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Abstract

Designing algorithms that use logarithmic space for graph reachability problems is funda-
mental to complexity theory. It is well known that for general directed graphs this problem
is equivalent to the NL vs L problem. For planar graphs, the question is not settled. Showing
that the planar reachability problem is NL-complete would show that nondeterministic log-space
computations can be made unambiguous. On the other hand, very little is known about classes
of planar graphs that admit log-space algorithms. We make progress in this direction. We show
that reachability in planar DAGs with O(logn) number of sources can be solved in log-space.
We use a new decomposition technique for planar DAGs as a basis for our algorithm.

*This work was supported by the NSF grant CCF-0430991.



1 Introduction

Graph reachability problems are central to complexity theory. The st-reachability problem of
deciding whether there exists a path from a node s to a node ¢ in a directed graph is complete
for nondeterministic log-space (NL). Very recently, in a break-through result, Reingold showed
that st-reachability problem over undirected graphs is complete for deterministic log-space (L) [11].
Various versions of reachability problem characterize various complexity classes within NL [3,4,7,11].
Because of its central role in complexity theory, designing algorithms that use logarithmic space
for graph reachability problems is a fundamental question.

Planarity has proven to be a very important restriction when dealing with graph problems,
both theoretically and algorithmically. Algorithmically, because of certain fundamental structural
theorems such as the Lipton-Tarjan planar separator theorem [10], many computational problems
over planar graphs admit algorithms with better running time and/or parallelism. However, from
a space-complexity view point progress has started to emerge only recently [2,6,11]. In particular,
the space complexity of st-reachability problem over planar graphs currently is far from being
completely settled. It is known to be hard (under projection reductions) for deterministic log-
space [7], but not known to be complete for NL. Recently, it was shown that this problem can be
solved in unambiguous logarithmic space (the class UL) [5]. Hence if reachability for planar graphs
is complete for NL then all of nondeterministic log-space computation can be made unambiguous
(that is NL = UL). While this is very likely, proving NL = UL will be a major result in complexity
theory. On the other hand, very little is known about classes of planar graphs that admit log-
space algorithms. Jacoby et al. show that various reachability and optimization questions for
series-parallel graphs admit deterministic log-space algorithms [8,9]. Series-parallel graphs are a
very restricted subclass of planar directed acyclic graphs (DAGs). In particular, such graphs have
a single source and a single sink (single source single sink DAGs are sometimes called st-graphs
in the literature). Recently, Allender et al. [1] extended Jacoby et al.’s result to show that st-
reachability for planar DAGs with single source and multiple sinks can be decided in log-space.
Using a reduction, the authors were able to slightly improve this upper bound to planar DAGs
with two sources and multiple sinks. This remains the current best class of planar DAGs that
admit deterministic log-space algorithms.

In this paper, we make moderate progress on this situation. We show that reachability in planar
DAGs with O(log n) number of sources and multiple sinks can be solved in deterministic log-space.

Theorem 1.1. Reachability in planar directed acyclic graphs with O(logn) sources can be decided
i deterministic log-space.

A few words about our technique: our algorithm builds on the aforementioned Allender et al.’s
log-space algorithm for single source multiple sink planar DAGs (denoted as SMPD in [1]). Our
first step is to decompose the graph with multiple sources into “SMPD components” in a simple
manner. Each component allows for reachability testing, but to manage the interaction of these
components we present a new technique of classifying edges into topological equivalence classes,
bringing a previously unused property of planar graphs into the algorithmic realm.

2 Preliminaries

Let G = (V, E) be a simple acyclic planar digraph with m sources. By the results of Allender &
Mahajan [2] and subsequently Reingold [11], we can compute the combinatorial embedding of G in



log-space. We delay the question of recognizing acyclic graphs and will assume the input graph is
a DAG until this problem is resolved in Section 4. We wish to solve reachability for given vertices
u and v. That is, we want to determine if there exists a directed path u ~» v.

G is a Single-source Multiple-sink Planar DAG (SMPD) if it has only a single source and no
restriction on the number of sinks. Allender et al. [1] showed that reachability in SMPDs can
be decided in deterministic log-space. Thus, if m = 1, we can appeal to their algorithm to solve
reachability.

Our algorithm will work for any number of sinks m, but for graphs with m = O(logn) sources
it will only use a logarithmic amount of space. We call such graphs Log-source Multiple-sink Planar
DAGs (LMPDs).

Since G is acyclic, without loss of generality, we can assume that u is a source and v is a sink
by deleting incoming and outgoing edges respectively without affecting reachability. For each non-
source vertex x, choose an arbitrary incoming edge e. Since a single incoming edge is chosen per
vertex, and G has no directed cycles, the subgraph corresponding to these edges is a forest with m
directed source trees each rooted at a source. We depict each tree T; as organized radially around
its source s;, for i = 1,...,m. Figures depict these trees as circles with leaves on the border and
the source label in the center (cf. Figure 1). We consider v to be a component on its own, with no
special incoming edge. Since u is assumed to be source, it is the root of a tree, Ty, as well.

The construction of the forest naturally partitions edges into one of the following five types.
There are two types of edges that are easy to define.

- A tree edge is an edge in the forest.
- A launch edge is an edge between vertices in different trees.

Now consider an edge e = (z,y) with z and y in the same tree, T;, but is not a tree edge.
Let LCA(z,y) denote the least common ancestor of nodes x,y in the tree. That is, the vertex
farthest from the root that has = and y as descendants. A closed curve is defined in the underlying
undirected planar embedding by the paths from = to LCA(z,y) to y and the edge e. Call this curve
the tree-closing curve. The other edge types are defined using this curve, by counting the number
of vertices from T; that are within the curve or outside the curve. If one of the counts is zero, we
say this partitions the vertices trivially. This process of counting avoids issues with which face is
declared to be the outer face and we can consider the embedding to be on a sphere. These new
edge types follow:

- A local edge trivially partitions the vertices not on the curve.

