)
-binding of Com with

probability (1−O(2−n))ε/3m, and a contradiction is derived. �

�

4.3 Putting it Together

Now start by proving Lemma 4.7 and then use Lemma 4.7 for proving Theorem 4.3.

Proof. (of Lemma 4.4) We start by applying Lemma 4.7 on π = (A,B), I and {`i}i∈I to get an O(m)-
round m-phase commitment Comm that is hiding and

(
m
1

)
binding. Then we apply Lemma 4.18

on Comm to get a standard an O(m)-round commitment scheme Com = (S,R) with the following
properties:

• If for all i ∈ I it holds that A has real min-entropy at least `i in round i ∈ I with respect to
π, then Com is statistically hiding against honest receivers.

• If accessible max-entropy of A in the rounds of I with respect to π is at most
∑

i∈I `i−3n |I|,
then Com is computationally binding.

• R is public-coin if B is.

11Note that such value for d always exist - Since w0 = (r0`
, b

0`
) and w1 = (r1`

, b
1`

) (chosen in Line 3. of the i’th
“Real Commit phase” above) imply decommitment to different values of the i’th commit stage (as otherwise S

(k)∗

has not broken the binding of Com
k), it follows that b

1
[i] 6= b

0
[i]. In particular either b

1
[i] or b

0
[i] is different than

b
j
[i].
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So it is left to amplify the hiding to hold against arbitrary receivers, this is achieved by applying
on Com the transformation guaranteed by the following fact.12

Fact 4.23. (implicit in [HHK+]) Assume that one-way functions exist. Then there exists an
efficient transformation that takes as input a security parameter 1n, an m-round statistically hiding
against honest receivers and computationally binding commitment scheme Com, and outputs an
O(m)-round statistically hiding and computationally binding commitment scheme Com′.

Proof. Immediately follows from the proof of [HHK+, Theorem 6], by combining Construction 6.4
with Claims 6.5 and 6.6. �

�

Proof. (of Theorem 4.3) We first give a general reduction that works for nonconstant m, and then
give a more efficient reduction for constant m’s. Our first step is to apply the equalizing real entropy
transformation (Proposition 3.9) on π (with respect to t = O(p)) to get an O(pm)-round protocol
π′ = (A′,B′) such that the following hold:

• The real Shannon entropy of A′ in round i ∈ I with respect to π′ is at least k/m, where
I := [m + 1, (m− 1) · p].

• kacc
I
π′ + 1 ≤ k · (p − 2), where kacc

I
π′ is an upper bound on the accessible max-entropy of A

in the rounds of I with respect to π′.

Our next step is to apply the gap amplification transformation (Proposition 3.8) on π′ (with respect
to t ∈ O((npm · len)3), where len is an upper bound on the length of A messages in π, to get a
protocol π′′ = (A′′,B′′) with the following properties:

• The real min-entropy of A′ round i ∈ I with respect to π′′ is at least ` = 3n+t·(k(p−2)− 1
2)/ |I|

• kacc
I
π′′ < t(k · (p − 2)− 1

2).

Finally, we apply Lemma 4.4 on π′′ (with respect to I and {`i = `}i∈I), to get an O(mp)-round
statistically hiding and computationally binding commitment.

In the case of a constant m, we skip the first “entropy equalizing” step and rather apply
Proposition 3.8 directly on π with t = O((mnpk · len)3) to get a protocol π′ with the following
properties:

• There exist I ⊆ [m] and a set {`i}i∈I (whose values might not be efficiently computable)
such that the real min-entropy of A′ in the round i ∈ I with respect to of π′ is at least
`i ∈ {3n, . . . , t · len}.

• kacc
I
π′ + 3n |I| ≤ t · k · (1− 1/2p) ≤∑

i∈I `i.

Consider all possible choices of I ′ and {`′i}i∈I′ , where the values of the `′i’s are taken from the
set {0} ∪ {3n, . . . , t · len} such that tk(1 − 1/2p) ≤ ∑

i∈I′ `i and I ′ = {i ∈ [m] : `′i > 0}. By
applying Lemma 4.4 to each of these polynomially many choices, we get a set of polynomially
many commitments that are all binding and at least one of them is hiding. We achieve the
statistically hiding and computationally binding commitment using any (round preserving) one-
out-of-poly commitment combiner (cf., [HHK+, Lemma 5.3]). �

12Unfortunately, the following transformation does not preserve the public-coin property of the receiver.
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5 Statistically Hiding Commitments from One-way Functions

Theorem 5.1 (restatement of Theorem 1.3). Let f : {0, 1}n 7→ {0, 1}n be a one-way function, then
there exists an efficient O(n/ log n)-round protocol π = (A,B) for which the following holds:

1. (A,B) has real Shannon entropy n with respect to π.

2. A has accessible max-entropy at most n− ω(log n) with respect to π.

3. B is public coin.

As an immediate corollary of Theorem 5.1 above and Theorem 4.3 we get an alternative and
more round efficient construction to the one-way function based statistically hiding commitment of
[HNO+].

Corollary 5.2. Let f : {0, 1}n 7→ {0, 1}n be a one-way function, then there exists an O(n2/ log2 n)-
round statistically hiding and computationally binding commitment scheme.

