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Abstract

We continue an investigation into resource-bounded Kolmmg complexity [ABK™06], which highlights
the close connections between circuit complexity and Ls\wtime-bounded Kolmogorov complexity measure
Kt (and other measures with a similar flavor), and also etplderandomization techniques to provide new
insights regarding Kolmogorov complexity. The Kolmogonmeasures that have been introduced have many
advantages over other approaches to defining resourcalddutolmogorov complexity (such as much greater
independence from the underlying choice of universal mmeckiat is used to define the measure) [ARK].
Here, we study the properties of other measures that arigeafigt in this framework.

The motivation for introducing yet more notions of resodboeinded Kolmogorov complexity are two-fold:

e to demonstrate that other complexity measures such astingrprogram size and formula size can also
be discussed in terms of Kolmogorov complexity, and

e to demonstrate that notions such as nondeterministic Kgpdmay complexity and distinguishing complex-
ity [BFLO2] also fit well into this framework.

The main theorems that we provide using this new approacestmurce-bounded Kolmogorov complexity
are:

A complete set Rxn+) for NEXP/poly defined in terms of strings of high Kolmogoroomplexity.

A lower bound, showing thaRkn+ is not in NPN coNP.

¢ New conditions equivalent to the conditions “NEXPnonuniform NC” and “NEXP C L/poly”.

e Theorems showing that “distinguishing complexity” is @fsconnected to both FewEXP and to EXP.
e Hardness results for the problems of approximating forrsida and branching program size.

1 Introduction

The goal of this paper is to develop more fully the relatiopstetween Kolmogorov complexity and computational
complexity — with particular emphasis on circuit complgxiin so doing, we expand on a theme that dates back
to the earliest investigations of the P vs. NP question, aydihd. Let us begin by giving a brief overview of this
history.

Karp’s landmark paper [Kar72], which demonstrated the gfilead applicability of the notion of NP-completeness
as a tool for understanding the apparent intractability ahputational problems, took Cook’s earlier work
[Coo71] as its starting point. It is known now, but was notwmnahen, that Levin had made similar discover-
ies [Lev73] independently at roughly the same time as Coalakftenbrot [Tra84] has written an informative
account, outlining the fundamental questions that engdgadegment of the research community in Russia that
was working on theoretical computer science at the time. tMeneview part of that history.

1.1 The Russian Program

As related by Trakhtenbrot, the attention of the Russiarareh community focused on problems that seemed
to require ‘perebof’ or brute-force search. One such problem that was of pdatidnterest was the problem
(called “Task 4" by Trakhtenbrot [Tra84, p. 390]) of taking mput the truth-table of a Boolean function, and
determining if it has Boolean circuits of a given size. Mageantly, essentially the same computational problem
has been studied under the name MCSP, for the “Minimum Qi®iae Problem” [KCO0Q]. Levin has said that
he delayed publication of his work on the complexity of SALgy73]) because he had been hoping to capture
MCSP in this framework [Lev03]. Nearly four decades laters istill not known if MCSP is NP-complete, and
few seem to expect that it really is complete under Karp rédas [KCO0O].



Trakhtenbrot further relates that it was recognized thaB®@as similar in spirit to the problem of taking a binary
string as input and determining its time-bounded Kolmogaamplexity. More precisely, Trakhtenbrot describes
a problem (called “Task 5" in [Tra84, p. 392]) defined in terofisome fixed “universal” Turing machirié and a
fixed time bound(n) (such ag(n) = n?) where one takes as input a stringf lengthn and determines if there is
a descriptiond of a given length, such thaf(d) = « in time ¢(n). Thus these two related threads of inquiry were
already being discussed in Russia in the 1960s — althougé Wees no theorem explicitly linking the two threads.
In the same way that MCSP is not known to be NP-complete, KeveHdhat the question of whether computing
this sort of time-bounded Kolmogorov complexity is NP-haahnot be settled by relativizing methods [Ko91].

A third thread dating to this period is also discussed by ftakbrot, when he mentions a different notion of
time-bounded Kolmogorov complexity that was introduced.eyin. Levin developed this notion as a tool for
proving the second theorem of his 1971 paper [Lev73], in tviie presents an optimal search algorithm for
NP problems. (This definition, Kt), does not actually appear in Levin's 1971 paper and theesariublished
definition seems to be more than a decade later [Lev84].) Terehce between this definition and the time-
bounded Kolmogorov complexity mentioned in the precediagagraph lies in the way that time is incorporated
into the complexity measure. Rather than fixing the time looiin) thatU can use to produce from a short
description, instead Kt) is defined by minimizingn + log t, wherem is the length of the descriptiahsuch that
U(d) = x in t time steps. (Formal definitions are found in Section 2.) énse that no connection was suggested
between Levin’s Kt measure and the Minimum Circuit Size RrebMCSP until roughly three decades later.

1.2 Weaving the threads together

The connections between these three threads were made xptioit @ist a few years ago. In 2002, it was shown
[ABK *06] that if = is a string of lengtl2” (and thus can be viewed as the truth table of a functignthen K{x)

is roughly the same as the size of the smalbeatle circuit computingf,, where the oracle is a complete set for
E = DTime(2°(™). Furthermore, the sekk:, defined as the set of all such that K¢z) > |z| (the so-called
Kt-randomstrings) is complete for EXP under P/poly reductions.

This turned out to be a manifestation of a more general phenom A new variant of time-bounded Kolmogorov
complexity in the spirit of Levin's Kt was presented, dertbkél [ABK *T06], where KT x) is polynomially-related
to the size of the smallest circuit computiig (and in the relativized setting K“T(x) is polynomially-related to
the size of the smallest circuit with oracle gates forcomputing f,.). Thus the difference between solving
MCSP and computing K{:) amounts to not much more than determining the “size” of thalkast circuit for
fz using different notions of “size” (such as counting the nembf wires in a circuit as opposed to counting
the number of symbols in an encoding of the circuit). Funtiene, the set®x 4 and MCSP turned out to
be complete foPSPACE, EXP, EXPSPACE, and doubly-exponential time, etc, for thprapriate choice ofl
[ABK *06]. For the important case wheh= {) (i.e., for the problem MCSP for circuits without oracle ggteve
still have no completeness theorems, although it is knowhftictoring and other problems that are conjectured
to give rise to cryptographically secure one-way functians reducible to MCSP anflxr via probabilistic
reductions [ABK"06, KC00]. More generally, it is known thato function computable in polynomial time is
cryptographically secure relative to MCSP [ABK6, KC00].

The reductions and completeness results that classifydhwplexity of Ri; and related problems [ABKO6]

all rely onderandomizatiortechniques [BFNW93, IW97, IW98]. The current paper is meatidxd largely by the
desire to understand how other previously-studied notidi@®Imogorov complexity and other derandomization
techniques relate to each other.



1.3 Variants of Resource-Bounded Kolmogorov Complexity

Before we state the contributions of this paper, let us lyrieftall the main variants of resource-bounded Kol-
mogorov complexity. Li and Vitanyi discuss three differemproaches to defining time-bounded Kolmogorov
complexity in their book, which is the standard referencetffe field [LV93]:

1. Levin's Kt measure, which we have already discussed.

2. The measures‘Gind K that result by adapting the standard plain and prefix Kolmogaomplexity (C
and K, respectively) by allowing the universal machih@nly time¢(n) to produce a string of length as
output. C and K are polynomially related, and thus for the purposes of thjsgp we group them together.

3. Distinguishing Complexitydenoted C and KDY, depending on whether one is using the plain or prefix
version of this notion.

Distinguishing complexity was introduced by Sipser [Sip&8 a tool in his original proof showing that BPP lies
in the polynomial hierarchy. Briefly, Cz) is the length of the shortest descriptidrsuch that/?(y) runs in
timet(]y|) and accepts if and only # = «.

Buhrman, Fortnow, and Laplante conducted a thorough stii@pb complexity [BFL02], and also introduced a
nondeterministic variant of CDwhich they denote CND

1.4 Our Contributions

The main technical contributions of this paper can be enatadr

1. We present definitions of deterministic and nondeterstimidistinguishing complexity (KDt and KNDt,
respectively) that are in the style of Levin’s Kt measura] ahare some of the advantages that Kt enjoys
over C and related measures, such as less dependence on the dhaidecosal machiné/, and closer
connections with circuit complexity.

2. We observe that KNDt is more-or-less equivalent to a dbfié nondeterministic Kolmogorov complexity
measure KNt that is even more directly analogous to Kt andaigrabviously connected to nondeterministic
circuit complexity.

3. We show thatRkn: (the set of strings having high KNt complexity) is complete NEXP/poly under
P/poly truth-table reductions and hard for FewEXP underTdRnag reductions, and draw connections
between KNt complexity and techniques that have been deedléor derandomizing AM [MV99, SUO5,
Su07, SU06].

4. We show thaRkn¢ is notin NPN coNP. In contrast, note that we still have no good lower badodRx:.

5. We observe thakkp shares withRk; the property of being complete for EXP. HoweverAfkp, and
Ry are polynomially-related, then EX2 FewEXP.

6. We demonstrate the wide applicability of definitions ia thold of Kt and KT, by introducing measures KF
and KB that are polynomially related to formula size and bhang program size, respectively. We show
that factoring Blum integers is efficiently reducible thelplem of approximating KB and KF complexity.



7. We show that NEXP is contained in nonuniform Ni€and only if KNt and KF are polynomially-related,
and obtain several other statements that are equivalehistadllapse. Many important questions in com-
plexity theory can be re-stated equivalently in terms ofdfjioas about the relationships among different
variants of resource-bounded Kolmogorov complexity.

The rest of the paper is organized as follows. In Section 2 rgegnt our basic definitions and background in-
formation. In Section 3 we present our results charactegitie computational complexity of various problems
relating to resource-bounded Kolmogorov complexity. letia 4 we study nondeterministic Kolmogorov com-
plexity in connection with various tools of derandomizatién Section 5 we investigate the relationship between
Kolmogorov complexity and various possible collapses oiXIREo smaller classes. In Section 6 we study distin-
guishing complexity, and in particular study the consegesrthat would follow if some of these measures were
polynomially related. We continue this investigation ofpible polynomial relationships among various measures
in Section 7. Finally, we offer some concluding remarks iottea 8.

2 Definitions of Resource-Bounded Kolmogorov Complexity Masures

2.1 Universal Turing Machines

Our definitions are not overly sensitive to the particulamich of model of computation, but to avoid ambiguity
we will be precise about the model that we use. We use esbgtii@ same model of Turing machines that was
considered in [BIS90, ABK06]. The machine has one read-only input tape of lemgth constant number of
read-write working tapes of infinite length, and a read-avitifput address tape. At every time step the machine
can modify the content of its read-write tapes using the @qmisite heads and move these heads left or right by
one tape cell. It can also query the content of the input bidsehaddress is written on the input address tape. If
there is no such input bit the reply to the query is the symisol “

Beside considering deterministic Turing machines we use dndeterministiand more generallternating
Turing machines. These machines have in addition to deméstit states also existential and universal states.
We refer the reader to [Pap94] for more background on nonuétéstic and alternating Turing machines. An
alternating machine runs in spacand timet on a given input if each of its possible computations on thatit
uses space at mastnd runs for at moststeps.

In the case where the machine is an oracle Turing machinsif@psaving more than one oracle), for each oracle
the machine has one read-write oracle tape. At every stepdiohine can query any of its oracles about whether
the string written on the corresponding oracle tape beldodise oracle set. We also allow finite oracles. For a
finite oracley € {0, 1}*, the machine obtains as an answer to its qadny y; if ¢ < |y| and “*” otherwise. Note
that the input tape behaves like an oracle tape accessiniiediacle.

A place of central importance is occupied biiversalmachines. Since we are concerned with time and space
bounded computation we will require the universal machiodse space and time efficient. We formalize this
requirement further. Using the technique of Hennie andr8s#1S66] and Furer [FUr82, Fiir84] we can establish
the following proposition.

Proposition 1 (minimal simulation overhead) 1. There is a deterministic (nondeterministic/alterngjimur-
ing machinelJ with two work tapes, such that for any deterministic (noed®inistic/alternating) oracle
Turing machinel/ there is a constant,; so that for any finite oraclé there is a finite oraclel’ of length
at most|d| + ¢y such that for any oraclel and inputz, U*% (z) accepts iffM4-4(z) accepts. The com-



putation time ofU is at mostcy,t logt and the space used is at maesgf s, whereMA’d(:c) runs for timet
and uses space Furthermore, ifM is a two-tape machine, then the running timéjois bounded by ,t.

2. There is a nondeterministic (alternating) Turing mae&hin with two work tapes, such that for any non-
deterministic (alternating) oracle Turing machité there is a constant,,; so that for any finite oracle
there is a finite oracle’ of length at mosfd| + ¢, such that for any oraclel and inputz, U4% (z) accepts
iff M4-4(z) accepts. The computation timeléfis at mosicy,t, whereM 4+4(x) runs in timet.

We call any machiné& that satisfies the first part of the previous propositiemizersalTuring machine; note that
we require our universal Turing machines to be space anddifigeent in simulating other machines. We call a
fast universalluring machine any machiré that satisfies the second part of the previous propositiate that
the term “fast universal Turing machine” is reserved foraeterministic and alternating machines.

Definition 2 A Turing machindJ is universalif it satisfies all properties stated in Part 1 of Propositian A
Turing machindJ is fast universaif it satisfies all properties stated in Part 2 of Propositibn

2.2 The measureKs, Kt, KS and KT

The history of Levin's Kt measure was discussed briefly initioduction. The formal definition of Kt that we
present below is equivalent to the original definition ([Bé}) up to an additive logarithmic term. We will use the
definition that was used in our earlier paper (JABB86], which also introduced the measures KT and KS), because
it provides us with a uniform framework in which to preser# tiew definitions that are the primary focus of this
paper.

Definition 3 LetU be a deterministic Turing machine.

