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Abstract

Given a directed graphG = (V, E) and an integerk ≥ 1, a k-transitive-closure-spanner (k-TC-
spanner)of G is a directed graphH = (V, EH) that has (1) the same transitive-closure asG and (2)
diameter at mostk. Transitive-closure spanners were introduced in [7] as a common abstraction for
applications in access control, property testing and data structures.

In this work we study the number of edges in the sparsest 2-TC-spanners for the directed hypercube
{0, 1}d and hypergrid{1, 2, . . . , m}d with the usual partial order,�, defined by:x1 . . . xd � y1 . . . yd

if and only if xi ≤ yi for all i ∈ {1, ..., d}. We show that the number of edges in the sparsest 2-TC-
spanner of the hypercube is2cd+Θ(log d), wherec ≈ 1.1620. We also present upper and lower bounds
on the size of the sparsest 2-TC-spanner of the directed hypergrid. Our first pair of upper and lower
bounds for the hypergrid is in terms of an expression with binomial coefficients. The bounds differ by
a factor ofO(d2m) and, in particular, give tight (up to apoly(d) factor) bounds for constantm. We
also give a second set of bounds, which show that the number ofedges in the sparsest 2-TC-spanner of

the hypergrid is at mostmd logd m and at leastΩ
(

max
{

md logd
m

(2d log log m)d−1 , (m − 1)d2(c+α−1)d
})

,

wherec ≈ 1.1620, as above, andα > 0 satisfies1 + Hb(α) < c. The two sets of bounds are, in general,
incomparable.

Our results rule out a class of approaches to monotonicity testing of functions of the formf :
{0, 1}d → R and, more generally,f : {1, 2, . . . , m}d → R, whereR is an arbitrary range. [7] showed
that sparse 2-TC-spanners imply fast monotonicity testers, and used this connection to improve existing
monotonicity testers for planar and otherH-minor-free graphs. It left open the question, which was
again raised at the 2008 Dagstuhl seminar on Sublinear Algorithms, of whether the 2-TC-spanner ap-
proach can improve monotonicity testers on the hypercube and hypergrid. We show that a fundamentally
new approach is required.
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1 Introduction

Graph spanners were introduced in the context of distributed computing [29], and since then have found
numerous applications, such as efficient routing [11, 12, 31, 32, 37], simulating synchronized protocols in
unsynchronized networks [30], parallel and distributed algorithms for approximating shortest paths [9, 10,
15], and algorithms for distance oracles [5, 38].

Several variants on graph spanners have been defined. In thiswork, we focus ontransitive-closure
spanners that were introduced in [7] as a common abstractionfor applications in access control, property
testing and data structures.

Definition 1.1 (TC-spanner). Given a directed graphG = (V,E) and an integerk ≥ 1, a k-transitive-
closure-spanner (k-TC-spanner) of G is a directed graphH = (V,EH) with the following properties:

1. EH is a subset of the edges in the transitive closure ofG.

2. For all verticesu, v ∈ V , if dG(u, v) < ∞, thendH(u, v) ≤ k.

Thus, ak-transitive-closure-spanner (ork-TC-spanner) is a graph with small diameter that preserves the
connectivity of the original graph. In the applications above, the goal is to find the sparsestk-TC-spanner
for a givenk andG. The number of edges in the sparsestk-TC-spanner ofG is denoted bySk(G).

Our Results In this work we investigate the size of the sparsest 2-TC-spanners for the directed hypercube
and hypergrid. These graph families are natural network topologies, and other variants of spanners for the
hypercube, hypergrid, and other restricted graph familieshave been extensively studied [14, 17, 24, 25, 26,
27, 28].

Thedirected hypercube, denotedHd, has the vertex set{0, 1}d and the edge set{(x, y) : xi ≤ yi ∀i ∈
{1, . . . , d} and|x − y| = 1} where|x − y| represents the Hamming distance between the two strings.

The obvious bounds onS2(Hd) are the number of edges in thed-dimensional hypercube,2d−1d, and
the number of edges in the transitive closure ofHd, which is3d − 2d. (An edge in the transitive closure of
Hd has 3 possibilities for each coordinate: both endpoints are0, both endpoints are 1, or the first endpoint
is 0 and the second is 1. This includes self-loops, so we have to subtract the number of vertices inHd to get
the desired quantity.) Thus,2d−1d ≤ S2(Hd) ≤ 3d − 2d.

The following theorem, proved in Section 3, gives the size ofthe sparsest2-TC-spanner of the hypercube
up to a multiplicative term polylogarithmic in the size of the graph.

Theorem 1.1(Hypercube). Let S2(Hd) denote the number of edges in the sparsest2-TC-spanner ofHd.
Then

S2(Hd) = O(d32cd) andΩ(2cd), wherec ≈ 1.1620.

We prove the theorem by giving nearly matching upper and lower bounds onS2(Hd) in terms of an
expression with binomial coefficients, and later numerically estimating the value of the expression. We
prove the upper bound in Theorem 1.1 by presenting a randomized construction of a 2-TC-spanner of the
directed hypercube. Curiously, even though the upper and lower bounds above differ by a factor ofO(d3),
we can show that our construction yields a 2-TC-spanner ofHd of size withinO(d2) of the optimal.

In Sections 4 and 5, we present upper and lower bounds on the size of the sparsest 2-TC-spanner of
the hypergrid. Thedirected hypergrid, denotedHm,d, has vertex set{1, 2, . . . ,m}d and edge set{(x, y) :
∃ uniquei ∈ {1, . . . , d} such thatyi − xi = 1 and forj 6= i, yj = xj}. The straightforward bounds on the
number of edges in a 2-TC-spanner ofHm,d in terms of the number of edges in the directed grid and in its

transitive closure aredmd−1(m − 1) and
(

m2+m
2

)d
− md, respectively.
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In Section 4, we extend our analysis for the hypercube to giveupper and lower bounds onS2(Hm,d) in
terms of an expression with binomial coefficients (Theorem 4.1). The upper and lower bounds differ by a
factor ofO(d2m) and, in particular, show that our randomized 2-TC-spanner construction is optimal up to
a poly(d) factor for constantm. The value of the combinatorial expression can be estimatednumerically
for small m. Specifically,S2(Hm,d) = 2cmd poly(d), wherec3 ≈ 2.03, c4 ≈ 2.82 andc5 ≈ 3.24, each
significantly smaller than the exponents corresponding to the transitive closure sizes for the differentm.

The following theorem, proved in Section 5, gives another set of explicit bounds onS2(Hm,d) which, in
general, are incomparable to the bounds described above.

Theorem 1.2(Hypergrid). LetS2(Hm,d) denote the number of edges in the sparsest2-TC-spanner ofHm,d.
Then form ≥ 3,

S2(Hd) ≤ md logd m and ≥ Ω

(

max

{

md logd m

(2d log log m)d−1
, (m − 1)d2(c+α−1)d

})

,

wherec is the constant from Theorem 1.1 andα > 0 satisfies1 + Hb(α) < c.

We prove the upper bound in Theorem 1.2 by presenting a general construction ofk-TC-spanners for
graph products for arbitraryk ≥ 2. The second term in the lower bound expression in Theorem 1.2is
derived from the lower bound for the hypercube. The first termin the lower bound expression is proved
by a reduction of the2-TC-spanner construction for[m]d to that for the2 × [m]d−1 grid and then directly
analyzing the number of edges required for a2-TC-spanner of2 × [m]d−1. This analysis is one of the more
interesting combinatorial arguments in the paper. We show atradeoff between the number of edges in the
2-TC-spanner of the2× [m]d−1 grid that stay within the hyperplanes{1}× [m]d−1 and{2}× [m]d−1 versus
the number of edges that cross from one hyperplane to the other. The proof proceeds in multiple stages;
assuming an upper bound on the number of edges staying withinthe hyperplanes, each stage is shown to
separately contribute a substantial number of edges crossing between the hyperplanes. The proof of this
tradeoff lemma is already non-trivial ford = 2 and is presented first.