- A jump edge closes a curve that does not trivially partition the vertices, but does trivially
partition the sources si, s2,..., Sm,u, and v.

- A loop is an edge such that the curve does not trivially partition the sources.

Given an edge and a planar combinatorial embedding it is easy to determine in L which among
the five types of edges it is. Moreover, each tree T; along with its tree, local, and jump edges
constitutes an SMPD and so reachability questions for vertices within a single tree can also be
answered in deterministic log-space [1].

For the sake of understanding the interactions between these SMPD components, imagine
contracting all tree edges in G so that the only vertices remaining are u,v, S1,...,Sm. Then,
consider only the launch and loop edges in this contraction. This forms a planar multigraph H
with m + 2 vertices that may require the edges to be drawn as curves and not straight lines. For
an example of such a contraction, see Figure 1.
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(a) Thick edges are in the spanning forest. (b) The resulting contracted graph.

Figure 1: A planar DAG contracting to a planar multigraph.

We will consider reachability at each source tree to be a subproblem discussed in the next
section. Then, we develop a method of classifying the launch and loop edges into O(m) classes in
Section 2.2, forming the basis of our algorithm.

2.1 Exploring SMPDs

It will be useful to recall some high-level details of the algorithm of Allender et al. [1] for reachability
in SMPDs. In fact, we must present the algorithm again to use specific details of the computation
in our later extensions. For an SMPD G, there is a path from the single source s to every vertex.
Thus, the task is to determine if there exists a path between two arbitrary vertices u,v.

Theorem 2.1 (Allender et al. [1]). Given an SMPD G and two vertices u,v, determining if there
exists a path u ~~ v is decidable in deterministic log-space.

In our case, using SMPD as a subproblem does not actually look for individual vertices that
can be reached, but instead focus on expanding an explored region around a vertex x. We want
to define a region that describes a reachable set of vertices and edges with a constant number of
variables. Call the algorithm SMPDExplore(x) to explore around a vertex x on its source tree.

An important observation of Allender et al. [1] is that reachability using only tree and local
edges is easily decidable in L: remove all jump edges, and all leaves are on the external face.
Connect these leaves to a new vertex and the resulting graph is a Single-source Single-sink Planar
DAG (SSPD) which they show is computable in L. Denote the set of vertices reachable from a
vertex = using tree and local edges as ReachLocal(x).

Define a vertical axis as follows: s is in the center, the tree path from s ~ z is oriented above
s. This axis naturally splits the graph into left and right directions from x, with all other vertices
and edges oriented radially around s in either an outward, clockwise or counterclockwise manner.
This defines a predicate: IsClockwise(y, w, z) which is TRUE if the vertices y,w, and z appear in
clockwise order around the source s, or if any pair are ancestor/descendant in the source tree. This
can be computed in log-space using a fast computation involving LCA(z,y) in several cases.

For all vertices within ReachLocal(x), define the vertex that is farthest in the clockwise di-
rection to be LocalRight(x). That is, LocalRight(z) = vy if y € ReachLocal(z) and for all



z € ReachLocal(z), either IsClockwise(x, z,y) or IsClockwise(z, x,y). Break ties by choosing the
vertex closest to the source. The vertex farthest in the counter-clockwise directions is LocalLeft(x).

SMPDExplore defines an explored region by two variables Jumpleft and JumpRight. It will
always be the case that IsClockwise(JumpLeft, z, JumpRight) = TRUE, except for a minor case that
will be mentioned later. A vertex y is in the explored region if IsClockwise(JumpLeft, y, JumpRight) =
TRUE and y is not an ancestor of JumpLeft or JumpRight. We initialize JumpLeft = LocalLeft(z)
and JumpRight = LocalRight(z).

Each iteration of the SMPD algorithm attempts to extend the explored region by “jumping”
out of the explored region as little as possible. We say a jump edge jumps out of the explored region
if its tail is in the explored region and its head is not. All jump edges that jump out of the explored
region can be enumerated and we choose at most two edges, one for each direction. We choose
the jump edge with head closest to JumpLeft in the counter-clockwise direction and the jump edge
with head closest to JumpRight in the clockwise direction. Let the heads of these edges be ¢ and
r, respectively. Enumerate ReachLocal(¢) and ReachLocal(r) and set JumpLeft = LocalLeft(¢) and
JumpRight = LocalRight(¢). Eventually, either there will be no edges jumping out of the explored
region, or JumpLeft and JumpRight will overlap and IsClockwise(JumplLeft, z, JumpRight) = FALSE.
In this second case, we define the explored region to be the entire tree, as there are paths from =z
going around the entire tree in each direction.

Now that the algorithm is described, there is an additional property that we require.

Proposition 2.2. At every iteration of the algorithm for SMPD on a tree T; from a vertex x, if y
1s in the explored region, but not reachable from x, then there are no jump edges from y to a vertex
outside the explored region. Moreover, there are no launch or loop edges starting at y.

Proof. Note that for any y in the initial explored region has one of two cases. Either ¥ is in
ReachLocal(z), or y is an ancestor of a vertex z in ReachLocal(x), since there is a path from x to
each of JumpLeft and JumpRight using tree and local edges. Let z = LCA(JumpLeft, JumpRight),
and z is an ancestor of y, with the path to y between the paths from z to JumpLeft and JumpRight.
This implies that y is properly contained within the closed curve starting at z taking the tree path
to JumpLeft then the tree and local path to = then the tree and local path to JumpRight and finally
the tree path to z. Thus, any edges from y must stay within these bounds.