Kty(z) = min{|d|+logt : Vb€ {0,1,*}
Vi <n+1U%4,b) runsin
timet and accepts ift; = b}
KTy(r) = min{ld|+t: Vbe {0,1,%}
Vi <n+1U%q,b) runsin
timet and accepts ift; = b}
Ksy(z) = min{|d|+logs : Vb e {0,1,x*}
Vi <n+1U%,b)runsin
spaces and accepts iff; = b}
KSy(z) = min{ld|+s : Vbe {0,1,*}
Vi <n+1U%,b)runsin
spaces and accepts if; = b}

Here, we say that; = * if i > |x|.
Universal Turing machines provide time efficient simulaicof other machines, so #f is a universal Turing

machine andJ’ is any other Turing machine, then Ktz) < Kty (x) + ¢ - log |z|, KSy(z) < ¢ - KSy/ (),
Ksy(x) < Ksyr(x) + ¢ - log|x|, and KTy (z) < ¢- KTy (z)log |xz|. Hence, none of these complexity measures



changes much when one changes from one universal mabhineanother. As usual in studies of Kolmogorov
complexity, we will choose a fixed universal Turing machinhand use the notation KiKS, Ks and KT to refer to
Kty, KSU, Ksy and KTy.

In the traditional study of Kolmogorov complexity withowgsource bounds, the choice of universal machine
affects the measures(K) and Q) only by additive constant terms [LV93]. In contrast, the ickecof U affects
the value of K{x) by an additive logarithmic term, and it affects ki) by a multiplicative logarithmic factor.
This comes from the slight slow-down that is incurred in tmewdation of U’ by U. Some of the other measures
that we will study are affected to an even greater degreedyghibice of the universal machite However, the
situation is much better for KT and Kt and other measuresigwéin, than it is for measures such dsadd K
[ABK T06].

It is worthwhile mentioning how the definition of Kt given teediffers from the one given by Levin [Lev84]. In
Levin’s original definition, the machin# is required to produce the entire strimgas output, whereas here the
machineU gets indexi and has to determine theth bit of stringz. This change allows the running time to
be sublinear in the length aof. As this would allow the machin& not to be aware of the actual length of
we stipulate that foi = |z| + 1 the output should be “*". Since our definition does not requirto produce
any output, but merely to accept or reject, it is well-suitedgeneralization to nondeterministic and alternating
machines.

2.3 The measure&B and KF

The definition of KT complexity is motivated in large part thetfact that KTx) is a good estimate of the circuit
size required to compute the functigp that hasr as its truth table [ABK 06]. More precisely, for any string
of length2™, let Size* (x) denote the number of wires in the smallest oracle circuit witacleA that computes
fz. The following theorem holds:

Theorem 4 [ABKT06] There is a constant such that for any oraclel and any stringr of length2™,

1. Size'(z) < ¢(KTA(2))2 (KT4(2)? + log |z|) and
2. KT4(z) < ¢(Size*(x))? (log Size* () + loglog |z|).

But circuit size is only one of many possible interesting sugas of the “complexity” off. There is also great
interest in knowing the size of the smallest branching pogcomputingf, as well as the size of the smallest
Boolean formula representing Do these notions of complexity also give rise to a natursibmoof Kolmogorov
complexity? In this subsection, we answer this questionregenting definitions having the same general flavor
as KT.

First, we need to present some background information divanthing programs and Boolean formulae. For our
purposes, 8oolean formulas a circuit with AND and QR gates of fan-in two and fan-out one (except for the
output gate, which has fan-out zero), where the inputs teitieeit are literals from{z;,z; : 1 < i < n}. The
sizeof a formula is the number of gates; a formula represents é&adunction oncy, . . . x,, in the obvious way.

A branching progranis a directed acyclic graph with a single source and two digisled 1 and 0, respectively.
Each non-sink node in the graph is labeled with a variablgrin . . ., ., } and has two edges leading out of it:
one labeled 1 and one labeled 0. A branching program compufi@sction f on inputz = x5 ...z, by first
placing a pebble on the source node. At any time when the pébbh a node labeledz;, the pebble is moved
to the (unique) vertex that is reached by the edge labeled %.if= 1 (or by the edge labeled 0 if; = 0). If the



pebble eventually reaches the sink labédlethen f(z) = b. Details and background on branching programs can
be found in a standard text, such as the one by Volimer [VolBBgsizeof a branching program is the number of
nodes in the graph.

Definition 5 LetU; be a deterministic Turing machine, and (&t be an alternating Turing machine.

KBy, () = min{|d|+2°: Vbe{0,1,x*}
Vi <n 41U (i,b) runsin
spaces and accepts iff;; = b}
KFy,(z) = min{|d|+ 2" : Vb e {0,1,x}
Vi <n 41 US4, b) runs in
timet and accepts ift; = b}

Here, we say that; = * if i > |z|.

Similarly to Kt and KT, KBy, and KRy, are almost invariant under the choicelof andUs. More precisely, if
U, is a deterministic universal machine afid is any other deterministic machine then for some constan®,

for all z, KBy, (z) < (KBU{ (x))¢. Furthermore, ifU; is a fast universal alternating Turing machine dfgdis

any other alternating machine then there exists a constartt such that for allr, KFy, (z) < (KFy, (z))¢. Thus
for the rest of the paper we will fix one universal machifieand one fast universal alternating machiieand
measure KB and KF with respect to them.

The following simple proposition shows the relationshipviEen KB and branching program size, and between
KF and Boolean formula size.

Proposition 6 There exists a constant> 1 such that for any string: of length2™ representing the truth table
of a functionf, if BPSIZHx) denotes the size of the smallest branching program comgufti and FSIZHx)
denotes the size of the smallest Boolean formula repremgfitihen

1. (KB(z))'/¢ < BPSIZE=x) + log |z| < (KB(x) + log |z|)¢; and
2. (KF(x))Y¢ < FSIZE(z) + log |z| < (KF(z) + log|z|)°.

Proof. To prove the first inequality consider a deterministic maefii; that takes as its finite oractka string
1™0w, wherem is a positive integer and is an encoding of a branching program in variahbtes. . ., z,,,. Uy
assumes some hatural encoding of branching programs wheesmehing program of siz€ is represented by a
stringw of lengthS(2[log S| + [logm]). There are such encodings. On inpub), U¢ (i, b) first checks whether
1 is a string of length at most + 1 representing an integer betwekeand2™. If not, it accepts iffb = x otherwise
it evaluates the branching program represented by the string: that is them-bit string representing— 1, and
U, accepts iff the output of the branching program equals t€learly U; can be implemented to run in space
O(log |w| +logm). If 2 is a2™-bit binary string that represents a Boolean function cotiple by a branching
program of sizes then KBy, () < m + S(2[log S| + [logm]) + 20Ueglwl+losm) < (1,6)¢" for some constant
¢ depending only oi/;. The firstinequality follows because KB is measured witpees to some fixedniversal
Turing machine.

We prove now the second inequality. LEt be the fixed universal reference Turing machine for KB. We can
construct another machirtg that on inputi € {0, 1}* with oracled will simulate the computation af{(i’, 1)



wherei’ is the integer binary represented bincremented by 1. Ifi| = m thenU] will require only O(log m)
extra bits of memory for the simulation. For a stringf length2™, letd ands be such thald| +2° = K B(x) and
forall1 <i < n,U{(i, 1) runsin space and accepts iff;; = 1. Clearly, if .. is the Boolean function represented
by z thenU{d(z’) accepts ifff, (i) = 1. Uy with oracled on anym-bit input: runs in space + O(log m) so there
are at mospC(stloe™) distinct reachable configurations on inputs of sizavith oracled where the constant in
big-O depends only od/;. By the usual technique the graph of its configurations catutred into a branching
program of size?(s+lee™) whered will be hardwired into the program. Thus, BPSIZE < (KB + log|z|)¢
for some constantdepending only of/;.

Next we provide the main idea of how to prove the third inetjpal et = be a string of lengti2” representing

a Boolean functiory,, computable by a Boolean formula of size Using usual techniques the formula can be
turned into a balanced formula of size at mb$t Furthermore, by replication of subformulas it can be tdrne
into a completely balanced formula with alternating®and Qr gates of size at mogt®. Thus, the formula is
completely uniform now and it is fully determined by the seqce of literals (variables and negated variables)
accessed at the leaves. This sequence suitably encodadsimiog of lengthk® - 2m will be part of the advice to

an alternating maching, that we construct. The machifg with adviced = 0°1™0w on input(i, 1) (assuming

i is of length at mosin + 1) will spendO(¢) time reading the first bits of d, alternating between universal
and existential states fdralternations (so that its alternation tree mimics the défthlanced formula), then by
readingw it will determine which literal the formula should read iretteaf corresponding to the path from the
root of the formula given by the path in the alternating tiéeeads the bit of — 1 corresponding to this literal,
and accepts if the literal evaluates to 1. On infud) it computes similarly but existential and universal states
interchanged and each computation accepts if the corrdampliteral evaluates to 0. On inpyt, ) it accepts

iff i = 2™ 4 1 which can be decided in alternating tird¥log |d|). Few more details need to be explain&g.
checks in parallel thathas the right size, which takes alternating time at niti$bg |d|). Furthermore, the input
to the formula should be the-bit binary representation af— 1. Any particular bit of that representation can be
determined from in alternating timeO(log m). Hence U; works in time that is linear in the depth of the formula
andlogm, i.e., in timeO(log FSIZE(z) + loglog |z|). By the choice of the fixed fast universal reference Turing
machine for KF we conclude that KF) < (FSIZE(x) + log |z|)¢ for some constant

The last inequality follows easily, by constructing a Basidormula that simulates the computation of an alter-
nating Turing machine [Ruz81]. ]

2.4 The Nondeterministic Measured&KNT and KNt

In the preceding section, we saw that a variant of Kolmogaawplexity defined usinglternating universal
machines captures certain aspects of Boolean formula bizghis subsection, we investigate similar measures
defined usingiondeterministienachines. By doing so, we will find a natural complete set faXIR/poly, and we

will see how to use the tools of Kolmogorov complexity to pdeva new perspective on the techniques that have
been developed to derandomize nondeterministic classésasuAM [MV99, SUO05].

Here are the nondeterministic variants of Kt and KT:

Definition 7 LetU be a nondeterministic Turing machine.
KNty (z) = min{|d|+logt : Vb e {0,1,%}
Vi <n+1U%,b)runsin
timet and accepts ift; = b}
KNTy(z) = min{|d|+t: Vbe {0,1,x}



Vi <n+1U%,b)runsin
timet and accepts ift; = b}

As in the definition for Kt and KT, any fast universal machiiehas the property that for all’ there is some
constant > 0 such that for any, we have KN () < KNty () + cand KNTy () < ¢- KNT g/ ().

In precisely the same way that Ki) is polynomially related to the size of (deterministic) ciits computing the
function whose truth table is given by KNT is polynomially related t@strong nondeterministicircuit size. We
recall for the reader the definitions of nondeterministid attong nondeterministic circuits:

Definition 8 A nondeterministic Boolean circuit’ contains, in addition t)AND, OR, and NOT gates, choice
gates of fan-ir0. The circuit evaluates td on an inputz, and we say thaf’(z) = 1, if there is some assignment
of truth values to the choice-gates that makes the circailimte tol. A co-nondeterministic circuit’ is defined
similarly: the circuit evaluates td@ on an inputz, and we say thaf’(z) = 1, if every assignment of truth values
to the choice-gates makes the circuit evaluaté.t®@therwiseC'(z) = 0.

Similarly, astrong nondeterministic circuif computing a functiorf has, in addition to its usual output, an extra
output bit, called the flag. For any input and any setting of the choice-gates, if the flag is on, thrmugishould
output the correct value of (x). Furthermore, for any, there should be some setting of the choice-gates that
turns the flag on. It is easy to see that a Boolean funcfidras a strong nondeterministic circuit of sigés(n))

if and only if f has a nondeterministic circuit of siz&(s(n)) and a co-nondeterministic circuit of siz&s(n)).

Proposition 9 Let StrongSIZEx) denote the size of the smallest strong nondeterminigtiticicomputing the
function with truth tablez. There is a constant > 1 such that for any string: of length2™

(1/¢)KNT ()13 < StrongSIZEz) + log || < ¢(KNT(z) + log |z])®.

Proof. To prove the first inequality we first design the following rhae U;. MachineU; takes as its oracle a
stringd = 1™0w, wherew is a description of a strong nondeterministic circuit witpputsz, . . ., x,,,. Machine
U, with oracled on input(i, b) first checks whethei represents an integer betweemnd2™. If not then it
accepts iffb = *, otherwise it simulates) on the stringz that is them-bit binary representation af— 1 (with
the choice gates set nondeterministically). If the outpagd ff the circuit is set and the output equiathen U,
acceptgi, b). Clearly, the machin&; uses its oracld = 10w as a description of the function computedby
It is easy to see that one can choose an encoding of circuitsteat a circuit of sizeS' is encoded intav of size
O(S(log S + logm)) and such that/; works in timeO(|d| + |i|)?. Hence, for some’ > 1 depending only on
Uy, KNTy, (z) < ¢/ (StrongSIZEz) +log |z|)3. The first inequality follows by the properties of tfastuniversal
Turing machine in the definition of KNT.