Motivation: TC-spanner method in monotonicity testing As shown in [7], TC-spanners have several
applications. 2-TC-spanners for the hypercube and hypergrid are especially relevant for the application to
monotonicity testing.

Testing monotonicity of functions [2, 6, 13, 16, 18, 19, 20, 22] is one of the most studied problems in
property testing [21, 33]. Testing monotonicity is equivalent to several other testing problems [19]. Let
Vn be a poset ofn elements andGn = (Vn, E) be the relation graph, i.e., the Hasse diagram, forVn. A
function f : Vn → R is calledmonotoneif f(x) ≤ f(y) for all (x, y) ∈ E. We sayf is ε-far from
monotone iff has to be changed on at least anε fraction of the domain to become monotone, that is,
minmonotoneg |{x : f(x) 6= g(x)}| ≥ εn. A monotonicity tester onGn is an algorithm that, given an oracle
for a functionf : Vn → R, accepts iff is monotone but rejects with probability≥ 2

3 if f is ε-far from
monotone.

For instance, ifGn is a directed line,Hn,1, the tester needs to determine whether the input sequence spec-
ified by f is sorted orε-far from sorted. IfGn is a 2-dimensional grid,Hm,2, (with vertex set{1, ...,m} ×
{1, ...,m} and edge set{(x, y) | x1 = y1 andx2 + 1 = y2} ∪ {(x, y) | x1 + 1 = y1 andx2 = y2}), the goal
is to determine whether the input matrix has non-decreasingrows and columns. Finally, ifGn = Hd, one
has to determine if the input functionf : {0, 1}d → R is monotone.

The optimal monotonicity tester for the directed line, proposed in [13], is based on the sparsest2-TC-
spanner for that graph. The following lemma from [7] proves that a sparse2-TC-spanner for any partial
order graphGn implies an efficient monotonicity tester onGn.
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Lemma 1.3([7]). If a directed acyclic graphGn has a2-TC-spanner withs(n) edges, then there exists a

monotonicity tester onGn that runs in timeO
(

s(n)
εn

)

.

This lemma led to significant improvements in monotonicity testers for several graph families, in-
cluding planar graphs and, in general,H-minor-free graphs [7]. It left open the question, which was
again raised at the 2008 Dagstuhl seminar on Sublinear Algorithms, of whether the 2-TC-spanner ap-
proach can improve monotonicity testers of functions of theform f : {0, 1}d → R and, more generally,
f : {1, 2, . . . ,m}d → R, whereR is an arbitrary range. Currently, the running time of the best tester for
this problem isO

(

d
ε log m · log |R|

)

[13], while the best known lower bound (for the hypercube with range
R = {0, 1}) is Ω(log log d) [19]. Even though for a fixedd, it is known that the optimal monotonicity tester
for the grid runs in timeΘ( log m

ε ) [22, 18], bridging the gap between the lower and upper boundsfor arbi-
trary d has remained elusive. Lemma 1.3 showed that if a 2-TC-spanner of sizeo(2dd2) for the hypercube
or, more generally, a 2-TC-spanner of sizeo(mdd2 log2 m) for the hypergrid were found, the monotonic-

ity tester of [13] would be improved. OurΩ
(

m2 log2 m
log log m

)

bound on the size of a 2-TC-spanner of the

2-dimensional grid (Theorems 1.2 and, specifically, 5.4) shows that the optimal monotonicity testers for
constant-dimensional grids from [22] cannot be matched with the TC-spanner approach. Our lower bounds
for the size of the sparsest 2-TC-spanners for the hypercube(Theorem 1.1) and the hypergrid (Theorem 1.2)
rule out the TC-spanner approach for improving monotonicity testers on the hypercube and hypergrid. A
fundamentally new approach is required.

Previous work on boundingSk for other families of graphs Thorup [34] considered a special case of
TC-spanners of graphsG that have at most twice as many edges asG, and conjectured that for all directed
graphsG on n nodes there are suchk-TC-spanners withk polylogarithmic inn. He proved his conjecture
for planar graphs [35], but later Hesse [23] gave a counterexample to Thorup’s conjecture for general graphs
by constructing a family of graphs for which alln

1
17 -TC-spanners need at leastn1+Ω(1) edges. TC-spanners

were also studied for directed trees: implicitly in [3, 4, 8,13, 39] and explicitly in [36]. The implicit results
were interpreted as TC-spanner constructions in [7]. For the directed line, [3] (and later, [4]) expressed the
size of the sparsestk-TC-spanner in terms of the inverse Ackermann function. TheAckermann function([1])
is defined by:A(1, j) = 2j , A(i+1, 0) = A(i, 1), A(i+1, j+1) = A(i, 22A(i+1,j)

). The inverse Ackermann
function isα(n) = min{i : A(i, 1) ≥ n} and theith-row inverse isλi(n) = min{j : A(i, j) ≥ n}.

Lemma 1.4 ([3, 4, 7]). Let Sk(Hn,1) denote the number of edges in the sparsestk-TC-spanner of the
directed lineHn,1. ThenS2(Hn,1) = Θ(n log n), S3(Hn,1) = Θ(n log log n), S4(Hn,1) = Θ(n log∗ n)
and, more generally,Sk(Hn,1) = Θ(nλk(n)) whereλk(n) is the inverse Ackermann function.

[3, 8, 36] gave the same bound for directed trees onn nodes. [7] extended it toO(n log n · λk(n))
bound onSk for H-minor-free graph families, which include planar graphs, bounded tree-width graphs, and
bounded genus graphs.

2 Preliminaries

For a positive integerm, we denote{1, . . . ,m} by [m]. Forx ∈ {0, 1}d, we use|x| to denote the weight of
x, that is, the number of non-zero coordinates inx. Level i in a hypercube contains all vertices of weight
i. The partial order� on the hypergridHm,d is defined as follows:x � y for two verticesx, y ∈ [m]d iff
xi ≤ yi for all i ∈ [d]. Verticesx andy arecomparableif either y is abovex (that is,x � y) or y is below
x (that is,y � x).

We denote a path fromv1 to v`, consisting of edges(v1, v2), (v2, v3), . . . , (v`−1, v`) by (v1, . . . , v`).
As usual,log denotes the logarithm base 2 andln denotes the logarithm basee.

3



3 2-TC-spanners of the Hypercube

In this section we prove Theorem 1.1, namely, we analyze the size of the sparsest 2-TC-spanner of the
d-dimensional hypercubeHd. Lemma 3.1 presents the upper bound onS2(Hd). Lemma 3.3 presents the
lower bound. The upper and lower bounds differ only by a factor of O(d3), and are dominated by the same
combinatorial expression. A numerical approximation to this expression is given in Lemma 3.4. Remark 3.1
at the end of the section explains why our randomized construction in Lemma 3.1 yields a 2-TC-spanner of
Hd of size withinO(d2) of the optimal. The missing material is deferred to AppendixA.

Lemma 3.1. There is a2-TC-spanner ofHd with O

(

d3 max
i,j:i<j

min
k:i≤k≤j

(d
k)

(j−i
k−i)

max
{

(k
i

)

,
(d−k

d−j

)

}

)

edges.

Proof. Consider the following probabilistic construction that connects all comparable vertices at levelsi
andj of Hd by paths of length at most 2:

Given levelsi, j ∈ {0, 1, ..., d}, i < j,

1. Initialize the setEi,j to ∅.

2. Letki,j = argmin
k:i≤k≤j

(

(d
k)

(j−i
k−i)

max
{

(k
i

)

,
(d−k

d−j

)

}

)

.

3. LetSi,j be a set of3d
(d

k)
(j−i

k−i)
vertices chosen uniformly at random from the set of

(d
k

)

vertices that are

in weight levelk = ki,j .

4. For each vertexv ∈ Si,j, setEi,j to Ei,j ∪ {(x, v) : |x| = i ∧ x ≺ v} ∪ {(v, y) : |y| = j ∧ v ≺ y}.
That is, connectv to all comparable vertices in levelsi andj.

