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Abstract

Thek-DNF resolution proof systems are a family of systems inddxethe integek;, where the:*®
member is restricted to operating with formulas in disjireehormal form with all terms of bounded
arity k (k-DNF formulas). This family was introduced in [KrajiceR@1] as an extension of the well-
studied resolution proof system. A number of lower bound®Heeen proven ok-DNF resolution proof
length and space, and it has also been showr{kh@at )-DNF resolution is exponentially more powerful
than k-DNF resolution for allk with respect to length. For proof space, however, no cooeding
hierarchy has been known except for the (very weak) subsistestricted to tree-like proofs. In this
work, we establish a strict space hierarchy for the genenagstricted:-DNF resolution proof systems.

1 Introduction

Proof space A central theme in the field of propositional proof complgi# the study of limitations of
natural proof systems. This is typically done by considg@tomplexity measuref propositional proofs
and studying under which circumstances this measure is.laFge most heavily investigated complexity
measure is that giroof size/lengttand the interest in this measure is motivated by its conmestio theNP
vs. co-NP problem (see [CR79] for details), to methods for provingeipendence results in first order the-
ories of bounded arithmetic (for an example, see [Ajt88}1 hecause lower bounds on proof length imply
lower bounds on the running time of algorithms for solvivg-complete problems such agTISFIABILITY
(such algorithms are usually referred to&T solvers

This paper focuses on a more recently suggested complegi@gune known aspace The space mea-
sure was first defined and studied by Esteban and Toran [EmGhE context of the famousesolution
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September 2008 (seminar 08381).
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proof system introduced by Blake [Bla37], and was genegdlito other proof systems by Alekhnovich et
al. in [ABSRWO02]. Roughly speaking, the space of proving rerfala corresponds to the minimal size of
a blackboard needed to verify all steps in the proof. Thedsten space complexity stems from two main
sources that we survey next.

First, there are intricate and often surprising connestisgtween the space and length complexity mea-
sures. Esteban and Toran showed in [ET01] that space loserds imply length lower bounds for the
proof system ofree-like resolution Recall that theree-like version of asequential proof system has the
added constraint that every line in the proof can be used st omze to derive a subsequent line. In terms of
space, a proof is tree-like if any “claim” appearing on theckboard must be erased immediately after it has
been used to derive a new “claim”. Another connection betvggace and length is that these two measures
sometimes display #rade-off. By this we mean that there are formulas having proofs in kbtrt length
and small space, but for which there cannot exist proofs artdbngth and small spac@multaneously
Such a space-length trade-off was shown initially for ike-resolution by the first author in [BS02] and
more recently for (non-tree-like) resolution in [HPO7, Rér BSNO9].

A second motivation to study space is because of its cororetdi the memory consumption of SAT
solvers. For instance, the family of backtracking hewsssuggested by [DP60, DLL62] and known as
Davis-Putham-Logemann-Loveland (DPLRAT solvers have the following property. When given as input
an unsatisfiable formul&’ in conjunctive normal form—called henceforttC&lF formula—the description
of the execution of a DPLL SAT solver corresponds to a trkeesolution proof refuting”. Thus, lower
bounds on tree-like refutation space imply lower boundshemtemory consumptioof DPLL SAT solvers,
much like lower bounds on tree-like refutation length impdwer bounds on theunning timeof DPLL
heuristics. Of late, a family of SAT solvers known@BLL with clause learningdenoted DPLL+) has been
put to practical use with impressive success. For instaarteyerwhelming majority of the best algorithms
in recent rounds of the international SAT competitions (&%TI]) belong to this class. These SAT solvers
have the property that an execution trace corresponds tunat{ae-like) resolution refutation. Hence, space
lower bounds in general, unrestricted resolution traastab memory lower bounds for these algorithms.

We end this discussion by pointing out that there is still mlegt to explore regarding the connection
between space lower bounds in proof complexity and memonguwoption of SAT solvers. On the one
hand, the memory consumption of a “typical” DPLL+ SAT solwan be far greater than the theoretical
upper bounds on refutation space. On the other hand, theetied lower bounds on refutation space
areworst-casebounds fomon-deterministic algorithms.e., they apply even to the most memory-efficient
proof theoretically possible, which is not remotely closehe kind of proofs produced by a typical SAT
solver. Understanding what kind of limitations one can getttee memory consumption of SAT solvers
from refutation space lower bounds remains as an integestiallenge.

k-DNF resolution  The family of sequential proof systems known/aBNF resolutionwas introduced
by Krajicek in [Kra01] as a intermediate step between ltggm and deptt2 Frege. Roughly speaking,
for integersk > 0 the k*" member of this family, denoted henceforth Byk), is only allowed to reason in
terms of formulas in disjunctive normal for@NF formulag with the added restriction that any conjunction
in any formula is over at modt literals. Fork = 1, the lines in the proof are hence disjunctions of literals,
and the systerfR(1) is standard resolution. At the other extreffépo) is equivalent to depth-Frege.

The original motivation to study this family of proof systeras stated in [KraOl], was to better un-
derstand the complexity of counting in weak models of bodnaiéthmetic, and it was later observed that
these systems are also related to SAT solvers that reaguy msilti-valued logic (see [JNO2] for a discus-
sion of this point). By now a number of works have shown supigrmpmial lower bounds on the length of

A proof system is said to bgequentialf a proof 7 in the system is aequencef linesm = {L1, ..., L, } where each line is
derived from previous lines by one of a finite set of allovif@rence rulegSee Section 2 for formal definitions).



1 INTRODUCTION

MR(k)-refutations, most notably for (various formulations dfe tpigeonhole principle and for random CNF
formulas [AB04, ABEOQ2, Ale05, JNO2, Raz03, SBI04, Seg05f péxticular relevance to our current work
are the results of Segerlind et al. [SBI04] and of Segerl8eb05] showing that the family 8%(k) systems
form astrict hierarchywith respect to proof length. More precisely, they prove thaevery integert > 0
there exists a family of formula§F,, } of arbitrarily large size: such thatF;,, has aR(k + 1)-refutation of
polynomial lengthn©() but all 3 (k)-refutations ofF;, require exponential lengtef2(™).

Just as in the case for standard resolution, the understaofispace complexity ifR(k) has remained
more limited. We are aware of only one prior work by EstebamlefEGMO04] shedding light on this
question. Their paper establish essentially optimal spaeer bounds fofR(k) and also prove that the
family of tree-likefR(k) systems form a strict hierarchy with respect to space. Wiest $show is that there
exist arbitrarily large formulag;, of sizen that can be refuted in tree-lik&(k + 1) in constant space
but require spac€(n/log®n) to be refuted in tree-likék(k). It should be pointed out, however, that
as observed in [Kra01, EGM04] the family of tree-liR& k) systems for allc > 0 are strictly weaker
than standard resolution. As was noted above, the familyeoémal, unrestrictetR(k) systems are strictly
stronger than resolution, so the results in [EGMO04] leavamletely open the question of whether there is a
strict space hierarchy for (non-tree-lik@) k) or not.

Main result—a space hierarchy for  k-DNF resolution  Our main result is that Krajicek’s family
of R(k) systems do indeed form a strict hierarchy with respect toesp@o explain this result we need to
describe more formally what we mean by “space”. We view aratsfg&able CNF formulal” as a set of
clauses and, following [ABSRWO02], definef&(k)-refutation of F' a to be a sequence s&tsof k-DNF
formulast = {Dy, ..., D} such thaiD, is the empty set an}, contains the contradictory empty formula.
Informally, Dy is a snapshot of the blackboard after testep of the proof has been performed. The allowed
steps, i.e., the transitions frofy_; to ID; deemed as legal, correspond(iowriting a clause off’ on the
blackboard ii) erasing a line from the board, afid) inferring a new line from those lines present on the
board according to the inference rulesbbfk).2

The length of a refutation is the number of derivation stepi.i There are several different ways to
measure the space of a 8gtin our refutation. The crudest way is to count the numbendion the board,
i.e., to measure the size Bf;, denotedD,|. We call this theformula spaceor simply, spaceof D;. (For
standard resolution, this is the well-studied measurdafse spacg A finer granulation is to measure the
term space-the number of terms appearing in the formulaglofViewing a DNF formulaD as a set of
terms this measure Is’ ., | D|. An even finer measure is tvariable space-the number of appearances
of literals inD;, counted with repetition. Viewing a terffi as a set of literals this i ., > rcp [T-

Our hierarchy theorem says that for every fixedhere exists a family ogfficiently constructibfe
unsatisfiable CNF formula$F,, }°° ; such that anyR(k)-refutation of F;,, must have (formula) space at
leastQ( **{/n/logn) but on the other hand, can be refuted iMR(k + 1) in constant variable space.
(Moreover, the constant spa@¥k + 1)-refutation of F,, is also of linear length im.) We point out that
these bounds in fact hold for all space measures discuss®d,afince the upper bound on space is in terms
of the largest of the space measures defined above—varipste,swhereas the lower bound is stated in
terms of the smallest of these measures—formula space.