Remark 5.3. We could also use Theorem 5.1 and Theorem 4.3 to get a O(n/ log n)-round
non-uniform (i.e., the parties get an additional non-uniform advice) statistically hiding and
computationally binding commitment. Such a protocol matches the lower bound of Haitner et al.
[HHRS] on the round complexity of fully-black-box reduction from statistically hiding commitment
schemes to one-way functions.

Proof. (of Theorem 5.1) We assume for simplicity that n/ log n ∈ N, and let (SCIH,RCIH) be an
instantiation of the computational interactive hashing protocol given by ([HR1, Protocol 3.6])
(building on [NOVY]) described next.

Protocol 5.4 (computational interactive hashing protocol).
(SCIH,RCIH).

Common input: H - a family pairwise independent hash functions from {0, 1}n to {0, 1}log n .

SCIH’s input: y ∈ {0, 1}n.

For i = 1 to n/ log n:

1. RCIH selects uniformly at random hi ∈ H and sends its description to SCIH.

2. SCIH sends hi(y) back to RCIH.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We use the following fact about Protocol (SCIH,RCIH):

Proposition 5.5. Let f : {0, 1}n 7→ {0, 1}n be a one-way function, and for j ∈ [n] let Tj :={
y ∈ {0, 1}n : 2j−1 ≤

∣∣f−1(y)
∣∣ < 2j

}
. Then the following has negligible probability for every efficient

S∗
CIH

, j ∈ [n] and a constant c > 0: after n−j
log n − c rounds, S∗

CIH
outputs x0, x1 ∈ {0, 1}n such that

f(x0) 6= f(x1) and both f(x0) and f(x1) are in Tj and consistent with the protocol.13

13We note that in order for Proposition 5.5 to hold, Protocol 5.4 could not be replaced with the (computational)
interactive hashing of [NOVY]. The binding property guaranteed by the protocol of [NOVY] is only “meaningful”
for j > n − O(log n), and thus cannot be used to imply the proposition.
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Proof. Consider the function f ′ : {0, 1}n 7→ {0, 1}n, where f ′(x) = f(x) if f(x) ∈ Tj and equals
y0 ∈ ({0, 1}n \ Tj) otherwise (where in case Tj = {0, 1}n, we set f ′ := f). Note that one violates
Proposition 5.5 with respect to f and j iff it violates Proposition 5.5 with respect to f ′ and j.
Let L ⊇ Tj be an arbitrary set of size 2n−(j−1) inside {0, 1}n \ {y0}. Applying [HR1, Theorem
4.1] on f ′ and L, yields that if Proposition 5.5 does not hold with respect to f (and thus with
respect to f ′), then it is feasible to invert f ′ on the uniform distribution over L. In particular, there
exists a ppt A such that Pry←L[y ∈ TJ ∧ A(y) ∈ f−1(y)] > neg. Since for every y′ ∈ Tj it holds
that Pry←f(Un)[y = y′] ≤ Pry←L[y = y′] ≤ 2 · Pry←f(Un)[y = y′], it follows that Pry←f(Un)[A(y) ∈
f−1(y)] ≥ Pry←f(Un)[y ∈ Tj ∧A(y) ∈ f−1(y)] > neg, which contradicts the one-wayness of f (in the
standard sense). �

We let π be the following m = ( n
log n + 2)-round protocol:

Protocol 5.6. (A,B).

Common input: 1n.

1. A selects a random x ∈ {0, 1}n and set y = f(x).

2. The two parties run (SCIH(y),RCIH), with A and B acting SCIH and RCIH respectively.

3. B sends a dummy message to A.14

4. A sends y to B.

5. B sends a dummy message to A.

6. A sends x to B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since the only random-coins of A are x, Lemma 3.4 yields that A has real Shannon entropy
n with respect to π. In order to prove the Theorem, we need to show that the accessible max-
entropy of A with respect to π is bounded by n − ω(log n). Assume that a cheating A∗ outputs
y ∈ Tj :=

{
y ∈ {0, 1}n : 2j−1 ≤

∣∣f−1(y)
∣∣ < 2j

}
. Proposition 5.5 yields that for any c > 0, the values

of the last (n−j)/ log n−c prior to last messages of A∗ are determined given the first messages, and
thus their accessible entropy is zero. We conclude the proof by showing that the other messages do
not contribute too much accessible entropy to cover this loss.

Moving to the formal proof, we assume towards contradiction the existence of a ppt A∗, p ∈ poly
and c > 0 such that Pr[

∑
i∈[m] AccHi

A,A∗(V ) > n− c log n] ≥ 1/p(n), where V is A∗’s view induced
by a random execution of A∗,B). Let Vi be A∗’s partial view after receiving the i’th message of
B, let Ai be A∗’s i’th message and let Xi be A∗’s i’th justification string, where all these random
variables are taken with respect to a random execution of (A∗,B). Let Γi take the value Ai if
(Xi, (Vi, Ai)) is A-consistent (i.e., the transcript induced by Vi together with Ai are justified by Xi)
and set it to ⊥ otherwise. In the following we assume with put lost of generality that there exists
i ∈ [m] for which Γi 6=⊥ (conditioned that no such i exists, the max-entropy of A∗’s messages is

14The current and the following two messages could be removed, as they are only added for simplifying the notations
through the proof.
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negligible), let I∗ = max {i ∈ [m] : Γi 6=⊥} and let Y = f(WI∗). Finally, for j ∈ [n] let Ej be the
event that Y ∈ Tj . It follows that there exists j ∈ [n] such that

Pr
[( ∑

i∈[m]

AccHi
A,A∗(V )

)
> n− c · log n ∧ Ej

]
≥ 1/np (2)

In the following we derive a contradiction by showing that the above event cannot happen with
non-negligible probability. In order to do so we separate the sum in Inequality 2 into three different
parts and bound each of them separately. We start by bounding the head part of the sum.