5. OutputEi,j .

Claim 3.2. For all 0 ≤ i < j ≤ d, with probability at least12 , Ei,j contains a path of length at most 2
between any pair of vertices(x, y) such thatx ≺ y, |x| = i, and|y| = j.

Proof. Consider any particular pair of vertices(x, y) such thatx ≺ y, |x| = i, and|y| = j. The number
of vertices in levelk that are greater thanx and less thany is exactly

(

j−i
k−i

)

. So, the probability thatSi,j

does not contain such a vertex is:
(

1 −
(j−i
k−i

)

/
(d
k

)

)3d
(d

k)
(j−i

k−i) ≤ e−3d. The number of comparable pairs(x, y)

is
(

d
i

)(

d−i
d−j

)

. So, by the union bound, the probability that there exists an(x, y) such that no vertexv ∈ Si,j

satisfiesx ≺ v ≺ y is at most
(d

i

)(d−i
d−j

)

e−3d ≤ 22de−3d < 1
2 .

So, for everyi andj, there exists a choice ofSi,j such that comparable pairs from the two weight levels
are connected by a path of length at most 2. LetE∗

i,j be the set of edges returned by the algorithm when this
Si,j is chosen. We setE =

⋃

0≤i<j≤d E∗
i,j. By Claim 3.2,({0, 1}d, E) is a 2-TC-spanner ofHd.

Now, we show that the size ofE is as claimed in the lemma statement. The main observation isthat in
step (4), for any specificv ∈ Si,j, |{(x, v) : |x| = i ∧ x ≺ v} ∪ {(v, y) : |y| = j ∧ v ≺ y}| is exactly
(ki,j

i

)

+
(d−ki,j

d−j

)

. Therefore, for all0 ≤ i < j ≤ d,

|E∗
i,j | ≤ 3d min

k:i≤k≤j

(

d
k

)

(j−i
k−i

)

((

k

i

)

+

(

d − k

d − j

))

≤ 6d min
k:i≤k≤j

(

d
k

)

(j−i
k−i

) max

{(

k

i

)

,

(

d − k

d − j

)}

.
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Since|E| =
∑

0≤i<j≤d |E∗
i,j|, where the sum hasO(d2) terms, the claimed bound follows.

Lemma 3.3. Any 2-TC-spanner ofHd hasΩ

(

max
i,j:i<j

min
k:i≤k≤j

(d
k)

(j−i
k−i)

max
{

(k
i

)

,
(d−k

d−j

)

}

)

edges.

Proof. Let S be a2-TC-spanner forHd. We will count the edges inS that occur on paths connecting
two particular weight levels ofHd. Let Pi,j be the pairs{(v1, v2) : |v1| = i, |v2| = j, v1 ≺ v2}. We
will lower bound e∗i,j, the number of edges in the paths of length at most 2 inS that connect the pairs
Pi,j . Let ek,` denote the number of edges inS that connect vertices in levelk to vertices in level̀ . Then
e∗i,j = ei,j +

∑j−1
k=i+1(ei,k + ek,j).

We say that a vertexv coversa pair of vertices(v1, v2) if S contains the edges(v1, v) and(v, v2) or, for

the special casev = v1, if S contains(v1, v2). Let V (k)
i,j be the set of vertices of weightk that cover pairs in

Pi,j . Let αk be the fraction of pairs inPi,j that are covered by a vertex inV (k)
i,j . Since each pair inPi,j must

be covered by a vertex in levelsi to j − 1,
∑j−1

k=i αk ≥ 1.

For any vertexv ∈ V
(k)
i,j , let inv be the number of incoming edges from vertices of weighti incident

to v and letoutv be the number of outgoing edges to vertices of weightj incident tov. For eachk ∈
{i + 1, ..., j − 1}, since each vertexv ∈ V

(k)
i,j coversinv · outv pairs,

∑

v∈V
(k)

i,j

inv · outv ≥ αk|Pi,j | = αk

(

d

i

)(

d − i

d − j

)

. (1)

We upper bound
∑

v∈V
(k)

i,j

inv · outv as a function ofei,k + ek,j, and then use Equation (1) to lower bound

ei,k + ek,j.
For allk ∈ {i + 1, ..., j − 1}, variablesinv andoutv satisfy the following constraints:

∑

v∈V
(k)

i,j

inv ≤ ei,k +ek,j,
∑

v∈V
(k)

i,j

outv ≤ ei,k +ek,j, inv ≤
(

k

i

)

∀v ∈ V
(k)
i,j , outv ≤

(

d − k

d − j

)

∀v ∈ V
(k)
i,j .

The last two constraints hold becauseinv andoutv count the number of edges to a vertex of weightk from
from vertices of weighti and from a vertex of weightk to vertices of weightj, respectively. We want to
maximize

∑

v∈V
(k)

i,j

inv · outv subject to the above constraints. Claim A.1, a technical statement proved in

Appendix A, bounds the sum by proving that the maximum occurswheninv =
(k

i

)

andoutv =
(d−k

d−j

)

for
as manyv as possible, subject to the remaining constraints. It givesus, for allk ∈ {i + 1, ..., j − 1}:

∑

v∈V
(k)

i,j

inv · outv ≤ 2(ei,k + ek,j)min

{(

k

i

)

,

(

d − k

d − j

)}

.

Let si,k,j =
(d

i)(
d−i
d−j)

min
{

(k
i),(

d−k
d−j)

} . From Equation (1),ei,k + ek,j ≥ 1

2
αksi,k,j for all k ∈ {i + 1, ..., j − 1}.

Therefore,

e∗i,j = ei,j +

j−1
∑

k=i+1

(ei,k + ek,j) ≥ αi

(

d

i

)(

d − i

d − j

)

+
1

2

j−1
∑

k=i+1

αksi,k,j ≥
1

2

j−1
∑

k=i

αksi,k,j ≥
1

2
min

k:i≤k≤j
si,k,j

Since this holds for arbitraryi andj, the number of edges in the 2-TC-spanner|S| ≥ 1
2 max

i,j:i<j
min

k:i≤k≤j
si,k,j.

Finally, a simple algebraic manipulation finishes the proof(see Claim A.2.)
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The following lemma completes the proof of Theorem 1.1.

Lemma 3.4. Lets = max
i,j:i<j

min
k:i≤k≤j

(d
k)

(j−i
k−i)

max
{

(

k
i

)

,
(

d−k
d−j

)

}

. Thens = 2cd, wherec ≈ 1.1620.

Remark3.1. We note that if the first maximum in the expression fors is replaced with the sum then
Lemma 3.1 holds forO(d · s) instead ofO(d3 · s) while Lemma 3.3 holds forΩ(d/s) instead ofΩ(s).
The proofs of these modified statements are similar. (We do not have an analogue of Lemma 3.4 for the
modified expression fors.) Observe that the modified bounds differ by a factor ofO(d2) instead ofO(d3).
This demonstrates that our randomized construction yieldsa 2-TC-spanner ofHd of size withinO(d2) of
the optimal.♦

4 Tight Bounds for the Hypergrid in Terms of Combinatorial Ex pressions

In this section we generalize the arguments for the hypercube in Section 3 to the directed hypergridHm,d.
We obtain matching upper and lower bounds up to ad2m factor in terms of an expression involving bi-
nomial coefficients (see Theorem 4.1). This expression can be evaluated numerically for smallm, like in
Lemma 3.4, to find the size of the sparsest2-TC-spanner forHm,d to within poly(d) factors.

Definition 4.1. For the hypergridHm,d , define alevel to be a set of vertices, indexed by vectori ∈ [d]m

with i1 + · · · + im = d, that consists of verticesx = (x1, . . . , xd) ∈ [m]d containingi1 positions of value
1, i2 positions of value2, . . . , andim positions of valuem.

The number of vertices in leveli = (i1, i2, . . . , im) is the multinomial coefficient

(

d

i

)

=

(

d

i1, ..., id

)

=

(

d

i1

)(

d − i1
i2

)(

d − i1 − i2
i3

)

. . .

(

d −∑m−1
l=1 il

im

)

.

Indeed, there are
( d
i1

)

choices for the coordinates of value 1. For each such choice there are
(d−i1

i2

)

choices
for the coordinates of value 2, and repeating this argument one obtains the above expression.