Minimally unsatisfiable k-DNF sets We end our overview by focusing on the main technical novelty
of this paper which discusses a question that may be of imdigoe interest. The upper bound on the variable

2These rules are given in Definition 2.1, but for our resulesekact definitions in fact do not matter—our lower boundsi hol
for anyarbitrarily strong (but sound) rulesWhat is important is that the only new formulas that can bévdé at any given point
in time are those implied by the set of formulas that are aillyen the blackboard, and that these formulas aré-8INFs.

3A family of formulas isefficiently constructibléf there exists a polynomial time algorithm that on infidit produces the:'™
member of the family.
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space of refuting”, in R(k + 1) carries over quite straightforwardly from our recent waBSNO9]. It is
the lower bound on the formula spaceik) that requires a new idea.

Namely, in our proof of the lower bound we reach a crucial painere we have on thie DNF resolution
“proof blackboard” a seb of k-DNF formulas that involves very many variables, but imgfia number
of small (and strong) formula&' over very few variables. We wish to conclude that the only &y
can happen is that the blackboard Betontains many distinct formulas. For the sake of simplitatyus
assume? is itself unsatisfiable, i.e is a formula computing the constahfunction. Saying D implies0”
is equivalent to saying thd is unsatisfiable, i.e., there is no assignment that satiafiégsDNF formulas
in D. AssumingD is unsatisfiable and involves at leastariables, can we bound from below the sizéD6f
As stated, the answer to this question is a flat “no”. To se® ¢binsider the following unsatisfiable set
consisting of thre&-DNF formulas, each formula involving a single term:

{on NS, ~o A NS N i) &)

Even if we “weaken” any term (i.e., make it easier to satigfy)removing from it a variable labeleg,

the remaining set is unsatisfiable. The reason for this isthigaset above “hides” within it a weaker set of
formulas that is already unsatisfiable, namely, the{setﬂx}. This suggests rephrasing our question as
follows. We say that a séd of k-DNF formulas isminimally unsatisfiablef weakening any single term
appearing in it will make the “weaker” set of formulas satibfe.

Open Problem 1. What is the minimal size of a set/ieDNF formulas that is minimally unsatisfiable and
mentions: variables?

For k = 1 this question has been completely resolved. In this dase.equivalent to a CNF formula,
because itis a set of disjunctions of literals, and we hagddtowing “folklore” result which seems to have
been proved independently on several different occasions.

Theorem 1.1 ([AL86, BET01, CS88, Kul00)).If D is a set ofl-DNF formulas, i.e., a CNF formula, that
is minimally unsatisfiable and mentionsvariables, ther|D| > n.

The following minimally unsatisfiable set ef+ 1 clauses oven variables shows that the bound stated
above is tight.

{\/?:1:%, X1, L2y ..., —|:L'n} (2)
Theorem 1.1 has a relatively elementary proof based ondHailérriage theorem, but its importance to
obtaining lower bounds on resolution length and space d¢droveremphasized. For instance, the seminal
lower bound on refutation length of random CNFs given by &hlvand Szemerédi in [CS88] makes crucial
use of it, as does the proof of the “size-width trade-off” BSWO01]. Examples of applications of this
theorem in resolution space lower bounds include [ABSRVBE&;03, BSN08, BSN09, NHO08, Nor06].

For sets ofk-DNF formulas withk > 1, we are not aware of any upper or lower bounds on mini-
mally unsatisfiable sets prior to our work. The main technieault that we need in order to establish the
k-DNF resolution space hierarchy is an extension of the Idveeind in Theorem 1.1 to the casefof> 1.

Our result, stated in Theorem 3.5, says that a minimally tisfeble set ofk-DNF formulas involving

n variables must have size at ledst,/n/k. Notice that the lower bound on the size of a minimally urssati
fiable set ofc-DNF formulas is of the same asymptotic order asfii{é&)-space lower bound stated above.
We point out that the result needed for our space lower batated in Lemma 4.3, has to work for a more
general definition of “minimal implication” (see Sectiona@rfmore details). However, it seems reasonable
to believe that improving the bound stated in Theorem 3.5emore restricted Problem 1 would lead also
to a stronger space separation)fk) and9i(k + 1). We end by stating that we do not see any reason to
believe our lower bound fat > 1 is asymptotically tight. In fact, we are not aware of any &tsinimally
unsatisfiablé:-DNF formulas that are of size(n).

4A set of formulasD impliesa formulaG if and only if every assignment that satisfies all formula®imust also satisfy?.
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Organization of the rest of the paper After presenting the formal definitions in Section 2, we give
precise statements of our main results in Section 3. Sedtitarts the proof of th&(k)-space lower bound
on F,,. Section 5 is the technical heart of the paper and studiesizbeof minimally unsatisfiable formula
sets. In Section 6, we complete the proof of the space lowanddor9R(k). Section 7 provides the final
missing component, namely the (relatively straightfodyarpper bound on th@ (% + 1)-refutation space
of F,,. We conclude in Section 8 with a brief discussion of dirawdifor future research.

2 Preliminaries

In this section we give the formal definitions used in thisgragnd state a few basic facts that we will need.

2.1 Formulas

For the most part we stick with the standard notations famfdas in conjunctive normal form (CNF) and
disjunctive normal form (DNF). However, often we will useetiiery convenient, although somewhat less
standard, set notation to treat objects such as clausess,tegstrictions and CNF and DNF formulas. We
explain this terminology next. Definitions of standard tiota regarding formulas can be found in, for
instance, [Nor08, Section 4.4]. Throughout this paper,etg| denote the sefl, ..., k}.

DNF and CNF formulas as sets  Forxz a Boolean variable, Bteral over z is either a Boolean variable
x, called apositive literal overx or its negation, denotedx or T and called anegative literal overr. We
define——x to bexz. Whenz is understood from context or unimportant we simply speak ¢bositive,
negative)literal. A CNF formula is a set of clauses, i.e., disjunctions of literals, ardNF formula is

a set of terms, i.e., conjunctions of literals. TWaiable setof a termT, denotedVars(T'), is the set of
Boolean variables over which there are literals/in The variable set of a clause is similarly defined and
this definition is extended to CNF and DNF formulas by takingus, i.e., forD = {D;,..., D;} a DNF
formula we define its variable set a&rs(D) = [J;_, Vars(D;). If X is a set of Boolean variables and
Vars (T) C X we sayT is a termover X and similarly define clauses, CNF formulas, and DNF formulas
overX.

We think of aclauseas a set of literals and so igerm We will sometimes borrow set-theoretic notation
and terminology to discuss logical formulas. For instanee,say that the terrii” is asubtermof 7', and
write 7/ C T to denote that the set of literals @f is contained in the set of literals @f. We similarly
speak of, and denote, subclauses and subformulas. We selatiseC' (or termT) is a k-clause(k-term,
respectively) if|C| < k (|T'| < k, respectively). Ak-DNF formula D is a set ofk-terms and &-CNF
formula is a set ofk-clauses. Thaizeof a DNF formulaD, denoted D, is the number of terms in it and
the size of CNF formula is analogously denoted and defined.

Assignments and restrictions as sets As is the case with CNF and DNF formulas, we prefer to use
in our proof a set-theoretic representation of restriciand assignments, as defined next.

A restriction p over a set of Boolean variables is a subset of literals oveX with the property that for
each variable: € X there is at most one literal overin p. Theset of variables assignéeay p is Vars (p)
and thesizeof p is |p| = | Vars (p)]. We say the restrictiop’ extendsp if p’ O p, and in this case we also
say thatp agreeswith p’. An assignmenty to X is a restriction satisfyingn| = | X|.

Fora a literal overX andp a restriction overX, let the restriction of; underp be

1 a€ep
al,=¢ 0 —a€p 3)
a otherwise

5
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If al, = 1 we sayp satisfiess, if af , = 0 we sayp falsifiesa and otherwise we sgyleavesa unfixed We
extend the definition of a restriction to a teffn= a; A --- A as and clause” = o) Vv - -+ V o/, as follows.
Let —p = {—ala € p} denote the restriction obtained by replacing every litgral by its negation.

1 TCp 0 CCp
Tl,=4 0 TN=p#0 , Cl,=4 1 CNnp#0 4)
T\ p otherwise C\ —p otherwise

In words, we sayl’ is satisfiedby p if p satisfies all literals ir{’, we sayT is falsified by p if some literal

of p is falsified and otherwis&’ is unfixed byp. Dually, C is satisfied if some literal of it is satisfied ly

it is falsified if all its literals are falsified by and otherwise it remains unfixed. Notice that émepty term

i.e., the term of siz@, is satisfied by every restriction and the empty clause sfiatl by all of them. We
extend the definition of a restriction to a DNF formule= Dy V ---V D, = {D1,..., D;,} by

1 Ji € [m], D[, =1
Dl,=1¢ 0 D;l,=0,i € [m] (5)
{Dil, = Dil, # 0} otherwise,

andtoa CNFformuld =Cy A--- ACp, = {C4,...,Cp} by

0 HiE[m],CiprO
Fl,=¢ 1 Cil, =1,i € [m] (6)
{Cirp D Cil, # 1} otherwise.

The notions of a restriction satisfying, falsifying anduies unfixed a DNF or CNF formula are analogous to
those defined for terms and clauses i a restriction satisfying a formuld, yet every proper subrestriction
P < pdoes not satisfy, then we say is aminimalsatisfying restriction. A minimal falsifying restriction
is analogously defined. Whenis an assignment anfl is a formula we use the standard notatiornFtty)

to denoteF .

