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Abstract

Given a directed grapty = (V, E) and an integek > 1, a k-transitive-closure-spanne#{TC-
spanner)of G is a directed graptf = (V, E) that has (1) the same transitive-closurezaand (2)
diameter at most. Transitive-closure spanners were introduced in [7] asrangon abstraction for
applications in access control, property testing and datatsires.

In this work we study the number of edges in the sparsest Z3d@wmers for the directed hypercube
{0,1}4 and hypergrid1,2,...,m}¢ with the usual partial order, defined by:z; ... x4 < y1...ya
if and only if z; < y; forall i € {1,...,d}. We show that the number of edges in the sparsest 2-TC-
spanner of the hypercube2s¢+©Ucgd) 'wherec ~ 1.1620. We also present upper and lower bounds
on the size of the sparsest 2-TC-spanner of the directedrimge Our first pair of upper and lower
bounds for the hypergrid is in terms of an expression witlobiral coefficients. The bounds differ by
a factor ofO(d?™) and, in particular, give tight (up to goly(d) factor) bounds for constant. We
also give a second set of bounds, which show that the numheetgefs in the sparsest 2-TC-spanner of

the hypergrid is at mosi:? log? m and at least) (max {md%, (m — 1)d2(°‘+"‘—1)d})

wherec ~ 1.1620, as above, and > 0 satisfiesl + H,(a) < ¢. The two sets of bounds are, in general,
incomparable.

Our results rule out a class of approaches to monotonic#tinig of functions of the formf :
{0,1}* — R and, more generally : {1,2,...,m}¢ — R, whereR is an arbitrary range. [7] showed
that sparse 2-TC-spanners imply fast monotonicity tesserd used this connection to improve existing
monotonicity testers for planar and othErminor-free graphs. It left open the question, which was
again raised at the 2008 Dagstuhl seminar on Sublinear #Mgas, of whether the 2-TC-spanner ap-
proach can improve monotonicity testers on the hypercudgpergrid. We show that a fundamentally
new approach is required.
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1 Introduction

Graph spanners were introduced in the context of distribotamputing [29], and since then have found
numerous applications, such as efficient routing [11, 12321 37], simulating synchronized protocols in
unsynchronized networks [30], parallel and distributegbethms for approximating shortest paths [9, 10,
15], and algorithms for distance oracles [5, 38].

Several variants on graph spanners have been defined. lwahis we focus orntransitive-closure
spanners that were introduced in [7] as a common abstraftfompplications in access control, property
testing and data structures.

Definition 1.1 (TC-spanner) Given a directed grapltz = (V, E) and an integerk > 1, a k-transitive-
closure-spanner (k-TC-spanner) of G is a directed graph = (V, Ex) with the following properties:

1. Ey is a subset of the edges in the transitive closuré&' of
2. For all verticesu,v € V, if dg(u,v) < oo, thendy (u,v) < k.

Thus, ak-transitive-closure-spanner (bfTC-spanner) is a graph with small diameter that presehees t
connectivity of the original graph. In the applications adothe goal is to find the sparsdsiT C-spanner
for a givenk andG. The number of edges in the sparsestC-spanner of is denoted by5; (G).

Our Results In this work we investigate the size of the sparsest 2-TQusgis for the directed hypercube
and hypergrid. These graph families are natural networklégpes, and other variants of spanners for the
hypercube, hypergrid, and other restricted graph famileage been extensively studied [14, 17, 24, 25, 26,
27, 28].

Thedirected hypercuhedenotedH,;, has the vertex s, 1}¢ and the edge sdt(z,y) : ; < y; Vi €
{1,...,d} and|x — y| = 1} where|x — y| represents the Hamming distance between the two strings.

The obvious bounds 0fi»(H4) are the number of edges in thedimensional hypercube?~'d, and
the number of edges in the transitive closurg-f which is3? — 2¢. (An edge in the transitive closure of
‘H4 has 3 possibilities for each coordinate: both endpoint®abmth endpoints are 1, or the first endpoint
is 0 and the second is 1. This includes self-loops, so we waselitract the number of vertices#y; to get
the desired quantity.) Thug?—1d < Sy(Hy) < 3¢ — 2%

The following theorem, proved in Section 3, gives the sizihefsparsest-TC-spanner of the hypercube
up to a multiplicative term polylogarithmic in the size oktgraph.

Theorem 1.1(Hypercube) Let S2(H,) denote the number of edges in the spar@§C-spanner ofH,.
Then
So(Hq) = O(d*2°Y) and(2°¢), wherec ~ 1.1620.

We prove the theorem by giving nearly matching upper and dveeinds onSz(H,) in terms of an
expression with binomial coefficients, and later numeljcaktimating the value of the expression. We
prove the upper bound in Theorem 1.1 by presenting a ran@éahtianstruction of a 2-TC-spanner of the
directed hypercube. Curiously, even though the upper amdrlbounds above differ by a factor 6f(d*),
we can show that our construction yields a 2-TC-spannér pbf size withinO(d?) of the optimal.

In Sections 4 and 5, we present upper and lower bounds onzbeotithe sparsest 2-TC-spanner of
the hypergrid. Thelirected hypergriddenotedH,,, 4, has vertex sef1,2,...,m}¢ and edge sef(z,y) :
Junique: € {1,...,d} such that;, — x; = 1 and forj # i,y; = x;}. The straightforward bounds on the
number of edges in a 2-TC-spanner?gf, ; in terms of the number of edges in the directed grid and in its

d
transitive closure arém®'(m — 1) and (7”2%) — m<, respectively.



In Section 4, we extend our analysis for the hypercube to gpgeer and lower bounds &% (H,, q) in
terms of an expression with binomial coefficients (Theorefr).4The upper and lower bounds differ by a
factor of O(d*™) and, in particular, show that our randomized 2-TC-spannastruction is optimal up to
apoly(d) factor for constanin. The value of the combinatorial expression can be estimateaerically
for smallm. Specifically,S2(H,.q) = 2cmd poly(d), wherecs ~ 2.03, ¢4 ~ 2.82 andc; ~ 3.24, each
significantly smaller than the exponents correspondingedriansitive closure sizes for the different

The following theorem, proved in Section 5, gives anothépsexplicit bounds orbs(H,, 4) Which, in
general, are incomparable to the bounds described above.

Theorem 1.2(Hypergrid) LetS>(H,, 4) denote the number of edges in the spar8eBC-spanner of{,,, 4.
Then form > 3,

m®log?m o
S2(Hd) < md logdm and > Q (max { (2d10g og m)d—l , (m _ 1)d2( +a—1)d ’

wherec is the constant from Theorem 1.1 and> 0 satisfiesl + Hy(«) < c.