Proceed with iteration, assuming that the property holds at each step until the ith iteration.
The initial explored region has already shown the result. Consider values z, JumpLeft, JumpRight
resulting from ¢ iterations of the algorithm. It is enough to show that the next iteration maintains
the property.

Let ¢ and r be the vertices reached by jumping out of the explored region. If a vertex y
would be in the new explored region, it would have IsClockwise(LocalLeft(¢), y, LocalRight(r)) =
TRUE, and would not be an ancestor of Locall.eft(¢) or LocalRight(r). If y is in the old explored
region, the result already holds. Thus, consider y to be a vertex that is in the new explored
region, but not the old explored region. That is, IsClockwise(LocalLeft(¢), y, JumpLeft) = TRUE or
IsClockwise(JumpRight, y, LocalRight(r)) = TRUE.

There is nothing to prove if y is reachable from x, so assume not. The vertices ¢ and r are
reachable from z, as the tails of the jump edges from the previous iteration are reachable from
x. We must show that y is within a closed curve blocking any edges incident to y from reaching
vertices outside the explored region.

Consider the case that IsClockwise(LocalLeft(¢),y, JumpLeft) = TRUE. If it is also true that
IsClockwise(LocalLeft(¢), y, LocalRight(¢)) = TRUE, then the argument for the initial explored



region works for here, as if we began searching at ¢£. Otherwise, we have y in the region “skipped”

by the jump edge. That is, IsClockwise(LocalRight(¢),y, JumpLeft) = TRUE. But now consider

the edge that jumps to £. The tail of this edge is a vertex ¢ in the old explored region. The tree

path from ¢’ to LCA(¢',¢) to ¢ and then this jump edge closes a region containing y. Thus, edges
leaving y remain in this region, and cannot jump out of the explored region.

The same argument holds for the case where IsClockwise(JumpRight, y, LocalRight(r)) = TRUE.

O

For use in the extended algorithm, the explored region around x is recomputed using FarthestLeft(z) =
Jumpleft and FarthestRight(x) = JumpRight, returning the associated values from the algorithm.

2.2 Topological Equivalence of Edges

Consider the contracted graph H as previously defined. This is a planar multigraph with curved
edges. Any two edges with the same endpoints are compared by the closed curve they define in
the plane. This divides the plane into three parts: the curve itself, and two disjoint regions. The
two endpoints are within the curve, but the other vertices are in exactly one of these regions. This
defines a partition of the other vertices into two parts. If one part is empty, then it can be imagined
that these edges could be merged without crossing any vertices by traveling through this region.
This is called a trivial partition and is the essential property that makes two edges equivalent for
our purposes.

Definition 2.3. Two edges e1, es are topologically equivalent if they have the same end points, and
the closed curve they create partitions the vertices into the two endpoints on the curve, the empty
set, and all other vertices.

It is easy to see that the relation “e; is topologically equivalent to es”

is actually an equivalence
relation. Denote the equivalence class of an edge e by [e], but these classes will frequently be labeled
with a letter, such as C' or D, when an edge is not provided. There are a few properties of how

these classes appear in a combinatorial embedding that corresponds to a planar embedding.

Lemma 2.4. All topologically equivalent edges (that are not loops) with an endpoint at a vertex v
appear consecutively when listing the edges incident to v in a clockwise order.

The definition of topological equivalence also works for loops by separating the incident vertex
into two close vertices and using the edge definition. But, working with loops is slightly more
complicated. We refer to a loop at a vertex v as trivial if the region closed by the loop trivially
partitions V' — {v}. In the graph G, these would correspond to jump edges as they do not separate
the sources, so they will not appear in H.

Lemma 2.5. All topologically equivalent loops at a vertexr v appear in at most two blocks when
listing the edges incident to v in a clockwise order, excluding trivial loops.

Given an arbitrary multigraph on n vertices, the number of possible equivalence classes is finite,
but large. For every pair of vertices u,v € V(G), we can define a surjective map from the possible
equivalence classes between u and v to the subsets of V(G) — {u,v}, modulo the complement
operation. Choose an arbitrary edge between u and v. Any other edge forms a closed, but not
necessarily simple, curve. This curve defines an interior and exterior, which partitions the vertices
V —{u,v} into two parts.



In terms of k, the number of equivalence classes is at least exponential. However, if we consider
the size of the graph, its easy to see that the number of equivalence classes is bounded by |FE| and
so is always polynomial in the size of the graph. Since G is simple, each multi-edge in H is derived
from a launch or loop edge in G, so is not increasing the size.

Nevertheless, it is interesting to note that even for planar multigraphs, the number of equiv-
alence classes is linear in n. By Euler’s formula [12], the number of edges in a planar graph is
bounded; |E| < 3|V| — 6. Surprisingly, an inductive counting argument gives the same bound on
the number of equivalence classes for planar multigraphs.

Theorem 2.6. A planar multigraph on n vertices has at most 3n — 6 equivalence classes of edges
and non-trivial loops.

Proof. Let M,, be the maximum number of edge classes present in a planar graph on n vertices. Note
that My, =0, My =1, M3 = 3. We proceed by induction to show that for n > 4, M, < M,,_1 + 3,
giving M,, < 3(n —3) +3 =3n —6.

Let G be a planar multigraph of order n with a maximal number of topological edge classes.
We may assume there is exactly one edge of each class. Let G’ be the simple graph on the same
vertices with the collapsed edge set; u and v are adjacent in G’ exactly when there is one or more
edges in G between them.

