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Abstract. We show that k-tree isomorphism can be decided in loga-
rithmic space by giving a logspace canonical labeling algorithm. This
improves over the previous StUL upper bound and matches the lower
bound. As a consequence, the isomorphism, the automorphism, as well
as the canonization problem for k-trees are all complete for deterministic
logspace. We also show that even simple structural properties of k-trees
are complete for logspace.
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1 Introduction

Two graphs G and H are called isomorphic if there is a bijective mapping φ
between the vertices of G and the vertices of H that preserves the adjacency
relation, i.e., φ relates edges to edges and non-edges to non-edges. Graph Iso-
morphism (GI) is the problem of deciding whether two given graphs are isomor-
phic. The problem has received considerable attention since it is one of the few
natural problems in NP that are neither known to be NP-complete nor known
to be solvable in polynomial time.

It is known that GI is contained in coAM [GS86,Sch88] and in SPP [AK06]
providing strong evidence that GI is not NP-complete. On the other hand, the
strongest known hardness result due to Torán [Tor04] says that GI is hard for
the class DET (cf. [Coo85]). DET is a subclass of NC

2 (even of TC
1) and contains

NL as well as all logspace counting classes [AJ93,BDH+92].
For some restricted graph classes the known upper and lower complexity

bounds for the isomorphism problem match. For example, a linear time al-
gorithm for tree isomorphism was already known in 1974 to Aho, Hopcroft
and Ullman [AHU74]. In 1991, an NC algorithm was developed by Miller and
Reif [MR91], and one year later, Lindell [Lin92] obtained an L upper bound.
On the other hand, in [JKM+03] it is shown that tree isomorphism is L-hard
(provided that the trees are given in pointer notation). In [ADK08], Lindell’s
log-space upper bound has been extended to the class of partial 2-trees, a class
of planar graphs also known as generalized series-parallel graphs. Very recently,
it has been shown that even the isomorphism problem for all planar graphs is
in logspace [DLN+08]. Much of the recent progress on logspace algorithms for
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graphs has only become possible through Reingold’s result that connectivity in
undirected graphs can be decided in deterministic logspace [Rei05]. Our result
does not depend on this, yielding a comparatively simple algorithm.

In this paper we show that the isomorphism problem for k-trees is in logspace
for each fixed k ∈ N+. This improves the previously known upper bound of
StUL [ADK07] and matches the lower bound. In fact, we prove the formally
stronger result that a canonical labeling for a given k-tree is computable in
logspace. Recall that the canonization problem for graphs is to produce a canon-
ical form canon(G) for a given graph G such that canon(G) is isomorphic to
G and canon(G1) = canon(G2) for any pair of isomorphic graphs G1 and G2.
Clearly, graph isomorphism reduces to graph canonization. A canonical labeling
for G is any isomorphism between G and canon(G). It is not hard to see that
even the search version of GI (i.e., computing an isomorphism between two given
graphs in case it exists) as well as the automorphism group problem (i.e., com-
puting a generating set of the automorphism group of a given graph) are both
logspace reducible to the canonical labeling problem.

The parallel complexity of k-tree isomorphism has been previously investi-
gated by Del Greco, Sekharan, and Sridhar [GSS02] who introduced the concept
of the kernel of a k-tree in order to restrict the search for an isomorphism be-
tween two given k-trees. We show that the kernel of a k-tree can be computed
in logspace and exploit this fact to restrict the search for a canonical labeling of
a given k-tree G. To be more precise, we first transform G into an undirected
tree T (G) whose nodes are formed by the k-cliques and (k + 1)-cliques of G.
Then we compute the center node of T (G) which coincides with the kernel of G
and try all labelings of the vertices in ker(G). In order to extend a labeling of
the kernel vertices of G to the other vertices of G in a canonical way, we color
the nodes of the tree T (G) to encode additional structural information about G.
Finally, we apply a variant of Lindell’s algorithm to compute canonical labelings
for the colored versions of T (G) and derive from them a canonical labeling for
the k-tree G.

Our tree representation T (G) is similar to the construction used in [ADK07].
The main advantage of our construction lies in the fact that the tree T (G)
can be directly constructed in logspace from G, whereas the tree representation
of [ADK07] is obtained as a reachable subgraph of a mangrove1 based on G and
hence can only be derived from G with the help of an StUL oracle.

2 Preliminaries

As usual, L is the class of all languages decidable by Turing machines with read-
only input tape and an O(logn) bound on the space used on the working tapes.
FL is the class of all functions computable by Turing machines that additionally
have a write-only output tape.

Given a graph G, we use V (G) and E(G) to denote its vertex and edge
sets, respectively. We define the following notations for subgraphs of G. For

1 A mangrove is a digraph with at most one directed path between each pair of nodes.
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M ⊆ V (G), G[M ] denotes the subgraph of G induced byM and we use G−M
as a shorthand for G[V (G) \M ].