For levelsi, j ∈ [d]m, sayj majorizesi, denotedj � i, if j contains a vertex which is above some vertex

in i, that is, if
m
∑

`=t

j` ≥
m
∑

`=t

i` for all t ∈ {m,m − 1, ..., 1}.

For j � i, the number of verticesy at leveli comparable to a fixed vertexx at levelj is

M(i, j) =

(

jm

im

)(

jm + jm−1 − im
im−1

)(

jm + jm−1 + jm−2 − im − im−1

im−2

)

. . .

(∑m
l=1 jl −

∑m
l=2 il

i1

)

.

Indeed, there are
(

jm

im

)

choices for the coordinates of valuem in y. For each such choice, there are
(jm+jm−1−im

im−1

)

choices for the coordinates of valuem − 1 in y, and one can repeat this argument to ob-
tain the claimed expression.

For j � i, the number of verticesy at levelj comparable to a fixed vertexx at leveli is

N (i, j) =
M(i, j)

(

d
j

)

(

d
i

) .

Indeed, there areM(i, j)
(

d
j

)

comparable pairs of vertices in levelsi andj, and leveli contains
(

d
i

)

vertices.
Since, by symmetry, each vertex ini is comparable to the same number of vertices in levelj, we get the
desired expression.
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Theorem 4.1. LetB(m,d) = max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(d
j

)

M(i,k)N (k, j)
max {M(i,k),N (k, j)} . Then the number

of edges in the sparsest 2-TC-spanner of the directed hypergrid Hm,d is O
(

d2mB(m,d)
)

andΩ (B(m,d)).

Theorem 4.1 follows from Lemmas B.1 and B.3 that appear in Appendix B.

5 Explicit Bounds for the Hypergrid

In this section we prove Theorem 1.2 that gives explicit bounds on the size of the sparsest2-TC-spanners of
Hm,d. The bounds are stated separately in Corollary 5.2, Theorem5.7 and Theorem 5.10. The upper bound
in Corollary 5.2 is proved in Section 5.1. The lower bounds inTheorem 5.7 and Theorem 5.10 appear in
Section 5.2.

5.1 Upper Bound

This section explains how to construct a TC-spanner of the Cartesian product of graphsG1 andG2 from TC-
spanners ofG1 andG2. Since the directed hypergrid is the Cartesian product of directed lines, and optimal
TC-spanner constructions are known for the directed line, our construction yields sparse TC-spanners for
the grid (Corollary 5.2). We start by defining two graph products: Cartesian and strong.

Definition 5.1 (Graph products). Given graphsG1 = (V1, E1) andG2 = (V2, E2), a product ofG1 and
G2 is a new graphG with vertex setV1 × V2. For theCartesian graph product, denoted byG1 × G2, graph
G contains an edge from(u1, u2) to (v1, v2) if and only ifu1 = v1 and (u2, v2) ∈ E2, or (u1, v1) ∈ E1

andu2 = v2. For thestrong graph product, denoted byG1 ◦ G2, graphG contains an edge from(u1, u2)
to (v1, v2) if and only ifu1 = v1 and (u2, v2) ∈ E2, or (u1, v1) ∈ E1 andu2 = v2, or (u1, v1) ∈ E1 and
(u2, v2) ∈ E2.

For example,Hm,2 = Hm,1 ×Hm,1 and TC(Hm,2) = TC(Hm,1) ◦ TC(Hm,1), where TC(G) denotes
the transitive closure ofG.

Lemma 5.1. LetG1 andG2 be directed graphs withk-TC-spannersS1 andS2, respectively. ThenS1 ◦ S2

is ak-TC-spanner ofG = G1 × G2.

Proof. Suppose(u, v) and(u′, v′) are comparable vertices inG1 ×G2. Then, by definition of the Cartesian
product,u � u′ in G1 andv � v′ in G2. Let (u1, u2, . . . , u`) be the shortest path inS1 from u = u1 to
u′ = u`, and(v1, v2, . . . , vt) the shortest path inS2 from v = v1 to v′ = vt. Assume w.t.o.g. thatl ≤ t.
Then((u1, v1), (u2, v2), . . . , (u`, v`) . . . , (u`, vt)) is a path inS1◦S2 of lengtht ≤ k, from (u, v) to (u′, v′).
Therefore,S1 ◦ S2 is ak-TC-spanner ofG = G1 × G2.

Lemma 5.1 together with previous results on the size ofk-TC-spanners for the lineHm,1, summarized
in Lemma 1.4, imply an upper bound on the size of ak-TC-spanner of the directed hypergridHm,d:

Corollary 5.2. Let Sk(Hm,d) denote the number of edges in the sparsestk-TC-spanner of the directed
d-dimensional hypergridHm,d. ThenSk(Hm,d) = O(mdλk(m)dcd) for appropriate constantc.

More precisely,S2(Hm,d) ≤ md logd m for m ≥ 3.

Proof. Let S be ak-TC-spanner for the lineHm,1. By Lemma 5.1,S ◦ · · · ◦ S, where the strong graph
product is appliedd times, is ak-TC-spanner for the directed gridHm,d. By definition of the strong graph
product, the number of edges in the resulting spanner is(|E(S)|+ m)d −md. Since the number of edges in
the spanner,|E(S)|, is at leastm, the main statement follows.

The more precise statement fork = 2 follows from Claim C.1 in Appendix C which gives a more
careful analysis of the size of the sparsest 2-TC-spanner ofthe line: namely,S2(Hm,1) ≤ m log m − m for
m ≥ 3.

7



5.2 Lower Bounds

In this section we prove an explicit lower bound on the size ofa 2-TC-spanner of thed-dimensional directed
grid, stated in Theorem 1.2. Section 5.2.1 proves the first term in the lower bound expression for the special
case of the 2-dimensional grid. Section 5.2.2 extends the proof to an arbitrary dimension. Section 5.2.3
proves the second term in the lower bound expression.

We start with an observation useful for all lower bounds in this section. It is tempting to think that a
subgraph of a TC-spanner is itself a TC-spanner, however, ingeneral, this is not the case. We observe that it
is true for subgrids of a hypergrid that include all verticesbetween the lowest and the highest vertices in the
subgrid.

Claim 5.3. Letx, y ∈ [m]d. DefineGx,y to be the subgraph ofHm,d induced by the vertex set{z : x � z �
y}. Everyk-TC-spannerS of Hm,d must contain ak-TC-spanner ofGx,y.

Proof. If a path (of length at mostk) in S leavesGx,y it cannot return.

5.2.1 Lower Bound ford = 2

In this section we prove a lower bound on the size of a 2-TC-spanner of the2-dimensional directed grid,
stated in Theorem 5.4. This is a special case of the lower bound in Theorem 1.2.

Theorem 5.4. Any2-TC-spanner of the2-dimensional gridHm,2 hasΩ
(

m2 log2 m
loglog m

)

edges.

One way to prove theΩ(m log m) lower bound on the size of a 2-TC-spanner for the directed lineHm,1,
stated in Lemma 1.4, is to observe that at leastbm

2 c edges are cut when the line is halved: namely, at least
one per vertex pair(v,m− v + 1) for all v ∈

[

bm
2 c
]

. Continuing to halve the line recursively, we obtain the
desired bound.

A natural extension of this approach to proving a lower for the grid is to recursively halve the grid
along both dimensions, hoping that every such operations onanm × m grid cutsΩ(m2 log m) edges. This
would imply that the sizeS(m) of a 2-TC-spanner of them × m grid satisfies the recurrenceS(m) =
4S(m/2) + Ω(m2 log m); that is,S(m) = Ω(m2 log2 m), matching the upper bound in Theorem 1.2.

An immediate problem with this approach is that in some 2-TC-spanners of the grid onlyΩ(m2) edges
connect vertices in different quarters. One example of sucha 2-TC-spanner is the graph containing the
transitive closure of each quarter and only at most3m2 edges crossing from one quarter to another: namely,
for each nodeu and each quarterq with vertices comparable tou, this graph contains an edge(u, vq), where
vq is the smallest node inq comparable tou.