By the degree-sum formula and |E| < 3|V| — 6, there exists a vertex v of degree at most five
in G'. Thus, k = |Ng(v)| < 5. Arrange the adjacent vertices radially around v. Denote them
U1, ..., u in clockwise order. We will use subscripts modulo k.

If kK =1, then v is contained in a loop. This loop is trivial in G — v, and there is only one edge
class from v to u; that can be contained in this loop. Since G — v has at most M,, 1 edge classes,
and we add the loop and the edge to get G, we have at most M, _1 + 2 edges in GG, which satisfies
the theorem.

Claim 2.1. There is a single edge class from v to u; for each i. Furthermore, there are edge
classes present for the edges {u;, uit1} that form a cycle separating v from the vertices not in its
neighborhood.

It is helpful to note that there must be a closed curve formed by edges that separates v from
the other vertices or else we could add another edge and G would not be maximal. Thus, there
are edges between wui,...,u; that form a cycle, but are not necessarily in the cyclic order. Let
ug,, ..., U, be the inner-most cycle of edges present that separates v from the exterior vertices.
Then, if u; is not in this cycle, there must be an edge {Ugj,ugj ..} that passes around it and v.
But, we can add the edges {ug;,u;} and {u;,u; ,} to form an inner cycle. This contradicts the
maximality of G.

Finally, we have a cycle around the neighborhood of v. Thus, all edges from v to u; must be
in this region with v, and thus are topologically equivalent as they cannot properly partition the
vertices.

Now, we have v of degree at most five in G as well, outside of loops. However, all loops at v
must be trivial and we omit them. By induction there are at most M,,_; edges in G — v, and we
add at most five edges to G — v to form G. Thus, we have M, < |E(G —v)| + deg(v).

If deg(v) < 3, we have M,, < |E(G —v)| + deg(v) < Mp—1 + 3.

If deg(v) = 4, we can add an chord to the cycle ujuguguy, thus |E(G —v)| < Mp—1 — 1, and we
have M, < M, 1 —1+4=M, 1+ 3.



If deg(v) = 5, we can add two chords to the cycle ujususuqus, thus |[E(G — v)| < M,_1 — 2,
and we have M,, < M, 1 —2+5=M, 1+ 3. d

This gives O(m) possible equivalence classes in H, which is a crucial bound in our result.
It is important to test if the edges of H are topologically equivalent using only the information
from G. Two launch edges e; and es in G have the same topological class in H if

1. e and ey connect the same trees T; and 7; (i.e., have the same endpoints in H), and

2. the cycle formed by the tree paths from s; to ey, e; to s;, s; to ez, and ey to s; trivially partition
the vertices u and v and the other sources (i.e., the closed curve they form partitions the other
vertices of H trivially).

This process can be computed in log-space by enumerating all vertices and tracking a count of
the important vertices in and outside of the cycle. Hence, we can enumerate all edges of the same
class when given a representative edge.

Remark. The term topological appears in this definition, because the definition can really be
interpreted using homeomorphisms of curves on the sphere. Consider the spherical embedding of
the contracted graph H, and make the source vertices to be holes in the sphere. Two launch edges
are topologically equivalent if and only if the curves of the edges are homeomorphic in this space.
The definition using trivial partitions only allows us to compare two edges for equivalence in an
obvious log-space manner instead of depending on a continuous space.

3 Reachability in LMPDs

Before describing the specifics of the algorithm for reachability, we describe the general concept in
terms of a game on the contracted graph H.

Consider a board game for a single player with an oracle. The board is an undirected planar
multigraph with the same vertex set and curves for edges except has exactly one representative
edge for each topological class from H. Designate the vertex u as the “start” and v as the “finish”.
The game piece is a coin with an arrow painted on it to place on the vertices. Initially, the piece
is placed on the start vertex.

The first move chooses an edge leaving the start vertex and the piece is moved to the other end
of that edge, with the arrow on the coin pointing to the edge. The arrow will always point to an
edge, called the current edge. For the remainder of the game, it is impossible to return to the start
vertex unless the game is reset. All edges to the start vertex will be ignored.

There are two choices per move, LEFT or RIGHT, and STAY or CROSS.

The LEFT move turns the coin counterclockwise until the arrow points at a new edge. The
RiGHT move turns the coin clockwise until the arrow points at a new edge.

The CROSS move attempts to move the coin across the current edge to the opposite vertex and
point the arrow back at the current edge. However, the oracle will either accept or reject this move,
based on the previous moves since leaving the start vertex. The STAY move does not attempt to
move the coin, and the oracle is not used.

The game ends successfully when either the piece lands on the end vertex, or it is determined
correctly that all attempts will fail.

How can one determine that all attempts will fail when the oracle’s response at each CROSS
move depends on the previous steps? There is an added assumption that if a successful solution



exists, there exists a solution that takes at most 6m moves. Thus, all sequences of moves can be
enumerated in finite time. Algorithm 3.1 defines the algorithm for solving the Coin Crawl game.

Algorithm 3.1 The Coin Crawl Game

for all strings o € ({LEFT, RigHT} x {CROSS, STAY})®™ doO
for all Start edges e; do
Move coin from the start to the other side of es, and point the arrow to es.
fori=1,...,6m do
Rotate coin in direction o;; from current edge.
if 0,2 = CrOSs and Oracle allows a cross on the new edge then
Move coin across edge.
else
Try the next starting edge es.