A term (clause, respectively) is said to bevial if it contains both a positive and a negative literal
over the same variable. We may assume without loss of gégeitzt all terms (clauses, respectively)
appearing in our paper are nontrivial, because the valueDifila (CNF, respectively) remains unchanged
after addition or removal of trivial terms (clauses, respety). We say that a DNF formul® over X
representsa Boolean functionf : X — {0, 1} if and only if for all assignments € {0,1}X, we have
f(a) = D(«). The notion of a CNF formula representirfgs analogously defined. It is well-known that
every Boolean function can be represented by a CNF and by a DNF

Implication If Cis a set of formulas we say that a restriction (or assignneait¥fiesC if and only if it
satisfies every formula i@. ForD, C two sets of formulas over a set of variablEswe say thabD impliesC,
denotedD F C, if and only if every assignment to X that satisfied also satisfie€. In particular,D E 0
if and only if D is unsatisfiablei.e., no assignment satisfiBs

2.2 k-DNF Resolution

We now give a more precise description of t®NF resolution proof systems and the proof complexity
measures for these systems that we are interested in sgudyin

Definition 2.1 (k-DNF-resolution inference rules). The k-DNF-resolutionproof systems are a family of
sequential proof systems parameterized:key N*. Lines in ak-DNF-resolution refutation are-DNF for-
mulas and the following inference rules are allowed (whé&ré3, C' denotek-DNF formulas,T’, 7" denote
k-terms, andiy, . .., a; denote literals):
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k-cut (@AAa) Vv BE} e VC wherek’ < k.

AVT, AVT’

A-introduction AV TOT)

,aslongasr uT’| <k.

i AVT /
A-elimination = foranyT’ C T.

Weakening ﬁ for any k-DNF formula B.

The formulas above the line are called thierence assumptiorand the formula below is called tlvense-
quence For brevity we denote bfR(k) the proof system of-DNF resolution.

The following definition is the straightforward generatina to 93(k) of the space-oriented definition
of a refutation from [ABSRWO0?2].

Definition 2.2 (Derivation). A k-DNF configurationD, or, simply, aconfiguration is a set ofk-DNF for-
mulas. A sequence of configuratiofBy, ..., D, } is said to be &(k)-derivationfrom a CNF formulaZ’
if D = () and for allt € [r], the sefD, is obtained fron,_; by one of the followingderivation steps

Axiom Download D; =D,_; U {C'} for someC € F.

Inference D, = D;_; U{D} for someD inferred by one of the inference rules listed in Definitioh 2om
a set of assumptions that belongsito ;.

Erasure D, =D;_; \ {D} for someD € D,_;.

A R(k)-derivationr : F'+D' of a k-DNF setD’ from a formulaF is a derivationr = {Dy,...,D,} such
thatD, = D'. A R(k)-refutationof F is afi(k)-derivation of the empty DNF (denoted by, i.e., the DNF
formula with no terms, or, phrased differently, the undeiide empty disjunction.

When the derived:-DNF setD’ contains a single formul®, we will often abuse notation slightly by
writing simply = : F'+ D instead ofr : F'-{D}.

Definition 2.3 (Refutation length and space).The formula spacgor simply space of a configurationD
is its size|D|. Thevariable support sizeor justsupport sizeof D, denotedSuppSize(D), is the number of
variables appearing i, i.e., SuppSize(D) = | Vars (D) | and thevariable spacef D, denotedVarSp (D) is
the number of variables appearinglircounted with repetitions. (Notice th&urSp (D) > SuppSize(D).)
The length of a JR(k)-derivationr is the number of axiom downloads and inference steps in ie Th
space (support size, variable space, respectively) ofieatdien = is defined as the maximal space (support
size, variable space, respectively) of a configuratior.inf 7 is a derivation ofD from a formulaF' of
length L and space then we sayD can be derived fron#” in length L and space simultaneously
We define thér(k)-refutation lengthof a formulaZ’, denotedLy ) (F' = 0), to be the minimum length
of any R(k)-refutation of it. TheR(k)-refutation spaceof F, denotedSpgy ) (F' = 0), and theMR(k)-
refutation support sizef I, denotedSuppSizey ;) (F' = 0), are analogously defined by taking minima over
all R(k)-refutations ofF".

When the proof systeR(k) in question is clear from context, we will drop the subindextie proof
complexity measures.

Notice that the systerfR(1) is the usuakesolutionproof system. We remark that in resolution, the
A-introduction andh-elimination rules do not apply, and the cut rule reducesiédfamiliarresolution rule
saying that the clausés; vV x andC> vV -z can be combined to derivg, v C5. Also, although the weakening
rule is sometimes convenient for technical reasons, itdg tmshow that any weakening steps can always be
eliminated from a standard resolution refutation of an tifighle CNF formula without changing anything

7
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essential. Thus, while the results in this paper will beestdor resolution with the weakening rule, they
also hold for resolution refutations using only axiom dowads, resolution rule applications and erasures.
Let us highlight this fact in a (somewhat) formal propositior the record.

Proposition 2.4 (Weakenings can be eliminated from resolitin refutations). Any resolution refutation
7 : F'+0 using the weakening rule can be transformed into a refutatio: 7' 0 without weakening such
that =’ performs at most the same number of axiom downloads, irfeseand erasures as dogsand such

that for any length or space complexity measiifestudied in this papérit holds thatM (7') < M (x).

The proof of Proposition 2.4 is an easy forward inductionrakie resolution refutation (simply ignoring
all weakening moves and keeping the subclauses insteach wéin never increase neither length nor space).
We omit the details.

We will also make use of thienplicational completeness resolution. Formally, this means that(fis
a set of clauses ard is a clause, thef@ F C if and only if there exists a resolution derivation@ffrom C.

Proposition 2.5 (Implicational completeness of resolutio). SupposeC is a set of clauses an@' is a
clause, both over a set of variables of sizeThenC E C if and only if there exists a resolution derivation
of C from C. Furthermore, ifC’ can be derived front then it can be derived in length at m@st™! — 1 and
variable space at most(n + 2) simultaneously.

Proof sketch.Suppose first that’ = 0 is the contradictory empty clause. Build a search tree wh#re
vertices on level query theith variable and where we go to the left, say, if the variabfalise under a given
truth value assignmeimnt and to the right if the variable is true. As soon as some clauggis falsified by
the partial assignment defined by the path to a vertex, we thakeertex into a leaf labelled by that clause.
This tree has height < n and hence size at mogtt! — 1, and if we turn it upside down we can obtain a
legal tree-like refutation (without weakening) @Gfin this length. This refutation can be carried out in clause
spaceh + 2 and variable space upper-bounded by the clause space timasimber of distinct variables,
i.e., at most:(n + 2). (We refer to, for instance, [BS02, ET01] for more details.)

If ¢ # 0, apply the unique minimal restrictiop falsifying C. ThenC|, E C[, = 0, and we can
construct a refutation of[, from a search tree of height < n, sinceC|[, contains strictly fewer variables
thanC. Removing the restrictiop from this refutation, and adding at most one extra weakesiag for
every other derivation step (this is an example of where teakening rule comes in handy), we get a
derivation ofC from C. (See [BSWO01] for a formal proof of this fact.) This derivatihas length at most
2. (2"*1 — 1) < 27+ — 1 and variable space at mosth + 2) < n(n + 2). O

2.3 Substitution Formulas

Throughout this paper, we will lef; denote any (non-constant) Boolean functign: {0,1}¢ — {0,1}

of arity d. We use the shorthand = (x1,...,24), so thatf,(Z) is just an equivalent way of writing
fa(x1,...,xq). Every functionf,(xy,...,z4) is equivalent to a CNF formula over, ...,z with at
most2? clauses. Fix a canonical way to represent functions as CKRulas and letCl[f,()] denote
the canonical set of clauses representipg Similarly, let Cl[—f,(Z)] denote the clauses in the canonical
representation of the negation 6f The following definition extends the notion of substitutito a CNF
formula F'. For notational convenience, we assume thabnly has variableg, y, z, et cetera, without
subscripts, so thaty, ..., x4, y1,.--,Yd, 21,- - -, 2d, - - - @re Nnew variables not occurring . We will say
that the variables, ..., x4, and any literals over these variables,l@longto the variabler.

5And indeed, for any reasonable proof complexity measurdsoeaer, but we do not want to get too formal here by discgssin
what “reasonable” would mean in this context.
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Definition 2.6 (Substitution formula). For a positive literak: and a non-constant Boolean functign we
define thef,;-substitutionof x to bex[fy] = CI[f;(Z)], i.e., the canonical representationfj{x1, ..., zq)
as a CNF formula. For a negative literay, the f;-substitution is-y|[f4] = Cl[-f,(¥)]. The f;-substitution
ofaclauseC = a; V --- V a; IS the CNF formula

Clfq] = /\ /\ (CLV...VCy) 7)

Ci€ailfa]  Cr€aylfd]
and thef;-substitution of a CNF formulé’ is F'[f;] = Accp Clfd)-

As an example, for the clauge = x \V 7 and for fo(x1, x2) = x1 @ x2 being exclusive or, we get that

Clfol = (@1 VaaVyiVTy) A1 Va2 VT V)

o - T (8)
AN@1VT2VYy1 V) A(T1 VT2 VY Vy) .