The TC-spanner in the example above is not optimal because ithas too many edges inside the quarters.
The first step in our proof of Theorem 5.4 is understanding thetradeoff between the number of edges
crossingthe cut and the number of edgesinternal to the subgrids, resulting from halving the grid along
some dimension. The simplest manifestation of this tradeoff occurs when a2 × m grid is halved into two
lines. (In the case of one line, there is no trade off: theΩ(m) bound on the number of crossing edges holds
even if each half-line contains all edges its transitive closure.) Lemma 5.5 formulates the tradeoff for the
two-line case, while taking into account only edges needed to connect comparable vertices on different lines
by paths of length at most 2:

Lemma 5.5(Two-Lines Lemma). LetU be a graph with vertex set[2] × [m] that contains a path of length
at most 2 fromu to v for everyu ∈ {1} × [m] andv ∈ {2} × [m], whereu � v. An edge(u, v) in U is

called internal if u1 = v1, andcrossingotherwise. IfU contains at mostm log2 m
32 internal edges, it must

contain at least m log m
16 log log m crossing edges.
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Figure 1: Illustration of the first stage in the proof of Lemma5.5.

Note that if the number of internal edges is unrestricted, a 2-TC-spanner ofHm,2 may have onlym
crossing edges.

Proof. The proof proceeds in log m
2 log log m stages dealing with pairwise disjoint sets of crossing edges. In each

stage, we show thatU contains at leastm8 crossing edges in the prescribed set.
In the first stage, divideU into log2 m blocks, each of length m

log2 m
: namely, a node(v1, v2) is in blocki

if v2 ∈
[

(i−1)·m

log2 m
+ 1, i·m

log2 m

]

. Call an edgelong if it starts and ends in different blocks, andshortotherwise.

Assume, for contradiction, thatU contains fewer thanm8 long crossing edges.
Call a node(v1, v2) low if v1 = 1 (high if v1 = 2), andleft if v2 ∈

[

m
2

]

(right otherwise). Also, call
an edge(u, v) low-internal if u1 = v1 = 1 andhigh-internal if u1 = v1 = 2. Let L be the set of low left
nodes that are not incident to long crossing edges. Similarly, let R be the set of high right nodes that are not
incident to long crossing edges. Since there are fewer thanm

8 long crossing edges,|L| > m
4 and|R| > m

4 .
A nodeu ∈ L can connect to a nodev ∈ R via a path of length at most 2 only by using a long internal

edge. Observe that each long low-internal edge can be used byat most m
log2 m

such pairs(u, v): one low
nodeu and high nodesv from one block. This is illustrated in Figure 1. Analogously, every long high-
internal edge can be used by at mostm

log2 m
such pairs. Since|L| · |R| > m2

16 pairs inL × R connect via

paths of length at most 2, graphU contains more thanm
2

16 · log2 m
m = m log2 m

16 long internal edges, which is
a contradiction.

In each subsequent stage, call blocks used in the previous stagemegablocks, and denote their length by
B. Subdivide each megablock intolog2 m blocks of equal size. Call an edgelong if it starts and ends in
different blocks, but stays within one megablock. Assume, for contradiction, thatU contains fewer thanm8
long crossing edges.

Call a node(v1, v2) left if it is in the left half of its megablock, that is, ifv2 ≤ `+r
2 whenever(v1, v2) is

in a megablock[2]×{`, . . . , r}. (Call it right otherwise). Consider megablocks containing less thanB
4 long

crossing edges each. By an averaging argument, at leastm
2B megablocks are of this type. Within each such

megablock more thanB4 low left nodes and more thanB4 high right nodes have no incident long crossing

edges. By the argument from the first stage, each such megablock contributes more thanB
2

16b long internal

edges, whereb = B
log2 m

is the size of the blocks. Hence there must be more thanB2

16b · m
2B = m log2 m

32 long

internal edges, which is a contradiction to the fact thatU contains at mostm log2 m
32 internal edges.

We proceed to the next stage until each block is of length 1. Therefore, the number of stages,t, satisfies
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m
log2t m

= 1. That is,t = log m
2 log log m , and each stage contributesm

8 new crossing edges, as desired.

Next we generalize Lemma 5.5 to understand the tradeoff between the number of internal edges and
crossing edges resulting from halving a 2-TC-spanner of an2` × m grid with the usual partial order.

Lemma 5.6. LetS be a 2-TC-spanner of the directed[2`]× [m] grid. An edge(u, v) in S is calledinternal

if u1, v1 ∈ [`] or u1, v1 ∈ {` + 1, . . . , 2`}, andcrossingotherwise. IfS contains at most`m log2 m
64 internal

edges, it must contain at least`m log m
32 log log m crossing edges.

Proof. For eachi ∈ [`], we match the lines{i} × [m] and{2`− i + 1}× [m]. Observe that a path of length
at most 2 between the matched lines cannot use any edges with both endpoints in{i + 1, . . . , 2`− i}× [m].
We modifyS to ensure that there are no edges with only one endpoint in{i + 1, . . . , 2` − i} × [m] for all
i ∈ [`], and then apply Lemma 5.5 to the matched pairs of lines.

Call the[`] × [m] subgrid and all vertices and edges it containslow, and the remaining{` + 1, . . . , 2`}
subgrid and its vertices and edgeshigh. TransformS intoS′ as follows: change each low internal edge(u, v)
to (u, (u1, v2)), change each high internal edge(u, v) to ((v1, u2), v), and finally change each crossing edge
((i1, j1), (2`− i2 + 1, j2)) to ((i, j1), (2`− i + 1, j2)), wherei = min(i1, i2). Intuitively, we are projecting
the edges inS to be fully contained in one of the matched pairs of lines, while preserving whether the edge
is internal or crossing. Crossing edges are projected onto the outer matched pair of lines chosen from the
two pairs that contain the endpoints of a given edge.

Clearly,S′ contains the same number of internal (crossing) edges asS. Observe thatS′ contains a path
of length at most 2 fromu to v for every comparable pair(u, v) whereu is low, v is high, andu andv belong
to the same pair of matched lines. Indeed, sinceS is a 2-TC-spanner, it contains either the edge(u, v) or
a path(u,w, v). In the first case,S′ also contains(u, v). In the second case, if(u,w) is a crossing edge
S′ contains(u, (v1, w2), v), and if (u,w) is an internal edgeS′ contains(u, (u1, w2), v). As claimed, each
edge inS′ belongs to one of the matched pairs of lines.

Finally, we apply Lemma 5.5. IfS′ contains at most`m log2 m
64 internal edges then at least half

(

i.e., `
2

)

of the matched line pairs each contain at mostm log2 m
32 internal edges. By Lemma 5.5, each of these pairs

contributes at leastm log m
16 log log m crossing edges. ThusS′ must contain at least`m log m

32 log log m crossing edges. Since
S contains as many crossing edges asS′, the lemma follows.

Now we prove Theorem 5.4 by recursively halvingHm,2 along the horizontal dimension. Some resulting
` × m subgrids may violate Lemma 5.6, but we can guarantee that thelemma holds for a constant fraction
of the recursive steps for which̀≥ √

m. This is sufficient for obtaining the lower bound in the theorem.

Proof of Theorem 5.4.Assumem is a power of2 for simplicity. For each stepi ∈ {1, . . . , 1
2 log m},

partition Hm,2 into the following 2i−1 equal-sized subgrids:{1, . . . , li} ×[m], {li + 1, . . . , 2li} × [m],
. . . , {m − li + 1, . . . ,m} × [m] where li = m/2i−1. For each of these subgrids, define internal and
crossing edges as in Lemma 5.6. Now, suppose that there exists a stepi such that at least half of the

2i−1 subgrids have> lim log2 m
64 internal edges. Since at a fixedi, the subgrids are disjoint, there are

2i−1Ω(lim log2 m) = Ω(m2 log2 m) edges inS, proving the theorem. On the other hand, suppose that

for everyi ∈ {1, . . . , 1
2 log m}, at least half of the2i−1 subgrids have≤ lim log2 m

64 internal edges. Then,

applying Lemma 5.6, the number of crossing edges in those subgrids is≥ lim log m
32 log log m . Counting over

all stepsi and for all appropriate subgrids from those steps, the number of edges inS is bounded by

Ω
(

m2 log m log m
log log m

)

= Ω
(

m2 log2 m
log log m

)

.
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5.2.2 Lower Bound for Generald

This section generalizes the lower bound from the previous section to arbitraryd. The following theorem
implies the first term in the lower bound expression in Theorem 1.2:

Theorem 5.7. Any2-TC-spanner ofHm,d has at leastm
d

32
logd m

(2d log log m)d−1 edges.