This method serves as a conceptual backdrop for the algorithm that solves reachability in planar
DAGs with m sources using O(m + logn) space. We now translate the actions in the coin crawl
game to an algorithm our m-source graph G. First, we define the data structure representing the
coin in Section 3.1 in terms of an explored region. This includes a hidden step of expanding an
explored region around the current equivalence class. Second, Section 3.2 details how the limit on
the number of moves required holds. Next, Section 3.3 defines how the LEFT, RIGHT, STAY, and
Cross moves modify the explored region, including testing if a move is possible, giving the oracle’s
response. Finally, Section 3.4 combines these methods into the final algorithm and solidifies missing
details.

3.1 Exploring an Equivalence Class

Our first extension of SMPDExplore is to explore beyond a single tree and use edges of a single
topological class in addition to tree, local, and jump edges. The method ExploreClass(e) detailed
in Algorithm 3.2 enumerates all vertices reachable from the endpoints of e using tree, local, and
jump edges and edges of the class [e].



Algorithm 3.2 ExploreClass
Require: Input edge e = (x1,x2) within explored region [LimLeft;, LimRight,].
Ensure: Enumerates all vertices reachable by edges in the explored region of the same class as e.
LimLefty = FarthestLeft(x2)
LimRighty = FarthestRight(x2)
Updated = TRUE
while Updated do
Updated = FALSE
for all edges ¢’ = (i,7) with ¢ within LimLeft;, LimRight; sharing class with e do
SMPDExplore(5)
if IsClockwise(LimLeft;, i, z) and IsClockwise(LimRight,, FarthestLeft(j), LimLefts) then
LimLefty = FarthestLeft(j)
Updated = TRUE
if IsClockwise(z, i, LimRight; ) and IsClockwise(LimRight,, FarthestRight(j), LimLefts) then
LimRight, = FarthestRight(j)
Updated = TRUE

for all edges ¢’ = (i, ) with 4 within LimLefts, LimRight, sharing class with e do

SMPDExplore(y)

if IsClockwise(LimLefts, 7, y) and IsClockwise(LimRight,, FarthestLeft(j), LimLeft;) then
LimLeft; = FarthestLeft(j)
Updated = TRUE

if IsClockwise(y, i, LimRight,) and IsClockwise(LimRight,, FarthestRight(j), LimLeft;) then
LimRight; = FarthestRight(j)
Updated = TRUE

We maintain an explored region by two pairs of variables LimLeft, and LimRight, for a = 1, 2.
LimLeft; and LimRight; are the left- and right-most boundaries of the explored region surrounding
the tail of e. Similarly, LimLefty and LimRight, are the boundaries surrounding the head of e. It is
important to note that if e is a loop edge, these boundaries are on the same tree while launch edges
have explored regions on different trees. Let e = (x1,x2). If we do not already have an explored
region to use, initialize LimLeft; as FarthestLeft(x1), LimRight; as FarthestRight(x).

Each iteration attempts to expand the explored region by first taking all edges in class [e] that
have tails within LimLeft; and LimRighty and attempting to expand LimLefts and LimRight, based
on the SMPDExplore of their heads. Then, the expansion is reversed. This proceeds until both
steps do not advance the explored region at all.

It is clear that each vertex in these trees reachable with these types of edges will be enclosed
within the explored region by following the path it takes and knowing that all tree, local, and jump
edges are enumerated and included in the explored region and the edges of class [e] will expand the
explored region as they are found. However, we need to ensure that no extra vertices are included,
which is simple to see holds when the edges used to expand the explored region are reachable. We
cannot guarantee that all edges in the explored region of class [e] are reachable from e, but we can
guarantee that the heads of those edges are reachable.

Lemma 3.1. During any iteration of ExploreClass, all edges of class [e] within the explored region
have heads that are reachable from e.
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Proof. Before the expansion step of ExploreClass, all edges of class [e] that are within the explored
region are actually within SMPDExplore of the endpoints of e, so are reachable by Proposition 2.2.
Proceed by induction on i to show that the heads of all the edges of class [e] within the explored
region at iteration i are reachable from e.

Let ¢ = (a,b) be the an edge of class [e] so that the ith iteration of ExploreClass has ¢’ in the
explored region, but the ¢ — 1th iteration does not. This implies that there was an edge f = (¢, d)
that had a tail within the i — 1th explored region, but a head outside. Since d is reachable from the
induction hypothesis, so is SMPDExplore(d). If a or b is in SMPDExplore(d), then b is reachable
from e. Assume not.

Since €’ has one endpoint in the explored region, from the viewpoint of at least one source tree,
the edges e, €/, and f appear in clockwise order, since their endpoints will appear in clockwise order.
This requires that the path from e to f following tree, local, jump, and class [e] edges must cross
the tree path from one of the sources to one of the endpoints of ¢/. Hence, at least one endpoint of
¢’ is a descendant of a vertex in this path, and then the head b is reachable in either case. ]

The remaining necessary property is stated as the following proposition.

Proposition 3.2. ExploreClass(e) results in an explored region so that any launch edge f within
the explored region and of a different class than e is reachable from e.

Proof. Let f be an edge of a different class within the explored region. Although all cases have an
identical argument, consider f to be within LimLeft; and LimRight;, and clockwise of e. Then, if
e = (z1,y1) and f = (x2,¥2), IsClockwise(z, xo, LimRight;) = TRUE. By Lemma 2.4, there are no
edges of class [e] with vertices clockwise of f and counterclockwise of LimRight,. Hence, f is in the
SMPDExplore of the last edge to expand LimRight;. Since the head of that edge is reachable from
e, sois f. O

3.2 m sources require at most O(m) moves

Now that we have a method for searching within a topological equivalence class, we demonstrate
that we will not need to search more than a linear number of classes, with respect to the number
of sources. The statement is simply this: if a path from u to v exists, there exists a path that uses
each topological class at most twice. This means the path can be partitioned so that each part
contains only tree, local, jump, and edges of the same topological class, and each topological class
appears in at most two of these parts.