We prove the upper bound in Theorem 1.2 by presenting a dermmatruction ofk-TC-spanners for
graph products for arbitrary > 2. The second term in the lower bound expression in Theorenisl.2
derived from the lower bound for the hypercube. The first tarrthe lower bound expression is proved
by a reduction of th@-TC-spanner construction fom]? to that for the2 x [m]?~! grid and then directly
analyzing the number of edges required f@&C-spanner of x [m]¢~!. This analysis is one of the more
interesting combinatorial arguments in the paper. We shinadeoff between the number of edges in the
2-TC-spanner of the x [m]9~! grid that stay within the hyperplangs} x [m]9~! and{2} x [m]¢~! versus
the number of edges that cross from one hyperplane to the. oftwe proof proceeds in multiple stages;
assuming an upper bound on the number of edges staying whthihyperplanes, each stage is shown to
separately contribute a substantial number of edges agpéstween the hyperplanes. The proof of this
tradeoff lemma is already non-trivial far= 2 and is presented first.

Motivation: TC-spanner method in monotonicity testing As shown in [7], TC-spanners have several
applications. 2-TC-spanners for the hypercube and hyioeage especially relevant for the application to
monotonicity testing.

Testing monotonicity of functions [2, 6, 13, 16, 18, 19, 2] B one of the most studied problems in
property testing [21, 33]. Testing monotonicity is equérdl to several other testing problems [19]. Let
V,, be a poset of: elements and~,, = (V,,, E) be the relation graph, i.e., the Hasse diagram,Viar A
function f : V,, — R is calledmonotoneif f(x) < f(y) for all (x,y) € E. We sayf is e-far from
monotone if f has to be changed on at least afraction of the domain to become monotone, that is,
MiNmonotoney [{# : f(x) # g(x)}| > en. A monotonicity tester o, is an algorithm that, given an oracle
for a functionf : V,, — R, accepts iff is monotone but rejects with probability % if fis e-far from
monotone.

Forinstance, if7,, is a directed line},, 1, the tester needs to determine whether the input sequeace sp
ified by f is sorted ofe-far from sorted. IfG,, is a 2-dimensional gridi,, o, (with vertex sef{1, ..., m} x
{1,...,m} and edge seft(x, y) | 1 = y1 andxs + 1 = y2} U {(z,y) | 1 + 1 = y; andzy = y»}), the goal
is to determine whether the input matrix has non-decreasing and columns. Finally, 7,, = H4, one
has to determine if the input functigh: {0, 1}¢ — R is monotone.

The optimal monotonicity tester for the directed line, pyegd in [13], is based on the spars2SiC-
spanner for that graph. The following lemma from [7] provieatta spars@-TC-spanner for any partial
order graph,, implies an efficient monotonicity tester @#,.



Lemma 1.3([7]). If a directed acyclic graphG,, has a2-TC-spanner withs(n) edges, then there exists a
monotonicity tester ot/ that runs in timeOD (M>

en

This lemma led to significant improvements in monotoniciégtérs for several graph families, in-
cluding planar graphs and, in gener&-minor-free graphs [7]. It left open the question, which was
again raised at the 2008 Dagstuhl seminar on Sublinear ithgas, of whether the 2-TC-spanner ap-
proach can improve monotonicity testers of functions offdren f : {0,1}% — R and, more generally,
f:{1,2,...,m}* — R, whereR is an arbitrary range. Currently, the running time of thet bester for
this problem iO (‘f logm - log |R|) [13], while the best known lower bound (for the hypercubenwé@nge
R ={0,1}) is Q(log log d) [19]. Even though for a fixed, it is known that the optimal monotonicity tester
for the grid runs in time@(“%) [22, 18], bridging the gap between the lower and upper botmdarbi-
trary d has remained elusive. Lemma 1.3 showed that if a 2-TC-sparsize o(2¢d?) for the hypercube
or, more generally, a 2-TC-spanner of sixen®d? log? m) for the hypergrid were found, the monotonic-

ity tester of [13] would be improved. Oue (m2 é;fglig”m bound on the size of a 2-TC-spanner of the
2-dimensional grid (Theorems 1.2 and, specifically, 5.4wshthat the optimal monotonicity testers for

constant-dimensional grids from [22] cannot be matchetl thié TC-spanner approach. Our lower bounds
for the size of the sparsest 2-TC-spanners for the hyper@iieorem 1.1) and the hypergrid (Theorem 1.2)
rule out the TC-spanner approach for improving monotopitgsters on the hypercube and hypergrid. A

fundamentally new approach is required.

Previous work on bounding S for other families of graphs Thorup [34] considered a special case of
TC-spanners of graphs that have at most twice as many edgeg-aand conjectured that for all directed
graphsG onn nodes there are suéhTC-spanners withk: polylogarithmic inn. He proved his conjecture
for planar graphs [35], but later Hesse [23] gave a countengike to Thorup’s conjecture for general graphs
by constructing a family of graphs for which azllf?-TC-spanners need at least™2()) edges. TC-spanners
were also studied for directed trees: implicitly in [3, 418, 39] and explicitly in [36]. The implicit results
were interpreted as TC-spanner constructions in [7]. Feditected line, [3] (and later, [4]) expressed the
size of the sparsegt TC-spanner in terms of the inverse Ackermann function. Atlermann functio({1])

is defined by:A(1, j) = 27, A(i+1,0) = A(i, 1), A(i+1, j+1) = A(i,22""""”). The inverse Ackermann
function isa(n) = min{i : A(i,1) > n} and thei*"-row inverse is\;(n) = min{j : A(3,7) > n}.

Lemma 1.4 ([3, 4, 7]). Let Sy(H,, 1) denote the number of edges in the spargesiC-spanner of the
directed lineH,, 1. ThenSy(H, 1) = O(nlogn), S3(H,,1) = O(nloglogn), Su(Hnp1) = O(nlog* n)
and, more generallysy. (H, 1) = ©(nAx(n)) wherel,(n) is the inverse Ackermann function.

[3, 8, 36] gave the same bound for directed treesuamdes. [7] extended it t@(nlogn - Agx(n))
bound onS;, for H-minor-free graph families, which include planar graprmrided tree-width graphs, and
bounded genus graphs.

2 Preliminaries

For a positive integem, we denote{1, ..., m} by [m]. Forz € {0,1}%, we us€z| to denote the weight of
x, that is, the number of non-zero coordinatesinLevel i in a hypercube contains all vertices of weight
i. The partial order< on the hypergridH,,, 4 is defined as followsz < y for two verticese, y € [m]¢ iff
x; < y; forall i € [d]. Verticesx andy arecomparabléef either y is abovez (that is,x < y) or y is below
z (thatis,y < x).

We denote a path fromy to vy, consisting of edge&, v2), (v, v3), ..., (Ve—1,ve) DY (v1, ..., vp).

As usual,log denotes the logarithm base 2 dndienotes the logarithm base
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3 2-TC-spanners of the Hypercube

In this section we prove Theorem 1.1, namely, we analyze iteeof the sparsest 2-TC-spanner of the
d-dimensional hypercub&(;. Lemma 3.1 presents the upper bound%ii*;). Lemma 3.3 presents the
lower bound. The upper and lower bounds differ only by a facfa)(d?), and are dominated by the same
combinatorial expression. A numerical approximation {e #xpression is given in Lemma 3.4. Remark 3.1
at the end of the section explains why our randomized cortgruin Lemma 3.1 yields a 2-TC-spanner of
H4 of size withinO(d?) of the optimal. The missing material is deferred to Appenalix

d
Lemma 3.1. There is a2-TC-spanner of{, with O <d3 max min Sf)i) max { 5. (G }) edges.

ijii<j ki<k<j (4

Proof. Consider the following probabilistic construction thanoects all comparable vertices at levéls
andj of H, by paths of length at most 2:

Given levels;, j € {0,1,...,d}, i<j,

1. Initialize the set; ; to 0.

2. Letk;; = argmin<(gzz) max{(’j), (2’;)})

k:i<k<j k—i

d
3. LetS; ; be a set oid (S’“z) vertices chosen uniformly at random from the se(@fvertices that ar

k
in weight levelk = k; ;.