Claim 5.7. For every j ≤ m− 2 and ε > 0 it holds that

Pr
[( j∑

i=1

AccHi
A,A∗(V )

)
> j · log n + log(1/ε)

]
≤ ε .

Proof. Recall that AccHi
A,A∗(V ) := H∗(Γi|Vi)

(ai(V )), where ai(V ) is A∗’s i’th message in V . Since

for each i ∈ [j] the variable Γi is taking values inside {0, 1}log n ∪ {⊥}, Lemma 2.7 yields that

E
[
Πj

i=12
AccHi

A,A∗
(V )]

= Es1←AccH1
A,A∗ (V )

[
2s1 · Es2←AccH2

A,A∗ (V )|s1

[
2s2 · · ·E

sj←AccHj
A,A∗

(V )|s1,...,sj−1
[2sj ]

]]

≤ nj ,

and the proof follows by a Markov bound. �

We next show that the accessible entropy of the “middle” part of the sum is very small.

Claim 5.8. For every j ∈ [n] and a constant c > 0 it holds that

Pr

[( m−1∑

i= n−j
log n
−c

AccHi
A,A∗(V )

)
> 1 ∧ Ej

]
= neg .

Proof. Let ` = (n − j)/ log n − c. Proposition 5.5 yields that after the first ` − 1 rounds, there
exists y0 ∈ Tj such that the the following event happens with only negligible probability: Ej = 1
and there exists i ∈ {`, . . . ,m− 1} such that Γi and is inconsistent with y0 and not equal to ⊥. It
follows that

Pr

[(m−1∑

i=`

AccHi
A,A∗(V )

)
> 1 ∧ Ej

]

≤ Pr

[(
∃i ∈ {`, . . . ,m− 1} : AccHi

A,A∗(V ) > 1/m

)
∧Ej

]

= neg ,

where the equality follows by Lemma 2.8.
�

Finally, we show that the entropy of the last message is not too large.
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Claim 5.9. For every j ∈ [n] and ε > 0 it holds that Pr[AccHm
A,A∗(V ) > j + log(1/ε) ∧ Ej ] ≤ ε.

Proof. Note that Γm ∈ f−1(Am−1) ∪ {⊥}, and recall that Ej = 1 means that Am−1 ∈ Tj. Thus

in case Ej holds, Lemma 2.7 yields that E[2AccHm
A,A∗(V )] ≤ 2j and the proof follows by a Markov

bound. �

Let ε > 1/poly and t = n−j
log n −

log(1/ε)
log n . The above claims yield that

Pr
[(∑

i∈m

AccHi
A,A∗(V )

)
> n− 2 · log(1/ε) ∧Ej

]

≤ Pr
[( t−1∑

i=1

AccHi
A,A∗(V )

)
> t · log n + log(1/ε)

]

+ Pr
[(m−1∑

i=t

AccHi
A,A∗(V )

)
> 0 ∧ Ej

]

+ Pr
[
AccHm

A,A∗(V ) > j + log(1/ε) ∧Ej

]

≤ 2ε + neg < 3ε .

Taking ε = min
{
1/3np, 1/nc/2

}
, yields that Pr

[(∑
i∈m AccHi

A,A∗(V )
)
> n − c · log n ∧ Ej

]
< 1/np,

which contradicts Equation 2. �

6 Statistically Hiding Commitments from CZKP

In this section, we establish that constant-round statistically hiding commitments are necessary
for constructing constant-round zero-knowledge proof systems for NP that remain secure under
parallel composition (assuming the existence of one-way functions):

Theorem 6.1 (restatement of Theorem 1.4). Suppose that nonuniformly secure one-way functions
exist and that NP has constant-round (computational) zero-knowledge proofs that are black-box zero
knowledge under parallel composition and that have an efficient prover. Then, there exist constant-
round statistically hiding commitment schemes (with computational binding against nonuniform
adversaries).

We note that the converse is true, namely that constant-round statistically hiding commitment
schemes imply constant-round black-box zero-knowledge proofs for NP that remain zero-knowledge
under parallel composition [GK1, Gol] as well as the existence of one-way functions.

6.1 Proof overview

The proof of this theorem roughly proceeds by showing that the zero-knowledge protocol has gap
between the real entropy of the verifier’s messages and the accessible entropy of the verifier’s
messages, and then applying the construction of Theorem 4.3. The intuition for the accessible
entropy of the verifier’s messages being small is that an adversary V∗ achieving high accessible
entropy should be hard to simulate. Indeed, the only advantage a black-box simulator has over a
prover is its ability to “rewind” the verifier. But a verifier V∗ achieving accessible high accessible
entropy can “resample” new messages that are distributed similarly to the real verifier’s messages
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every time it is rewound. Following Goldreich and Krawczyk [GK2], a simulator that successfully
simulates accepting transcripts against such a “resampling” verifier can be turned into a prover
strategy that convinces the real verifier to accept, which by soundness is possible only when
x ∈ L. This enables us to distinguish YES and NO instances, contradicting the hardness of the
language under consideration. We note that in [GK2] (as well as more recent applications of the
approach [Kat]), V∗ samples messages that are distributed identically to the real verifier’s messages.
Here we argue instead need to argue that high accessible entropy implies that V∗’s messages are
distributed “similarly” to the real verifier’s messages; our analysis is inspired by [AH, PT, GV].