Definition 3.3. Given a path P from u to v in GG, describe P by the edges e1,...,ex. A set of ¢
integers i1 < --- < i = k partition P into sub-paths P; =e;;,...,¢;;,,—1 forj=1,....,k—1. P
has an £-order topological partition if there are ¢ such integers so that each of these sub-paths P;
consist of edges that are either tree, local, and jump edges, or are all of the same topological class.

There is a clean description of a property for paths that allows us a lot of control over its
behavior in the contracted graph.

Definition 3.4. Let a path P follow the vertex sequence x1,...,x,. P is an irreducible path if
every pair x;,z; where i < j and z; is a descendant of z; in a source tree, then P follows the tree
path from z; to x;.
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It is clear that if a wv path exists, then an irreducible uv path exists by deleting subpaths
between pairs x;, z; that violate the definition, and inserting the tree path.

Lemma 3.5. If there exists a path from u to v, there exists a path P from u to v with an f-order
topological partition for some £ < 6m.

Proof. Assume there exists a path from u to v, but there does not exist one that fits the theorem. Let
P = e;...¢; be an irreducible uv path with a minimum-order topological partition i1 < --- < 4.
Since ¢ > 6m, but there are less than 3m topological classes, there is some topological class C
repeated at least three times in blocks of P, we will show that this contradicts the irreducibile
property.

We may assume that P does not revisit T, since there is a tree-path from u to the last vertex
in both P and T, we can substitute this new path.

—
S
@ )

Figure 2: The choice of direction.

Now, consider e;, = (xj,,y;, ), the first edge of class C' that appears in P. Let T, be the source
tree containing x;, and T}, the source tree containing y;,. Define S; and Sy as the sources for those
trees. The path P visits T}, first by some launch or loop edge of a different class, since P starts in
T, and never returns to that tree. Without loss of generality, assume P travels clockwise from this
edge to ej,. Otherwise, mirror the plane and the argument is identical. The edge e;, and the tree
path from Sy to the edge gives a boundary forcing the path either clockwise or counterclockwise in
the tree T,,. We split cases depending on this direction.

Figure 3: Case 1.

Case 1: The edge following e;, is in the clockwise direction. Since the path after e; cannot
enter this area and cannot cross the tree paths without creating a cycle, the next launch or loop
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edge must be of a different class. When the next edge e;, with class C appears, it does not
matter which direction it travels, but will give a closed region with e;; where the path cannot
enter without creating a cycle or violating (). Recall Lemma 2.4 that gives all edges of class
C' appearing contiguously around 7, and T when listing the launch and loop edges in clockwise
order. Thus the third appearance of the class C' must be between the edges e;,,e;, and the edges
of other classes. See Figure 3, where thick lines represent regions of the trees where all reachable
vertices are descendants of the path, which cover all possible choices for this third class, violating
the irreducible property.

=
C
@ @

Figure 4: Case 2.

Case 2: The edge following e;, is in the counterclockwise direction. This develops two sub-cases
by the direction of the last edge ¢’ of class C' in this block. Note that the path cannot reenter the
closed region given by the edges ej, and ¢’ without creating a cycle. Moreover, the path would not
be able to leave the region without violating the irreducible property.

b

Figure 5: Case 2.A.

Case 2.A: ¢ is from T} to T. See by the thick lines in Figure 5 that any second appearance of
an edge in class C' must be a descendant of the path in T}, violating the irreducible property.

Case 2.B: ¢’ is from T} to T},. See by the thick lines in Figure 6 that any second appearance of
class C must either be a descendant of the path on T, or the path on Tj, violating the irreducible
property.

Since all cases contradict our assumption, it is not possible for a class to appear in more than
two separate blocks. ]

Note that now, we have a constant upper bound on the number of times a topological class can
be repeated, which allows our search to visit each class at most twice. Combine this with the linear
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Figure 6: Case 2.B.

bound on the number of possible classes in a planar graph with respect to the number of sources,
and if a uv path exists, there is a path that has a linear-order topological partition. This relates
to the upper bound on moves required in the Coin Crawler game, as there are at most 3m — 6
topological classes of launch or loop edges, and each is required at most twice, leaving at most 6m
times we will need to explore a topological class, corresponding to GO moves.

Lemma 3.6. If there exists a path from u to v in G, there exists a starting edge es and a sequence
of moves o of length at most 6m enumerated by Reach that leads the algorithm from to v.

Proof. By Lemma 3.5, if there exists a uv path, there exists some irreducible path P with a 6m-
order topological partition. By this assumption, we will have a single edge leaving T;, and will never
return to this tree.

Now, consider the list of launch and loop edges in P. Label these edges as e, eq,....e;. Note
that the first launch edge must leave Ty, and thus ez is a proper choice of labeling. Now, let @2,1
and 6;72 denote the first and last edges of the ith class block in the topological partition of P. Note
that e} ; = €] o = e, for the first class. Assume we have a string o of length &; that brings the Coin
Crawl gam We will produce a sequence of moves to append to a that will direct Reach to the edge
€411+ By repeated iteration, these moves will direct Reach between edges ¢} 5 to e, ;, while the
ExploreClass method directs the edge 6;1 to 6;72, as the only edge in P between these edges are
tree, local, jump edge or share the same topological class.

Given an edge 65,2, we must have that the edge e;+171 is within SMPDExplore of the head vertex
in 6;72 by the definition of the partition. Thus, if we construct a sequence of moves that direct Reach
to the same class as €] +1,1> the ExploreClass method will see el 41,1 Within the explored region, and
enumerate it. The path P has a subpath P ;41 from e}, to ej,;, consisting of tree, local, and
jump edges within a source tree 7. This subpath follows either a clockwise or counterclockwise
path around Tj.