1%

4. For each vertex € S, ;, setE; jt0 E; ; U {(z,v) : |z| =i Az <v}U{(v,y) : [yl =jAv <y}
That is, connect to all comparable vertices in levelsandj.

5. OutputE; ;.

Claim 3.2. Forall 0 < i < j < d, with probability at least}, E; ; contains a path of length at most 2
between any pair of verticds;, y) such thatr < y, |z| =4, and|y| = j.

Proof. Consider any particular pair of verticés, y) such thatr < y, |x| = i, and|y| = j. The number

of vertices in levelk that are greater than and less thaw is exactly(i:ﬁ). So, the probability thab; ;
(&)

o 3d2Z~

does not contain such a vertex (sl' — (i:;)/(i)) (i) < ¢3¢ The number of comparable pairs, i)
is () (42)- So, by the union bound, the probability that there exist¢zap) such that no vertex € 5, ;
satisfiesr < v <y is at most({) ({=7)e*! < 22%e=3! < L. O

So, for everyi andj, there exists a choice ¢f; ; such that comparable pairs from the two weight levels
are connected by a path of length at most 2. Egf be the set of edges returned by the algorithm when this
S;,; is chosen. We sef = | J, ;<4 E7 ;- By Claim 3.2,({0, 1}4, E) is a 2-TC-spanner dfl.

Now, we show that the size d is as claimed in the lemma statement. The main observatithaisn
step (4), for any specific € S; ;, [{(z,v) : |z] =i Az < v} U{(v,y) : |y| = j Av < y}|is exactly
(*7) + (“;F29). Therefore, forald <i < j < d,

ez B (54 (525)) <o B {(4). (5251




Since|E| = > <, j<q |E7;|, where the sum has(d?) terms, the claimed bound follows. O

d
Lemma 3.3. Any 2-TC-spanner df; has (f??i% kllrr<ukn<j (5 )) max { 5. (G }) edges.

Proof. Let S be a2-TC-spanner forH,;. We will count the edges iy’ that occur on paths connecting
two particular weight levels of{;. Let P, ; be the pairs{(vi,v2) : |v1] = 4, |v2| = j,v1 < v2}. We
will lower bounde; ;, the number of edges in the paths of length at most & ithat connect the pairs

P, ;. Letey, denote the number of edges $hthat connect vertices in levélto vertices in level. Then
€ =€+ Zk=i+1(ez,k + €k,5)-

We say that a vertex coversa pair of verticeguvy, v2) if S contains the edgg®,, v) and(v, vs) or, for

the special case = vy, if S contains(vy, v2). Let VZ.(;.“) be the set of vertices of weightthat cover pairs in

P, ;. Let oy, be the fraction of pairs i ; that are covered by a vertex hjg(f). Since each pair i#; ; must
be covered by a vertex in levelso j — 1, Z ak > 1.

For any vertexw € Vifj), let in, be the number of incoming edges from vertices of weiginicident
to v and letout, be the number of outgoing edges to vertices of wejgiicident tov. For eachk €

{i+1,...,j — 1}, since each vertex € Vi(f) coversin,, - out, pairs,

d\ [d—1
S ing - out, > ay|P,y| :ak()( ) (1)
’ i)\d—7j

(k)
veVi;

We upper bount{jve‘/(k) in, - out, as a function ot; ;, + ey, ;, and then use Equation (1) to lower bound
0]

€kt ek ;-
Forallk € {i +1,...,j — 1}, variablesin, andout, satisfy the following constraints:

k d—k
E iny < €kt ek j, E outy, < ejpteg;, Ny < ( )Vv € Vz(f), out, < <d ,)Vv € Vi(f) .
— ;
vy v

The last two constraints hold becausg andout, count the number of edges to a vertex of weiglitom
from vertices of weight and from a vertex of weight to vertices of weightj, respectively. We want to

maximize eV k) i1, - out, subject to the above constraints. Claim A.1, a technicaéstant proved in

Appendix A, bounds the sum by proving that the maximum ocedrenin, = (Z) andout, = ( ) for
as manyv as possible, subject to the remaining constraints. It gigeor allk € {i +1,...,5 — 1}:

3" iny - out, <2(em+em>mm{(k> (izl ];)}

vevy)

Lets;; = % From Equation (1)¢; 1 + ex,j > %aksim forallk e {i+1,...,5 —1}.

Therefore, o
Jj—1 d
e;'k,j =€ij+ Z (eik +erj) > a <Z) ( > Z QkSikj = o Zaksl kj = 5 k£r<11kn<] Sik,j
k=i+1 k i+1

Since this holds for arbitraryandj, the number of edges in the 2-TC- spaniﬁr> r??i(] kllrr<ukn< Sik,j

Finally, a simple algebraic manipulation finishes the pr@ek Claim A.2.) O
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The following lemma completes the proof of Theorem 1.1.

d
Lemma 3.4. Lets = max_min 552) max { (%, (fl:’j‘?)}. Thens = 2¢, wherec ~ 1.1620.

i.jii<j kii<k<j (A

Remark3.1 We note that if the first maximum in the expression fors replaced with the sum then
Lemma 3.1 holds foO(d - s) instead ofO(d® - s) while Lemma 3.3 holds fof2(d/s) instead ofQ(s).
The proofs of these modified statements are similar. (We ddaee an analogue of Lemma 3.4 for the
modified expression fos.) Observe that the modified bounds differ by a factoOg¢#l?) instead ofO(d?).
This demonstrates that our randomized construction y@l&sTC-spanner of{, of size withinO(d?) of
the optimal.

4 Tight Bounds for the Hypergrid in Terms of Combinatorial Ex pressions

In this section we generalize the arguments for the hyperauisection 3 to the directed hypergfid,, 4.
We obtain matching upper and lower bounds up @& factor in terms of an expression involving bi-
nomial coefficients (see Theorem 4.1). This expression eagvhluated numerically for smah, like in
Lemma 3.4, to find the size of the sparsg§iC-spanner fof,,, 4 to within poly(d) factors.

Definition 4.1. For the hypergridH,, 4 , define adevel to be a set of vertices, indexed by vedtar [d]™

with i; + --- 4 14,, = d, that consists of vertices = (z1,...,24) € [m]¢ containingi; positions of value
1, i, positions of valug, ..., andi,, positions of valuen.
The number of vertices in levél= (i1, 12, . . ., i) IS the multinomial coefficient

(= (o) = () (5

Indeed, there arg) choices for the coordinates of value 1. For each such choée tre(?, ") choices
for the coordinates of value 2, and repeating this argumeatdbtains the above expression.
For levelsi, j € [d]™, sayj majorizesi, denotedj > i, if j contains a vertex which is above some vertex
m m

ini, thatis, ity ~jo > > igforallt € {m,m —1,..,1}.
=t (=t
Forj > i, the number of verticeg at leveli comparable to a fixed vertexat levelj is

Jm> <]m + jmfl - Zm> <]m + jmfl + jmf2 — Uy — iml) (Zlml jl - 2212 il)

Z'me .