Next we argue the correctness of the second inequality.Ukdte the fast universal Turing machine from the
definition of KNT. By the Cook-Levin Theorem, for any integen,t > 1, there is a nondeterministic circuit
Cm.: 0f sizeO((t + m)?3) such that on any input € {0,1}%, i € {0,1}™ andb € {0,1}, Cy, +(d, i, b) evaluates
to 1iff U$(i + 1,b) accepts in time at mosgt Here,i is interpreted as an integer betweand2™ — 1. Forx of
length2™, letd € {0,1}* and integet > 1 be such thald| + ¢ = KNT(x) and for all integers < 2™, U (i, b)
accepts in time iff z; = b. The strongly nondeterministic circuit for the functignepresented by consists of
two copies ofC,,, ¢: Cp, +(d,i,1) andCy, (d, i,0), the output is given by the output 6f,, .(d, i, 1) and the flag
by Cp,.(d,i,1) V Cpy i (d, i,0). Here,d is hardwired and is the input to the circuit. 0

There is a close connection between KNt complexity and iticoumplexity, too. Namely, KNtx) is polynomially

related to oracle circuit size, on circuits that have orsébe a set that is complete for NEXP. This follows from
Theorem 4, when combined with the following theorem.
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Theorem 10 If A is a set complete fAlE under many-one linear-time reductions then there is a @omst> 1
such that for any,
(1/¢)KNt(z) < KTA(z) < ¢(KNt(z) + log |z|) log |-

Proof. Let us prove the first inequality. Léf; be a universal Turing machine used to measure' Kifie KT
complexity where the universal machine has access to thaediar A. SinceA is in NE, by Theorem 214

is in NE/lin. We can construct a machig that simulates machin&; but instead of asking queries b it
nondeterministically evaluates the queries by itself. uksiig thatU] is provided with the proper advice fot,
the machind/] will simulateU; in nondeterministic exponential time. More preciselydet {0,1}*,b € {0,1}
andt € IN. There existsv € {0,1}**! such that for any € {0,1}* if U; with oraclesA andd on input(i, b)
runs in timet, thenU; with oracle1!”!0wd on input(i, b) runs in timet - 2°) and accepts ift/; accepts with
oracleA. The constant in the big of the running time depends only 6h andA. Thus if KT (z) = |d|+t then
KNty (z) < |d| + O(t). Since KNt is measured relative tdfast universal Turing machine, the first inequality
follows.

For the second inequality, I&f; be the fixed universal machine relative to which we measure KNnsider the
languagel = {(d,1%,i,b) : d,i € {0,1}*; b € {0,1}; t € IN; machinelU, with oracled acceptgi, b) in time
2t+ldI+11 We construct a maching that with oracled and1*0d on input(i, b), whered, i € {0,1}*,b € {0,1},
t € IN, checks whethefd, 1,4, b) is in L. SinceL is reducible toA in linear time,M with oracleA and1t0d on
input (¢, ) works in time linear ind| + ¢ + |i|. Hence, for any: of length2™, KT%,(z) < ¢(KNt(z) 4 log |x|)
for some constantthat depends only obi; and A. The inequality follows by the choice of universal machiae f
KT. |

3 How Hard Is It to Compute These Measures?

3.1 Review of lower bounds forKt, KS, and KT

In this section, we briefly review some relevant facts ablo@tiomplexity of the sets of strings with high resource-
bounded Kolmogorov complexity. First, let us present a damthat will make precise what we mean by “sets
of strings with high resource-bounded Kolmogorov compiéxi

Definition 11 For any Kolmogorov complexity measusg:, defineRx,, to be the sefz : Ku(z) > |z|}.

We remark that our theorems are not very sensitive to théstiold of “randomness”. Every theorem that we state
regardingRk,, carries over to the sdtc : Ku(x) > |z|}, for any fixede > 0.

The setsRks, Rkt and Rkg are complete for EXPSPACE, EXP at$PACE, respectively, under P/poly re-
ductions [ABK"06]. These hardness results both follow from a very genbedrem (Theorem 14 below) that
shows how to reducany“PSPACE-robust” setA to any set that contains many strings but has no strings of low
KT“-complexity.

Definition 12 A setA is PSPACE-robustif P* = PSPACE#.

Definition 13 A setA is said to havepolynomial densityif A contains at leas2™ /n* strings of every length,
for some integek.
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Remark: The complete sets of most of the familiar “large” complexiigsses (such @&SPACE, EXP and larger
time and space complexity classes) are easily seenlB3BA CE-robust.

Theorem 14 [ABKT 06, Theorem 31] Letl be anyPSPACErobust set. Lef have polynomial density, such that

for everyz € L, KT*(z) > |z|" for some constant > 0. ThenA is reducible toL via <-/*°" reductions.

The general idea behind the proof of Theorem 14 is quite singpice one has some basic tools of derandomization
at one’s disposal. In particular, Babai, Fortnow, Nisard 8¥igderson [BFNW93] developed a pseudorandom
generator that allows one to build, from aRgPACE-robust setd, a pseudorandom generator that takes input of
lengthn® and produces output of length with the property that, iff" is any statistical test that can distinguish
the output of the pseudorandom generator from truly randwuts, it must be the case thagﬂ/p"lyT. The
theorem follows, since the output of the pseudorandom gémehas low KT' complexity, and thus any set that
contains many strings but has no strings of low’kd@omplexity is a good statistical test. We review some other
aspects of this reduction later in this paper, in the prodftedorem 49.

The setRkr is in coNP and is not known to be complete for any interestiog@exity class. However, no
one-way function is cryptographically secure relativeier [ABK T06]. Again, the general idea of the proof is
quite simple, once some important tools from cryptograpieyilm hand: Any cryptographically-secure one-way
function can be used to construct pseudorandom functioargtars [HILL99, GGM86, RR97]. The functions
produced by pseudorandom function generators have lowdiiptexity, and thus an oracle féixr allows one

to crack any pseudorandom function generator, which in puowides the power to invert any one-way function
on a significant fraction of the inputs.

Somewhat stronger results were shown for specific examplpblems from cryptography (such as factoring
and computing discrete logs). These problems were showa BPP-reducible td& [ABK T06].

Although these completeness and hardness results prosédig information about the complexity &k, Rxs,

and Rk, we have disappointingly fewnconditionallower bounds on their complexity. It is known that none
of these problems are in (nonuniform) AQABK 106], but we have absolutely no stronger lower bounds. Even
the most complex of these three s&ks;, which is hard for EXP under P/poly reductions, might conakly be
recognized by linear-size depth three Dlogtime-uniforrowits of AND, OR, and RARITY gates!

3.2 The Complexity of Rxr and Rkg

For each of the two measures KF and KB, the sets of randongstRip and Rkr lie in coNP. Can we prove
better upper bounds on their complexity? Can we prove angdtebility results?

As discussed in Section 3.1, related questions have beed ph®ut the seRxr, and Kabanets and Cai posed
similar questions earlier for the related Minimum Circuizé&Problem (MCSP) [KC00]. Although we are not
able to reduce the factorization problemi@p and Rxr (as was accomplished fdtkr in [ABK T06]), we can
come close.

In this section we prove that factoring Blum Integers can beedin ZPP<* and ZPP%2 . (For an oracle4, a
function f is in ZPP" if there exists a procedure computed by a probabilisticleramchine with oraclet that
on inputz, on every halting path, producégéx), and the expected running time is polynomial.) We use resilt
[NR97] and [BBR99] in order to accomplish this. We define tbkkofving computational problem.

Blum Integer FactorizationGiven a Blum IntegeNV € IN, find the primesP and@ such thatl < P < @ and
N = PQ. (A 2n-bitintegerN is called aBlum Integerif N = PQ, whereP and(@ are two primes such that
P=Q =3mod4.)

12



Theorem 15 Blum Integer Factorization is i@PP?<* nZPP<: j.e., there ar&Z PP** andZPP"*" procedures
that on inputN that is a Blum Integer produce factof3and@ of V.

Proof. Naor and Reingold construct a pseudo-random function eiselnfiy () : {0,1}" — {0,1}}n,,» with
the following two properties (Construction 5.2 and Comoll&.6 of [NR97]):

1. There is a T€ circuit computingfy .(x), given2n-bit integerN, 4n? + 2n-bit stringr andn-bit string .

2. For every probabilistic oracle Turing machiné, that on its2n-bit input asks queries of length onty,
and any constant > 0, there is a probabilistic Turing machiog such that for angn-bit Blum Integer
N = PQ, if

| Pr[M/~r(N) = 1] — Pr[MB»(N) = 1]| > 1/n®

whereR,, = {g: {0,1}" — {0, 1}}, is a uniformly distributed random function ensemble andptfeba-
bility is taken over the random stringand the random bits a¥/, thenPr[A(N) € {P,Q}] > 1/n.

Their factoring construction relativizes, i.e., the pras of { fx -(x)} ~ - hold even ifM and.A have an access
to the same auxiliary oracle.

Let fn..(z) be computable by a TCcircuit of sizen®’, and hence, by an NCcircuit of sizen<”, for some
constants’, ¢’ > 1. Letxy, z,. .., 22 denote strings i{0, 1}™ under lexicographical ordering. Clearly, there
is a constant > 1, such that for all large enough all 2n-bit integersN and all4n? + 2n-bit stringsr, the string
obtained by concatenatinfy - (x1), fv.r(z2), ..., fnr(2ne) has KF-complexity less thawf /2. Fix such a and
consider the following oracle Turing machiné with oraclesRky and a functiory:

e On2n-bitinput N, M asks oraclg queriesry, zs, . .., z,c to getanswers;, ys, . . ., ync. Then,M accepts
if Y192 - - yne € Rxr and rejects otherwise.

Itis easy to see that if € {fn (x)}n  thenM always rejects, fon large enough. On the other handgifs
taken uniformly at random fronk,,, theny,ys - - -y, is @ random string and the probability that accepts is
at leastl — 27/2. Hence,| Pr[M/~+@)(N) = 1] — Pr[MB~(N) = 1]| > 1/2, for n large enough. By the
properties offy.(z) we can conclude that there is a probabilistic Turing machiveth oracleRkr that factors
N with non-negligible probability. We can reduce the error¢mo by verifying the output ofl.

Since any function that is computable by N€rcuits is computable by branching programs of polynorsize,
by considering branching programs instead of'N@cuits we get that Blum Integer Factorization is in ZPP.
a

We close off this section with the only unconditional loweulnd that we have oRkr and Rkg.
Proposition 16 None of the set®k., Rk, Rks, Rk and Ry are in ACY.

This proposition follows from the proof of [ABK06, Corollary 22], and also carries over to the other Kolntogo
measureX . discussed elsewhere in the paper.

3.3 Hardness of Approximation

Many computational problems that complexity theory stadiee decision problems for which an answer is always
either “yes” or “no”. Other problems that are of interest angutational complexity are optimization problems.
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Examples of optimization problems are the Maximum Clique -hawis the size of the largest cliqued— and
the Minimum Circuit Size Problem — what is the size of the deslcircuit computing a Boolean functigh
given by its truth table?

For some optimization problems efficient (polynomial tina¢gorithms are known. For others, no efficient algo-
rithm is known. Moreover, it is known that some optimizatipmmblems are hard for NP. Given that the exact
solution of such an optimization problem may be hard to find oan try to find at least an approximation to
the solution. Many optimization problems are known for whaven finding an approximation cannot be done
efficiently, unless something unlikely is true, suchPas= NP. For example, [Has99] shows that the Maximum
Cligue cannot be approximated up to factdr < in polynomial time, unles® = NP.

In this section we study the following optimization problem- given a truth table of a functiofy, what is the
smallest size of a circuit, a branching program or a formedapectively, that computes We show that under
certain plausible complexity assumptions these optiridrgiroblems are hard to approximate.

Related questions about approximating the size of the estallC’ circuits for a given truth table were investigated
in [AHM *08]. For the seemingly even more restrictive problem of apipnating the size of the smallest DNF
formula that represents a given truth table, approximatiegize is known to be hard for NP [Fel09, AHN8].

For a minimization problenf : ¥* — IN we say thay : ¥* — IN approximates up to factorr : IN — IN if for
allz € ¥*,1 < g(x)/f(x) < r(|z]). For a complexity clas§ we say thaif cannot be approximated up to factor
rin Cifno g € C approximateg up to factorr.

We recall definitions of two more problems that are believebd computationally difficult.

Integer Factorization Given a composite integéy € IN, find two integers? and@ such thatl < P < @ and
N = PQ.
Discrete LogarithmGiven three integers, z, N, 1 < z, z < N, find ani such thatr = z* mod N if suchi exists.

The following result is implicit in [ABK"06]:

Theorem 17 Let(0 < v < 1 be a constant an@® be a set of at least polynomial density such that for ary B,
SIZE(z) > |z|?. Then Integer Factorization and Discrete Logarithm ar&BiRP”.

This theorem implies the non-approximability of circuitei

Theorem 18 For any0 < ¢ < 1, SIZE(z) cannot be approximated up to factet—¢ in BPP, unless Integer
Factorization and Discrete Logarithm is BPP.

Proof. Assume that for somé < ¢ < 1, there is a functioy € BPP that approximates SIZE) up to factor
nt~¢. We will show that this implies that Integer Factorizatiowaiscrete Logarithm are in BPP.

Consider the seB = {z € {0,1}*; g(z) > |z|'~</2}. Clearly, B € BPP. Since for al € {0,1}*, 1 <
g(x)/SIZE(x) < n'~¢, we have that for alk € B, SIZE(z) > |z|*/? and also for all- € {0, 1}*, if SIZE(x) >
|z|'~¢/2 thenz € B. By [Lup59], almost all truth tables € {0, 1}* require circuits of size at leaét(n/ logn).
Hence,B is of at least polynomial density. By Theorem 17, Integertéization and Discrete Logarithm are in
sppEPP C BPP. (In the case of Integer Factorization we can actualiifjyveorrectness of the result to get ZPP
computation instead of BPP.) m]

Similar non-approximability results can be obtained fariala and branching program sizes. A proof similar to
the proof of Theorem 15 yields the following claim.
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Theorem 19 Let(0 < v < 1 be a constant an@® be a set of at least polynomial density such that for ary B,
BPSIZEx) > |z|” or for anyz € B, FSIZEz) > |z|?. Then there is ZPP® procedure that on inpudV that is
a Blum Integer produces factofd and@ of N.

As a corollary to this theorem we obtain:

Theorem 20 For any0 < € < 1, BPSIZEz) and FSIZE(z) cannot be approximated up to factot—< in BPP,
unless Blum Integer Factorization is EPP.