We now describe our approach in more detail:

Establishing an entropy gap. We want to make an argument of the following kind: if V∗

achieves high accessible max-entropy while interacting with the honest prover, then it also achieves
high accessible max-entropy while interacting with the black-box simulator. Once we prove such a
statement, we may proceed as in [Kat, GK2] to construct a computationally unbounded “simulation-
based cheating prover” to derive a contradiction to the soundness guarantee of the underlying proof
system. However, formalizing such an argument presents two technical difficulties:

• First, “achieving high accessible max-entropy” is not an efficiently verifiable property, so it
is not clear a-priori that the property is preserved under zero-knowledge simulation.

• Next, “achieving high accessible max-entropy” is an “online” property, whereas the black-box
simulator does not interact with V∗ in an online manner.

For these reasons, we will work with a weaker notion of accessible max-entropy, where we restrict
attention to adversaries A∗ that “know” when they have achieved high entropy as measured by
some predicate success that is applied to its view, and for which the high entropy property holds in
an arbitrary context (i.e. when interacting with an arbitrary strategy B∗, not just the honest B).
We refer to this notion as “context-independent accessible max-entropy.” The predicate success will
be the efficiently verifiable property used to address the first technical difficulty, and we will reason
about whether V∗ achieves high entropy while interacting with the “simulation-based cheating
prover,” which will play the role of the aforementioned B∗. Unfortunately, we do not know how to
achieve gap amplification (Proposition 3.8) for context-independent accessible max-entropy and as
such, we are only able to construct commitment schemes starting from zero-knowledge proofs that
remain secure under parallel composition.

From entropy gap to commitment scheme. Next, we show that an upper bound on context-
independent accessible max-entropy is already sufficient to obtain a statistically hiding commitment
via the transformation in Section 4; that is, we show that the transformation in Section 4
(specifically, Protocol 4.14) can start with a weaker security guarantee and end with the same
conclusion.

6.2 Black-box zero knowledge

Definition 6.2 (zero knowledge). An interactive proof system (P,V) for a language L ∈ NP with
relation RL is zero knowledge if for every ppt V∗ and polynomial p, there exists a ppt S such that
for every (x, ω) ∈ RL and every z ∈ {0, 1}p(|x|), the distributions (P(ω),V∗(z))(x) and Sim(x, z) are
computationally indistinguishable.
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Definition 6.3 (black-box zero knowledge). An interactive proof system (P,V) for a language
L ∈ NP with relation RL is black-box zero knowledge if there exists an oracle ppt Sim such that
for every ppt V∗ and polynomial p, and for every (x, ω) ∈ RL and z ∈ {0, 1}p(|x|), the distributions
(P(ω),V∗(z))(x) and SimV∗(x,z)(x) are computationally indistinguishable.

Definition 6.4 (black-box parallel zero knowledge). An interactive proof system (P,V) for a
language L ∈ NP with relation RL is black-box parallel zero knowledge if there exists an oracle
ppt Sim such that for every ppt V∗ and polynomials p, t, and for every n, (x1, ω1), . . . , (xt, ωt) ∈ RL

with t = t(n) and |xi| = n and z ∈ {0, 1}p(n), the distributions (Pt(ω1, . . . , ωt),V
∗(z))(x1, . . . , xt)

and SimV∗(x1,...,xt,z)(x1, . . . , xt), are computationally indistinguishable. Here, (Pt,Vt) denotes the
t-fold parallel repetition of (P,V).

The notion of computational indistinguishability in the above definitions is the one from
Section 2.4, which refers to nonuniform polynomial-time distinguishers (as is standard of treatments
of zero knowledge). Moreoever, following [GK2], we may make the following assumptions about
Sim:

• It never asks the same query twice.

• Sim always queries V∗ on a partial transcript (b1, a1, . . . , bi) of the protocol. Moreover,
whenever it makes such a query, it has previously queried V∗ on all the proper prefixes,
namely all sequences of the form (b1, a1, . . . , bj) for j < i.

• If (b1, a1, . . . , bm, am) is the transcript that appears in the final output of Sim, then Sim has
queried V∗ on (b1, a1, . . . , bm, am).

6.3 Context-independent accessible entropy

We now define a variant of accessible max-entropy that only rules out adversaries who “knows”
when they have achieved high entropy (such that this holds even when they are interacting with an
arbitrary strategy B∗). To capture the fact that adversaries A∗ “know” when they have achieved
high entropy, we will consider a “success predicate” success as applied to the view of A∗. An
example of such a predicate in the context of a commitment scheme is to whether the commit
phase transcript is accepting (i.e., the receiver does not abort), and whether the cheating sender
locally outputs valid openings to two different values.

Now, consider the negation of the definition of accessible max-entropy (Definition 3.6). It says
that there is a ppt adversary A∗ who achieves a view v with accessible sample-entropy greater
than k with probability at least 1/p(n) for some polynomial p. In the definition below, we require
that this noticeable event can be recognized by some success predicate. That is, we require that
A∗ achieves high sample-entropy whenever success(v) where v is A∗’s view (except for negligible
probability), and this should hold even when A∗ is interacting with an arbitrary strategy B∗.