M(l"]) - <Zm Tm—1 11

Indeed, there areé{.':;) choices for the coordinates of value in y. For each such choice, there are
(jmﬂm—l*"m) choices for the coordinates of valwe — 1 in y, and one can repeat this argument to ob-

Im—1

tain the claimed expression.
Forj = i, the number of verticeg at levelj comparable to a fixed vertexat leveli is

N = —F7—

Indeed, there ard (i, j)({) comparable pairs of vertices in levélandj, and leveli contains({) vertices.
Since, by symmetry, each vertexins comparable to the same number of vertices in I§vele get the
desired expression.



M, j) (¢
Theorem 4.1. Let B(m, d) = IIJnj-l;(I kzrigilz:j W/\)/((Jk),.]) max {M(i, k), N(k,j)} . Then the number

of edges in the sparsest 2-TC-spanner of the directed hyigekgy,, 4 is O (d*™B(m, d)) and 2 (B(m, d)).
Theorem 4.1 follows from Lemmas B.1 and B.3 that appear inefplx B.

5 Explicit Bounds for the Hypergrid

In this section we prove Theorem 1.2 that gives explicit lmsuon the size of the spars@st C-spanners of
Hpm,q. The bounds are stated separately in Corollary 5.2, Thed@ghand Theorem 5.10. The upper bound
in Corollary 5.2 is proved in Section 5.1. The lower bounddlreorem 5.7 and Theorem 5.10 appear in
Section 5.2.

5.1 Upper Bound

This section explains how to construct a TC-spanner of thiee€ian product of graphs; andGs from TC-
spanners off; andGs. Since the directed hypergrid is the Cartesian productrettid lines, and optimal
TC-spanner constructions are known for the directed lime,construction yields sparse TC-spanners for
the grid (Corollary 5.2). We start by defining two graph protdu Cartesian and strong.

Definition 5.1 (Graph products)Given graphsz; = (Vi, E1) and Gy = (Vs, E»), a product ofG; and
G5 is a new graphG with vertex set; x V5. For the Cartesian graph produyalenoted by, x G5, graph
G contains an edge frorfuy, ug) to (vy,ve) if and only ifu; = v; and (ug,v2) € Es, or (u1,v1) € Ey
andus = ve. For thestrong graph productienoted by, o G, graph G contains an edge frortu,, us)
to (vy,v9) if and only ifu; = vy and (ug, v2) € Es, Or (ug,v1) € Ey andug = vy, Of (ug,v1) € E7 and
(UQ, UQ) € FEs.

For exampleH,, 2 = Hm1 X Hpm,1 @and TQH,y, 2) = TC(Hp, 1) o TC(Hp 1), where TGG) denotes
the transitive closure df.

Lemma 5.1. Let G; and G, be directed graphs witk-TC-spannersS; and Ss, respectively. Thef§; o Sy
is ak-TC-spanner ofy = G; x Gs.

Proof. Suppos€u,v) and(u,v") are comparable vertices @; x Go. Then, by definition of the Cartesian
product,u < «' in G; andv < v' in Go. Let (uy,uq,...,uy) be the shortest path i from u = u; to
u' = ug, and(vy,ve,...,v;) the shortest path i8s from v = vy to v’ = v;. Assume w.t.o.g. that < ¢.
Then((u1,v1), (ug,v2),. .., (ug,ve) ..., (ug,vy)) is apath inSy oSy of lengtht < &, from (u, v) to (v, v').
Therefore,S; o S5 is ak-TC-spanner off = G x Go. O

Lemma 5.1 together with previous results on the size-®fC-spanners for the ling(,, 1, summarized
in Lemma 1.4, imply an upper bound on the size & &C-spanner of the directed hypergfid,, ;:

Corollary 5.2. Let Si(H,, ) denote the number of edges in the sparge$iC-spanner of the directed
d-dimensional hypergrit,, 4. ThenSy(H.,.a) = O(me\,(m)?c?) for appropriate constant.
More precisely,So(Hm.q) < m®log?m for m > 3.

Proof. Let S be ak-TC-spanner for the liné¢,, ;. By Lemma 5.1,5 o --- o S, where the strong graph
product is applied! times, is ak-TC-spanner for the directed grid,, ;. By definition of the strong graph
product, the number of edges in the resulting spann@figs)| +m)? — m?. Since the number of edges in
the spannel,E(S)|, is at leastn, the main statement follows.

The more precise statement for= 2 follows from Claim C.1 in Appendix C which gives a more
careful analysis of the size of the sparsest 2-TC-spanritiedine: namelySa(H,,,1) < mlogm — m for
m > 3. ]



5.2 Lower Bounds

In this section we prove an explicit lower bound on the siza 2fTC-spanner of thé-dimensional directed
grid, stated in Theorem 1.2. Section 5.2.1 proves the finst e the lower bound expression for the special
case of the 2-dimensional grid. Section 5.2.2 extends thefgo an arbitrary dimension. Section 5.2.3
proves the second term in the lower bound expression.

We start with an observation useful for all lower bounds iis gection. It is tempting to think that a
subgraph of a TC-spanner is itself a TC-spanner, howevgerneral, this is not the case. We observe that it
is true for subgrids of a hypergrid that include all vertibesween the lowest and the highest vertices in the
subgrid.

Claim 5.3. Letz,y € [m]¢. DefineG,., to be the subgraph &f,,, , induced by the vertex sét : x < z <
y}. Everyk-TC-spanneiS of H,, 4 must contain &-TC-spanner ot ,.

Proof. If a path (of length at most) in S leavesG, , it cannot return. O

5.2.1 Lower Bound ford = 2

In this section we prove a lower bound on the size of a 2-TQuspaof the2-dimensional directed grid,
stated in Theorem 5.4. This is a special case of the lowerdoufheorem 1.2.

m? log? m
loglogm

Theorem 5.4. Any 2-TC-spanner of th@-dimensional gridH,,, » has(2 ( ) edges.

One way to prove th&(m log m) lower bound on the size of a 2-TC-spanner for the directeHip, 1,
stated in Lemma 1.4, is to observe that at lgds{ edges are cut when the line is halved: namely, at least
one per vertex paifv, m — v+ 1) for all v € [| 2 ]]. Continuing to halve the line recursively, we obtain the
desired bound.

A natural extension of this approach to proving a lower fa grid is to recursively halve the grid
along both dimensions, hoping that every such operatioraan x m grid cutsQ(m? log m) edges. This
would imply that the size5(m) of a 2-TC-spanner of thex x m grid satisfies the recurrencg(m) =
48(m/2) + Q(m?logm); that is,S(m) = Q(m?log? m), matching the upper bound in Theorem 1.2.