In Theorems 18 and 20, a functighis computable in BPP if there is a polynomial time probabdisnachine

M such that for anyr, Pr[M(x) = f(x)] > 2/3. However, the results hold for an even stronger notion of
non-approximability: For any < e < 1, if there is a polynomial time probabilistic machiné such that for all

z, Pr[l < M(z)/BPSIZHz) < n'~¢] > 2/3 or Pr[l < M (z)/FSIZEz) < n'~¢] > 2/3 then Blum Integer
Factorization is in ZPP. Similarly, if there is a polynontiate probabilistic machiné/ such that for alk;, Pr[1 <

M (z)/SIZE(z) < n'~¢] > 2/3 then Integer Factorization and Discrete Logarithm are ifP BFhese results
follow by essentially the same proofs as Theorems 18 andri®has only to observe that the derandomization
results that we use hold not only relativedmaclesthat distinguish between random and pseudorandom strings
but also relative tgrobabilistic procedurethat distinguish between random and pseudorandom striitigsian-
negligible probability.

3.4 The Complexity of Rixnt

In this subsection, we prove our main results regarding kdvtlexity. We prove an upper bound, showing that

Rxnt isin PNEXP (and observe that this class is contained in NEXP/poly) aadkow thatRkny is complete
for NEXP/poly under P/poly reductions. Furthermore, wespre an unconditional lower bound, showing that
Rxny is not in NP co-NP. (This result presents a stark contrast to what weldecta prove abouRk¢, which

is still not known to lie outside of P, or even outside of Diagg-uniform AC’[2].)

3.4.1 Properties ofNE, NEXP, and pNEXP

Before we can present our results ab&utny, it is hecessary to present some fundamental facts abouabthe
plexity classes that are most closely relatediex: .

In this paper, we will need to refer both to NE NTime(20(™) and NEXP= NTime(2"""’), as well as their

deterministic counterparts E DTime(2°(™) and EXP= DTime(Q”O(”). We will also have occasion to refer
to the class FewEXP, which is defined as the class of langusmgepted by NEXP machines that have no more

than27”" accepting computations on inputs of lengthFewE is defined similarly in terms of NE machines that
have no more tha2®(™) accepting computations on inputs of length

The following theorem is a well-known “folklore” theoremlttzough the only citation we know to give is to
Fortnow’s Computational Complexity weblog [For04, vMO03].

Theorem 21 (Folklore) NE/lin = coNE/lin.

Proof. It suffices to show that coNE- NE/lin. Let A € coNE, whereM is an NE machine accepting the
complement ofA. Definea,, to be the advice string for length wherea,, is the binary encoding of the number
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of strings of lengtm in A; note thatz,, has a linear number of bits. Here is an NE/lin algorithmAoiOn inputz
of lengthn, nondeterministically picR™ — a,, strings of lengtm, and attempt to find an accepting path\@ffor
each of these strings. (If this attempt is unsuccessfuh, &ert.) At this point, we have a list afl of the strings
of lengthn that arenotin A. Accept if and only ifx is not on the list. |

Corollary 22 NEXP/poly= coNEXP/poly

Similar techniques allow us to show that any NEXP-completéss®? SPACE-robust; recall from Section 3.1 that
a setd is PSPACE-robust if P* = PSPACE*. This extends a result of Hemachandra [Hem89], where itis/sh
that PNE = NPNE = | = EQNE. (Note also that PE = PNEXP, since there are sets that are polynomial-time
many-one complete for NEXP in NE.)

Theorem 23 PNE = pspACENE, In fact, PNE is also equal to the clasNEXPNE if we restrict theNEXP
oracle machine to pose queries of length polynomial in thetle of the input.

Proof. Let A be accepted by a nondeterministic oracle machih¢hat runs for time2"" and asks queries of
length at most:©, and has as oracle a sBte NE. LetC be the sef{ (1", m) : there are at leash strings of
length< nin B}. Clearly,C € NE. Using binary search, a polynomial time machine with asdeC' (or to an
NE-complete oracle) can determine exactly how many strridsngth at mosh.© are inB.

Now consider the seb, defined as the set of paifs, m) for which there is a se¥ C B with exactlym strings
of length at mostz|°, such that\/® (x) accepts.D is easily seen to lie in NEXP (simply guess thestrings,
guess an accepting computation for each of the strings tfy¥kat it is in B, and then simulate the computation
of M (z) using them strings as an oracle). Thu3is reducible in polynomial time to a set in NE.

Thus in PVE one can compute the precise vatluesuch thatB hasm strings of length at most¢, and then find
outif (z,m) € D, which is equivalent ta: € A. O

Corollary 24 pNE _ PSPACENE = EXF{\JP (whereEXPt'\t":> denotes the class of problems accepted by deter-

ministic oracle machines running in tin#”" with an oracle inNP, with the property that the complete list of
oracle queries to be posed is composed before the first ggenatde). This mode of oracle access is known as
“nonadaptive” or “truth-table” reducibility; the queriesmay be of exponential length.

Proof. The first equality is from Theorem 23. The second equalityasf[Hem89, Theorem 4.10.2]. a

Combining the techniques of Theorems 23 and 21, we obtaifottesving equality.
Theorem 25 PSPACENEXP/poly = PNEXP/noly = NEXP/poly.

Proof.  Fortnow credits Buhrman with the observation (stated withgroof) that EXF%'P is contained in
NEXP/poly [For04]. By Corollary 24, this implies the theareFor completeness, we give a simple direct proof.

By Theorem 23, it suffices to show thzﬁlsxplpoly is contained in NEXP/poly. Let € PNEXP pe recognized
by an oracle maching/ running in timen® with oracleB € NEXP. Our NEXP/poly algorithm forl will use an
advice sequence, listing for eash < n° the numbem,,, of strings of lengthn in B. Our NEXP/poly algorithm
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will guessa,,, strings of lengthm and guess accepting computations verifying that each otifiregs is inB.
Then it will simulateM (x) using this list of strings as the oracle, accepting if ang @nt: € A. ]

In order to prove our lower bound fdRkny in Section 3.4.4, we need to establish some conditionaapséd
results. In particular, we need to show that if NEXP is(MP N co-NP)/poly, then NEXP= PSPACE. (We
prove a stronger result below in Theorem 28.) Vinodchangranes a related result, showing that if EXP
(NP N co-NP/poly, then EXP= AM [Vin04, Theorem 8]. We make use of a stronger hypothesis tthis
result of Vinodchandran (assuming an upper bound on NEXtadsof EXP), but in order to conclude that
NEXP = AM we would first need to argue that, under this assumptior? EXNEXP. Instead of presenting the
argument in that form, we first present the following theorarich improves Vinodchandran'’s result (obtaining
the conclusion EXP= AM from a weaker hypothesis).

Theorem 26 EXP C (AM N coAM)/poly if and only ifEXP = AM.

Proof. The backward implication is trivial (since EXP is closed andomplement, and thus if EXR AM we
have EXP= AM N co-AM C (AM N coAM)/poly).

For the forward implication, we follow the example of the pfdhat if EXP C P/poly, then EXP= MA
[BFNW93]. That argument proceeds by observing that eveoplem in EXP has a two-prover interactive proof
[BFL91] where, moreover, the strategy of the provers is cataiple in EXP. Thus if EXRC P/poly, each problem
in EXP can be solved by an MA protocol where Merlin first sendthér the circuits computing the provers’
strategies, and then Arthur uses the circuits to simulatedht of the multi-prover interactive proof.

We use the weaker assumption that EXRAM N coAM)/poly. Thus each problemin EXP has an g N co-AM
protocol, where Merlin sends Arthur the advice sequencd @izethe (AMN coAM)/poly algorithms for the
provers, and then Arthur uses the AMco-AM oracle to simulate the multi-prover protocol. Theuk$ollows

since MAAM N CO-AM — A\ AM N1 CO-AM _ ap [Schgg]. O

Corollary 27 P#P € (AM n coAM)/poly if and only ifP#P = AM.
PSPACE C (AM N coAM)/poly if and only ifPSPACE = AM.

Proof. #P andPSPACE have interactive proofs where the strategy of the proveoisputable in #P and
PSPACE respectively [LFKN92, Sha92]. The rest of the argumentésshme as in Theorem 26. o

The same strategy fails in proving a similar result for NEXiAce the strategies of the provers for the two-prover
interactive proofs for NEXP are not known to be computablREXP. However, a different strategy succeeds.

Theorem 28 NEXP C (AM N coAM)/poly if and only ifNEXP = AM.

Proof. As in the proof of Theorem 26, the backward implication igi#ti (since AM C EXP C NEXP).

For the forward implication, assume that NEXP (AM N coAM)/poly. This clearly implies that NEXRC
L/poly.

Assume, for the sake of contradiction, that NEXFEXP. Itis known that this implies that AMC io-NTime(2™) /n
[IKWO01] (where this means that, for every probletne EXP, there is a problem in NTinig2") /n that agrees with
A for infinitely many input lengths). There is a problen € NE that is hard for NTimg™) underlinear-time
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reductions. It follows from the preceding paragraph thatéhs a constant > 0 and a>% algorithm running in
time n¢ with n¢ bits of advice, accepting, and thus EXPC io-Xstime(nd) /nd for somed > 0. However, a
straightforward diagonalization argument in the style ahian [Kan82] shows that this inclusion does not hold.
(That is, an exponential-time algorithm can simulate tre firS;time(n?) algorithms on each of the”" advice
sequences of length? and on each of the lexicographically first? strings of lengthn. There must be some
function on thes@?¢ strings that differs from each of these™” functions. Select one such function. This defines
a function in EXP that is not in idstime(nd) /nd.)

Thus we can conclude that EX®P NEXP under this assumption. The theorem now follows fromdFam 26. O

For completeness, we mention two more equivalences in the sain.

Corollary 29 expPNP C (AM N coAM)/poly if and only ifEXPNP = AM.
FewEXPC (AM N coAM)/poly if and only ifFewEXP= AM.

Proof. Again, the backward implications are trivial.

ifEXPNP € (AM N coAM)/poly, then clearly EXP'P ¢ EXP/poly, which implies that EXBF = EXP [BH92].
Thus we have EXBP = EXP C (AM N coAM)/poly, which implies EXP'P = AM by Theorem 26.

If FewEXP C (AM n coAM)/poly, then clearly FewEXRC EXP/poly, which implies that FewEXR- EXP
[AKS95]. Thus we have FewEXE- EXP C (AM N coAM)/poly, which implies FewEXP= AM by Theorem
26. a

3.4.2 An Upper Bound for Rkt

Theorem 30 Rini € PNE.

Proof. By Theorem 23, it suffices to show th&i; is in PSPACENE. From the definition, it is clear that

a stringz is notin Rk if and only if there is a stringl of length less thamz| and a timet < 2/#I such that
Vi€ {1,...,|z|+1}Vb € {0,1,%} U%(4,b) runsin timet and accepts if and only if; = b, where|d|+logt < |x|.

A PSPACE machine can cycle through each choicel@ind¢ and use an oracle in NE to answer questions about
whether the nondeterministic universal machihaccepts the given input in the allotted time. ]

It is natural to wonder if there is a better upper bound on themexity of Rxnt. In the next subsection,
we show thatRkn: is complete for NEXP/poly under P/poly reductions, whichs@ne evidence thaRkn:

cannot be too much easier thaN® — but it is actually rather weak evidence, since it is stilt pooven that
NEXP/poly # P/poly. Although it might seem that any algorithm determgimembership iRkt would have
to solve problems that are hard for both NE and coNE, we knomoainlikely consequences that followAfi
were to lie in NE. In particular, the following propositioh@ws that it is unlikely that there is a polynomial-time
many-one reduction (or even a truth-table reduction) fran(br CONE) toRk .

Proposition 31 If there is a unary language INEXP— Pi\th' thenRkn; is not hard forNEXP under polynomial-
time truth-table reductions.
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Proof. Let A be a unary language in NEXP Pi\th, and assume that there is a polynomial-time truth-table
reduction computed by a machidé, reducingA to Rxni. Each query; that is posed byl on input0™ has
Kt(¢) = O(logn). Thus, all queries that do not have lengiflog n) lie outside ofRkn+, and hence in order to
compute the value of the reduction, it suffices to determfined Rk for those querieg of lengthO(log n).
SinceRknt € PNE via an algorithm that asks queries of length linear in theiirgize, each such query 8f can

be answered by making unary queries to an oracle in NP. ThissthatA € PQ'P, contrary to assumption. O

The hypothesis to this proposition seems quite plausiblis.Known that there are problems that lie in NEXP
P,'f\tlp [Moc96, FLZ94], but it does not appear to be known if thereampunarylanguages in this difference.

3.4.3 A Completeness Result foRkn;
Theorem 32 Rk is complete foNEXP/polyunderP/polyreductions.

Proof. It was established in the preceding section tRat, € NEXP/poly. Hardness follows immediately from
Theorem 23 (which tells us that any séthat is complete for NE i®SPACE-robust), Theorem 10 (which tells us
that the strings iRk ¢ have high KT complexity), and Theorem 14 (which tells us that these diorh imply

that A<E/P°Y Rieny). 0

We do not know ifRkn;: is hard for NEXP under NP reductions. However, we are abladwshardness for some
important subclasses of NEXP.

Theorem 33 UEXP C NPTx~e,

Proof. When Babakt al. showed that EXR= P/poly implies EXP= MA [BFNW93], a crucial step involved
observing that the strategies of the provers in the MIP patofor EXP [BFL91] are computable in exponential
time. Analysis of the MIP protocols for NEXP [BFL91] revedthst the strategies of the provers for some language
A € NEXP canbe computed in NEXP if there is a language in NEXP that enctiiedits of an accepting
computation path for every stringe A.

Although this condition is not known to hold for every € NEXP, it does hold for everyd € UEXP. LetA be
accepted by a UEXP machind, and consider the sé : {(z,4,b) : the unique accepting path af on input

x hasb as itsith bit}. Clearly, B € UEXP C NEXP. Thus the strategy of the provers is in NEXP and hence by
Theorem 32 can be computed by an oracle circuit of polynosiual with an oracle foRk .