The main ingredient in the proof is the Two-Hyperplanes Lemma, an analogue of the Two-Lines Lemma
(Lemma 5.5) ford dimensions. The main difficulty in extending the proof of theTwo-Lines lemma to work
for two hyperplanes is in generalizing the definitions of blocks and megablocks, so that, on one hand, each
stage in the proof contributes a substantial number of crossing edges and, on the other hand, the crossing
edges contributed in separate stages are pairwise disjoint.

Lemma 5.8(Two-Hyperplanes Lemma). LetU be a graph with vertex set[2]× [m]d−1 that contains a path
of length at most 2 fromu to v for everyu ∈ {1} × [m]d−1 and v ∈ {2} × [m]d−1, whereu � v. As in
Lemma 5.5, an edge(u, v) in U is called internal if u1 = v1, andcrossingotherwise. Then, ifU contains

less thanmd−1 logd m
(d−1)22d+3 internal edges, it must contain≥ md−1

8

(

log m
2d log log m

)d−1
crossing edges.

Proof. As for Lemma 5.5, the proof proceeds in several stages. The stages are indexed by(d − 1)-tuplesi

in {0, 1, . . . , log m
d log log m − 1}d−1. Then, the number of stages is

(

log m
d log log m

)d−1
. We show below that each

stage contributes at leastmd−1

2d+2 separate edges to the set of crossing edges, thus proving ourlemma.
As in the proof of Lemma 5.5, at each stage vertices are partitioned into megablocks and blocks. In

stagei = (i1, . . . , id−1), we partitionU into (log m)d(i1+···+id−1) equal-sizedmegablocksindexed byb =
(b1, . . . , bd−1), wherebj ∈ [logd·ij m] for all j ∈ [d − 1]. A vertex v is in a megablockb if vj+1 ∈
[

(bj − 1) m

logdij m
+ 1, bj

m

logdij m

]

for eachj ∈ [d−1]. So, initially wheni = ~0, there is only one megablock,

and each timei increases by1 in one coordinate, the volume of the megablocks shrinks by a factor oflogd m.
Each megablockb is further partitioned into(log m)d(d−1) equal-sizedblocksindexed byc ∈ [logd m]d−1.

A vertex v in a megablockb lies in blockc if (v − bmin)j+1 ∈
[

(cj − 1)
`j

logd m
+ 1, cj

`j

logd m

]

for each

j ∈ [d − 1], wherebmin denotes the smallest vertex contained in megablockb and`j denotes the length
of b in the thej’th dimension. Note that vertices(1, v2, . . . , vd) and (2, v2, . . . , vd) belong to the same
(mega)block. At the last stage, each block contains only twovertices (differing by the first coordinate).

Next, we specify the set of crossing edges contributed at each stage. A crossing edge(u, v) in U is said
to belong in stagei if:

(i) u andv lie in the same megablock, and

(ii) If u lies in block(c1, . . . , cd−1) andv lies in block(c′1, . . . , c
′
d−1), thencj < c′j for all j ∈ [d − 1].

We claim that ifi 6= i
′, the sets of long crossing edges in stagesi andi

′ are disjoint. To see this, letj be an
index such thatij 6= i′j; suppose without loss of generality thatij < i′j . Then, the length of the megablocks
in thej’th dimension for stagei′ is at most the length of the blocks in thej’th dimension for stagei. Hence,
condition (ii) above implies that long crossing edges in stagei must have endpoints in different megablocks
of stagei′, and so violate condition (i) for being a long crossing edge in stagei′.

It remains to show that every stage contributes at leastmd−1

2d+2 long crossing edges. For the sake of

contradiction, suppose that the number of long crossing edges at some stagei is < md−1

2d+2 . Let B =

md−1/(log m)d(i1+···+id−1) be the volume of the megablocks restricted to one of the two hyperplanes. By an
averaging argument, at leastmd−1

2B megablocks contain< B
2d+1 long crossing edges (otherwise, there would

be at leastm
d−1

2d+2 long crossing edges). But we show next that if a megablock contains< B
2d+1 long crossing
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edges, then there are≥ B logd m
(d−1)22d+2 internal edges with both endpoints inside the megablock. This would

imply that the total number of internal edges is≥ md−1

2B · B logd m
(d−1)22d+2 = md−1 logd m

(d−1)22d+3 , a contradiction.

Suppose then that a megablock contains< B
2d+1 long crossing edges. LetLow be the set of vertices

in the megablock with each coordinate at most the average value of that coordinate in the megablock, and
High the set of vertices with each coordinate greater than the average value of that coordinate. Then
|Low| ≥ B

2d , |High| ≥ B
2d , and each vertex inLow is comparable to each vertex inHigh. By the bound

on the number of long crossing edges, there must exist a setL of at least B
2d+1 vertices inLow not incident

to any long crossing edge, and a setR of at least B
2d+1 vertices inHigh not incident to any long crossing

edges.L lies in the lower hyperplane,R in the upper hyperplane, and each vertex inL is comparable to each
vertex inR. Call a crossing edgeshort if it satisfies condition (i), but violates condition (ii) above. A path
in U of length at most 2 from a vertex inL to a vertex inR must consist of one internal edge and one short
crossing edge. The number of short crossing edges incident to a given vertexv is at most(d − 1) B

logd m
, by

counting, for each of thed−1 block indices, the number of vertices in the megablock that share the value of
that block index withv. So, each internal edge helps connect at most(d − 1) B

logd m
pairs of vertices. Since

B2

22d+2 pairs of vertices need to be connected by a path, there must exist at least B2

22d+2 · logd m
(d−1)B = B logd m

(d−1)22d+2

internal edges.

The analogue of Lemma 5.6 ind dimensions (Lemma 5.9) and the rest of the proof of Theorem 5.7 are
straightforward generalizations of the 2-dimensional case.

Lemma 5.9. LetS be a 2-TC-spanner of the directed[2`]×[m]d−1 grid. An edge(u, v) in S is calledinternal

if u1, v1 ∈ [`] or u1, v1 ∈ {` + 1, . . . , 2`}, and crossingotherwise. IfS contains less than`m
d−1 logd m

(d−1)22d+3

internal edges, it must contain at least≥ `md−1

8

(

log m
2d log log m

)d−1
crossing edges.

Proof sketch.We can generalize the proof of Lemma 5.6 in a straightforwardway. For eachi ∈ [`], instead
of matching the lines, we match the hyperplanes{i} × [m]d−1 and{2` − i + 1} × [m]d−1.

Proof of Theorem 5.7.Assumem is a power of2 for simplicity. For each stepi ∈ {1, . . . , 1
2 log m},

partition Hm,d into the following 2i−1 equal-sized subgrids:{1, . . . , li} ×[m]d−1, {li + 1, . . . , 2li} ×
[m]d−1, . . . , {m − li + 1, . . . ,m} × [m]d where li = m/2i−1. For each of these subgrids, define in-
ternal and crossing edges as in Lemma 5.9. Now, suppose that there exists a stepi such that at least

half of the 2i−1 subgrids have≥ lim
d−1 logd m

(d−1)22d+3 internal edges. Since at a fixedi, the subgrids are dis-

joint, there are at least2i−2 limd−1 logd m
(d−1)22d+3 = md logd m

(d−1)22d+4 edges inS, which is enough to prove the theorem.