3 Main Results

In this section we state our main results. We start with tieeanchy theorem and the main theorem needed
to prove it, the substitution space theorem. Then we disttigsmain technical part of the paper: the size of
minimally unsatisfiablé:-DNF sets.

3.1 k-DNF Resolution Space Hierarchy and the Substitution Space Theorem

Our main theorem is the following.

Theorem 3.1 ¢-DNF resolution space hierarchy).For everyk > 1 there exists an efficiently constructible
family of formulas{ F,,}>2 ; satisfying the following properties.

1. F,, is an unsatisfiablé3(k + 1))-CNF formula withO(n) variables andO(n) clauses.
2. F, can be refuted iMi(k + 1) in lengthO(n) and variable spac®(1) simultaneously.
3. EveryR(k)-refutation ofF}, requires formula spac@( **{/n/logn).

The constants hidden by the asymptotic notation dependoority

We want to stress that the upper bound on refutation spa®&Ant+ 1) is stated in terms of the largest
space measure—variable space—and hence holds also farléospace, whereas the lower bound on refu-
tation space ifR(k) is stated using the smallest space measure, namely, fospatze, and hence holds
also for variable space.

The space hierarchy theorem follows from the next theoreseriéng how the space requirements of
refuting a formulaF’ in k-DNF resolution is affected by performing substitutiongreBefinition 2.6. After
presenting this “substitution space theorem,”, we show toderive the space hierarchy theorem from it.
To state the theorem we need the following definition.

Definition 3.2 (Non-authoritarian functions). We say that a Boolean functiofi over variablesX =
{z1,...,24} IS k-non-authoritarianif no restriction toX of sizek can fix the value off. In other words,
for every restrictiorp to X with |p| < k there exist two assignments), «; O p such thatf(ag) = 0 and

f(Oél) =1.
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Notice that a function od variables can b&-non-authoritarian only it < d. The XOR function® on
d variables i d— 1)-non-authoritarian and the majority function 2df + 1 variables isi’-non-authoritarian.
The substitution space theorem (k) tells us that for non-authoritarian functiofiswe can translate
back and forth between standard resolution refutationg ahd 9i(k)-refutations of the substitution for-
mula F'[f] in a (reasonably) length- and space-preserving way. Tepghesbounds below more easily, the
reader might be helped by thinking a@fd, andk as constants (which they will be in our application of the
theorem).

Theorem 3.3 (Substitution space theorem fok-DNF resolution). Let F' be any unsatisfiable-CNF for-
mula andf; be any non-constant Boolean function of awty Then the following two properties hold for
the substitution formuld’[f;]:

1. If F can be refuted in resolution in lengthand variable spac& simultaneously, the®'[f,] can be
refuted infR(d) in lengthL-d*** -4<? and variable space-d2¢+ (cd+2)3-4¢¢ +O(1) simultaneously.

2. If f4is k-non-authoritarian andF'[f,] can be refuted by &8 (k)-refutation that requires spac#’ and
makesL’ axiom downloads, thef' can be refuted by a resolution refutation that requires ahle
support size at mogRS’k)**! - 45°@ and makes at most’ axiom downloads.

Assuming this theorem, we can establish AHBNF resolution space hierarchy.

Proof of Theorem 3.1The first author described in [BS02, Theorems 3.1 and 3.2}ralyfeof efficiently
constructible3-CNF formulas{ F}, }°° ; satisfying:

n=1
e F can be refuted in resolution in lengh(n) and variable spac®(1) simultaneously.
e Every resolution refutation of!. has variable support si2Z€(n/logn).

(The family {F,}>2 , consists of so-called pebbling contradictions over d@eacyclic graphgr,, with

n vertices that have a black-white pebbling price(tfn/logn). We refer the interested reader to the
second author's PhD thesis [Nor08] and upcoming survey QBlpfor further information about pebble
games and their applications to proof complexity.)

The family { £}, }°° , is obtained by substituting an arbitrary non-authoritaiolean functiory, of
arity k+1, for instance XOR ovek +1 variables, intaF!, i.e., by settingF;, = F/[fr.1] foralln € N*. By
constructionF;, satisfies part 1 of Theorem 3.1. To obtain the remaining twtspd the theorem, we apply
Theorem 3.3 td". Using part 1 of this theorem and noticing that in our cdse k+1 andc = 3(k+1) are
constants, we conclude tha}, can be refuted itik+1)-DNF resolution in linear length and constant space
simultaneously, thus yielding part 2 of Theorem 3.1. To imhpart 3 we use the lower bound @fn/ log n)
on the variable support size 6f, and combine it with part 2 of Theorem 3.3. This completes tlo®fof
Theorem 3.1. O

3.2 Minimally unsatisfiable k-DNF formula sets

The proof of the first part of Theorem 3.3 is fairly straighmiard and resembles our proof of the substitution
theorem for the standard resolution proof system in [BSNE®® the second part, however, we require a
result, described next, that bounds the number of variageearing in a minimally unsatisfiableDNF

set of a given size. Since this result addresses a comhmlgbooblem that appears to be interesting (and
challenging) in its own right, we describe it in some detaithis section.

®The exact statement in [BS02] says that the variable spad€, d§ at leastQ(n/logn). However, the proof given there
actually shows a lower bound on the variable support size.

10
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We start by recalling that a set @ DNF formulas, i.e., a CNF formula, is said to benimally unsat-
isfiable if it is unsatisfiable but every proper subset of its clausesattisfiable, and try to generalize this
definition to the case df > 1.

Perhaps the first, naive, idea how to extend of this notioa defineD to be minimally unsatisfiable if
it is unsatisfiable but all proper subsets of it are satigfialbhe following example shows why this approach
is problematic.

{z,(FAYy) V@ Ay2) V(@ Ayz) V-V (T Aya))} (9)

This set, which consists of tw&DNF formulas, is unsatisfiable but every proper subset isfsatisfiable.
However, the number of variables appearing in the set carbitezaily large so there is no way of bounding
| Vars(ID)| as a function ofDD)|.

A more natural requirement is to demand minimality not orilyhe formula level but also at the term
level, saying that not only do all DNF formulas in the set h&vée there but also that no term in any
formula can be shrunk to a smaller, weaker term without théassoming satisfiable. Luckily enough, this
also turns out to be the concept we need for our applicatibhe.formal definition follows next.

Definition 3.4 (Minimal implication and minimally unsatisfi able k-DNF sets). Let D be a DNF set and
G be a formula. We sap) minimally impliesG if D £ G and furthermore, replacing any single tefim
appearing in a single DNF formul2 € D with a proper subterm df', and calling the resulting DNF sBt,
results inD’ ¥ G. If G is unsatisfiable we say is minimally unsatisfiable

To see that this definition generalizes the notion of a milimasatisfiable CNF formula, notice that
removing a claus€”’ from a CNF formulaF’' is equivalent to replacing a term 6f, which is a single literal,
with a proper subterm of it, which is the empty term. This isduese the empty term evaluatesiton all
assignments, which means that the resulting clause aldoat®a tol on all assignments, hence can be
removed fromF'.

The following theorem is our extension of Theorem 1.1.

Theorem 3.5 (Small-size minimally unsatisfiable:-DNF sets have few variables).Suppose thabd is a
minimally unsatisfiablé:-DNF set. Then the number of variablesliris at most Vars(D)| < (k - [D|)*.

We want to point out that in contrast to Theorem 1.1, whichxic#ly tight, there is no matching lower
bound on the number of variables in Theorem 3.5. And indeadls@e no particular reason to believe
that this theorem should be tight. We note that the best @kglbnstruction of a minimally unsatisfiable
k-DNF set that we are currently able to obtain have numberrdibies onlylinear in the number ok-DNF
formulas (fork constant), improving only by a factéf over the bound for CNF formulas in Theorem 1.1.

Lemma 3.6 (Explicit construction of minimally unsatisfiable k-DNF set). There are minimally unsatis-
fiable k-DNF setsD with | Vars(D)| > k*(|D| — 1).

Proof. Consider any minimally unsatisfiable CNF formula consgstifin + 1 clauses oven variables (for
instance, the one in (2)). Substitute every variahlaith

(@ Aa? A Axk) v (AT A L p ) vy (@R AR R A A ) (20)

and expand every clause tokeDNF formula. Note that this is possible since the negatib(10) that we
need to substitute forz; can also be expressed a&-®NF formula

\/ (—w{l A A —m:zk) . (11)
Gt yeennii) E€[1E] 5 oo X [(R2—F41,K2]

It is straightforward to verify that the result is a minimatlinsatisfiableé:-DNF set in the sense of Defini-
tion 3.4, and this set has+ 1 formulas over?n variables. O

11
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We end this section by remarking that the precise statenegpiired to prove the second part of The-
orem 3.3 (found in Lemma 5.4) is somewhat more involved thhaofem 3.5. However, the proof of
Lemma 5.4 follows closely the proof of Theorem 3.5. Both aésh results are proved in sequence in
Section 5.