Thus we obtain a MA=~Nt protocol forA: Merlin sends Arthur the oracle circuitd , C, that compute the provers’
strategies, and then Arthur uses his probabilistic bitsrtaukate the MIP protocol, using the circuits andCs
along with the oraclé?kn¢, to compute the answers provided by the provers in the MIRopod.

We now appeal to the following lemma:

Lemma 34 [ABK+06] LetC' be any oracle and. be a set such that € P/poly” and for every: € L, KTC(z) >
|| for some constant > 0. thenMA~ = NP”.

Letting C be any set complete for NE, and lettidgbe Rk, and appealing to Theorem 10, we see that the
hypothesis of the lemma is satisfied. Thig NP?x~t, m]

Building on this proof, we can prove a stronger result.
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Theorem 35 FewEXPC NPk~

Proof. Let A € FewEXP be accepted by a NEXP machifethat has no more thar” accepting computation
paths on any input. We appeal to the following well-known hashing theorem:

Theorem 36 ([FKS82][Lemma 2], [Meh82][Theorem B]) Lef be a set oR°("") numbers, each of whose
binary representation has at mat” bits. Then there is some prime numbpewith O(n*) bits such that for any
x #yin S,z # y(mod p).

Now let B = {(z,4,b, p,q) : p is a prime number witlD(|z|*) bits,0 < ¢ < p, and there is an accepting path
of M on inputz, such thay hasb as itsith bit andy = ¢(mod p)}. Clearly,B € NEXP.

Assume for the moment that p andq are such that there is exactly one accepting computatidd oh inputax
(and recall from Theorem 36 that there must always be suclirdpa) for anyz € A). Then an exponential-
time machinel’ with an oracle forB can query the string&e, 4, b, p, q) forallb € {0,1} and all1 < i < on*
and construct an accepting computation patfifbn inputz, and given this informatiod/’ can then compute
the strategies of the MIP provers to show that A, given a good paifp, ¢). (We are not concerned with the
behavior ofM’ when given a bad paip, ¢).) Since the queries made By’ are all of length polynomial iz,

it follows from Theorem 23 that the language computedibylies in lﬂ\'E, and hence by Theorems 32 and 25 it
lies in P/poly?<~e,

Thus we obtain an MA protocol fad, where in the first step Merlin sends Arthur a good fairg) along with
the oracle circuits that simulate/’ when providedRkn: as an oracle. The rest of the proof proceeds exactly as
in the proof of Theorem 33. m]

Our observations about the complexity of the MIP protocolsUEXP and FewEXP also provide us with the
following corollary, which is analogous to the theorem tR&XP C P/poly if and only if NEXP= MA [IKWO01].

Corollary 37 UEXP C P/polyif and only ifUEXP = MA
FewEXPC P/polyif and only ifFewEXP= MA

Proof. In each case, the forward implication follows from our ola#ion that the provers’ strategies for MIP
protocols for these classes also lie in the same classeangaMerlin guesses the circuits for the provers’
strategies and sends them to Arthur.)

The other implications follow from exactly the same argutgven by Impagliazzo, Kabanets, and Wigderson,
in proving the analogous implication [IKWO1]. m]
3.4.4 An Unconditional Lower Bound for Rk

Theorem 38 Rxnt ¢ NP N co-NP.

Proof. If Rini € NP co-NP, then NEXRC PRx~t/poly C (NP N co-NP/poly by Theorem 32. By Theorem
28, this implies NEXP= AM and hence NEXP= PSPACE.

However, it is known that any polynomially-dense set thatinastrings of KS-complexity© is hard forPSPACE
under ZPP reductions [ABKO6]. SinceRkny; is dense and has no strings of low KS complexity, it followatth
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NEXP — PSPACE C zpPixe ¢ zppNPNCO-NP _ Npr co-NP, in contradiction to the nondeterministic
time hierarchy theorem. a

4 Nondeterministic Kolmogorov Complexity

Earlier work has shown that many of the techniques that haga Heveloped to derandomize BPP can be re-castin
terms of arguments in resource-bounded Kolmogorov contglgXl01, ABK T06]. In this section, we investigate
the extent to which a similar program can be carried out tdysthe techniques that have been developed to
derandomize AM. In order to state our results, we first reszaihe standard definitions.

Definition 39 [Lon82] A StrongNP-procedureomputing a functiotf is a polynomial time nondeterministic pro-
cedure, so that every computation path on inpwither producesf(x) or rejects. Furthermore, at least one
computation path must produgéz).

We will also refer to functions computable in SNP/log. Fastlwe assume that, for each input lengththere
is an advice string,, of lengthO(log n), and a nondeterministic machine as above that prodficeson every
non-rejecting computation path on ingut a|,| ). We place no restrictions on the behavior of the nondetestiin
machine on inputgr, z) wherez # aj,.

Definition 40 [ACR98] Ahitting set generatdor a class of circuit€ and thresholdy is a procedures that maps
0" to a setH,, of polynomial size with the property that, for every cirdmitC on n inputs that accepts at least
«a2™ strings inX", the circuit accepts an element &f,.

Definition 41 [AlI89] Let A be a language and leKu be a Kolmogorov complexity measure. We define the
Kolmogorov complexity ofl for lengthn as

Kpy(n) = min{Ku(z) : |z] =nandz € A}
If ANY™ = 0 thenKpu,(n) is undefined.

A typical question that will concern us is the question of traywidly K. 4 (n) can grow, forA residing in various
complexity classes. For example, consider the followirggptlem:

Theorem 42 [AllO1, For01, ISW99, KRC00, ACR98] The following are ealént:
1. Kt andKT are exponentially far apart. (That is, there is some- 0 such that for all largen there is a
string z € 3" such thaKT (z) > 2¢(Kt@)+loglz)) )
2. For all polynomially-densel € P/poly, Kt 4(n) = O(logn).

3. There is a languagél € E and a constané > 0 such that, for all largen, there is no circuit of siz&<”
acceptingA=".

4. There are pseudorandom generatérgomputable in time:°(!), such thati : ¥¢los”™ — ¥»,

5. There are hitting set generators fBfpolyand threshold% computable in polynomial time.
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One of the most important theorems in the literature on dbyamzation is that each of these conditions implies
P = BPP [IW97]. Not all work in derandomization has been aime®RBP; there has also been a significant
amount of work aimed at discovering conditions that imply AMNP. In particular, Klivans and van Melke-
beek proved that if if there is a set in NECONE that does not have oracle circuits circuits of subegptal
size that make nonadaptive queries to SAT, then AMNP [KvMO02]. This was improved by Miltersen and
Vinodchandran [MV99], who proved that the same conclusaiods from the formally weaker assumption that
there is a set in NEE: coNE that does not have strong nondeterministic circuittubexponential size, by show-
ing that this assumption implies that there is a hittingggierator computable in NP for co-nondeterministic
circuits. Shaltiel and Umans [SUO5] subsequently preskatbetter construction of a hitting-set generator that
hits co-nondeterministic as well as nondeterministicugtsc In an earlier version of this paper, we considered
several conditions that had been studied in relation tordkmaizing AM, and showed that they are all equivalent
[AKRRO3]. Subsequently, Shaltiel and Umans improved ttishow that even the condition studied by Klivans
and van Melkebeek is equivalent to the others [SU06].

In contrast to Theorem 42, we are not able to show that thethgges that have been used to derandomize AM
have equivalent restatements in terms of resource-boutaletbgorov complexity. However, we are able to use
these derandomization techniques to prove a partial amdldgeorem 42:

Theorem 43 The following are equivalent:

1. 3¢ > 0, Vn, 2 € 3" KNT(z) > 2¢(KNt@)+ogl2]) (That is, KNT andKNt are nearly as far apart as
possible.)
. For all polynomially-densel in coNP/poly KNt 4(n) = O(logn).

. For all polynomially-densel in NP/poly, KNt 4(n) = O(log n).

. For all polynomially-densel in NP/polyn coNP/poly KNt 4(n) = O(logn).
JA eNE/lin, Ja such thatA requires strong nondeterministic circuits of size".
. A eNE/lin, Ja such thatA requires nondeterministic circuits of si2&”.

N o UA W N

. There exisSNP/logcomputable hitting set generators for nondeterministitypomial-size circuits and
threshold# (and similar conditions for co-nondeterministic and sfgazircuits).

Remark: We wish to call attention to the equivalence of conditions@ &. For some notions of complexity such
as KT, there are polynomially-dense sets in coNP with egdnnaximal KT complexity (such aBx ), whereas
there are good reasons to believe that every polynomiahse language in NP/poly has low KT-complexity.
(Rudich gives evidence for this conjecture in [Rud97].) dmttast, we see here that the KNT complexity of dense
sets in NP and coNP are similar.

Proof. (1 < 5) This equivalence is proved similarly to related statetmém [AlIO1]. Given any sequence of
stringsxy, za, . . . With |z,,,| = n = 2™, where KNT«,, ) is large and KNtz.,, ) is logarithmic in KNT(«.,, ) (and
hence is logarithmic i, |), define the languagé to be the set such that the truth tabletf” is given byz,,.
Since KN{(z,,,) = O(log2™) = O(m), it is immediate thatd € NE/lin. (The description of,, showing that
KNt(zx,,) is small gives the advice sequence for the NE/lin upper bguieé need to show that requires large
strong nondeterministic circuits. But this is immediatenfrProposition 9, since by hypothesis KNT,) > |z, |
for somee > 0.

Conversely, given any languagk € NE/lin that requires exponential-size strong nondeteistimcircuits, the
lengthn prefices of the characteristic sequencehave logarithmic KNt complexity and KNT complexity for
somee > 0.
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(5 = 6) We prove the contrapositive6 = —5. Thus assume that evesy € NE has “small” nondeterministic
circuits (that is, of size less tha” for anya > 0). By Theorem 21 A € NE/lin, and hence also has “small”
nondeterministic circuits. This yields co-nondetermtigisircuits for A; we can combine the two circuits to get
strong nondeterministic circuits fot. This proves-5. (Similar observations are made by Shaltiel and Umans
[SU05].)

(6 = 5) This is trivial; a strong nondeterministic circuit yisld nondeterministic circuit of roughly the same size.

(5= 2, 3, 4, and 7) Shaltiel and Umans show that for any constaheére is a functiorG,(0™) computable
in deterministic polynomial time with the property thataifis a string of lengthn®() that is the truth table
of a function requiring exponential size strong nondeterstic circuits, thenz,,(0™) produces a seH,, ,, that
is a hitting set for both nondeterministic and co-nondetristic circuits of sizen® with thresholdnic [SU05,
Corollaries 6.6 and 6.9].

It is now straightforward to obtain a hitting set generatoSNP/log. By assumption there is a sete NE/lin
that requires large strong nondeterministic circuits. Lt) be the advice sequence for length(having length
O(m)). Letn = 2™. On input0™ with adviceh(m) having lengthO(log n) we can, in nondeterministic polyno-
mial time, guess and verify the stringthat is the truth table foA=", and then run the generat@t, (0™).

Itis easy to see that any string in the hitting set output bR g computable hitting set generator has logarith-
mic KNt complexity; this completes the proof of this impliz.

The implications (%= 4) (2= 4), and (3= 4) are either trivial or follow via the argument above. ThisLiffices
to prove (4= 5).

(4 = 5). DefineA = {z : |z| = 5m and KNt(z) > m}. We claim thatA is in NE/lin. To see this, recall
that for a stringr of length5m, KNt(x) < m implies3d, |d| < m,Vi U%(i,b) has an accepting path iff, = b,
whereU is a universal nondeterministic Turing machine runningXérsteps. In order to enumerate als of
length5m that have KNfz) < m, we will define a nondeterministic procedure that will allog/to exclude from
consideration thosé's that are not valid descriptions of strings. Definéo be the number of stringgof length

< m that are indeed valid descriptions of strings of length, (i.e., there exists am for which Vi U4 (i, b) has

an accepting path itf; = b), and we defing’ to be the number of “recognizably bad” descriptions, thathisse
stringsd of length < m for whichVi < 5m + 1, 3b € {0,1,*}, U accepts(i, b) and for some and some

b # b€ {0,1,%}, U< accepts botlti, b) and (i, b’'). Our NE/lin machine, on input of length5m, takesa and

(3 as advice (each of length(m)). First it guesseg “recognizably bad” descriptions and verifies that they are
indeed bad by guessing accepting paths for lath) and (¢, b'). Then it guessea other strings (corresponding
to candidate “goodd’s), and guesses accepting paths for all of them and prirtthewcorresponding strings. All
of this takes time exponential in. Now we can accept if and only if it is not in the list that has been generated.

Now we need to show that requires large strong nondeterministic circuits. Assurtieivise, so that for
every c there is some: such that there is a strong nondeterministic circuit of €€ deciding A for inputs
of lengthn. Then we can construct a polynomially-dense languBge NP/polyn coNP/poly of the form
B = {y : |y| = n and the prefix ofy of lengthc,, - logn is in A} wherec,, is chosen (nonuniformly, as part of
the advice sequence) to be as large as possible, so that thbarship test ford can be implemented in size
via a strong nondeterministic circuit. By assumption, thguence of numbefg,,) is unbounded. It follows that
KNtz (n) # O(logn), contrary to our assumption. O

Although none of the conditions of the preceding theorenmkamvn to imply AM = NP, it is trivial to observe
that they imply AM C NP/log. It is worth mentioning that these conditions do iynalnontrivial inclusion for
AM:

Theorem 44 If there existsd eNE/lin, such thatA requires strong nondeterministic circuits of sZ&, for some
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a > 0, thenAM ¢ PNPllogn],

Proof. As in [MV99], to determine ifzx is in a setB € AM, we model the Arthur-Merlin game using a
nondeterministic circuit with input and some probabilistic inpuis Let C,. be the result of hardwiring the bits
of x into this circuit; thenr € B = C, accepts every, andx ¢ B = C, rejects at least half of the strings
Thus it suffices to use our NP oracle to determine if there isitagsy that is rejected by’,.. By parts 7 and 2 of
the preceding theorem, if such a stripgxists, then there is such a string with KiNt = O(log n).