Definition 6.5 (context-independent accessible entropy). Let (A,B) be an m-round protocol, and
I ⊆ [m]. We say that A has context-independent accessible max-entropy at most k in the rounds
of I with respect to (A,B), if there is no ppt A∗ and an efficient computable predicate success

satisfying the following conditions:

• For any view v of A∗, success(v) implies v is A-consistent.
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• There is a polynomial p such that

Pr
v

R←viewA∗(A∗,B)
[success(v)] ≥ 1/p(n),

and

• There is a negligible function ε(n) such that for every (possibly inefficient) strategy B∗,

Pr
v

R←viewA∗(A∗,B∗)
[¬ success(v) or AccHI

A,A∗(v) > k] ≥ 1− ε(n).

6.4 Main technical lemmas

Our first technical lemma states that we can construct a protocol with a large entropy gap for
zero-knowledge proofs that remain secure under parallel composition.

Lemma 6.6 (CZKP to entropy gap). Suppose that nonuniformly secure one-way functions exist
and that every language in NP has a m-round (computational) zero-knowledge proof (P,V) that
is black-box zero knowledge under parallel composition, where m = poly(n). In addition, suppose
(P,V) has an efficient prover. Then, there exists an m-round protocol (A,B)(1n) such that on
security parameter n, there exist integers `1, . . . , `m for which:

• For all i ∈ [m], the real min-entropy of A in round i of (A,B) is at least `i.

• The context-independent accessible max-entropy of A in (A,B) is at most
∑

`i − 3nm.

The next lemma (analogous to Lemma 4.7 in Section 4) states that we may exploit the entropy
gap given by the previous lemma to obtain a O(m)-phase commitment scheme. We note here
that the transformation is exactly as before: using interactive hashing on the sender’s messages, as
specified in Protocol 4.14 (which in turn uses Protocol 4.11).

Lemma 6.7 (entropy gap to m-phase commitment scheme). Suppose that nonuniformly secure
one-way functions exist. Then, there exists an efficient transformation GapToComTransform that
takes as input a security parameter 1n and an efficient m-round interactive protocol π = (A,B),
a set of indices I ⊆ [m] and a set of integers {`i}i∈I where `i ≥ 3n for all i ∈ I, and outputs an
O(m)-round |I|-phase commitment scheme Com = (S,R) with the following properties:

hiding: If for every i ∈ I, it holds that A has real min-entropy at least `i in round i with respect
to π, then Com is statistically hiding.

binding: If the context-independent accessible max-entropy of A with respect to I in π is at most∑
i∈I `i − 3n |I|, then Com is

(m
1

)
binding.

Proof of Theorem 6.1. Combining the two technical lemmas, we obtain a constant-round m-
phase commitment scheme Com where m is also a constant. We may then proceed as in Sections 4.2
and 4.3 to transform Com into a constant-round standard commitment scheme. We stress here that
since we are working with a constant m, we may try all possible settings of `1, . . . , `m as described
at the end of Section 4.3.
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6.5 Proof of Lemma 6.6

The protocol (A,B). Assuming the existence of one-way functions, there exists a language L ∈
NP with corresponding relation RL with distribution (DY,WY)(1n) on yes instance-witness pairs
in RL and a distribution DN on no instances such that

• (DY,WY)(1n) can be sampled in time poly(n).

• DY and DN are computationally indistinguishable.

Specifically, let G : {0, 1}n/3 → {0, 1}n be a pseudorandom generator [HILL]. Then, (DY,WY) =
(G(Un/3), Un/3) and DN is the uniform distribution over {0, 1}n \ G({0, 1}n/3). Let (P,V) be the
zero-knowledge proof system for L with simulator Sim. We also assume that V sends its random
tape as the last message. By parallel repetition, we may assume that (P,V) has completeness and
soundness errors at most 1/100, and let kreal denote the length of V’s random tape.

Now, consider the following protocol (A,B)(1n):

1. B samples t pairs (x1, ω1), . . . , (xt, ωt) from (DY,WY) and sends (x1, . . . , xt) to A.

2. The two parties run (Pt(ω1, . . . , ωt),V
t)(x1, . . . , xt), with B and A acting as Pt and Vt

respectively.

We say that a transcript of the protocol (A,B) is accepting if A (acting as V) accepts for a majority
of the instances x1, . . . , xt; otherwise, we say that the transcript is rejecting.

Claim 6.8. The protocol (A,B) satisfies the following properties:

completeness: A random transcript from the protocol (A,B) is rejecting with probability at most
2−t.

soundness: For every (possibly inefficient) strategy B∗ that sends x1, . . . , xt /∈ L in the first
message, a random transcript from the protocol (A,B∗) is accepting with probability at most
2−t.

Proof. From the Chernoff bound, we know that a random transcript from the protocol (A,B) is
rejecting with probability at most 2−t (by the completeness of (P,V)). In addition, if x1, . . . , xt /∈ L,
then the probability that V accepts for a majority of the instances in a t-fold repetition of (P,V)
on input (x1, . . . , xt) is at most 2−t (by soundness to (P,V)). �

Setting the parameters. Suppose the conditional Shannon entropy of the i’th verifier message
in (P,V) is ki (for a random instance from DY); then, k1 + · · ·+ km = kreal. Then,

1. By Proposition 2.3, the real min-entropy of A in round i is at least `i := tki − ut2/3 (where u
is the length of the longest verifier message in (P,V)).