4 R(k)-refutations of F'[f] Translate into Resolution Refutations of  F

To prove part 2 of Theorem 3.3, we need to show how to convéi(/a-refutationr, of F'[f;] into a
resolution refutationr of F” such that the variable support sizemofs bounded by the space of, raised

to the power ofc + 1. The proof has two main parts. In Lemma 4.2 we claim that éabiINF setD € 7/

can be “projected” onto a set of clauses ovéairs (F) such that the sequence of projected clause sets
forms the “backbone” of a resolution refutation Bf By this we mean that the backbone can be completed
to a standard resolution refutation 6f without (essentially) increasing the variable supporesiZhen,

in Lemma 4.3, which forms the second and main part of the pneefshow that ifC is a set of clauses
projected by a&-DNF setD, the variable support size @ is at most|D|*+!. Combining these lemmas
proves part 2 of Theorem 3.3.

This section is organized as follows. We start by formall§irdeg the set of clauses “projected” by a
k-DNF set. Then we state the two main lemmas regarding pegjgutoofs. After completing the proof of
part 2 of Theorem 3.3, we attend to the proofs of the lemmas.

The clauses projected bykaDNF setD are those clauses that grecisely impliecby D according to
the following definition.

Definition 4.1 (Precise implication and projected clauses)Let F' be a CNF formula ang; a non-constant
Boolean function, and suppose tliais a k-DNF set derived fron¥'[f;] and thatP and N are (disjoint)
subsets of variables df. If

DE\/ fa@ v\ ~fa@ (12a)

xeP yeEN

but for all strict subset$”’ ; P,andN’ ; N it holds that

DE \/ fu&) v \/ ~f47) . and (12b)
zEeP! yeN

DE\/ fa@ v\ =) (12¢)
zeP yeN'

we say that the clause setimplies\/ .. p f4(Z) V ey ~fa(¥) preciselyand write

D \/ fa@ v\ ~fal@) - (13)

zeP yeEN

LettingC = C* v C~ be the clause defined iyt = \/,.pz andC~ =/
the clause” if (13) holds. Finally, we let

yen Y, We say thal) projects

projp(D) = {C|D >V, ot fa(F) V Vyee-—fa(i) } (14)

denote the set of all clauses tliaprojects onf'.

12
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Informally, the next lemma states that the projection #f@NF resolution refutation of’[f,] is essen-
tially a refutation of the original formul&’ in standard resolution. And more importantly for our pugms
small R (k)-refutation space implies the projected resolution reffoehas small variable support size. The
proof of this lemma appears in Section 6.

Lemma 4.2 (Basic properties of projected proof).Letk > 1. Suppose that; = {]D)O, e ,]D)T} is a
R(k)-refutation of F'| f;] for some arbitrary unsatisfiable CNF formulaand some arbitrary non-constant
function f;. Then the sets of projected clausgsroj (Do), . . ., proj (D)} form the “backbone” of a
resolution refutationr of F' in the sense that:

e projp(Do) = 0.
e projp(D-) = {0}.

e The only timer performs a download of some axiafin F' is whenr, downloads some axiom
D e C[fd] in F[fd]

e All transitions fromproj p(Dy—1) to proj(Dy) for ¢t € [r] can be accomplished by axiom down-
loads fromF, resolution inferences, erasures, and possibly resatuti@akening steps in such a
way that the variable support size in during these intermediate derivation steps never exceeds

2 - maxper, { SuppSize(proj (D)) }.

The following statement is the main technical part of ouruangnt. Its proof is deferred to the next
section.

Lemma 4.3 (Main lemma—Ilower bound on space of projected prad. Suppose that’ is a CNF formula
and f,; is a k-non-authoritarian function of arityl > k£ andD is a k-DNF set overVars (F[fd]). Then it
holds that

SuppSize(proj p(D)) < 4k*d . (k- ‘S’p(]D)))k”Jrl .

Given the two lemmas above we proceed to prove the secondffilig substitution space theorem.

Proof of part 2 of Theorem 3.3_et F' be an unsatisfiable-CNF formula andf; a non-constant Boolean
function of arityd > k > 1. Letn; be af%i(k)-refutation of F'[f,] that requires spacg’ and maked.’
axiom downloads. By Lemma 4.2, the sequence of sets of datise { proj (D), ..., proj -(D-)} can
be extended to a resolution refutatierof ' such that the number of axiom downloadsrilis L’ and the
variable support size of is at most2S’. Additionally, Lemma 4.3 implies that the maximal suppadresof
7' is bounded by2k5’)* 1 - 4¥*d and this number is also an upper bound on the maximal supigerofr
as well. This completes the proof of part 2 of Theorem 3.3. O

5 On the Size of Minimally Implicating  £-DNF Sets
In this section we prove Lemma 4.3, which bounds the numberagtbles appearing in &-DNF set
that minimally implies a formula. We first deal with the sg@atase of a minimally unsatisfiable set in

Section 5.1. The actual result needed to prove the sulistitspace theorem follows the outline of this
simpler case and appears in Section 5.2.

13
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5.1 Warmup—on the Size of Minimally Unsatisfiable = k-DNF Sets

In this subsection we prove Theorem 3.5. The following seripit important lemma will be used both in
the proof of Theorem 3.5 and of Lemma 4.3. We state it in theengeneral form needed to prove the latter
result. (For proving Theorem 3.5 it suffices to restrict diergion tounsatisfiabldormulasG.)

Lemma 5.1. Suppose thabd is a k-DNF set that minimally implies a formul&. Then for every literah
appearing in any ternf” in a k-DNF formulaD € D there exists a restrictiop to Vars (D) satisfying

e ol <KD,
e D'[,=1forall D' c D\ {D}.
o (T\{a})I, =1

° G[p#l.

The point here is that, intuitively speaking, the restootp is very nearly satisfying thé-DNF setD
(except for a single literal in a single term) but still has fixed the formulaz implied byD to true. Also,
p assigns values to comparatively few variables.

Proof of Lemma 5.1By Definition 3.4, there exists an assignmertpo Vars (D) such that
e D'(a)=1forall D' e D'\ {D}.

o (T\ {a})(@) = 1.
e G(a)=0.

Let p be a restriction of minimal size that agrees withand satisfies the second and third bullet in the
statement of the lemma. Such a restriction can be found legtied) one terni” satisfied by« in each

D" € D'\ D and setting to agree witha: on J; Vars(T};) U Vars(T \ {a}) and be unfixed elsewhere.
Since|T"| < k we seep has size< k|D’|. The last bullet stated above holds becati$e) = 0 andp agrees
with o on all variables fixed by. O

We now bound the number of variables appearing in a minimaibatisfiable:-DNF set.

Proof of Theorem 3.5Let D = {D,...,D,,} be ak-DNF formula set withm = |D|. For S a set of
literals, letD;(.S) be the set of terms i; that containS (recall we identify a term with the set of literals
appearing in it). Formally,

Let Vars(D;(S)) denote the set of variables appearing in the set of té?piS). Our theorem follows from
the next claim.

Claim 5.2. If S'is a set of literals antlS| = k — r then| Vars (D;(9))| < k- (km)".

Before proving the claim let us complete the proof of the tkem TakeS = () for which we getr = k
and notice thaD;(0) = D;. Claim 5.2 gives

| Vars(D;)| = | Vars(D;(0))| < k(km)k (16)

and summing over all alh, formulas in the set we get
| Vars(D)| < 327, | Vars(Di)| < m - k(km)* = (km)* ! = (k|D[)*+! a7
which concludes the proof. O

14
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Proof of Claim 5.2.By induction onr > 0. For the base case of= 0 notice |S| = & so there can be at
most one term irD; that contains all literals it5' implying | Vars (D;(S))| is either0 or k.

For the inductive step we may assume the existence of someTtee D, that strictly containsS,
because otherwisg appears at most once as a terniipand the claim holds as in the base case. Assuming
T 2 S, leta be aliteral inT" \ S. Lemma 5.1 guarantees the existence of a restrigtiohsize at mostm
such thatD; = 1forall j € [m],j # i and(T"\ {a})[, # 0. By the unsatisfiability ofd we concludep
falsifies every terf¥” € D; for which T’ 2 S. Since(T'\ {a})[, = 1 and(7"\ {a}) 2 S we conclude that
every term inD; that containsS must also contain a literal set to false pybecause otherwisecould be
extended to an assignment satisfyiilig Recall that-p is the set of literals set to false y We have just
shown that

Di(8) = Uwe-, Di(SU{a'}) . (18)

So to boundVars (D;(S)) we need only bound/ars(D;(S U {a'})) for all a’ € —p. We use the inductive
hypothesis. Noticé—p) NS = () because satisfiesS. Thus, fora’ € —pwe havelSU{da'}| = k— (r—1).
Summing over alt’ € —p and recalling—p| = |p| < km, we apply the inductive hypothesis $oU {a'} to
conclude from (18) that

| Vars(D;(9))] < > are—pl Vars (D;(S U {a'}))| < |-p| - k(km) ! < k(km)" (29)

as claimed. O

5.2 Upper-bounding the Space of Projections—Proof of Lemma 4.3

To prove Lemma 4.3 we need to address two issues that did peagjn the previous subsection. First,
our starting point is &-DNF setD that is satisfiable and implies a set of projected clausesd&Eéwith
this by constructing a formula (denotéd later on) that is the conjunction of all clauses projectediby
The second issue, which is more subtle, is fhig a set of formulas defined ovéfurs (F[f4]) whereas the
clauses projected [y are over the different variable s&trs (F) The following definition will be used to
connect the two sets of variables and is crucial to our proof.