Thus it suffices to design d¥¥llog ] procedure to determine if there is a stripgiith KNt(y) < clogn such that
the nondeterministic circut’, rejectsy.

As in the proof of (4= 5) of the previous theorem, let be the number of good descriptions of length at most
clogn and lets be the number of “recognizably bad” descriptiahsf length at most log n. The numbers and

B can be computed i@ (log n) queries to an NP oracle of the form “do there exisy strings(d,, ds, - - -, d;) of
length at most log n such that for alln and alli < |y| + 1 there is @ € {0, 1, x} such that/¢~ (i,b) has an
accepting path?” and “do there existj strings(di, ds, - - -, d;) of length at mostlogn such that for allm, i
there is a such that/?~ (i, b) accepts and there is some< |y| + 1 for which there aré # ' € {0,1, %} such
thatU?= (i,b) andU%(i,b') each have an accepting path?” Having computeahd 3 we can ask one more
query to an NP oracle to determine if there @rbad descriptions and good descriptions such that, accepts

all of the stringsy described by the: good descriptions. |

One might wonder how reasonable it is to expect that a camdgiich asle > 0, Vn, Jx € X", KNT(z) >
2¢(KNt(@)+log |z1) should hold (saying that KNT and KNt are nearly as far aparp@ssible). The following
proposition shows that, for at least some of the measurésvihaonsider, there are unconditional results of this
form that one can prove.

Proposition 45 Vn, 3z, € X", KS(x) > n'/? andKs(n) < 2logn + O(1).

Proof. A straightforward diagonalization shows that there is adsetDSpacé2™) that is not in io-DSpad@?"/? /227/3).
Let z,, be the lengt prefix of the characteristic sequengg. It is immediate that K&e,,) < 2logn + O(1)
(since it is described by the numberand a program for, which can be simulated in spac¥2™). Assume

for the sake of contradiction that K8,) < n'/2, and letm be the largest number such that contains the
membership information for all strings of length. Clearlyn > 2™ > n/2. Thus there is a descriptiahof
lengthn!/2 < 2(m+1)/2 gych that for alk: of length at mostn, U?(z, b) runs in space< 2(™+1/2 and accepts if

and only ifz € A. This is counter to our choice of. ]

5 KF Complexity and the NEXP C NC! Question

Derandomization techniques were usedliKWWO01] to show that NEXPC P/poly if and only if NEXP= MA;

it was observed in [All01] that this is also equivalent to ditions concerning the Kt-complexity of sets in P. In
this section we conduct a similar investigation of the gieastf whether or not NEXP is contained in nonuniform
NC'.

In order to formulate the appropriate generalization ofefjaivalence NEXRC P/poly if and only if NEXP=
MA, it will be helpful to present a technical definition. Wedbe by recalling the definition ofP [P/poly].
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Definition 46 [AKS95]IP[P/poly is the class of languages having an interactive proof systlere the strategy
of the honest prover can be computed B/poly circuit family (also see [AK99], where the multiple provdass
MIP[P/poly| is observed to be the sameI&gP/poly}).

ClearlyIP[P/poly] € MA NP/poly (because Merlin can guess the circuit that implesére Prover’s strategy and
send it to Arthur); it appears to be a proper subclass of MAcgsiotherwise NEZ P/poly). If NEXP C P/poly,
the proof of [IKWO01] actually shows that NEXP IP[P/poly]. We now define an analogous subclass of MA
nonuniform NC.

Definition 47 MIPNC! refers to the class of languages for which there is a 2-prave-round interactive proof
protocol where the strategy of each honest prover can beemehted by a (nonunifornNC' circuit family
and the computation of the verifier is computable by a unif@wrobabilistic) NC* circuit family. (Although it

is important that the verifier's circuits be uniform, our tdts do not depend crucially on the exact notion of
uniformity. They hold foP-uniformity and forDLOGTIME-uniformity.)

We could likewise definBPNC! as the class of languages similar to the above for a singieepconstant-round
interactive proof protocol, but we can easily see #iaPNC' andIPNC! coincide.

Definition 48 EveryNEXP search problem is solvable i@ if for everyk andevery NEXPmachineM running

in time2"" there is a functionf in C with the following property. If: is accepted by, then there is a witness
2|0k . , . . ;
w € {0, 1}2‘ | encoding an accepting computation path/df on inputz, such that for alli < glel 7

f(z,i,b) = 1if and only ifw; = b. (Thatis, the unique string = b1bs...b,, 0x such thatf(z,i,b;) =1
encodes an accepting computation pattdfon inputz.)

Theorem 49 The following are equivalent:

1. Forall A € NP, KF 4(n) = log®® n.

2. Forall A € DLOGTIME-uniformAC?,
KF 4(n) = log®® n.

3. AllNEXP search problems are solvable in nonunifoNa*.
4. NEXP C nonuniformNC!.
5. NEXP = MIPNC!.

Proof. Items (1) and (2) are easily seen to be equivalent, as in thartebefore Proposition 61.
The proof that (2= 3) is immediate, once the following two assertions are distadx:

e (2)= EXPC NC'.

e (2) = NEXP search problems are solvable in EXP.

Assume both of these assertions hold. Then for a given NEXRckeroblem solved in exponential time by
machineM, the languagé (z,4,b) : theith bit output by on inputz is b} is in NC'. The existence of such
circuit families for NEXP search problems is precisely wisatmeant by condition (3). Let us examine each
assertion in turn.
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Let A € EXP. LetB = {w : wis a prefix ofy4}. Bis clearly in P and (since we have already observed that (2
= 1)) our assumption tells us that iR = log®™" (n). Now Proposition 6 allows us to conclude that NC'.

For the second assertion, |2f be any NEXP machine, and consider the languége- {y10* : wherey €

{0, 1}2W is a witness thad/ accepts:}. C'is in DLOGTIME-uniform AC’ (assuming an appropriate encoding
of witnesses) and by2f if there is any string irC=" then there is a string i6’=" with small KF complexity. The
exponential-time algorithm solving this search problervolues taking inputz and searching through all short
descriptions and seeing if any of the strings thus desceineddes an accepting computation patibbn input

x.

(3 = 4) This implication requires some explanation. In most casssuming that a search problem is easy
trivially implies that the decision problem is easy. Howewehen we assume that every NEXP search problem
is solvable in NC, it means only that there is an N@ircuit C such thatC'(z) describes an exponentially long
witness for membership when such a witnessaf@xists. It is notobviousthat there is any easy way to detect
whenC/(z) is describing such a witness. Thus this implication doesiregproof.

Certainly (3) implies that NP search problems are solvabMG'. Let A € NP be accepted by NP-maching,
and letC be a circuit solving the search problem definedy Thusz € Aifand onlyif C(x,1)C(z,2) - - - C(x, n*)
encodes an accepting computationéf This latter condition can also be checked in'N@hich implies NPC
(nonuniform) NC. NP being contained in NGeasily implies thakt} is contained in N&. On the other hand, by
[IKWO1], if NEXP search problems are solvable in P/poly,tft¢EXP is inX%.

(4 = 5) To prove this implication, observe that by [IKWO01] if NEX® P/poly then NEXP= MA = PSPACE.

By [CCL94], we know thaPSPACE has2-prover,1-round interactive proof systems, where the honest provers
are inPSPACE. Also we note that the verifier's protocol is very easy to camepit sends random sequences
to each prover and receives from the provers sequencesyigrolals on which it performs (in parallel) some
consistency checks. The consistency checks involve fietgtatipns, which are computable by DLOGTIME-
uniform TC® circuits [HABO2]. All the queries to the provers are madeieoound (and hence are non-adaptive).
Since by assumptio®SPACE C NC!, we have that every language in NEXP is alsdifiPNC!.

(5 = 2) Now we prove this implication. We largely follow [IKWO01], mere it is shown that if NEXR- P/poly,
then NEXP search can be performed by P/poly circuits. Moeeipely, we will show that if there is a set in P
with large KF-complexity, then for every > 0, MIPNC! C io — [NTime(2")/n¢]. As in [IKWO01] this latter
condition implies either thatIIPNC' is a proper subset of NEXP (which is to say that condition $5hise) or
else EXP#£ NEXP (which also easily implies that condition (5) is false)

Let A € MIPNC!, where the verifier’s strategy is computable by a P-unifamify of probabilistic NC circuits
{C,}. Letp be a polynomial, such th&t, uses at mosi(n) probabilistic bits. Our strategy to determineiie A
is

1. Construct the circuil’ = C),|.

2. Nondeterministically guess NQircuits D, D’ that might implement the strategies of the provers in the
MIPNC! protocol forA.

3. Construct a circuiB that, given an inpuy of lengthp(n)
(a) UsesC to compute the query that gets posed to each prover iNHIRNC! protocol forA on inputz
and probabilistic sequenge

(b) UsesD andD’ to answer the queries.
(c) UsesC to compute the actions of the verifier.
4. Estimate the probability tha@ accepts a randomly-chosen string
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By the definition of MIPNC!, if 2 € A then there are fan-in two circuit® and D’ implementing the strategy
of the provers (where the depth 6f and D’ is bounded byl log n for some constand depending only o)
such that the circuiB acceptsall of the inputsy, whereas ifc ¢ A, thenno provers (and hence also no provers
computed by small circuit® and D’) can causeB to accept more than one-third of the inpyts

All of the steps in this algorithm are easily computable in &ept for the final step 4. In order to complete
the argument that{TPNC! C io — [NTime(2"")/n¢], it suffices to show that for infinitely many input lengths
n, there is an advice string of lengtli such that a nondeterministic machine running in t2fie can estimate
the probability that a circuit with fan-in two and deptlog p(n) accepts a randomly-chosen input of length)
(where the constaritand the polynomigb depend only on our languagg and do not depend ai).

As in [ABK106], we will make use of the hardness-versus-randomnebsitpees of [NW94, BFNW93]. In
particular, some of the results of [NW94, BFNW93, KvM02] axemmarized in [ABK 06] in the following
form.

Definition 50 For all large n, anye > 0 and any Boolean functiofi : {0, 1}”5/3 — {0, 1} there is a pseudo-
random generatoGFENW : {0, 1} — {0, 1}#(") with the property that the functio?¥~" is computable in
spaceO(n¢) given access to the Boolean functipnand such that the following theorem holds.

Theorem 51 ([BFNW93, KvM02]) There is a constankt’ depending ore such that if7 is a set such that
| Prrcu, ., [r € T) — Praeu, [GFENY (2) € TJ]| > 1/3, then there exists an oracle circuit of sizen* with
oracleT that computeg and queries” non-adaptively.

Closer examination of the proof techniques that are useBRNW93, KvM02] shows that the circuif computing
the reduction can actually be implemented asastant deptieircuit of MAJORITY gates and oracle gates. Thus
it can be implemented as a circuit of deptlvog n for some constarit, consisting of oracle gates (where there is
no path in the circuit from one oracle gate to another) and And Cr gates of fan-in two.

Now we can state oub — [NTime(2"") /n¢] algorithm to estimate the probability that an N&rcuit accepts. Let
L be a language in DTinfe*) such that for every there exist infinitely manyn such that Kk (m) > log’ m.
By our assumption that condition (2) fails, such akeixists.

On inputz of lengthn, our advice string will be a numben with approximately:® bits with § = /3, such that

L contains strings of length, and all strings of length in L have high KF complexity. Our nondeterministic
algorithm will guess a string of lengthm and verify that: € L. This takes time°("). Let f be the Boolean
function on inputs of lengtiilog m] (roughlyn®) whose truth table hasas a prefix (and is zero elsewhere). By
our assumption o, (combined with Proposition 6), there exist infinitely mamysuch that functiory requires
Boolean formulae of size greater thafn)**+°. For any input lengt for which a correspondingn = 2°(*)
exists, the probability that circuiB accepts can be estimated by counting the fraction of strngfslengthn®
such thatB acceptsZ?E~W (y). This fraction must be within one-third of the true probipi(since otherwisef

is computed by a formula of siz€n)**?, by Theorem 51).

SinceG?TNW (y) is computable in space, the entire computation to estimate the acceptance priityatiithe
NC! circuit B (and to recognize languag8 takes time2© ("),

This completes the proof. ]

The following definition ofMIPL combined with an analogous proof yields Theorem 53

Definition 52 MIPL corresponds to the class of languages for which there 2spgover one-round interactive
proof protocol where the strategy of each prover can be imgleted in_/poly and the verifier is irL.
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Theorem 53 The following are equivalent :

1. NEXP C L/poly

2. All NEXP search problems are solvable liipoly
3. Forall 4 € P,KB 4(n) = log®Y n.

4. NEXP = MIPL

For completeness, we summarize what is known abguy for A € P for the other measuré§u that we have
considered.

Theorem 54 The following equivalences hold:

e ([AlO1]) All NEXP search problems are solvable Ripolyif and only ifVA € P, KT 4(n) = log®™® n.
e All NEXP search problems are solvable MP/polyif and only ifVA € P, KNT 4(n) = log® ¥ n.
e All NEXP search problems are solvable RSPACE if and only if YA € P, KS4(n) = log®® n.

([AlI89]) All NEXP search problems are solvable BXPif and only ifv A € P, Kt4(n) = log®™ n.

Forall A € P,Kss(n) = O(logn).

Note that in all cases the upper bounds on solvability ofcdearoblems for NEXP are given byonuniform
classes, exceptfor the cases concerfiiBACE and EXP. However, it is easy to see that a NEXP search problem
is solvable inPSPACE (or EXP) if and only if it is solvable in PSPACE/poly (or EXPRy, respectively). This is
becaus®SPACE provides enough resources to cycle through all advice sexqseof polynomial length; similar
observations were made by [BH92]. Note also that we do no¢ laasrisp statement that is equivalent to every
setA € P having KNty (n) bounded bylog®!) n. See also the remark after Proposition 61, regarding the KDt
complexity of sets in P.