There is a sequence of launch and loop classes that are descendants of P;; ;. By Lemma 2.4,
these classes appear in blocks, one block per launch class and at most two blocks for loop classes.
Let s; be the number of such blocks, not including those edges of the classes e;’g and ¢ 41.1- 1t the
direction of P; ;41 is clockwise, append s; copies of the (RIGHT,STAY) move. Otherwise, append s;
copies of the (LEFT,STAY) move. We will append another move of the same rotational direction in
order to reach e;,, ;, but the CROSS or STAY choice is determined by e;, ; .

The edges of class €] 41,1 appear in two blocks, and the edges span between these blocks. The
Reach algorithm considers the block with the tail of €] +1,1 to be intersecting the explored region
defined by LimLeft; and LimRight,. If e;+172 has head in the other block, we require a CROSS move
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to change the first explored region, which corresponds to the location of the “coin,” to the other
block. Otherwise, we will have a STAY move.

This process constructs a list of moves ¢ that will allow Reach to “crawl” across G in the
directions given by P and finally reach an edge to v. If the length of ¢ is less than 6m we can add
extra moves to the end to make it have the proper length given by the algorithm. The final step of
this proof is to show that the length of o is actually of length less than 6m.

Each move in o is classified into two types: a move that is incoming to an edge class in P, and
a move that skips an edge class, as we rotate around a source tree. When a move skips a class, this
implies that the subpath P; ;11 corresponding to this move is an ancestor of all edges in that class.
Thus, either there is a cycle in GG, or P has a later vertex that is a descendant of these vertices,
but does not follow the tree path. Thus, P cannot contain edges in this class.

Let ¢ be the number of classes appearing in P. Each of these classes contribute a single incoming
move to o for each partition they contribute to P. By choice of P, this is at most 2¢ incoming
moves. Moreover, there are at most two skip moves for each class, giving 2k skip moves, if there
are k edge classes not appearing in P. Since ¢ + k is at most 3m — 6, by Theorem 2.6, we have at
most 6m moves in o. O

3.3 Navigating Adjacent Classes

It has been shown that we can compare two edges and determine if they have the same topological
class in logarithmic space. However, in order to enumerate the topological classes, we must store a
representative edge of each previously encountered class in order to prevent duplicate counts. This
gives us O(mlogn) space for graphs with m sources.

In the previous section, it was shown that if a u — v path exists, there exists one with a m-order
topological partition. Our goal is to determine enough information to cover all possible m-order
partitions within O(m) space. However, explicitly listing the classes for each block in a partition
would result in O(mlogn) space. Not all classes can be reached consecutively, so instead we only
care about adjacent classes. That is, classes that reach each other within the source trees they
share.

Note Lemma, 2.4 guarantees all launch edges of the same class appear in consecutive order when
the launch and loop edges in a source tree are listed in clockwise order. This defines boundaries
between blocks of launch and loop classes and the notion of a clockwise (counterclockwise) neighbor
of the class C' can be defined as the class immediately following (preceding) the edges of class C' in
the clockwise ordering. It is important to start from a specific endpoint of an edge of the class C,
as there are either two trees of class C' in the case of launch edges or two blocks in the clockwise
ordering in the case of loop edges.

We define the method NextClass as Algorithm 3.3 to return a representative edge of the class
adjacent to a given class in a certain direction from a given edge and endpoint. The algorithm
inputs a launch or loop edge e with endpoint x and direction LEFT or RIGHT. It iterates over all
launch and loop edges on the source tree of x and tracks the closest edge to the x that is not in the
class [e]. The closest edge depends on the direction, using the IsClockwise relation properly. This
algorithm performs LEFT and RIGHT moves in the Coin Crawl game.
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Algorithm 3.3 NextClass(eg, x, Dir)
Require: Input edge ey with endpoint = and direction Dir.
Ensure: Returns an edge ¢’ representing the class adjacent to ey to the direction given by Dir in
the clockwise ordering around .
¢/ = NULL, z = NULL
for all Launch or loop edges e = (a1, as2) do
for i =1,2 do
if a; shares the source tree with x then
if Dir = RiGgHT then
if z = NULL or IsClockwise(z, a;, z) then
if e and eg are of the same class then
if IsClockwise(z, a;11,a;) then

z=ua;, e =e
else
z=ua;, e =e
else
if z = NULL or IsClockwise(z, a;, x) then
if e and eg are of the same class then
if IsClockwise(a;, b, z) then
z=ua;, ¢ =e
else
z=ua;, e =e

Return €.

3.4 Reach for LMPD in L

Now, we have the pieces in place to translate the Coin Crawl game into a complete algorithm.
Algorithm 3.4 combines the local operations ExploreClass and NextClass into an exhaustive global
search over all possible move choices.

Theorem 3.7. Reachability for m-source Multiple-sink Planar DAGs can be computed in O(m +
logn) space using Algorithm 3.4.

Proof. Let the input graph G be as described previously, and find the spanning forest similarly.
Note that o € ({LEFT, RIGHT} x {CROSS, STAY})®™, denotes a move as o; € {LEFT, RIGHT} X
{CRroOSS, STAY}, so 0; is a direction and o; 2 designates a cross or stay move. We maintain two
explored regions, one on each end of the current topological class. Follow this sequence of moves
and use ExploreClass at every topological class the coin points to, using NextClass to navigate
adjacent classes. If there is an edge to v inside the explored region at any point, return successfully,
Proposition 3.2 guarantees a path that follows these moves to that edge, so successful completion
implies reachability. In order to ensure successful completion when a path exists, the following
claim is necessary.