On the other hand, suppose that for everyi ∈ {1, . . . , 1
2 log m}, at least half of the2i−1 subgrids have

< lim
d−1 logd m

(d−1)22d+3 internal edges. Then, applying Lemma 5.9, the number of crossing edges in those subgrids

is≥ limd−1

8

(

log m
2d log log m

)d−1
. Counting over all stepsi and for all appropriate subgrids from those steps, the

number of edges inS is lower-bounded bylog m
2 · 2i−2 · lim

d−1

8

(

log m
2d log log m

)d−1
= md

32
logd m

(2d log log m)d−1 .

5.2.3 Lower Bound for Smallm

Finally, we prove the lower bound on the size of the sparsest TC-spanner of the directed hypergrid, which
builds up on the lower bound for the hypercube. This lower bound is especially relevant for smallm.

Theorem 5.10.Any2-TC-spanner ofHm,d has at leastΩ
(

(m − 1)d2(c+α−1)d
)

edges, wherec is the con-
stant from Theorem 1.1 andα > 0 satisfies1 + Hb(α) < c.
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Proof. LetS be a2-TC-spanner ofHm,d. For eachx ∈ [m−1]d, letUx be the set{y : x � y, |x−y|∞ ≤ 1}.
By Claim 5.3,S must contain a 2-TC-spanner ofUx for eachx. (Recall that in general, a subgraph of a
TC-spanner need not be a TC-spanner.)

Call an edge of a 2-TC-spanner ofHd long if it connectsx andy with |x − y| ≥ αd. Claim 5.11
implies that for eachx ∈ [m − 1]d, S containsΩ(S2(Hd)) long edges that belong to a TC-spanner of
Ux, whereS2(Hd) is the number of edges in the sparsest 2-TC-spanner of the hypercube. Since endpoints
of a long edge can agree on at most(1 − α)d coordinates, each such edge belongs to at most2(1−α)d

subcubesUx. Thus,S must containΩ
(

(m−1)dS2(Hd)

2(1−α)d

)

long edges. The claimed lower bound follows, by

Theorem 1.1.

Claim 5.11. Letc be the constant from Lemma 3.4 andα > 0 be a constant for which1 + Hb(α) < c. Call
an edge(x, y) in a 2-TC-spanner ofHd long if |x − y| ≥ αd, where|x − y| denotes the Hamming distance
betweenx andy. Then every 2-TC-spanner ofHd must haveΩ(S2(Hd)) long edges.

Proof. The number of pairs(x, y), wherex, y ∈ {0, 1}d, x � y and|x− y| < αd, is at most2d · 2Hb(α)d =
2(1+Hb(α))d, whereHb(·) is the binary entropy function. If1 + Hb(α) < c, then every 2-TC-spanner ofHd

must haveΩ(S2(Hd)) long edges.

Remark5.1. We note that the constantα can be improved slightly by adapting the proof of Lemma 3.3 to
optimize the number of edges in the 2-TC-spanner ofHd between endpoints of Hamming distance at least
αd, divided by2(1−α)d. The calculations are similar to those in Lemma 3.3.♦

Theorem 1.2 that gives explicit bounds on the size of the sparsest2-TC-spanners ofHm,d follows from
Corollary 5.2, Theorem 5.7 and Theorem 5.10.
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A Missing Proofs from Section 3

The following claim was used in the proof of Lemma 3.3.

Claim A.1. If the variables{x1, . . . , xn, y1, . . . , yn} are subject to the constraints:

∀i ∈ [n] : 0 ≤ xi ≤ α and0 ≤ yi ≤ β,

n
∑

i=1

xi ≤ t,

n
∑

i=1

yi ≤ t,

then
∑n

i=1 xiyi ≤ 2t · min{α, β}.

Proof. Suppose
∑

xiyi is maximized whenxi = αi andyi = βi for all i. Also, suppose without loss of
generality that the variables are indexed such thatα1β1 ≤ α2β2 ≤ · · · ≤ αnβn. Thenαiβi > 0 implies
αi+1βi+1 = αβ. The reason is the following. Notice that eitherαi ≤ αi+1 or βi ≤ βi+1. (Otherwise,
αiβi > αi+1βi+1.) Assume without loss of generality thatβi ≤ βi+1. If we setα′

i = αi+αi+1−min{αi+1+
αi, α} andα′

i+1 = min{αi+1 +αi, α} thenα′
iβi +α′

i+1βi+1 ≥ αiβi +αi+1βi+1 while all the constraints in
the lemma statement are satisfied. So, we can replaceαi andαi+1 with α′

i andα′
i+1 respectively. Then, from

the above definitions, we see thatαi > 0 impliesαi+1 = α. Similarly,βi > 0 impliesβi+1 = β. Therefore,
if αiβi > 0 thenαi+1βi+1 = αβ. In other words,αiβi = 0 for 1 ≤ i < m for somem < n, αmβm > 0,

andαiβi = αβ for m < i ≤ n. Then,
∑n

i=1 αiβi ≤
⌈

t
max{α,β}

⌉

αβ ≤ 2t
max{α,β}αβ = 2t min{α, β}.

Claim A.2. si,k,j =
(d

k)
(j−i

k−i)
max

{

(k
i

)

,
(d−k

d−j

)

}

.
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Proof. Take the ratio of the two sides:

si,k,j

(d
k)

(j−i
k−i)

max
{

(

k
i

)

,
(

d−k
d−j

)

}

=

(d
i

)(d−i
d−j

)(j−i
k−i

)

(d
k

)(k
i

)(d−k
d−j

) =

(d
i

)(d−i
j−i

)(j−i
k−i

)

(d
k

)(k
i

)(d−k
j−k

) = 1.

The first equality follows from the fact thatmax(x, y) · min(x, y) = x · y. The last equality can be proved
either by expanding the binomial coefficients into factorials, or by realizing that both

(d
i

)(d−i
j−i

)(j−i
k−i

)

and
(d
k

)(k
i

)(d−k
j−k

)

count the number of waysi red balls,j − k blue balls, andk − i green balls can be placed into
d slots, each of which can hold one ball at most. This completesthe proof of the lemma.

Proof of Lemma 3.4.We use the fact that
( n
cn

)

= 2(Hb(c)−on(1))n, where “on(1)” is a function ofn that tends
to zero asn tends to infinity, andHb(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function.
Substitutingi = αd, j = βd andk = γd in the resulting expression fors, and taking the logarithm of both
sides, we get

log2 s = max
0≤α<β≤1

min
α≤γ≤β

[

Hb(γ) − Hb

(

γ − α

β − α

)

(β − α) + max

(

Hb

(

α

γ

)

γ,Hb

(

1 − β

1 − γ

)

(1 − γ)

)]

d

In other words,log2 s = cd wherec is a constant. We can check numerically thatc ≈ 1.1620.

B Missing Proofs from Section 4

Lemma B.1. There is a2-TC-spanner ofHm,d with

O

(

d2m max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(d
j

)

M(i,k)N (k, j)
max {M(i,k),N (k, j)}

)

edges.

Proof. Let v ∈ i denote that vertexv belongs to leveli. Consider the following probabilistic construction
that connects comparable vertices at levelsi andj of Hm,d by paths of length at most 2:

Given levelsi, j ∈ [m]d, j � i,

1. Initialize the setEi,j to ∅.

2. Letki,j = argmin
k:i≺k≺j

(

M(i,j)(d
j)

M(i,k)N (k,j) max {M(i,k),N (k, j)}
)

.

3. LetSi,j be a set ofdm M(i,j)(d
j)

M(i,k)N (k,j) vertices chosen uniformly at random from the set of
(d
k

)

vertices
that are in weight levelk = ki,j.

4. For each vertexv ∈ Si,j, setEi,j to Ei,j ∪ {(x, v) : x ∈ i ∧ x ≺ v} ∪ {(v, y) : y ∈ j ∧ v ≺ y}. That
is, connectv to all comparable vertices in levelsi andj.