Definition 5.3 (Shadow). For a a literal over a variable) € Vars(F([f,]) let the shadowof a, denoted
V(a), be the variable: € Vars(F) to whicha belongs, i.e., the shadow gfis the variabler such that
y € Vars (;n[fd]). ForT a set of literals (which will later on be identified with a teona restriction) let its
shadow be&V (T') = {J o V(a) and forD a set of terms we define its shadow\agD) = (U, V(T).

The following sublemma, which will be proved later on, is #Hrealog of Claim 5.2, accounting for the
needed madifications which were discussed in the beginritigi®section. The claim in this sublemma
is also the central point in our proof of Lemma 4.3. We nowesthe sublemma and promptly use it to
complete the proof of Lemma 4.3.

Lemma 5.4. Supposé@® = {D;, ..., D,,} is ak-DNF set overVars(F|f4]) andG is a CNF formula over
Vars (F) such thatD minimally implies the substituted formul@ = G|[f;]. Suppose furthermore that
S C Vars(F) and|S| = k —r for » > 0. Then, lettingD;(S) = {T € D;|V(T) 2 S} denote the set of
terms inD; whose shadow contairts, we have

V(Di(S)] < k- (4" kD)
Proof of Lemma 4.3LetD = {Dy,...,D,,} andG’ = Nceproj (my Clfa]. Notice that by Definition 4.1,

G’ is of the formG’ = G[f,4] for some CNF formulaG over Vars(F) soG’ conforms to the assumptions
of Lemma 5.4.
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First we argue that we may assume without loss of generalitt minimally impliesG’. If this is not
the case, there must exist a teffrappearing inD; € D and a proper subterffi’ C T such that replacing
T by T” and calling the replaced-DNF set byD’, we still haveD’ = G’. In this case replacB with D’
and repeat the process. Notice that repeating the processnid increase the size Bf(in fact, the size
can shrink if somé&:--DNF formula includes an empty term). Since each repetitibthis process strictly
shrinks the number of literals i (counted with repetitions), we see it must terminate. Umsmination
the remainings-DNF set, denoteﬁ», which is of size at most:, minimally impliesG’.

Our next observation is that for every variabl@appearing inz there must exist a literal belonging to
it that appears i, implying

SuppSize(G) = | Vars(G)| < |[V(D)] . (20)

To see this, argue by way of contradiction. ét= C’ v z be a clause appearing @4 and assume for
simplicity thatz is a positive literal (the case of a negative literal is id=ad). Conditions (12a) and (12b) of
Definition 4.1 imply that there exists an assignmertb Vars(F[f4]) such thatu(D) = a(z[f4]) = 1 but
a(C"[f4]) = 0. By constructionD = D soa(D) = 1 as well. By assumption, no variable belonging:to
appears i, so by changing the value ofon Vars (z[f4]) as to falsifyz[f,] we reach an assignment that
satisfiesD but falsifiesG|f4], contradiction.

Having established (20), we boufid (D)| for D € D with the use of Lemma 5.4 and get

k

V(D)| = [V(DWO)| < k- (45 k|D]) (21)
Summing over allD € D and recallingD| < |D| gives
VD) < Y IV(D) < B k- (4 kID[) " < 45 (kD])*** (22)
DeDb
and this, together with (20), completes the proof of Lemn3a 4. O

We end this section with a proof of Lemma 5.4.

Proof of Lemma 5.4By induction onr > 0. For the base case of= 0 we have|S| = k. SinceD; is a
k-DNF formula then any terrff” for which V(T") O S must haveV (T") = S. Thus,|V(D;(S))| = k and
the inequality claimed in the lemma holds.

For the inductive case of > 0, let S denote the set of literals that belong $o and letterms(S)

denote the set of terms ovAt We bound the number of terms bygrms(5)| = 2% Vo (5)) < 4% pecause
each term is a set of literals coming from a set of literalsiné 8| Vars (S)|. Partition the terms irD;(.S)
according to their intersection witki. Formally, for everys € terms(S) let

We have partitioned; (.S) into 4*¢ partitions so to prove the claim in the lemma it is sufficienshow for
each partition that

[V(Di(s))| < km <l<: (4kdkm)T_1> . (24)

Consider one term € terms(S). If V(D;(s)) = S then clearly (24) holds so we assui¥gD;(s)) 2 S.
In this case there existE € D; such thatV(T) 2 S which implies the existence of a literale 7'\ S. Let
p be arestriction satisfying the properties of Lemma 5.1 wapect tai, 7', D; andG’.
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Proposition 5.5. Every termil” appearing inD;(s) must include a literak ¢ S whose shadow belongs to
the shadow op as well. Formally,(V(7") \ S) N (V(p) \ S) # 0.

Proof. By way of contradiction. Assum@” falsifies the proposition. By assumptidi has the same set
of literals asT” within S and the third property o listed in Lemma 5.1 implieg satisfies all literals of’
inside S. Assuming that the intersection in the statement of the gsition is empty, we can extendto

a restrictionp’ that satisfied” by setting at mosk “new” variables on top of those set by The crucial
observation is that none of the “new” variables setdbhjave their shadow iV (p). More to the point,
supposer; is a “new” variable whose value is set pybut is not set by. Letx denote the shadow af, and
letz = {x1,...,z4} be the set of variables whose shadow.i®©ur crucial observation, restated in different
words, is that does not set the value ahyvariable inZ. This is where thé-non-authoritarianism of;
comes into play, because it implies thatannot fix the value of ;(¥) becausg’ sets at mosk variables
in Z. But this means that we can extepidso thatf,(Z) will obtain any truth value we find fit. We conclude
that the fourth property listed in Lemma 5.1 holds fbias well as forp. This property implies that’ can
be extended to an assignmeitsuch that7’ (o) = 0. So«’ is an assignment that satisfiesbut falsifies
G’. We have reached a contradiction, and the propositionvislio O

We continue with the proof of the inequality (24). The secamdperty of Lemma 5.1 implies that
|V(p)| < km. Thus, Proposition 5.5 shows that there exists a6t Vars(F) \ S of size at moskm
such that

V(Di(s) € | V(DS U{o})) - (25)
veVs
Sincev ¢ S we have|S U {v}| = k — (r — 1) so we may apply the inductive hypothesis of the inequality
in Lemma 5.4 toS U {v} which gives

VDi(s)) £ Y VDS U {o})] < km <l<: (4. k:m)) | (26)

’UEVS

We have shown that the inequality (24) holds forsak terms(S). Summing over all terms, there are at
most4*4 of them, completes the proof of Lemma 5.4. O

6 Projected R(k)-refutations Are (Almost) Resolution Refutations

This section contains the proof of Lemma 4.2. We establighldmma in very much the same way as
for [BSNQO9, Theorem 4.4], but there is a subtle differencevieen the two proofs due to the fact that our
definition of precise implication (Definition 4.1) is someatldifferent than what is used there (cf. [BSNOQ9,
Definition 4.2]). Definition 4.2 in [BSNQ9] appears to be “thight one” and yields tighter results for

standard resolution, but for technical reasons we are doi@eelax that definition a bit in order to obtain

the results fok-DNF resolution in the current paper.

We first fix some notation. Let us use the convention ihaind D denotek-DNF sets and:-DNF
formulas derived fron¥'[f,;] while C and C denote clause sets and clauses derived ffaniet us also
overload the notation and wrifeé F C, D ¥ C, andD > C for C = C* v C~ when the corresponding
implications hold or do not hold fdD with respect to\/ o+ f4(Z) V Vyeo-—fa(9). Finally, letC, be a
shorthand foproj i-(Dy).

Suppose now that; = {Dy,...,D;} is ak-DNF resolution refutation of"[f,] for some arbitrary
unsatisfiable CNF formul& and some arbitrary non-constant functign

The first two bullets in Lemma 4.2 are immediate. Bgr= () we haveCy = proj (Do) = (), and it is
easy to verify tha, = {0} yieldsC, = proj (D) = {0}. We note, however, that the empty clause will
have appeared i@, = proj (D;) earlier, namely for the firgtsuch thal, is contradictory.
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The hard part is to show that all transitions frdp_; = projp(D;—1) to C; = proj p(Dy) can be
performed in such a way that the variable support size in efutation under constructiom : F'+0 never
exceedsSuppSize(Cy_1) + SuppSize(Cy) < 2- maxse[T]{SuppSize((Cs)} during the intermediate deriva-
tion steps needed in. The proof is by a case analysis of the derivation steps. rBgftunging into the
proof, let us make a simple but useful observation.

Observation 6.1. Using the above notation, iD; = C thenC = C* v C~ is derivable fromC; =
proj (D) by weakening.

Proof. Pick C;” C C*, andC; C C~ minimal so thatD £ C;f v Cj still holds. Then by definition
D> Cf v Oy soCf vy € C andC O Cf v Oy can be derived fron; by weakening as claimed.OJ

Consider now the rule applied in; at timet¢ to get fromD;_; to D;. We analyze the three possible
cases—inference, erasure and axiom download—in this.order

Inference  Note that obvioushyD;_; F Dy since all inference rules are sound. Moreover, sibc® D;_;
we haveD; F D; ;. It follows from Definition 4.1 the set of projected clausezed not change, i.e.,
C¢_1 = C4, and nothing needs to be done.