2. The real Shannon entropy of A in the rounds [m] is tkreal.

We set t = poly(n) so that t > 4m · (3n + ut2/3). As we shall show next, the context-independent
accessible max-entropy of (A,B) is at most tkreal − t/4 < tkreal −m(3n + ut2/3) ≤∑

`i − 3nm.
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Analysis for accessible max-entropy. Next, we shall establish the main technical claim of this
section:

Claim 6.9. The context-independent accessible max-entropy of A in (A,B) is at most tkreal− t/4.

Suppose on the contrary that there exists a ppt A∗ along with some predicate success that
violates the guarantee on context-independent accessible max-entropy. This means in particular
that there exists a non-negligible function ε = ε(n) such that

Pr
v

R←viewA∗ (A∗,B)
[success(v)] > ε

Then, the high-level proof strategy, following the earlier outline (which is in turn based on [GK2]),
is as follows:

Constructing a cheating verifier. Following [GK2], we will use A∗ (with some modifications) as
an adversarial verifier V∗ wherein “rewinding doesn’t help” for black-box simulators. Then,
by exploiting the small completeness error, the zero-knowledge property, and the fact that
the distribution of V∗’s messages is close to that of the honest verifier V, we may show that
SimV∗

(Dt
Y) outputs accepting transcripts with high probability. Moreoever, since DY and

DN are computationally indistinguishable, we also have that SimV∗
(Dt

N) outputs accepting
transcripts with high probability.

Constructing a cheating prover. Again, following [GK2, Kat], we may construct from SimV∗

a “simulation-based” stand-alone cheating prover B∗ that sends a t-tuple of random no

instances drawn from Dt
N, interacts with A∗ and convinces A∗ to output accepting transcripts

with noticeable probability. Now, by using the fact that A∗ achieves high context-independent
accessible max-entropy, we may argue that the distribution of A∗ messages while interacting
with B∗ is close to that of the honest verifier V. This contradicts the soundness of (P,V).

Step 1: constructing V∗. Recall that at each round i, A∗ flips fresh random coins si to generate
its next message ai and a justification string wi. Given A∗(1n), we construct a ppt cheating verifier
V∗. On input x̄ = (x1, . . . , xt) and auxiliary input h where h is a T -wise independent hash function
where T = poly(n) is an upper bound on the number of queries made by Sim(x̄), V∗h(x̄, h) does the
following:

1. Pass the instances (x1, . . . , xt) to A∗ as if coming from B.

2. Upon receiving a query qi = (b1, a1, . . . , bi) (containing the first i prover messages), we
compute si = h(qi) along with (ai, ωi) = A∗(qi; s0, s1, . . . , si), where s0, s1, . . . , si−1 are the
randomness of A∗ in the previous rounds, and respond with ai.

3. Finally, V∗ outputs the view of A∗.

Claim 6.10.

Pr
v

R←viewA∗(A∗,B)
[AccH

[m]
A,A∗(v) > tkreal − t/4 and v contains a rejecting A-consistent transcript] ≤ neg(n)
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Proof. Let random variables (S0, B1, S1, A1,W1, . . . , Bm, Sm, Am,Wm) denote the view of A∗

when interacting with B. By Lemma 2.5, for each i ∈ [m], and for all A∗-consistent views
v = (s0, b1, s1, a1, w1, . . .), conditioned on (S0, B1, A1,W1, . . . , Bi) = (s0, b1, aw, w1, . . . , bi), with

probability at least 1− 2−t/8m over ai
R←Ai, we have that

AccHA,A∗(ai|v) = H∗
ΓA

i (v,Si,Ai,Wi)
(ai) ≤ H∗Ai

(ai) + t/8m

This means that for all i ∈ [m], with probability at least 1 − 2−t/8m = 1 − neg(n) over v =

(s0, b1, s1, a1, w1, . . .)
R← viewA∗(A∗,B),

HAi|S0,B1,S1,A1,...,Bi
(ai | s0, b1, s1, a1, . . . , bi)

≥ H∗Ai|S0,B1,S1,A1,...,Bi
(ai | s0, b1, s1, a1, . . . , bi)

≥ AccHi
A,A∗(ai|v) − t/8m

Taking a union bound and summing over i ∈ [m], we have that with probability at least 1−neg(n)

over v
R← viewA∗(A∗,B),

m∑

i=1

HAi|S0,B1,S1,A1,...,Bi
(ai | s0, b1, s1, a1, . . . , bi) ≥ AccH

[m]
A,A∗(v) − t/8

Now, let S denote the set of A∗-consistent views (s0, b1, s1, a1, w1, . . .) containing a rejecting A-
consistent transcript and for which

m∑

i=1

HAi|S0,B1,S1,A1,...,Bi
(ai | b1, a1, . . . , bi) ≥ tkreal − 3t/8

Then, it suffices to show that

Pr[viewA∗(A∗,B) ∈ S] ≤ neg(n)

Observe that for all v = (s0, b1, s1, a1, w1, . . .) ∈ S:

Pr[viewA∗(A∗,B) = v]

= Pr[S0 = s0] · Pr[B1 = b1 | S0 = s0] · Pr[A1 = a1 | (S0, B1) = (s0, b1)] ·
Pr[S1 = s1 | (S0, B1, A1) = (s0, b1, a1)] · · ·