Proof. In order to see that Kg(n) = O(logn) for all A € P, it suffices to observe that there is a trivial algorithm
that runs in space® (") that takes the string as input and searches for the lexicographically leastA=", and
produces this string as output.

All of the rest of the implications are proved similarly tocheother. For the backward direction, in each case, the
first step is to show that the given assumption implies thatyeMEXP search problem is solvable in EXP. It will
suffice to consider the weakest of these assumptions; namely

VA € P, Kt4(n) = log®Y n.

Let M be any NEXP machine, and consider the langudge {y10* : wherey € {0, 1}2‘m‘k is a witness that

M acceptse}. Cisin P and by assumption, if there is any stringIin™ then there is a string i6"=" with small

Kt complexity. The exponential-time algorithm solvinggisearch problem involves taking inputind searching
through all short descriptions and seeing if any of the giithus described encodes an accepting computation
path of M on inputz.

Thus for any NEXP search problem there is a deterministioegptial-time machiné/’ solving it. Hence the
languag€| (z, 4, b) : theith bit output byM’ on inputz is b} € EXP, and hence it is AGreducible to a setl ¢ E.
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In order to complete the proof of the backward direction uifises to show that this set is contained in the
appropriate class. The sgb : w is a prefix of the characteristic sequenceddfis in P (and contains exactly one
string of each length). Results such as Proposition 9 and Theorem 4 now sufficevéotige appropriate upper
bound forA.

For the forward direction, letl be any set in P, and consider the search problem defined byEhaadhinel/
that takes input» and guesses a stringof lengthn, accepting if and only ifc € A. By hypothesis, there is a
function in a given class that takes as inputi) and returns théth bit of some string of length in A. In each
case, this is precisely what is needed in order to provideés@ed upper bound dfip 4 (n). O

6 Distinguishing Complexity

Recall from Section 1.3 that there are three main kinds ajuee-bounded Kolmogorov complexity that have
been studied:

e Definitions in the spirit of Levin's Kt measure.
¢ Definitions similar to ¢ and K’ for various time bounds

e Distinguishing complexity.

Thus far in this paper, we have introduced a number of othesores in the spirit of Levin's Kt measure, where
these new measures bear close relationships to differemtleaity classes (much in the same way as varying the
time bound: causes the measure$ &hd K to be related to different complexity classes). But the messthat
we have introduced have more in common witha®d K (in which a description allows a machinegmducea
string) than with distinguishing complexity (in which a degtion allows a machine teecognizea stringz when

it sees it). In this section, we investigate the topic ofidgtishing complexity, in the spirit of Levin’s Kt measure.

Distinguishing complexity dates back to the work of Sips®ipB3], and it has been studied in more depth by
Fortnow and Kummer [FK96] and by Buhrman, Fortnow, and LafddBFL02]. In all cases, the focus has been
on the polynomial-time bounded versions of distinguishtognplexity. Here are the formal definitions of the

Distinguishing Complexity measures:

Definition 55 Letp be a polynomial, and I€l/; (Us) be a universal (nondeterministic) Turing machine.

e CD”(z) is defined to be the minimujai| such that/{(y) accepts in timey(|x|) if and only ify = =.
e CND?(z) is defined to be the minimuja such that/g(y) accepts in time(|z|) if and only ify = .

The following definitions are the most natural way to fornelaotions of Distinguishing Complexity more in line
with Kt and KNt complexity:

Definition 56 Let U; be a fixed deterministic Turing machine, and &t be a fixed nondeterministic Turing
machine.

KDty, (z) = min{|d|+logt : Vy € XI*1 Ud(y)
runs in timet and accepts ift = y}
KNDty, (z) = min{|d|+logt : Vy € BI*l Ud(y)

runs in timet and accepts ift = y}
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As usual, we select fixed universal deterministic Turing hiaesU; and nondeterministi¢/s, and define KDt
to be KDty,, and KNDt to be KNDy;,. Via standard arguments it follows that for &lf, we have KDfx) <
KDty (x) + clog|z| for some constant, and for allU”, we have KNDfx) < KNDty (x) 4 ¢. Itis clear that
KNDt(z) — O(1) < KDt(z) < Kt(z) + O(log |z]).

We see no useful way to define a measure bearing the samemstap to KDt as KT bears to Kt, because with
Distinguishing Complexity, the machiiéhas access to thentirestringz, and this would seem to entail run-times
that are at least linear.

When discussing strings having logarithmic distinguighbomplexity, it makes little difference if one uses €D
or KDt complexity (and similarly CNB and KNDt agree closely with each other for strings of lodmamiic com-
plexity). As we shall see, for a number of the situations wh&ébP’ and CND’ complexity have been studied
previously, KDt and KNt are just as useful.

We observe next that KNDt is essentially the same thing as Kto logarithmic terms.
Theorem 57 KNDt(z) = KNt(x) + O(log |z])

Proof. Showing that KNDfxz) < KNt(z) + O(log |z|) is an easy exercise. Conversely, if KNB} is small
(using descriptiond), then a nondeterministic machine with oradle = (d,n), given input(é,b) can guess
r € ¥" and if U4(z) accepts, then accept iff théh bit of 2 is b. Analysis of the run times easily yields that
KNDt(z) < KNt(z) + O(log |z|). |

Since KNDt is indistinguishable from KNt from our standppive will not refer to KNDt any further.

Since KNDt is so closely related to KNt, one is quickly led sk#& KDt is similarly related to Kt. At first glance,
the following proposition would seem to indicate that tlaeg closely related:

Proposition 58 Rk and Rxp; are both complete foEXP underP/poly truth-table reductions antNP-Turing
reductions.

Proof. For Rk this is proved in [ABKF06], and in fact hardness holds for any polynomially denseetaining
no strings of low Kt-complexity. Since Kt) > KDt(z) — O(log |x|) it follows that Rkpt is also hard for EXP.
Membership in EXP is easy to show. ]

Nonetheless, it seems unlikely that Kt and KDt are polyndigniglated; we show below that this would imply
the collapse of some exponential-time complexity clasBegnow and Kummer made related observations about
CD? and C [FK96]; for a given polynomiap, they showed that if there was a polynomiabkuch that ¢ (x) <
CD"(x), then every sparse set in FewP is in P, which in turn is ecemtadb FewE= E [RRW94]. Here, we
show that if KDt and Kt are polynomially related, it not orilppliesa collapse of related classes, but is in fact
equivalento a certain collapse. In order to state this precisely, weglrsmme additional definitions.

Definition 59 We say thaFewEXP search instances are EXP-solvabler every NEXPmachineN and every

k there is anEXP machineM with the property that ifV has fewer thar2!®l"* accepting paths on input, then

M (x) produces one of these accepting paths as output if theresis\la say thatewEXP decision instances are
EXP-solvabldf, for every NEXPmachineN and everyk there is anEXP machinelM with the property that ifV
has fewer thar!!* accepting paths on input, thenM (z) accepts if and only ifV (z) accepts.

Remark: Note that we do not require thaf is a FewEXP machine, i.e., we do not require thhahave a small
number of accepting paths eweryinput.
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Theorem 60 The following statements are equivalent.
1. Va,Kt(z) < KDt(z)°M

2. FewEXPsearch instances afeXP-solvable (orEXP/poly-solvable).
3. FewEXPdecision instances afeXP-solvable (orEXP/poly-solvable).
4.V LeP,Ktr(n) < (log|L="| + logn)o(l)

5. V L € Dlogtime-uniformAC®, Kt (n) < (log |L="| + logn)°™)

6. Vr, Yy, KDt(x) < (KDt(zy) + log |zy|)O™

Proof. Itis immediate that 2= 3, 4= 5, and 1= 6. We will now prove 3=-1,1=4,5= 2, and 6= 1.

(3= 1) Consider a NEXP machin® that with oracled on input(1%,i,b,n) guesses a string € {0,1}", runs
Ud(y) for 2¢ steps and then acceptsiff = b andU“(y) accepts. If KDtx) < |d| + ¢, whered is a distinguishing
description for a string: € {0, 1}" andt is sufficiently large, then there is exactly one acceptinity ph //¢ on
input (1%, i, z;, |z|); there is no accepting path 1< on (1¢,4,7;, |z|), for all 1 < i < |z|. Note that the run-time
2t must be at leastr|, sincel/ must read every bit of in order to distinguist: from all other strings of the same
length. By our assumption, there is a deterministic machineinning in exponential time, that with oracleon
input (1%,4, b, |z|), given some polynomial advide can decide whethev/¢ acceptg1t,i,b,|z|) or not! Thus,
givend, t, |z| and the advicé, we can generate bit by bit in time exponential irf|d| + t + log |z| + |h|)°™).
Thus Ki(z) < (|d +t + log |z| + |k|)°™) = (|d| + ) < KDt(x)°™),

(1 = 4) Buhrman, Fortnow, and Laplante use hashing to show thaarig setl there is a polynomial time
algorithm with oracle access tb, such that for every: € L there is a descriptiod, of length2log |L=I*!| +
O(log |z]), such that the algorithm accefits d,.) if and only if = = = [BFLO2]. If L € P, then oracle access 1o
is not necessary, and for everye L we conclude that KOitr) < 2log |L=1*!| + O(log |z|). Assuming that KDt
and Kt are polynomially related we obtain(&t < (log |L=1*!| + log|=[)0™).

(5 = 2) Let L be decidable by a nondeterministic machiNerunning in time2"", for k > 1. Define the
setC = {wl0* : wherew € {0, 1}22"‘k is a witness thatV(z) accepts}. (Here, we identifyx with the
integer having binary representation.) Clearly, we can choose an encoding of NEXP computatiotisatd’ €
Dlogtime-uniform AC. Letz be a string, such tha¥'(z) has few accepting paths, i.6G="<| < 2I1°’ where
ny = 21*I" 4 2 + 1. By assumption, there is a witnesswith Kt(w10%) < |z|°?). So in order to find a witness
for z € L we just need to search through all stringwith Kt(y) < |x|0(1), which can be done in exponential
time.

(6 = 1) Assume that there is a constant 1, such that for every string and every prefix: of z, KDt(z) <
(KDt(2) + log |z|)°. Let z be a string of lengtm. If KDt(z) > n'/¢, then clearly Ktz) will be bounded by
KDt(z)<' for some constant, which establishes the claim in this case. Thus assume thgtK < n'/¢. Let

a = max{KDt(z); z is a prefix ofz}. By assumptiong < (KDt(z) + log|z|)¢ < n. We construct a sequence

Sa, ..., S, of sets with|.S;| < 2%, whereS; contains (at least) all of the string=f lengthi such thatc and every
prefix of x has KDt complexity< a. We initially start withS, = {0, 1}* and then proceed iteratively as follows.
Si+1 = {S € S;o0 {0, 1} : dd, € {0, 1}a

U (s) accepts , and i’ € S; o {0,1}
ands # s’ thenU® (s’) rejects}

INote that it would have been sufficient to use a formally wealssumption, dealing only with the case where there is desarepting
path. Similarly, in condition 4, it would be sufficient to cider only those: for which |[L="| = 1.
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It is fairly straightforward to verify that these sets halie property mentioned above, namely that they are not
too big and that they contain all the simple strings havimgpde prefices. Thus € S,,. Letz be any prefix of

z = zy, having length. Observe that there is an algorithm running in tin®’(®) that takes inputn, a, i, j), and
computes each sé&,, ..., .S; and then produces as output thh string inS;. Hence, Ktz) < |(n,a,i,7)| +
log(n29(®) + O(logn) = O(a + logn) = (KDt(zy) 4 log |zy|)°™). O

Remark: The final condition of Theorem 60 deserves some comment. IFof the other resource-bounded
Kolmogorov complexity measurdsy, studied in this paper (other than KDt) it is easy to see thafdtiowing
three conditions are equivalent:

e ForallA e NP, Ky, (n) < log®W n.
e ForallA € P,Ku,(n) < 1og®M n.

e For all A € DLOGTIME-uniform AC,
Kpia(n) <log®M n,

(For a proof, see Theorem 3 in [All01].) The simple obseomtihat forms the main part of the proof of this
equivalence is the fact that for allandy, Ky (x) can be bounded b p(zy) + log |zy|. (That is, the complexity
of a string does nadlecreaseby much if more information is appended to it, accordind<e.) Distinguishing
complexity does not seem to work this way; appending son@nimdtion tox may make the KDt complexity
plummet. The next proposition shows that the last two ofdhésee conditions are equivalent, but it remains
unknown if they are equivalent to the first condition.

Proposition 61 The following are equivalent:

e Forall A € P,KDty(n) < log®W n.

e Forall A € DLOGTIME-uniformAC®, KDt 4 (n) < log®® n.

Proof. It suffices to prove that the second condition implies thé fifaus assume that the second condition holds,
and letA € DTime(n*) be recognized by some deterministic machideunning in timekn*. Let B be the set
{(z,Co,C1,...,Cn) : |(z,Co,C1,...,Cn)| = £z|*, Co encodes an initial configuration af on inputz, C,,
encodes an accepting configurationidf C; - C;1, for all i < m}, wherel is chosen so that there is a string
in A of lengthn iff there is a string inB of length/n’. For a stringz in A we denote the corresponding string in
B by y, (if there is any). Itis easy to see th&te Dlogtime-uniform AC. Let U be the universal machine used
to define KDt. In order to show that KRtn) < log®! n, assume that there is some stringf lengthn in A
and if there are several pick one such that there is a comelépgstringy.. in B, and a descriptiod showing that
KDt(y,) < log®™® n,i.e.,U%y,) acceptsin time°e”"’ " and there is no other stringof length|y,| for which
U(z) accepts. A new deterministic machifié can use oraclé to perform the following computation on input
w: Compute the candidate string, by simulatingM onw, and simulatd/<(y,,). If U%(y,,) accepts, thed/’
acceptay. By choice ofd, the only string of lengthe| thatU’? accepts is itself. The proposition now follows,
by the properties of the universal machine defining KDt, apdrelyzing the run time of the maching. ]

Remark: The proof of the preceding proposition shows one could defs@mewhat artificial (and messy) notion

of what it means for all NEXP search problems to be “solvabl&EXP/poly,” which would be equivalent to
KDt A(n) < log®M nforall A € P.
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The preceding discussion indicates that it is unlikely iat is polynomially-related to Kt. Since KDt is interme-
diate between KDt and KNt, one might ask if KDt instead is palgially-related to KNt. The following theorem
shows both that this is unlikely, and that KDt and Kt agairnrslseveral similarities.