Claim 3.1. If there exists a path from u to v in G, there exists a starting edge es and a sequence
of moves o of length at most 6m that leads Reach from u to v.
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Algorithm 3.4 Reach(G,u,v)
Require: Input connected planar DAG G with at most m sources, vertices u,v € V(G).
Ensure: Returns TRUE if and only if there is a path from u to v in G.
for all strings o € ({LEFT, RIGHT} x {CROSS, STAY})®™ doO
for all edges e; = (x,y) leaving T, do
LimLeft; = LimLefto = FarthestLeft(y)
LimRight; = LimRighty = FarthestRight(y)
Center; = Centery =y
Current = e,
for alli=1,...,6m do
if there is an edge €’ from the explored region to v then
There is a path from u to v
Return TRUE
else
Attempt to move in the direction ;.
Current = NextClass(Current, Centery, 0; 1)
FExpand the explored region along the new edge class
ExploreClass(Current)
if 0, = Cross then
if 3¢’ = (a,b) of class Current with IsClockwise(LimLefty, a, LimRight;) = TRUE then
Center; = a
Centerg = b
Swap(LimLeft;, LimLeftz)
Swap(LimRight;, LimRight,)
Swap(Centery, Centers)
else
Try the next starting edge es.

Proof of Claim. By Lemma 3.5, if there exists a uv path, there exists some irreducible path P with
a 6m-order topological partition. By this assumption, we will have a single edge leaving 7T;, and
will never return to this tree.

Now, consider the list of launch and loop edges in P. Label these edges as eg, eq,...,ex. Note
that the first launch edge must leave Ty, and thus ez is a proper choice of labeling. Now, let 62,1
and e} , denote the first and last edges of the ith class block in the topological partition of P. Note
that 67/1’1 = €} 5 = e; for the first class. Assume we have a string o of length k; that brings the
Reach algorithm to the edge 62.1- We will produce a sequence of moves to append to o that will
direct Reach to the edge €/ 110 By repeated iteration, these moves will direct Reach between edges
62.2 to e/ 41,1+ while the ExploreClass method expands the explored region to include €] +1,1> s the
only edge in P between e} ; and e, ; are tree, local, jump edge or have topological class [e] ,].

Given an edge 65’2, we must have that the edge €] 41,1 1s within SMPDExplore of the head
vertex in e} o by the definition of the partition. The path P has a subpath P; ;1 from e, to €},
consisting of tree, local, and jump edges within a source tree T;. This subpath follows either a
clockwise or counterclockwise path around 7}.
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There is a sequence of launch and loop classes that are descendants of P; ;1. By Lemma 2.4,
these classes appear in blocks, one block per launch class and at most two blocks for loop classes.
Let s; be the number of such blocks, not including those edges of the classes e;, and e} ;. If the
direction of P; ;1 is clockwise, append s; copies of the (RIGHT,STAY) move. Otherwise, append
s; copies of the (LEFT,STAY) move. These s; moves will be referred to as skip moves, as they do
not require edges of those classes in order to rotate farther in the subtree to the next topological
class. We will append another move of the same rotational direction in order to reach ¢}, ;, but
the CROSS or STAY choice is determined by e; | ,.

If the tail of e;+172 is on the same source tree as the tail of e§+1’1, we require a CROSS move to
change the first explored region, which corresponds to the location of the coin, to the other block.
Otherwise, we will have a STAY move.

When a move skips a class between edges 6272 and e 4110 this implies that the subpath F; ;1
corresponding to this move is an ancestor of all edges in that class. Thus, either there is a cycle in
G, or P has a later vertex that is a descendant of these vertices, but does not follow the tree path,
violating the irreducible property. Thus, P cannot contain edges in this class.

Let ¢ be the number of classes appearing in P. Each of these classes contribute a single incoming
move to o for each partition they contribute to P. By choice of P, this is at most 2¢ incoming
moves. Moreover, there are at most two skip moves for each class, giving 2k skip moves, if there
are k edge classes not appearing in P. Since ¢ + k is at most 3(m + 2) — 6, by Theorem 2.6, we
have at most 6m moves in o. d

Thus, when a path exists, Reach will return enumerate the move sequence generated in this
claim and return with success. O

Finally, setting m = O(logn), Theorem 1.1 follows.

4 Recognition of LMPDs

It remains to show that we can detect if a graph is a log-source multiple-sink planar DAG. We have
the ability to count the number of sources and find a planar embedding. Allender et al. can be
used to check that each graph induced by a source tree T; is acyclic. Now, we need to see if there
is a cycle that spans multiple trees.

Suppose G has m sources with the choice of forest so that each induced subgraph for the source
trees is acyclic, but there exists a cycle that spans multiple trees. Then, there exist vertices x and
y from different trees that lie in a cycle that uses the fewest number of loop and launch edges.
This cycle can be reduced to an irreducible cycle, a similar definition to an irreducible path: if the
launch edge is from x to y, then there is a path from y to x along the cycle. This path can be made
irreducible, which creates an irreducible cycle.

For an irreducible cycle, it is impossible for the path from y to x to pass through the tree paths
from previous vertices to their sources, and the proof of Lemma 3.5 holds. Thus, the algorithm for
reachability in LMPDs will find this path from y to .

Note, this method does not definitively check if there is a cycle between two vertices, but will
return true at least in the case that the vertices are part of the minimal-length cycle.

In order to check for cycles in a graph G with m sources, we can iterate over all launch edges
e = (x,y) and check for yz-reachability in G — e using O(m + logn) space. If no cycles are found,
we can be sure the graph is acyclic.
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