=

m∏

i=1

Pr[Bi = bi | (B1, A1, . . . , Bi−1, Ai−1) = (b1, a1, . . . , bi−1, ai−1))] ·
m∏

i=1

2−HAi|S0,B1,S1,A1,...,Bi
(ai|b1,a1,...,bi) ·

Pr[S0 = s0] ·
m∏

i=1

Pr[Si = si | (S0, B1, · · · , Ai) = (s0, b1, . . . , ai)]

≤
m∏

i=1

Pr[Bi = bi | (B1, A1, . . . , Bi−1, Ai−1) = (b1, a1, . . . , bi−1, ai−1))] · 2−tkreal+3t/8 ·

Pr[S0 = s0] ·
m∏

i=1

Pr[Si = si | (S0, B1, · · · , Ai) = (s0, b1, . . . , ai)]

= 23t/8 · Pr[(A,B) = (b1, a1, . . . , bm, am)] · Pr[S0 = s0] ·
m∏

i=1

Pr[Si = si | (S0, B1, · · · , Ai) = (s0, b1, . . . , ai)],
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where the last equality holds because A sends its random coins as the last message. Summing over
views in S, we have:

Pr[viewA∗(A∗,B) ∈ S]

≤ 23t/8 ·
∑

rejecting transcripts
(b1,a1,...,bm,am)

(
Pr[(A,B) = (b1, a1, . . . , bm, am)] ·

∑

s0,s1,...,sm

Pr[S0 = s0] ·
m∏

i=1

Pr[Si = si | (S0, B1, · · · , Ai) = (s0, b1, . . . , ai)]
)

≤ 23t/8 · Pr[(A,B) outputs a rejecting transcript] = neg(n)

Here, we use the fact (A,B) has completeness error 2−t (Claim 6.8). �

The following claim follows readily from the preceding claim and the fact that A∗ violates
the guarantee on context-independent accessible entropy (and success(v) implies the transcript is
A-consistent):

Claim 6.11.

Pr
v

R←viewA∗ (A∗,B)
[success(v) and v is rejecting] ≤ neg(n)

Step 2: constructing B∗. Starting from A∗, we define a new (inefficient) strategy B∗ which
interacts with an external party A′ (which could be A∗ or A) as follows:

1. On input 1n, sample and send to A′ a t-tuple of instances (x1, . . . , xt) ← Dt
N and pick a

random subset U = {j1, j2, . . . , jm} ⊂ [T ] of size m.

2. Internally simulate SimV∗
(x) step by step. We handle the j’th query qj, j = 1, 2, . . . , T , that

Sim makes to V∗ as follows. Suppose the query is of the form qj = (b1, a1, . . . , bi).

• if j /∈ U : Pick and store a random string si associated with the query and look up the
random strings s1, . . . , si−1 associated with the previous i − 1 prefixes. Respond with
A∗(qj ; s1, . . . , si).

• if j ∈ U : If i > 1, output fail if we did not previously send b1, . . . , bi−1 as the first
i − 1 messages to the external A′. Otherwise, forward bi to the external A′ as if the
message comes from B∗ and wait for the response ai from A′. Next, look up the previous
random strings s1, . . . , si−1 associated with the i− 1 prefixes, and sample uniformly an
si satisfying A∗(qj; s1, . . . , si) = ai; output fail if no such si exists. Store si as the
random string associated with qj.

3. Output fail if Sim does not output the same transcript as occurred in the interaction with
A′.

The following claim will be useful later:

Claim 6.12. For all views v of A∗: Pr[viewA∗(A∗,B∗) = v] ≥ 1
T m Pr[SimV∗

(Dt
N) = v].

Proof. The claim follows readily from the following observations (c.f. [GK2]):
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• {SimV∗
H (Dt

N)} (where H is a randomly chosen t-wise independent hash function) and
{(A∗,B∗)|B∗ 6=fail} are identically distributed.

• Pr[B∗ 6= fail in (A∗,B∗)] ≥ 1/Tm.
�

Claim 6.13.

Pr
v

R←viewA∗(A∗,B∗)
[AccH

[m]
A,A∗(v) > tkreal − t/4 and v contains an accepting A-consistent transcript] ≤ neg(n)

Proof. Let random variables (S0, B1, S1, A1,W1, . . . , Bm, Sm, Am,Wm) denote the view of A∗ when
interacting with B∗. Following the proof of Claim 6.10, let S denote the set of A∗-consistent views
(s0, b1, s1, a1, w1, . . .) containing an accepting A-consistent transcript and for which

m∑

i=1

HAi|S0,B1,S1,A1,...,Bi
(ai | b1, a1, . . . , bi) ≥ tkreal − 3t/8

Then, it suffices (as before) to show that

Pr[viewA∗(A∗,B∗) ∈ S] ≤ neg(n)

As before, for all v = (s0, b1, s1, a1, w1, . . .) ∈ S:

Pr[viewA∗(A∗,B∗) = v]

= 23t/8 · Pr[(A,B) = (b1, a1, . . . , bm, am)] · Pr[S0 = s0] ·
m∏

i=1

Pr[Si = si | (S0, B1, · · · , Ai) = (s0, b1, . . . , ai)],

Summing over views in S, we have (as before):

Pr[viewA∗(A∗,B∗) ∈ S] ≤ 23t/8 · Pr[(A,B∗) outputs an accepting transcript] ≤ 2−5t/8 = neg(n)

Here, we use the fact A has soundness error 2−t against strategies B∗ that send x1, . . . , xt /∈ L in
the first message (Claim 6.8). �

The following claim follows readily from the preceding claim and the fact that A∗ violates the
guarantee on context-independent accessible entropy:

Claim 6.14.