An immediate problem with this approach is that in some 2sp@nners of the grid onl2(m?) edges
connect vertices in different quarters. One example of fu@RTC-spanner is the graph containing the
transitive closure of each quarter and only at n3est edges crossing from one quarter to another: namely,
for each node: and each quarterwith vertices comparable to, this graph contains an edge, v,), where
vq is the smallest node ipcomparable ta.

The TC-spanner in the example above is not optimal becalrse too many edges inside the quarters.
The first step in our proof of Theorem 5.4 is understandingttadeoff between the number of edges
crossingthe cut and the number of edgegernal to the subgrids, resulting from halving the grid along
some dimension. The simplest manifestation of this trddsafurs when & x m grid is halved into two
lines. (In the case of one line, there is no trade off: @e:) bound on the number of crossing edges holds
even if each half-line contains all edges its transitivesate.) Lemma 5.5 formulates the tradeoff for the
two-line case, while taking into account only edges neededhnect comparable vertices on different lines
by paths of length at most 2:

Lemma 5.5(Two-Lines Lemma) LetU be a graph with vertex sé2] x [m| that contains a path of length
at most 2 fromu to v for everyu € {1} x [m] andv € {2} x [m], whereu < v. An edge(u,v) in U is

calledinternalif v; = v, andcrossingotherwise. IfU contains at most’“‘é% internal edges, it must
: mlogm :
contain at least7 50 crossing edges.



left nodes midline right nodes

1 1
—>0—>0—>0—>0—>0—>01>0—>0—>0—

high nodes &
internal edges

low nodes &
internal edges

it

long internal edge

Figure 1: lllustration of the first stage in the proof of Lemma.

Note that if the number of internal edges is unrestricted;T&C2spanner ofH,, » may have onlym
crossing edges.

Proof. The proof proceeds i@% stages dealing with pairwise disjoint sets of crossing sdiyeeach
stage, we show thdf contains at Ieas% crossing edges in the prescribed set.
In the first stage, divid& into log? m blocks, each of Iengt@— namely, a nodéuv, v2) is in blocki

if vg € [(logQ)m + 1, loggm} . Call an edgéong if it starts and ends in different blocks, askortotherwise.

Assume, for contradiction, thét contains fewer tharg long crossing edges.

Call a node(vy,vs) low if v; = 1 (highif v; = 2), andleftif v, € [Z] (right otherwise). Also, call
an edg€(u, v) low-internalif w; = v; = 1 andhigh-internalif u; = v; = 2. Let L be the set of low left
nodes that are not incident to long crossing edges. SiwiletlR be the set of high right nodes that are not
incident to long crossing edges. Since there are fewerfhéong crossing edges$l| > 7 and|R| > 7.

A nodewu € L can connect to a nodec€ R via a path of length at most 2 only by usmg a long internal
edge. Observe that each long low-internal edge can be usat rbyist gm such pairg(u,v): one low
nodew and high nodes from one block. This is illustrated in F|gure 1. Analogoystyery long high-
internal edge can be used by at mg}%@—m such pairs. Sincél| - |R| > T—g pairs inL x R connect via

paths of length at most 2, grajgh contains more tha%2 . lognim = mk’g ™ long internal edges, which is
a contradiction.

In each subsequent stage, call blocks used in the previageraegablocksand denote their length by
B. Subdivide each megablock intog? m blocks of equal size. Call an eddmng if it starts and ends in
different blocks, but stays within one megablock. Assumegcbntradiction, that/ contains fewer thal%
long crossing edges.

Call a node(vy, v2) leftif it is in the left half of its megablock, that is, if; < ”T’" whenever(vy, ve) is
in a megablock2] x {¢,...,r}. (Callitright otherwise). Consider megablocks containing less tfleknng
crossing edges each. By an averaging argument, atJeastegablocks are of this type. Within each such
megablock more tha@ low left nodes and more tha# high right nodes have no incident long crossing
edges. By the argument from the first stage, each such mefatbatributes more thaﬁ? long internal

edges, wheré = log’?m is the size of the blocks. Hence there must be more %%an% = mk’g ™ long

internal edges, which is a contradiction to the fact thatontains at mos”"%%” internal edges.
We proceed to the next stage until each block is of length &réfore, the number of stagessatisfies



log+tm = 1. Thatis,t = 21c1>(§g1:;m’ and each stage contribut&snew crossing edges, as desired. O

Next we generalize Lemma 5.5 to understand the tradeoffdssivthe number of internal edges and
crossing edges resulting from halving a 2-TC-spanner @&/ax m grid with the usual partial order.

Lemma 5.6. Let S be a 2-TC-spanner of the directé2f] x [m] grid. An edggu,v) in S'is calledinternal
. . . . 2 .

if uy,v1 € [f]orug, vy € {£+1,...,2¢}, andcrossingotherwise. IfS contains at mosfmlg# internal
edges, it must contain at leagff- %8 crossing edges.

Proof. For each € [¢], we match the line§i} x [m] and{2¢ —i + 1} x [m]. Observe that a path of length
at most 2 between the matched lines cannot use any edgesothitemdpoints ifi + 1,...,2¢ —i} x [m)].
We modify S to ensure that there are no edges with only one endpoifitinl,...,2¢ — i} x [m] for all
i € [¢], and then apply Lemma 5.5 to the matched pairs of lines.

Call the[¢] x [m] subgrid and all vertices and edges it contdow, and the remaining? + 1,...,2¢(}
subgrid and its vertices and eddegh. TransformS into S’ as follows: change each low internal edgev)
to (u, (u1,v2)), change each high internal edge v) to ((v1,u2), v), and finally change each crossing edge
((i1,71), (20 —ig+ 1, j2)) to ((4,71), (20 — i+ 1, j2)), where: = min(iy, i2). Intuitively, we are projecting
the edges irb to be fully contained in one of the matched pairs of lines,levpreserving whether the edge
is internal or crossing. Crossing edges are projected ti@titer matched pair of lines chosen from the
two pairs that contain the endpoints of a given edge.

Clearly, S’ contains the same number of internal (crossing) edgés &bserve that’ contains a path
of length at most 2 from: to v for every comparable pafi:, v) wherew is low, v is high, and: andv belong
to the same pair of matched lines. Indeed, sifde a 2-TC-spanner, it contains either the edgev) or
a path(u,w,v). In the first caseS’ also containgu,v). In the second case, (i, w) is a crossing edge
S’ contains(u, (v1,w2),v), and if (u, w) is an internal edgé’ contains(u, (u1,w2),v). As claimed, each
edge inS’ belongs to one of the matched pairs of lines.