Erasure If C € C;\ C;_; is a new projected clause appearing at tinzs a result of an erasuf, =
D1 \ {D}, it clearly holds thatD,_; F C. Hence, all such clauses € C; \ C;_; can be derived
by weakening fromC;_; by Observation 6.1, after which all clausesGp_; \ C; can be erased. During
these intermediate steps the support size is upper-boundédppSize(Ci—1 U Cy) < SuppSize(Ci—1) +
SuppSize(Cy).

Axiom download  Thisis the place in the case analysis where we need to do sminaswork. Suppose
thatD, = D, U {D} for some axiom claus® € A[f,], whereA inturnis an axiom of". If C € C,\C;_;
is a new projected clause then we must hiye; ¥ C andD;_; U {D} > C.

We want to show that all such claus€scan be derived fronT;_; = proj (D;—1) by downloading
A € F, making inferences, and then possibly erasiigand that this can be done without the variable
support size exceedinguppSize(Cy_1) + SuppSize(Cy). The key to our proof is the next lemma.

Lemma 6.2. LetD be ak-DNF set derived fronD € F'[f4], D € A[f4] be an axiom clause df|f,], andC
be a clause oveVars(F). If D, D, andC are suchthaD U {D} > C butD ¥ C. ThenifA = a;V---Vay,
for everya; € A\ C there is a subclaus€® C C such thatD > C? v @;. That is, all clause€’ V a; for
a; € A\ C can be derived fron® = proj (D) by weakening.

Proof. Consider any assignmeatsuch thafd(a) = 1 but [\/, .+ f4(Z) V Vyec- —f4(#)] () = 0. Such
an assignment exists sinfe# C' by assumption. Also, since by assumptibrJ {D} > C we must have
D(a)=0.1f A=ay V- - Vas we can writeD € A[fy] onthe formD = Dy Vv --- Vv D, for D; € a;[f4].
Fix anya € A and suppose for the moment that= x is a positive literal. TherD;(«) = 0 implies that
[f4(Z)] (@) = 0 which means thaf-f,(Z)] (a) = 1. Since exactly the same argument holds i 7 is a
negative literal, we conclude that

DF Vaeovan+fa@) V Vyeovay-Fa(@) 27)
or, rewriting (27) using our overloaded notation, that

DECVaT . (28)
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If a; € C, the clauseC' V @; is trivially true and thus uninteresting, but otherwise viekgC? € C minimal
such that (28) still holds (and notice that sifizé C, the literala; cannot be dropped from the implication).
Then by Definition 4.1 we hav® > C’ V @; as claimed. O

We remark that Lemma 6.2 tells us that everyc Vars(A) \ Vars(C) appears in some clause at
timet — 1, namely, in the claus€” v @; found in the proof above. Since in addition obviousfyrs(A) N
Vars(C) C Vars(C,) this means that if we download € F'in our refutationr : F't- 0 under construction,
we haveVars(A) C Vars(Ci—1) U Vars(C;) and henceSuppSize(Ci—1 U {A}) < SuppSize(Ci_1) +
SuppSize(Cy).

Thus, we can downloadl € F, and then possibly erase this clause again at the end of tarr in
mediate resolution derivation to get froffy_; to C;, without the variable support size ever exceeding
SuppSize(Ci_1) + SuppSize(Cy). Let us now argue that all new clausése C; \ C;_; can be derived
fromC;_; U {A}.

If A\ C = 0, then the weakening rule applied ahis enough. Suppose therefore that this is not the
case and letl’ = A\ C = V¢ a)\ 1ir(c) @ Appealing to Lemma 6.2, we know that for everye A
there is aC, C C such thatC, va € C;_;. Note that by the assumptidd;_; ¥ C this means that
if x € Vars(A) N Vars(C), thenz occurs with the same sign iA and C, since otherwise we would
get the contradictiod F C va = C. Summing up,C;_; containsC, V a for someC, C C for all
a € Lit(A) \ Lit(C) and in addition we know thatit(A) N {a|a € Lit(C)} = (). Let us writeA’ =
ap V-V an and do the following weakening derivation steps frém,; U {A}:

A~ CVA
Ca1 Var ~ CVa
Ca2 Vag ~ CVag (29)

Capp VG ~> CV Gy

Then resolve” v A" in turn with all clause€” vV a,, C Vay, ..., C,,, V an, finally yielding the claus€.

In this way all clause€’ € C, \ C;_; can be derived one by one, and we note that we never mention
any variables outside dfars(C;_1) U Vars(A) U Vars(C) in these derivations.

Wrapping up the proof of Lemma 4.2, we have proven that noenathat derivation step is made
in the transitionD;_; ~» Dy, we can perform the corresponding transiti@p_; ~» C; for our pro-
jected clause sets without the variable support size gdioyeSuppSize(Ci—1) + SuppSize(Cy) < 2 -
maXDEWf{SuppSize(pij(D))}. Also, the only time we need to download an axioilne F in our
projected refutatiornr of £ is whenry downloads some axiom € A[fq]. This completes the proof of
Lemma 4.2.

7 Converting Resolution Refutations of  F'to 2R(k)-refutations of F'[f]

To prove part 1 of Theorem 3.3, we convert a resolution réfutar of F' into aR(d)-refutation of the
substituted formula’[f;] while (roughly) preserving the length and variable spaceutaneously. This

is done in two steps. First, we substitute each positivealite appearing in a claus€' in = with some
d-DNF representingf;(Z) and similarly substitute-z with a d-DNF representing-f;(¥). (Recall every
function overd variables can be represented by-®NF formula.) The sequence of sets of clauses that
was is transformed under this substitution into a sequencé&BNF sets that forms the “backbone” of
aR(d)-refutation. Then, we convert the backbone into a prépéf)-refutation by simulating resolution
inferences and axiom downloads. Consider a resolutiomente step inc which involved inferringC v C’
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from C Vv 2, C v —z. After substitution what we need to show is tig&tf,;] V C’[f,] can be inferred from
Clfa] Vv x[fa), C'[fa] V —z[fq] in R(d). This is shown in Lemma 7.1 below. The simulation of an axiom
download is similarly addressed in Lemma 7.2, where we shatwte can derive amj-DNF representation

of A[f4] for an axiomA € F via afi(k)-derivation of bounded length and space. Given these twmkesn
the proofs of which follow below, we can complete the prooftaf first part of Theorem 3.3.

Lemma 7.1 (Simulating Resolution infR(k)). Supposd);, D, are twok-DNF formulas over- variables.
If D1y A Dy E 0, then thek-DNF set{D;, Dy} has afi(k)-refutation of lengthD,| - |Dz| and variable
space at most( VarSp(D1) + VarSp(D3)) simultaneously.

Lemma 7.2 (Implicational completeness ofR(k) with respect to clauses).Supposer is a CNF formu-
la and D is a k-DNF formula and| Vars(F) U Vars(D)| = r. If F £ D thenD can be derived from
F via a%(k)-derivation of length less thahlP! . 271 and variable space at mogtr + 2) VarSp (D))?
simultaneously.

Postponing the proofs for a moment, let us see how these twmés yield the first part of Theorem 3.3.

Proof of part 1 of Theorem 3.3.etw = {Cy,...,C,} be aresolution refutation of the CNF formufa Let
s = {Dy,...,D.} denote the sequence ®DNF sets obtained by substitutingwith f; in the following
way. We start by fixing for each literal a d-DNF formula representing[f;]. For a clauseC' = \/; a;
appearing inC; construct ad-DNF formula D~ which represent€’[f;] by taking the disjunction of the
d-DNF formulas representing;. Finally, setD, = {D¢ | C € C,}. In this way, every clause ifi; turns
into ad-DNF formula inDD;. Notice that the variable spaceDf is less thani - 2¢ times the variable space
of C, because every literal appearing@h turns under substitution into @DNF with less thar2¢ terms.
To complete the proof of part 1 of Theorem 3.3 it suffices torsfar 0 < ¢ < 7 thatDD;,; can be derived
from D, via ask(d)-derivation of length< ¢ - 4°d and extra variable spaced + 2)3 - 44 + O(1). We
divide into cases according to the type of tHestep.

Erasure If C;4q = C; \ {C} then by construction we hai&,.; C D, soD,,; can be derived ifR(d)
from D; by erasures.

Axiom download Let A € F be the axiom downloaded at tintet 1, i.e.,C;; = C; U {A}. Let A’ be
an arbitraryd-DNF representation ofl[ 4], recalling thatA[f,] is a set of axioms of'[f;]. This set
involves at most-d many variables and|f,;] F A’. FurthermoreA’ is a DNF formula ove2cd many
literals so it has at most~¢ many terms and has variable space at ma$t?. Applying Lemma 7.2
we concluded’ can be derived froml[f,] in lengthd* - 2¢¢+! and variable spacg:d + 2)3 - 47

Inference SupposeC;; = C; U {C Vv C'} whereC Vv C' is derived fromC' Vv z,C’ V -z € C;. Notice
that (C Vv z)[fa] = (C[fa]) V z[fa] and(C" V —x)[fa] = C'[f4] V —z[f4]. Since we can bound the
number of terms in a-DNF formula representing|f,] by 2¢, by Lemma 7.1 we can derive the
empty DNF formula) from d-DNF formulas representing|f;] and—zx[f;] via a derivation of length
at most22? and variable space at mogt‘*!. Applying weakening steps, when necessary, to the
formulas involved in this refutation, we conclude that thBNF formula representingC' v C”)[f4]
can be derived from thé-DNF formulas representing”' v z)[f4] and(C” v —z)[f4] via a derivation
of length at mosp2?? and22¢+! extra variable space.