5. OutputEi,j.

Claim B.2. For all i ≺ j, with probability at least12 , Ei,j contains a path of length at most 2 between any
pair of vertices(x, y) such thatx ≺ y, x ∈ i, andy ∈ j.
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Proof. Fix x, y with x ≺ y, and assumex ∈ i, andy ∈ j. We will first show thatPrv∈k[x ≺ v ≺ y] ≥ p,
wherep = M(i,k)N (k,j)

M(i,j)(d
j)

.

Toward that end, notice that there areM(i, j)
(d
j

)

pairs of comparable vertices(u,w) with u ∈ i, w ∈ j.
Each vertex inSi,j connects exactlyM(i,k)N (k, j) pairs of nodes from levelsi and j. It is enough to
show that for any such pair(u,w), the number of vertices at levelk that are comparable to bothu andv is
independent ofu,w, i.e., that number only depends on the levelsi,k, j and it is therefore the same for all
such pairs. To see that, for a vertexu ∈ z, denote byTl(u) the set of positions of valuel in u. Notice that
|Tl(u)| = zl. Forx ≺ v ≺ y it is the case thatTm(x) ⊆ Tm(v) ⊆ Tm(y). Hence there are

(jm−im
km−im

)

choices
for them-values in the vectorv. Similarly, we must haveTm−1(x) ⊆ Tm−1(v) ⊆ Tm(y)∪Tm−1(y). Hence
there are

(jm+jm−1−km−im−1

km−1−im−1

)

choices for the valuesm − 1 in v. Repeating this process, we obtain that the
number of possiblev’s does not depend on the particular choice ofx andy.

Thus the probability thatSi,j does not contain such a vertexv with x ≺ v ≺ y is (1 − p)d
m/p ≤ e−dm

.
The number of comparable pairs(x, y) is at mostm2d, and by the union bound, the probability that there

exists(x, y) such that there is nov ∈ Si,j with x ≺ v ≺ y is at mostm2de−dm
< 1/2.

So, for everyi andj, there exists a choice ofSi,j such that comparable pairs from the two weight levels
are connected by a path of length at most 2. LetE∗

i,j be the set of edges returned by the algorithm when this

Si,j is chosen. We setE =
⋃

i<j E∗
i,j. By Claim B.2,([m]d, E) is a 2-TC-spanner ofHm,d.

Now, we show that the size ofE is as claimed in the lemma statement. The main observation isthat
in step (4), for any specificv ∈ Si,j, |{(x, v) : x ∈ i ∧ x ≺ v} ∪ {(v, y) : y ∈ j ∧ v ≺ y}| is exactly
M(i,k) + N (k, j).

The claimed bound follows since|E| =
∑

j�i |E∗
i,j|, where the sum hasdm terms.

Lemma B.3. Any 2-TC-spanner ofHm,d has

Ω

(

max
i,j:j�i

min
k:i≺k≺j

M(i, j)
(d
j

)

M(i,k)N (k, j)
max {M(i,k),N (k, j)}

)

edges.

Proof. Let S be a2-TC-spanner forHm,d. We will count the edges inS that occur on paths connecting
two particular levels ofHm,d. Let Pi,j = {(v1, v2) : v1 ∈ i, v2 ∈ j, v1 ≺ v2}. We will lower bound
e∗i,j, the number of edges in the paths of length at most 2 inS, that connect the pairsPi,j. Notice that

|P (i, j)| =
(

d
j

)

M(i, j).
Let ek,` denote the number of edges inS that connect vertices in levelk to vertices in level̀ . Then

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j). (2)

We say that a vertexv coversa pair of vertices(v1, v2) if S contains the edges(v1, v) and(v, v2) or, for

the special casev = v1, if S contains(v1, v2). Let V (k)
i,j be the set of vertices in levelk that cover pairs in

Pi,j. Let αk be the fraction of pairs inPi,j that are covered by the vertices inV
(k)
i,j . Since each pair inPi,j

must be covered by a vertex in levelsk with i ≺ k ≺ j, we must have
∑

i≺k≺j

αk ≥ 1. (3)

For any vertexv ∈ V
(k)
i,j , let inv be the number of incoming edges from vertices of leveli incident to

v and letoutv be the number of outgoing edges to vertices of levelj incident tov. For each levelk with
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i ≺ k ≺ j, since each vertexv ∈ V
(k)
i,j coversinv · outv pairs,

∑

v∈V
(k)
i,j

inv · outv ≥ αk|Pi,j| ≥ αkM(i, j)

(

d

j

)

. (4)

We upper bound
∑

v∈V
(k)
i,j

inv · outv as a function ofei,k + ek,j, and then use Equation (4) to lower

boundei,k + ek,j.
For allk with i ≺ k ≺ j, variablesinv andoutv satisfy the following constraints:

∑

v∈V
(k)
i,j

inv ≤ ei,k+ek,j,
∑

v∈V
(k)
i,j

outv ≤ ei,k+ek,j, inv ≤ M(i,k) ∀v ∈ V
(k)
i,j , outv ≤ N (k, j) ∀v ∈ V

(k)
i,j .

The last two constraints hold becauseinv andoutv count the number of edges to a vertex of levelk from
from vertices of leveli and from a vertex of levelk to vertices of levelj, respectively. We want to maximize
∑

v∈V
(k)
i,j

inv ·outv subject to the above constraints. Claim A.1 bounds the sum byproving that the maximum

occurs wheninv = M(i,k) and outv = N (k, j) for as manyv as possible, subject to the remaining
constraints. It gives us, for allk with i ≺ k ≺ j,

∑

v∈V
(k)
i,j

inv · outv ≤ 2(ei,k + ek,j)min {M(i,k),N (k, j)} .

From Equation (4),ei,k + ek,j ≥ 1

2
αkM(i, j)

(

d

j

)

1

min {M(i,k),N (k, j)} for all i ≺ k ≺ j. Applying

Equations (2) and (3), we get

e∗i,j = ei,j +
∑

i≺k≺j

(ei,k + ek,j)

≥ 1

2

∑

k

αk

1

min {M(i,k),N (k, j)}M(i, j)

(

d

j

)

≥ 1

2
min
k

1

min {M(i,k),N (k, j)}M(i, j)

(

d

j

)

=
1

2
min
k

1

M(i,k)N (k, j)
M(i, j)

(

d

j

)

max {M(i,k),N (k, j)}.

Since this holds for arbitraryi andj, the number of edges in the 2-TC-spanner is

|S| ≥ 1

2
max
i,j:i≺j

min
i≺k≺j

M(i, j)
(d
j

)

M(i,k)N (k, j)
max {M(i,k),N (k, j)}.

C Missing Proofs from Section 5

Claim C.1. For all m ≥ 3, the directed lineHm,1 has a 2-TC-spanner with at mostm log m − m edges.
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Proof. Construct graphS on vertex set[m] recursively. First, define the middle nodevmid = dm
2 e. Add

edges(v, vmid) for all nodesv < vmid and edges(vmid, v) for all nodesv > vmid. Then recurse on the two
line segments resulting from removingvmid from the current line. Proceed until each line segment contains
exactly one node. This construction is implicit in, e.g., [13].

S is a 2-TC-spanner for the lineHm,1, since every pair of nodesu, v ∈ [m] is connected by a path of
length at most 2 via a middle node. This happens in the stage ofthe recursion whereu andv are separated
into different line segments, or one of these two nodes is removed.

There aret = blog mc stages of the recursion, and in each stagei ∈ [t] each node that is not removed
by the end of the this stage connects to the middle node in its current line segment. Since2i−1 nodes are
removed in theith stage, exactlym− (2i−1) edges are added in that stage. Thus, the total number of edges
in S is m · t − (2t+1 − t − 2) ≤ m log m − m. The last inequality holds form ≥ 3.

19
 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



	Introduction
	Preliminaries
	2-TC-spanners of the Hypercube
	Tight Bounds for the Hypergrid in Terms of Combinatorial Expressions
	Explicit Bounds for the Hypergrid
	Upper Bound
	Lower Bounds
	Lower Bound for d = 2
	Lower Bound for General d 
	Lower Bound for Small m


	Missing Proofs from Section 3
	Missing Proofs from Section 4
	Missing Proofs from Section 5