Finally, we apply Lemma 5.5. 1§’ contains at mosf%fm internal edges then at least héife., £)
of the matched line pairs each contain at m@é‘g—m internal edges. By Lemma 5.5, each of these pairs

; mlogm : : m logm ; ;
contrlbultes at Ieasﬁm crossing edges. Thu$ must contain at Iea%l[logm crossing edges. Since
S contains as many crossing edgessaghe lemma follows. O

Now we prove Theorem 5.4 by recursively halviRg, » along the horizontal dimension. Some resulting
¢ x m subgrids may violate Lemma 5.6, but we can guarantee thd¢mmma holds for a constant fraction
of the recursive steps for whigh> /m. This is sufficient for obtaining the lower bound in the theor

Proof of Theorem 5.4Assumem is a power of2 for simplicity. For each step € {1,... ,%logm},
partition H,, o into the following 2:~! equal-sized subgrids{1,...,l;} x[m], {l; + 1,...,2l;} x [m],
ooy {m —1; +1,...,m} x [m] wherel; = m/2'~!. For each of these subgrids, define internal and

crossing edges as in Lemma 5.6. Now, suppose that theres exstiepi such that at least half of the
2i—1 subgrids have> ”’“6%4%2’” internal edges. Since at a fixédthe subgrids are disjoint, there are
2710 (I;mlog? m) = Q(m?log?m) edges inS, proving the theorem. On the other hand, suppose that
for everyi € {1,... ,%logm}, at least half of the'~! subgrids have< “’“6+g2m internal edges. Then,
applying Lemma 5.6, the number of crossing edges in thosgrisisbis > %. Counting over

all stepsi and for all appropriate subgrids from those steps, the nurabedges inS is bounded by

2 logm _ 2 long
Q (m 1Ogmloglogm> =Q (m loglogm ) * O
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5.2.2 Lower Bound for Generald

This section generalizes the lower bound from the previeatian to arbitraryd. The following theorem
implies the first term in the lower bound expression in Theoie2:

Theorem 5.7. Any2-TC-spanner of<,, 4 has at Ieast%j% edges.

The main ingredient in the proof is the Two-Hyperplanes Leanan analogue of the Two-Lines Lemma
(Lemma 5.5) ford dimensions. The main difficulty in extending the proof of #veo-Lines lemma to work

for two hyperplanes is in generalizing the definitions ofdil® and megablocks, so that, on one hand, each
stage in the proof contributes a substantial number of trgsdges and, on the other hand, the crossing
edges contributed in separate stages are pairwise disjoint

Lemma 5.8(Two-Hyperplanes Lemma).etU be a graph with vertex sé] x [m]?~! that contains a path
of length at most 2 from to v for everyu € {1} x [m]¢~ !t andv € {2} x [m]¢~!, whereu < v. Asin
Lemma 5.5, an edg@:, v) in U is calledinternalif u; = v1, andcrossingotherwise. Then, i/ contains

d—1160% 1y, - . d-1 d—1 .
less than’fd_l)% internal edges, it must contain ™3 <2dll§gnggm> crossing edges.

Proof. As for Lemma 5.5, the proof proceeds in several stages. Hgestare indexed byl — 1)-tuples:

d—1
in {0,1,..., dkl)ogglggm — 1}9=1, Then, the number of stages@%) . We show below that each

stage contributes at Iea@g’t—ﬁ separate edges to the set of crossing edges, thus provithgnana.
As in the proof of Lemma 5.5, at each stage vertices are jomei into megablocks and blocks. In

stagei = (i1, . ..,iq—1), We partitionU into (log m)4(1++a-1) equal-sizednegablocksndexed byb =
(b1,...,ba_1), whereb; € [log?% m] for all j € [d — 1]. A vertexv is in a megablockb if v €
[(bj - l)logdLijm +1,b; mgdﬁ] for eachj € [d—1]. So, initially wheni = 0, there is only one megablock,

and each time increases by in one coordinate, the volume of the megablocks shrinks bg@f oflog? m.

Each megablock s further partitioned int¢log m)“?—1) equal-sizedlocksindexed bye € [log? m]¢!.
A vertex v in a megabloclb lies in blockc if (v — byin)j+1 € [(cj - 1)105—;m +1,¢j logé—émi| for each
J € [d — 1], whereb,,;, denotes the smallest vertex contained in megabtoakd/; denotes the length
of b in the thej’th dimension. Note that verticed, vo,...,v4) and(2,v9,...,v4) belong to the same
(mega)block. At the last stage, each block contains onlyv@rtices (differing by the first coordinate).

Next, we specify the set of crossing edges contributed &t siage. A crossing edde, v) in U is said
to belongin stagesi if:

(i) wandw lie in the same megablock, and
(ii) If wliesin block(ci,...,cq4-1) andv lies in block(cy, ..., c; ), thenc; < ¢ forall j € [d — 1].

We claim that ifz # 4/, the sets of long crossing edges in stajjasd:’ are disjoint. To see this, lgtbe an
index such that; # z; suppose without loss of generality that< zg Then, the length of the megablocks
in the j'th dimension for stagé’ is at most the length of the blocks in thi¢h dimension for stage. Hence,
condition (ii) above implies that long crossing edges igstamust have endpoints in different megablocks
of stagei’, and so violate condition (i) for being a long crossing edystage:’.

It remains to show that every stage contributes at I@%}l long crossing edges. For the sake of
contradiction, suppose that the number of long crossingg®dd some stageis < % Let B =
m®1/(log m)¥1++ia-1) pe the volume of the megablocks restricted to one of the twetplanes. By an
averaging argument, at Iea@;B;1 megablocks contair Qd% long crossing edges (otherwise, there would

be at Ieas% long crossing edges). But we show next that if a megablockagusi< Qd% long crossing

11



(f“f)% internal edges with both endpoints inside the megablocks Would
Blog?m ma—1 log?

imply that the total number of internal edgesis™ 231 @D T (e 1)2%@, a contradiction.

Suppose then that a megablock contanms?d—+1 long crossing edges. Ldtow be the set of vertices
in the megablock with each coordinate at most the average wlthat coordinate in the megablock, and
High the set of vertices with each coordinate greater than theageevalue of that coordinate. Then
| Low| > 2d’ |High| > 2d, and each vertex ilow is comparable to each vertex figh. By the bound
on the number of long crossing edges, there must exist A séat Ieast2d+1 vertices inLow not incident

to any long crossing edge, and a geof at Ieast2d+1 vertices inHigh not incident to any long crossing
edges.L lies in the lower hyperplane? in the upper hyperplane, and each vertex iis comparable to each
vertex in R. Call a crossing edgshortif it satisfies condition (i), but violates condition (ii) ake. A path

in U of length at most 2 from a vertex ih to a vertex inkR must consist of one internal edge and one short
crossing edge. The number of short crossing edges incidengiven vertex is at most(d — 1)log§m, by
counting, for each of thé — 1 block indices, the number of vertices in the megablock thatesthe value of
that block index withw. So, each internal edge helps connect at midst 1)1 T pairs of vertices. Since

edges, then there are

W pairs of vertices need to be connected by a path, there mlsi;mheas%d — (lgf 1;79 =7 dfi 11°)g22ﬁ2
internal edges.

The analogue of Lemma 5.6 ihdimensions (Lemma 5.9) and the rest of the proof of Theoréhaf
straightforward generalizations of the 2-dimensionakcas

Lemma5.9. LetS be a 2-TC-spanner of the directé] x [m]¢~! grid. An edggu, v) in S is calledinternal

if up,v1 € [f] oruy,v; € {£+1,...,2¢}, and crossingotherwise. IfS contains less tharff(dl)%

d—1
. . . d—1 .
internal edges, it must contain at least/™ (2 dllooggl’:gm) crossing edges.