Pr
v

R←viewA∗(A∗,B∗)
[success(v) and v is accepting] ≤ neg(n)

Step 3: deriving a contradiction. It follows from Claim 6.11 that

Pr
v

R←viewA∗ (A∗,B)
[success(v) and v is accepting] ≥ ε− neg(n)

By the zero-knowledge property and the indistinguishability of DY,DN, we have:

Pr
v

R←Sim
V∗

(Dt
N)

[success(v) and v is accepting] ≥ ε− neg(n)

By Claim 6.12, this implies:

Pr
v

R←viewA∗(A∗,B∗)
[success(v) and v is accepting] ≥ ε/2Tm

which contradicts Claim 6.14.
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6.6 Proof of Lemma 6.7

As noted earlier, we use Protocol 4.14 (using hashing to select the sender’s messages) to transform
(A,B) into a m-phase commitment scheme; the only difference being that we instantiate the protocol
with a family F of universal one-way hash functions with non-uniform security. The proof of
Lemma 6.7 is analogous to that of Lemma 4.7. Hiding is exactly as before, and follows immediately
from Claim 4.15. As such, it suffices to establish the following strengthening of Claim 4.16 used to
establish

(m
1

)
-binding.

Claim 6.15 (
(
m
1

)
-binding). Assume that F is a family of universal one-way hash functions with

non-uniform security and that the context-independent accessible max-entropy of A with respect to
I in (A,B) is at most

∑
i∈I `i − 3n |I|. Then, Com is

(
m
1

)
-binding.

Proof. Suppose there exists a ppt S∗ playing the role of S in Com that breaks the
(m

1

)
-binding

of Com with non-negligible probability ε. We need to show that there exists a A∗ along with a
predicate success that breaks the context-independent accessible max-entropy of A in (A,B). We
proceed in several steps:

Step 1: constructing A∗. Consider the same algorithm A∗ for interacting with any B∗ (where
B∗ may be B) as in the proof of Claim 4.16, that is: A∗ emulates a random execution of (S∗,R)
while emulating R using the B∗ it interacts with, and choosing the messages of R that are not
of embedded B∗ (specifically, those of RH), uniformly at random. In more detail, A∗ proceeds as
follows:

1. A∗ uses s0 to pick a random tape for S∗.

2. For i = 1, 2, . . . ,m, upon receiving bi from B∗, A∗ proceeds as follows:

If i ∈ I, A∗ uses si to pick (hlen, h2, f) corresponding to the messages of RH in the i’th
commit phase of Com and sends ai, where ai is the message S∗ sends in the i’th reveal
phase of Com. In addition, when S∗ locally outputs (w0

i , w
1
i ), A∗ locally outputs w0

i .

If i /∈ I, A∗ forwards whatever message ai sent by S∗ upon receiving bi.

Step 2: the predicate success. Let success denote the predicate on a view v from Supp(viewA∗(A∗,B∗))
which evaluates to true iff v is A-consistent and S∗ breaks the

(m
1

)
-binding of Com for all the phases

in I. We claim that A∗ and success violates the guarantee on context-independent accessible max-
entropy. By definition, success satisfies the first condition. Next, observe that the view of S∗ in a
real execution of (S∗,R) and in the emulated execution (A∗,B) are identically distributed. It follows
from the definition of success and the assumption about S∗ that

Pr
v

R←viewA∗(A∗,B)
[success(v)] ≥ ε,

Step 3: quantifying over B∗. It remains to show that for every (possibly inefficient) strategy
B∗,

Pr
v

R←viewA∗(A∗,B∗)

[
¬ success(v) or AccHI

A,A∗(v) >
∑

i∈I

`i − 3n |I|
]
≥ 1− neg(n).
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Suppose otherwise; that is, there exists a strategy B∗ and a non-negligible function ε0 such that

Pr
v

R←viewA∗(A∗,B∗)

[
success(v) and AccHI

A,A∗(v) ≤
∑

i∈I

`i − 3n |I|
]
≥ ε0.

Then, by an averaging argument, there exists an i∗ ∈ I and a partial view v∗i∗ = (s0, b1, a1, w1, . . . , bi∗)
such that

Pr
v

R←viewA∗((A∗,B∗)|v∗
i∗

)

[
success(v) and AccHA,A∗(ai∗ | v∗i∗) ≤ `i∗ − 3n

]
≥ ε0/m.

We define Lv∗
i∗

to be the set {ai∗ 6= ⊥ | AccHA,A∗(ai∗ | v∗i∗) ≤ `i∗ − 3n}. It is clear that

|Lv∗
i∗
| ≤ 2`i∗−3n. Then,

Pr
v

R←viewA∗((A∗,B∗)|v∗
i∗

)

[
success(v) and ai∗ ∈ Ln

]
≥ ε0/m.

Now, we can construct a nonuniform S∗
H

that contradicts the binding property of (SH,RH) as
formalized in Lemma 4.12. (Here, we use the fact that F has non-uniform security, and therefore
the binding property of (SH,RH) holds even against non-uniform adversaries.) Specifically, since
S∗

H
is non-uniform, it can have v∗i∗ hardwired in and thus need not generate it efficiently. �
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