Theorem 62 The following are equivalent:

1. KDt(z) < KNt(z)°™
2. Kt(z) < KNt(z)°®)
3. NEXP C EXP/poly.

Proof. (2=-1) Thisis trivial.

(1= 2) If KDt(x) is always polynomially bounded by Kit), then it follows that for every: andy we have
KDt(z) < KDt(zy) + log(|zy|)°™). Hence Theorem 60 yields Kt) < KDt(x)°"), and we obtain the desired
conclusion.

(1 & 3) This is established in Corollary 63. ]

Remark: This theorem is similar in spirit to [BFLO2, Theorem 7.6]vitmich it is shown that P= NP if and only
if either & (z|y) or c”’ (z|y) is polynomially-related to CNBXz|y) for appropriate polynomials, p’, andp”.

7 Which Kolmogorov Measures are Polynomially Related?

In the preceding section, we saw that KNDt and KNt are polyiadiynrelated, but that it is unlikely that KDt
and Kt are. In this section, we examine what would happenrifesof the other resource-bounded Kolmogorov
complexity measures that we have introduced should hamplea polynomially related. We state the following
theorem, and in the appendix we provide a table summaribmgdlationships.

Theorem 63 The following equivalences hold:

1. KF vs. the rest:

e KF(z) < (KB(x) + log |z|)°™) if and only ifL C nonuniformNC'.

o KF(z) < (KT(z) + log|z)°™ if and only ifP C nonuniformNC".

e KF(z) < (KNT(z) + log =)™ if and only ifNP/polyn coNP/poly= nonuniformNC'.
e KF(z) < (KS(x) + log |=|)°™) if and only ifPSPACE C nonuniformNC'.

o KF(z) < (Kt(z) + log |z|)°™ if and only if EXP C nonuniformNC'.

e KF(z) < (KNt(z) + log |=|)°™) if and only ifNEXP C nonuniformNC'.

2. KB vs. the rest:

e KB(z) < (KT(z) + log|z)°™ if and only ifP C L/poly.
e KB(z) < (KNT(z) + log |z]|)°™) if and only ifNP/polyn coNP/polyC L/poly.
e KB(z) < (KS(x) + log |=|)°W) if and only ifPSPACE C L/poly.
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o KB(x)
o KB(x)

(Kt(x) + log |z])®™) if and only ifEXP C L/poly.

<
< (KNt(z) + log |z]|)°™) if and only ifNEXP C L/poly.

3. KT vs. the rest:

e KB(z) < (KNT(z) + log |z])°™) if and only ifNP/polyn coNP/poly= P/poly.
e KT(z) < (KS(z) + log |z|)°™ if and only if PSPACE C P/poly.

e KT(z) < (Kt(x) + log |=|)°™) if and only ifEXP C P/poly.

e KT(x) < (KNt(z) + log|z)°™ if and only ifNEXP C P/poly.

4. KNT vs. the rest:

e KS(z) = (KNT(x) + log |z|)°™) if and only ifPSPACE C NP/poly.
e Kt(x) = (KNT(z) + log|z)°™ if and only ifEXP C NP/poly.
e KNt(z) = (KNT () + log |z|)°™) if and only ifNEXP C NP/poly.

5. KSvs. the rest:

o KS(z) < (Kt(z) + log |2)°™ if and only if EXP C PSPACE.
e KS(z) < (KNt(z) + log =)W if and only ifNEXP C PSPACE/poly

6. Kt vs. the rest:

e Kt(z) < (KNt(z) + log |z[)°() if and only ifNEXP C EXP/poly.
e Kt(x) < (Ks(x) + log |=|)°™) if and only ifEXPSPACEC EXP/poly.

Proof. All the proofs of the equivalences follow essentially thenggpattern and spelling all of them out would
serve little purpose. Thus we provide a sample proof of onthefequivalences and point out the remaining
subtleties. We prove: K&) < (KNt(z) + log |z|)°() if and only if NEXP C L/poly.

(=) Assume that there is a constant 0 such that for alke, KB(z) < (KNt(z) + log |z|)°. Let A be a language
in NEXP. Denote by,, the truth table of4 restricted to strings of size. By Corollary 22,B = {(1™, 4, (t»):) :

n € IN, 1 <14 < n}isin NEXP/poly. Hence, there i > 1 such that for allh, KNt(t,,) < kn*. Thus, by our
assumption, KBt,,) < (2kn)°*. Furthermore, BPSIZE,,) < k'n*" for some constant’ > 1. The implication
follows by noting that L/poly consists precisely of funetocomputable by branching programs of polynomial
size.

(<) Assume that NEXPC L/poly. Let A be the sef{(d,i,b,17) : j € IN, d € {0,1}57, 1 <i <2, be
{0,1}, U4(i, b) accepts in tim@7} whereU is the universal machine that is used to define KNtz NEXP and
thus lies in L/poly. Thus for any there is an advice string,, of lengthm? such that queries of length(m) to
A can be answered in spa€&log m) using access to the advice string.

Pick an arbitrary string:. Let KNt(z) = m. Thus there is a descriptiahof length at mosin such that for alll

i < |z|, U%(i,b) runs in time at mos™ and accepts if and only if; = b. Consider the oracle maching
that uses oracléd, a.,,, m), and on input(i, b) determines if(d,,b,1™) is in A. This machinelM with oracle
(d, am,m) runs in space)(logm), and accepts if and only & (i, b) accepts (which happens if and only if
x; = b). The length of the descriptiof, a, m) is O(m*), and thus KB, (z) < (m + log |z|)¢ for some constant
c¢. The theorem now follows, by the properties of the univensathinel/ used to measure KB.

There are also some minor subtleties that arise in the impdies involving KNT. We illustrate with a sample
equivalence. We prove: KKit) = (KNT(z) + log |=|)°™) if and only if NEXP C NP/poly.
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(<) Assume that KNtz) = (KNT (z) 4 log |z|)°(), and letA € NEXP. Since coNEXRZ NEXP/poly it is easy
to see that the™t1-bit prefix of the characteristic sequencedhas KNt' complexityn®™) and by assumption
also has KNT complexity2©(!). Thus there is a descriptiafy, of lengthO(n*) for somek such that for all
r < 2"+ the nondeterministic universal Turing machiié (z, b) runs in at most:* time and accepts if and
only if z € A. The descriptionl,, can be used as an advice sequence to showdtlmaNP/poly.

(=) Conversely, if NEXP< NP/poly, it follows that NEXP/poly= coNEXP/poly= NP/poly = coNP/poly. If
KNt(z) = m, then there is a descriptiahsuch that the nondeterministic machitié(i, b) runs in time2™ and
accepts if and only if;; = b. The languagéd (d,i,b,1™) : U? accepts(i, b) accepts in im@™} is in NEXP,
and by assumption lies in NP/patycoNP/poly. It follows thaid, 1, hs) is a suitable description of the string
described byl, whereh; andh, are the advice strings for the NP/poly and coNP/poly albarg, respectively, to
show that the KNTz) is polynomially related to KNtz). This completes the proof of this implication.

The following subtlety is involved in establishing equiates with EXPC PSPACE. Instead of proving equiv-
alence with EXPC PSPACE one proves equivalence with EXP PSPACE/poly using a proof similar to above
proof and then invokes the following lemma. a

Lemma 64 EXP C PSPACE/polyif and only ifEXP C PSPACE.

Proof. We only show that if EXRC PSPACE/poly then EXP- PSPACE.

This follows since EXP has a complete sethat is self-reducible [Bal90]. That is, there is a polynahtime
oracle machine\/ that decides membership id using A as an oracle, with the property that on inpytM

asks queries only to words that lexicographically precedé A is in PSPACE/poly, then let/’ be aPSPACE

machine that acceptd using advice sequeneg,. Now aPSPACE machine can determine if a stringis in

A by searching through all possible advice sequemnceklength polynomial in|z| until it finds a sequencé

with the property that, for all stringgthat lexicographically precede runningM’(y) with adviceb agrees with
the result of running\/ (y), where any oracle queryasked byM is answered by running/’(z) with adviceb.

By assumption, at least one such sequence exists, and thugibbe found. Running\/’(x) with this advice
sequence correctly determineg:ifs in A.

The other implication is trivial. m]

We close this section with a brief discussion of how to defilativized measures of the form KBand KF*,
since we have found measures of the form’kid be quite useful. Unfortunately, there are substantffitdities
that arise when attempting to provide oracle access to amaling machine [Bus88], and thus we do not know
of a useful way to define KE. The situation is somewhat better for KBbut it does require us to alter the
conventions that we have adopted thus far.

Up until this point in the paper, we have followed the coni@mthat space-bounded oracle Turing machines must
respect the space bound on their oracle tapes. Indeeds tiie tustomary convention when considering classes
of the formPSPACE“. However, there is an equally venerable tradition of altaya logspace-Turing reduction

to ask queries of polynomial length [LL76]. In order to prabe following theorem (which allows us to relate
KT# and KBP) we found that it was more appropriate to define’ki terms of oracle Turing machines that have
a write-only oracle tape that it subject to the space bound.

Theorem 65 Let A and B be oracles. TheKBZ (z) < (KT4(z) + log|z|)°™ if and only ifP* C LZ/poly.

Proof. Assume that, for alk;, KB”(z) < (KT*(z) + log|z|)*. LetC be any language in‘P By Theorem
4, the2*+1-bit prefix of the characteristic sequenge has KT* complexityn©(), and by assumption has KB
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complexity O(n¢) for somec. Thus there is a descriptiody, of length O(n¢) such that for allz < 27+1,
UB:dn(z,b) uses space at moSlog n) (not counting the space that is used on the oracle tape, winist be at
mostn®1) and accepts if and only if € C. The conclusion thaf’ € LZ/poly now follows.

Conversely, assume that'PC LZ/poly. Let KT#(z) = m. Thus there is a descriptiaf of length at most
m such that for alli < |z|, U4%(4,b) runs in time at mostn and accepts if and only if; = b. Let C be
the set{(d,i,b,17) : UA%(i,b)accepts intimgi}. C € P* and thus lies in E/poly. Thus there is an advice
string a of length (m + log|z|)! such that queries of lengt(m + log |x|) to C' can be answered in space
O(log(m + log |z|)) using queries td3 and access to the advice string Consider the oracle machidé that
uses oracle® and(d, a, m), and on inputi, b) determines ifd, ¢,b,1™) is in C. This machine\/ runs in space
O(log(m + log|z|)) using queries td3, and accepts if and only i 4?(i, b) accepts (which happens if and only
if z; = b). The length of the descriptiof, a, m) is O(m'), and thus KB, (z) < m! + (m + log |z|)¢ for some
constant. The theorem now follows, by the properties of the univensathinel . m]

8 Concluding Comments

We began this paper with a brief historical review, pointimg that parallel investigations of computational
complexity theory and resource-bounded Kolmogorov coriplelate back to the dawn of the theory of NP-
completeness. We cited the historical survey by Trakhttrjbra84], and recalled how the various computational
tasks discussed by Trakhtenbrot (in particular, Task 4 ask B) relate to the themes that are the focus of the
present paper.

This may be the appropriate time to mention that Trakhterddlsm mentioned one more problem (called “Task
1” [Tra84, p. 388]) that can be captured using the tools prieskin this paper. Trakhtenbrot's Task 1 involves
taking a truth tablg as input, and determining the size of the smallest “switglincuit” for f —which is roughly
the same as the size of the smalleshdeterministibranching program fof. We are reluctant to introduce yet
another resource-bounded Kolmogorov complexity measuoethis paper, but we remark that this notion could
be captured by changing the definition of KB by using a nondaitgstic universal Turing machine (and indeed,
some nondeterministic space-bounded Kolmogorov complmeéasures that are polynomially related to KS have
been introduced [All06]). Alternatively, such a measurpasynomially-related to KB whereA is any problem
complete for NL.

Itis natural to wonder if it is possible (and useful) to defaven more restrictive notions of Kolmogorov complex-
ity, in order to discuss subclasses of N©ne could consider placing more restrictions on the usalexiternating
machine in the definition for KF complexity, for instance Iggtricting the number of alternations, or by making
it deterministic. At first glance, it seems that one mightitt measure that is related to deptAC? circuit size
for fixed k — but it seems that such machines cannot do much interestingutation on inpug:, b) with oracled
without looking at all ofi, which means that their running time is so high that the fraork developed here does
not yield a very interesting measure. Is there a useful digfinihat can be developed to capture this notion?

For the more “limited” notions of Kolmogorov complexity KBnd KF, we are not able to prove as strong in-
tractability results as were proved for KT in [AB6]. However, it is not clear that this needs to be the case.
For instance, although it is not known if the minimum circsiite problem is NP-complete,ig complete when
restricted to DNF circuits [Cz099, Mas79, Fel09, AHEIB]. Is there a natural, restricted notion of Kolmogorov
complexity, for which the “random” strings do indeed prawid complete set for coNP? Vazirani and Vazirani
present a related problem that is complete under randomézhettions [VV83], but the computational problem
that they present does not capture a very satisfactorymofi&olmogorov complexity.
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