Proof sketch.We can generalize the proof of Lemma 5.6 in a straightforweag. For eachi € [¢], instead

of matching the lines, we match the hyperplafigls x [m]¢~! and{2¢ — i + 1} x [m]¢ 1. O
Proof of Theorem 5.7Assumem is a power of2 for simplicity. For each step € {1,... ,%log m},
partition 7, 4 into the following 2i~! equal-sized subgrids{1,...,;} x[m]® % {l; + 1,...,2,;} x
[m]4=t, ..., {m — I; +1,...,m} x [m]¢ wherel; = m/2!~!. For each of these subgrids, define in-

ternal and crossing edges as in Lemma 5.9. Now, supposehina éxists a step such that at least
; . . - d . . . . .
half of the 2°—! subgrids have> Lm® oa®m jntarng] edges. Since at a fixédthe subgrids are dis-

(d—1)224+3
joint, there are at leagt 2% s 1;213(%;" = (Zfll)ofjdﬁ edges inS, which is enough to prove the theorem.
On the other hand, suppose that for everg {1,..., %log m}, at least half of the!~! subgrids have
< % internal edges. Then, applying Lemma 5.9, the number okorgsdges in those subgrids
_ d—1
is > lim; 1 (lelggglz%gm> . Counting over all stepsand for all appropriate subgrids from those steps, the
: _ d—1
number of edges i is lower-bounded bye§™ . 2i-2 . lm< <2d1100ggf:gm) = ?—;m- O

5.2.3 Lower Bound for Smallm

Finally, we prove the lower bound on the size of the spars€ssganner of the directed hypergrid, which
builds up on the lower bound for the hypercube. This lowemighis especially relevant for smaii.

Theorem 5.10. Any 2-TC-spanner of,, 4 has at least2 ((m — 1)?2(¢+e~1)d) edges, where is the con-
stant from Theorem 1.1 and > 0 satisfiesl + H(a) < c.

12



Proof. Let S be a2-TC-spanner ot,, 4. For eachr € [m—1]¢, letU, bethe se{y : < y, [r—y|e < 1}.
By Claim 5.3,.S must contain a 2-TC-spanner bf, for eachz. (Recall that in general, a subgraph of a
TC-spanner need not be a TC-spanner.)

Call an edge of a 2-TC-spanner #f; long if it connectsz andy with |z — y| > ad. Claim 5.11
implies that for each: € [m — 1], S containsQ(Sy(H,)) long edges that belong to a TC-spanner of
U., whereSs(H,) is the number of edges in the sparsest 2-TC-spanner of tredyge. Since endpoints
of a long edge can agree on at m@st— a)d coordinates, each such edge belongs to at r2dst)?

subcubed/,. Thus,S must contairt? (%) long edges. The claimed lower bound follows, by
Theorem 1.1. O

Claim 5.11. Letc be the constant from Lemma 3.4 amd> 0 be a constant for which + H(a) < ¢. Call
an edge(z, y) in a 2-TC-spanner ofH, longif | — y| > ad, where|z — y| denotes the Hamming distance
betweenr andy. Then every 2-TC-spanner Af; must have2(S;3(H,4)) long edges.

Proof. The number of pairéz, y), wherez,y € {0,1}¢, z < y and|z — y| < ad, is at mos? - 2He(@)d —
2(I+Hp(@))d 'whereH,(-) is the binary entropy function. If + Hy(a) < ¢, then every 2-TC-spanner &f,
must haveQ2(S>(H,4)) long edges. O

Remark5.1 We note that the constantcan be improved slightly by adapting the proof of Lemma 3.3 to
optimize the number of edges in the 2-TC-spannekgbetween endpoints of Hamming distance at least
ad, divided by2(1~%)4_The calculations are similar to those in Lemma 3.

Theorem 1.2 that gives explicit bounds on the size of thesgsi2-TC-spanners ot 4 follows from
Corollary 5.2, Theorem 5.7 and Theorem 5.10.
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A Missing Proofs from Section 3

The following claim was used in the proof of Lemma 3.3.

Claim A.1. If the variables{z1,...,x,,y1,...,y,} are subject to the constraints:

n n
Vie[n]:0<z; <aand0<y; <f, ingt, Zyigt,
i=1 i=1

then)"" | zy; < 2t - min{«, 5}.

Proof. Suppose) z;y; is maximized wherr; = «; andy; = ; for all i. Also, suppose without loss of
generality that the variables are indexed such that; < asf < --- < a,8,. Thenq;3; > 0 implies
a;+10i+1 = af. The reason is the following. Notice that either < «;1 or 5; < B;+1. (Otherwise,
a;f; > air18i+1.) Assume without loss of generality that< 5, ;. If we seta = a;+a;+1 —min{o; 1+
o, o} ando | = min{aq1 + oy, o thenajf; + o) Big1 > aif; + i1 311 while all the constraints in
the lemma statement are satisfied. So, we can replgaedo; 1 with o] ando/ , , respectively. Then, from
the above definitions, we see thigt> 0 impliesa; 1 = a. Similarly, 3; > 0implies 5;,1 = 3. Therefore,
if a;3; > 0thena,16;+1 = af. In other wordsp;5; = 0 for 1 < i < m for somem < n, ay,SGm > 0,

anda;; = af form <i <n.Then> " | ;03 < {m—‘ af < maﬁ = 2t min{«, 5}. O
Claim A2, 5,4, — &) M, @k
Ln Sikj = G0 max (z)’ (dfj) '

k—1i
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Proof. Take the ratio of the two sides:

e OEDE)  OENED
O {5 OO~ OOCH

() 4=

The first equality follows from the fact thatax(x, y) - min(z,y) = x - y. The last equality can be proved
either by expanding the binomial coefficients into factistiaor by realizing that bothid)( 97 and

() (5) (4=%) count the number of wayisred balls,j — k blue balls, and: — i green balls can be placed into

d slots, each of which can hold one ball at most. This compketeproof of the lemma. O

Proof of Lemma 3.4We use the fact that” ) = 2(Hs(c)=en(D)n where o,,(1)” is a function ofn that tends
to zero asn tends to infinity, andd,(p) = —plogp — (1 — p)log(1 — p) is the binary entropy function.
Substitutingi = ad, j = 6d andk = ~d in the resulting expression far and taking the logarithm of both
sides, we get

log, s ZOSI;lggglangigﬂ [Hb(’Y) — H, <g:z> (8 — ) + max (Hb (v) v, Hy <1_5> (1 v))} d

In other wordsJog, s = cd wherec is a constant. We can check numerically that 1.1620. O

B Missing Proofs from Section 4

Lemma B.1. There is &-TC-spanner of<,, 4 with

O [ d®™ max min Lj)(j})max {M(i,k),N(k,j)} | edges
ij:j-i kii<k<j ./\/l( )N(k,J) T ’

Proof. Let v € i denote that vertex belongs to levei. Consider the following probabilistic construction
that connects comparable vertices at leveladj of H,, 4 by paths of length at most 2:

Given levelsi, j € [m]?, j =i,

1. Initialize the seff; ; to (.

2. Letk;; = argmin (#ﬁf(&ﬁ max {M(i, k), J\/’(k,j)}).

k:i<k<j

o MG (9) ) . .
3. LetS;; be a set o™ 757y Vertices chosen uniformly at random from the sef bf vertices

that are in weight levek = k; ;.