Weakening SupposeC,1 =C,uU{CVC'}for C € C,. Then thei-DNF formula representingC' v C")| f4]
can be derived in a single step from #®NF formula representing’[ f,] using weakening.

We have shown how to complete the conversiomr pinto afi(d)-refutation of F'[f4] that is longer by at

most a factor ofi*“" - 2 and uses at mogtd+2)3-4¢¢ + O (1) extra variable space. Taking into account the
upper bound of - d - 2¢ on the variable space @f;, this completes the proof of part 1 of Theorem 3.8]
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It remains to prove Lemmas 7.1 and 7.2. We attend to them ierord
Proof of Lemma 7.1First we claim that for every terii € D, and for every tern” € D, we have
T' N {~ala €T} # 0. (30)

To see this, assume by way of contradiction that (30) failsdiol for 7' € D; andT” € D,. Consider the
minimal restrictionp that satisfied". We see thap satisfiesD; and can be extended to an assignment that
satisfiesI” as well, contradicting the assumptidh A D- E 0.

The refutation of D, D2} proceeds by sequentially removing fra all its terms. Letl” be a term
of D, that we wish to remove. By (30) each tefih € D, contains a literaba such thats € T'. Apply A-
elimination to replacd” by —a. Repeating this process for each tefine Dy we derive fromDs in extra
variable space at modtarSp(D-) the clause\/,. —a. Resolve this clause witl, to removeT’. This
step requires extra variable space at midstSp(D;) + VarSp(D2). Repeat the process for dll€ D; to
obtain the empty DNF. This process required variable spao®sat2( VarSp(D1) + VarSp(D-)) and the
refutation length igD;| - | D] so the lemma follows. O

Proof of Lemma 7.2Roughly speaking, we derive froii in resolution a set of clauses that is equivalent to
the k-DNF formula D. From this set of clauses we deriy2using a sequence @f-introduction inference
rule applications. The key idea is to do all of this in a spaffisient manner by deriving the clauses one
by one in a particular order and “merging” each derived @aungo a DNF formula that, at the end of this
process, turns out to bB. Details follow.

Denote|D| by s. SupposeD = \/;_, /\f;l a; ; wherek; < k anda; ; denotes a literal (belonging to a
set ofr variables). By the distributivity of disjunction over camction, D is equivalent to the CNF formula

Gp = A \ aiji - (31)

J1seends €[] X X [ks] i=1

Each clause ofyp is implied by F' because otherwise there would be an assignment satistyibgt
falsifying G p, thereby falsifyingD as well, in contradiction to the assumptiéin= D. By the implicational
completeness of resolution (Proposition 2.5) there is a@luéen derivation of each clause 6fp from F.
This derivation has length less thah™! and space at most + 2)? because it involves at mostvariables.
We now show how to construdd from the clauses of7 .

Fors' € [s] andj = (joro1s-- -, Js) € [kg1] X ... X [ks], let

s’k s
D, = \/ /\am V \/ i, - (32)

i=1j=1 i=s'4+1
We prove by induction or’ > 0 thatD 7 can be derived in variable space

2

(r+2) VarSp(DS,J))>2 - ((7“ +2) <Z ki + (s — s')>> (33)
i=1

and length less thak®'2" 1. The base case’(= 0) follows from the discussion in the previous paragraph
becauseDOE is a single clause that is implied @y. For the inductive step assume the claim holdssfer 1.

We show how to derive, fot’ =1, ..., kg, the formula
s'—1 k; 14 s
D;/ = \/ /\ a;j | VvV /\ as i |V \/ Qg j; (34)
i=1 j=1 j=1 i=s/+1
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in length less thai'k¥' 1271 and variable space

2

s'—1
((r +2)(VarSp (D,;,)))2 = ((r +2) (Z ki + K + (s — s’)>> . (35)

i=1
This is shown by induction ok’ > 1. Fork’ = 1 notice (34) is nothing buDsl_l,(l,jS,H,__,jS) so by the
inductive hypothesis with respect#b— 1 it can be derived in length less thaf —12"t! and variable space

2 2

s'—1 s'—1
<r—|—2 (Zk’+s—s—1))>> :<(r+2)<2k‘i+k¢'+(s—s')>> (36)
i=1

For the inductive step assume we have derii&¢dusing at most the variable space stated in (35). Erase all
formulas in the memory but fab], and notice this remaining formula has variable space

s'—1

> kitk+(s—5) . (37)

Using the inductive hypothesis ah— 1 again, derive the DNF formula

s'—1 k;
( \/ /\ az,j) Voag k41 \ \/ Qjj; (38)

i=1 j=1 i=s'+1

in variable space as in (36) and length less than'2"*!. Notice that the total variable space used is
bounded by the sum given in (36) plus the sum in (37) (thigfapace is required to save the formila)
so the combined variable space is at most

2 s'—1

s'—1
<r+2 <Zk +(s—(s —1)))) +Zki+k/+(3_3,)

i=1
2

s'—1
_<r—|-2 (Zk:+ (K + (s—s'))) . (39

Now combineD;, and (38) using a singl@-introduction step to obtai®; .. We see thaD,,,, can be
derived in variable space bounded by (36) and length lessitd —'27*!. Summing ovel’ = 1,...,k

we conclude that the derivation &f 41 - is of length less thak - k%' ~127*! and variable space

2

s'+1
<7°—|—2 (Zk+s—s+1))>> (40)

as claimed. Setting’ = s and noticingVarSp (D) = >"7_, k; completes the proof of the lemma. O

8 Concluding Remarks

We conclude the paper with a brief discussion of some remgiopen questions.
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A stronger space separation for  k-DNF resolution  We have proven a strict separation between
k-DNF resolution andk+1)-DNF resolution by exhibiting for every fixekl a family of CNF formulas of
sizen that require spac@( Fy/n/ log n) for anyk-DNF resolution refutation but can be refuted in constant
space in(k+1)-DNF resolution. This shows that the family 9f(%k) proof systems form a strict hierarchy
with respect to space.

As has been said above, however, we have no reason to bélatbé lower bound fdR (k) is tight. In
fact, it seems reasonable that a tighter analysis shoullllbéa@improve the bound to at Ieaf$( ¥/n/log n)
and possibly even further. The only knowpperbound on the space neededik) for these formulas is
theO(n/logn) bound that is easily obtained for standard resolution. i@p®r at least narrowing, the gap
betweer( *+{/n/log n) andO(n/logn) is hence an open question.

Understanding minimally unsatisfiable k-DNF sets It seems that the problem of getting better
lower bounds on space fé&rDNF resolution is related to the problem of better undediteg the structure
of minimally unsatisfiable sets df-DNF formulas. Although the correspondence is more intetithan
formal, it would seem that progress on this latter problenuldigrobably translate into sharper lower
bounds forR(k) as well. The reason for this hope is that the asymptoticgiynmal results for standard
resolution in [BSN08, BSN09] can in some sense be seen tmwfdibm (the proof technique used to obtain)
the tight bound for CNF formulas in Theorem 1.1.

What we are able to prove in this paper is that any minimallyatisfiablek-DNF setD (for k a fixed
constant) must have at lea®{ “+/|D|) variables (Theorem 3.5) but we have no constructions of sat$
with more thanQ2(|D|) variables (Lemma 3.6). This appears to be a natural andesiteg combinatorial
problem in its own right, and it would be very nice to improte upper and/or lower bound.

Generalizations to other proof systems Our previous paper [BSNO9] presented the “substitution
space theorem” for resolution as a way of lifting lower bogind the number of variables (i.e., support size)
to lower bounds on (clause) space. In this paper, we extendgbult by lifting lower bounds on the number
of variablesin resolutionto lower bounds on formula space in thmuch strongetr:-DNF resolution proof
systems It is a natural question to ask whether our techniques caxtsnded to other proof systems as
well.

We remark that the translation in Section 4 of refutationsudfstitution formulas in some other proof
systempP via projection to resolution refutations of the originatrfaula seems extremely generic and robust
in that it does not at all depend on which derivation rulesumed byP nor on the class of formulas with
which P operates. The only place where the particulars of the prggtEm come into play is when we
actually need to analyze the content of the proof blackbhoasddescribed in the introduction, this happens
at some critical point in time when we know that the blackbloaf our translated (projected) resolution
proof mentions a lot of variables, and want to argue thatith@ies that the blackboard of tife-proof must
contain a lot of formulas (or possibly some other resoure¢ we want to lower-bound i®). This part of
the analysis is the (essentially tight) result for resoluin [BSNO9, Theorem 3.12] and the (likely not tight)
bound fork-DNF sets in Lemma 4.3 in this paper. Any corresponding tdsuksome other proof systeff
would translate into lower bounds f@t in terms of lower bounds on variable support size in reswofuti
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