4. For each vertex € S;;, setE;;t0 By U {(z,v) :x €iNe <v}U{(v,y) :y € jAv < y}. That
is, connecty to all comparable vertices in levelandj.

5. OutputEiJ.

Claim B.2. For all i < j, with probability at Ieast%, E; ; contains a path of length at most 2 between any
pair of vertices(z, y) such thatr < y, x € i, andy € j.
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Proof. Fix =,y with z < y, and assume < i, andy € j. We will first show thatPr cx[z < v < y] > p,
wherep _ M ()
M) (5)

Toward that end, notice that there até(i,j)(gl) pairs of comparable verticés, w) with u € i,w € j.
Each vertex inS; ; connects exactlyM(i, k)N (k, j) pairs of nodes from levelsandj. It is enough to
show that for any such paju, w), the number of vertices at levkithat are comparable to bothandv is
independent ofi, w, i.e., that number only depends on the levels, j and it is therefore the same for all
such pairs. To see that, for a vertexc z, denote byZ;(u) the set of positions of valukin ». Notice that
|Ti(u)| = 2. Forz < v < yitis the case thal,,, () C Trn(v) € Trn(y). Hence there aré/™ ") choices
for them-values in the vectos. Similarly, we must havé,,, 1 (z) C T,,—1(v) C T),(y )uTm 1( ). Hence
there are(]’"ﬂm L k’" 1“" 1) choices for the values: — 1 in v. Repeating this process, we obtain that the
number of pos&ble s does not depend on the particular choice: @indy.

Thus the probability tha$; ; does not contain such a vertexwith z < v < yis (1 — p)@"/P < e~

The number of comparable paits, y) is at mostn??, and by the union bound, the probability that there
exists(x, y) such that there is no € S ; with z < v < y is at mostn?de~4" < 1/2. O

So, for everyi andj, there exists a choice ¢f; ; such that comparable pairs from the two weight levels
are connected by a path of Iength at most 2. Elétbe the set of edges returned by the algorithm when this
Sij is chosen. We sdt = UKJ ;- By Claim B.2,([m ]4, E) is a 2-TC-spanner df.,, 4.

Now, we show that the size cﬂ? is as claimed in the lemma statement. The main observatitrais
in step (4), for any specifie € Si;, [{(z,v) : x € inz < v} U{(v,y) : y € jAv < y}| is exactly
M(i, k) + N(k,j).

The claimed bound follows sind&| = > .. ;[E;;|, where the sum hag" terms.

Lemma B.3. Any 2-TC-spanner df{,, 4 has

Q max min Lj)(j’l)max{/\/l(i k) N(k )} edaes
ijig-i kixk=<j M1, k)N (k,j) PR »J g

Proof. Let S be a2-TC-spanner fofH,, . We will count the edges i¥' that occur on paths connecting
two particular levels ofH,, 4. Let P; = {(vi,v2) : v1 € i,v2 € j,v1 < va2}. We will lower bound
ey the number of edges in the paths of length at most 8,ithat connect the pair§; ;. Notice that

1P(,3)] = (§) M)
Let ey ¢ denote the number of edgesSithat connect vertices in levklto vertices in level. Then

eij=eij+ > (eix+ewy). (2)
i<k<j

We say that a vertex coversa pair of verticeguvy, v2) if S contains the edgg®,, v) and(v, vy) or, for
the special case = vy, if S contains(vy, v2). Let Vi(;‘) be the set of vertices in lev&l that cover pairs in

P ;. Let oy be the fraction of pairs itf; ; that are covered by the verticesﬁﬁ;‘). Since each pair it ;
must be covered by a vertex in levédsith i < k < j, we must have

Z (63 Z 1. (3)

i<k<j

For any vertexy € V( ) leti in, be the number of incoming edges from vertices of lévecident to
v and letout,, be the number of outgoing edges to vertices of lgviglcident tov. For each levek with
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. . k . .
i < k < j, since each vertex Vi(j ) coversin,, - out, pairs,

Z iny - outy > ax|Pj| > aaeM(i, j) (d) (4)
J

(k)
vEVi"i

We upper bounozvev<k) in, - out, as a function ok; x + ey j, and then use Equation (4) to lower
ij

bOUﬂdeLk + ek j-
For allk with i < k < j, variablesin,, andout, satisfy the following constraints:

Z iny < ejk+texj Z out, < ejxtexj, iny, < M(ik)Vo e Vig(), outy, < N(k,j) Vo € Vl(Jk)

vEV.Q()

(k)
B Uevi,j

The last two constraints hold becausge andout, count the number of edges to a vertex of lekdrom
from vertices of level and from a vertex of levek to vertices of levej, respectively. We want to maximize
Zvev(k) in,-out, subject to the above constraints. Claim A.1 bounds the supndwsing that the maximum

J

occurs whenin, = M(i, k) andout, = N (k,j) for as manyv as possible, subject to the remaining
constraints. It gives us, for ad withi < k < j,

> iny - outy < 2(eix + exg) min {M(i, k), N'(k,j)} .

S
veVi;

. 1 .o (d 1 . . -
From Equation (4)¢; x + exj > §akM(l,J)(j> i TV K, N )] foralli < k < j. Applying

Equations (2) and (3), we get

*
ef; = eyt Y (et exy)
i<k<j

1 1 Lo fd
= 5;O“‘min{M(i,k>,N<k,j>}M("”(j)

1 . 1 .. fd
2 §mkmmin{M(i,k),N(k,j)}M(l’J)<j)

1 . 1 .o fd ] )
= sy MO0 () me (MG 10, A )

Since this holds for arbitrariyandj, the number of edges in the 2-TC-spanner is

M(1,j) (¢
|S| > lmaX min ( J)(J)

2 iji<ji<k<j m max {M(i, k), NV (k,j)}.

C Missing Proofs from Section 5

Claim C.1. For all m > 3, the directed line/,, ; has a 2-TC-spanner with at mastlog m — m edges.
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Proof. Construct graptt' on vertex setm| recursively. First, define the middle nodg,;; = [%]. Add
edgeqv, v,iq) for all nodesv < v,,,;,4 and edgesv,,;q, v) for all nodesv > v,,,;,4. Then recurse on the two
line segments resulting from removing,;; from the current line. Proceed until each line segment cosita
exactly one node. This construction is implicit in, e.g3][1

S is a 2-TC-spanner for the lirk,, 1, since every pair of nodes, v € [m] is connected by a path of
length at most 2 via a middle node. This happens in the stateatcursion where andv are separated
into different line segments, or one of these two nodes i©veh.

There are = |log m| stages of the recursion, and in each stage[t] each node that is not removed
by the end of the this stage connects to the middle node iniitgmt line segment. Sinc~! nodes are
removed in theth stage, exactlyr — (2/ — 1) edges are added in that stage. Thus, the total number of edges
inSism -t — (271 —¢ — 2) < mlogm — m. The last inequality holds farn > 3. O
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