Given a graph G and two vertices u, v ∈ V (G), the distance dG(u, v) is the
length of the shortest path from u to v. The eccentricity of a vertex v ∈ V (G) is
the longest distance to another vertex, i.e., eccG(v) = max{dG(u, v)|u ∈ V (G)}.
The center of G consists of all vertices with minimal eccentricity.

Given two graphs G and H, an isomorphism from G to H is a bijection
φ : V (G) → V (H) with {u, v} ∈ E(G) ⇔ {φ(u), φ(v)} ∈ E(H). On colored
graphs, an isomorphism must additionally preserve colors. G and H are called
isomorphic, in symbols G ∼= H, if there is an isomorphism from G to H. Given
a graph class G, a function f defined on G computes an invariant for G if

∀G,H ∈ G : G ∼= H ⇒ f(G) = f(H) .

If the reverse implication also holds, f is a complete invariant for G. If ad-
ditionally f(G) ∼= G for all G ∈ G, f computes canonical forms for G. Given
a function f that computes canonical forms, an isomorphism ψG from G to its
canonical form f(G) is called a canonical labeling.

The isomorphisms from a graph G to itself are called automorphisms and
they form a group, which we denote by Aut(G). An automorphism is called
non-trivial if it is not the identity. The graph automorphism problem
(GA) is to decide if a graph has non-trivial automorphisms. A graph without
non-trivial automorphisms is called rigid.

In the next section, we present an FL algorithm that, given a k-tree G, com-
putes a canonical labeling ψG.

3 Canonizing k-trees

Fix any k ∈ N+. The class of k-trees is inductively defined as follows. Any
k-clique is a k-tree. Further, given a k-tree G and a k-clique C in G, one can
construct another k-tree by adding a new vertex v and connecting v to every
vertex in C. The initial k-clique is called base of G, and the k-clique C the new
vertex v is connected to is called support of v. Note that each k-clique of a
k-tree G can be used as base for constructing G – but once the base is fixed, the
support of each vertex is uniquely determined.

An interesting special case of k-trees are k-paths, where the support Ci of
any new vertex vi (except the first vertex added to G) must either contain the
vertex vi−1 added in the previous step or be equal to the support Ci−1 of the
latter. Fig. 1 shows a 2-tree that is a 2-path as well.

We note that k-trees can be recognized in logspace [ADK07], so we can safely
assume that the input is indeed a k-tree.

We first define a tree representation T (G) for k-trees G.

Definition 1. For a k-tree G, its tree representation T (G) is defined by

V (T (G)) =
{

M ⊆ V (G)
∣

∣M is a k-clique or a (k + 1)-clique
}

E(T (G)) =
{

{M1,M2} ⊆ V (T (G))
∣

∣M1 (M2

}

.
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Fig. 1. A 2-tree G and its tree representation T (G)

Note that T (G) reflects the iterative construction of G: The base of G is a
k-clique and thus a node in T (G). Each time a new vertex u is added to G, it is
connected to all vertices of its support Pu (a k-clique), forming a new (k + 1)-
clique Cu that is a superset of Pu. In T (G), the addition of u results in a new
node Cu being added and connected to Pu. Additionally, the k many k-cliques in
Cu that contain the new vertex u are added as new nodes to T (G) and connected
to Cu. From these observations it is clear that T (G) is indeed a tree.

We continue by proving some basic properties of our tree representation
T (G).

Lemma 2. For any k-tree G and any vertex v ∈ V (G), the nodes of T (G) that
contain v form a subtree of T (G).

Proof. We prove by induction over the construction of G that any nodeM added
to T (G) with v ∈ M either is the unique node first introducing v or is hooked
up to a previously added node that contains v. If M is a k-clique in G this is
immediately clear as it is either the base node in T (G) or it is a subset of a
(k + 1)-clique node and hence does not introduce any new vertices. So assume
that M is a (k + 1)-clique Cu, which was added to T (G) upon the addition of
some vertex u to G. If u = v then M is the single node of T (G) introducing v.
If u Ó= v we have v ∈ Cu \ {u} = Pu and thus there is an edge to a previously
added k-clique node Pu that contains v. ⊓⊔

Lemma 3. For any k-tree G, the center of T (G) is a single node.

Proof. Suppose not. Then the center consists of two adjacent nodes, one a k-
clique and one a (k + 1)-clique. This leads to a contradiction because k-clique
nodes have even eccentricity while that of (k+ 1)-clique nodes is odd: All leaves
are k-clique nodes, and k-cliques and (k+1)-cliques alternate on every path. ⊓⊔

Definition 4. The clique corresponding to the center node of T (G) is called
kernel of G and denoted ker(G).

Note that ker(G) can be either a k-clique or a (k + 1)-clique, depending on the
structure of G. The concept of the kernel of a k-tree was introduced in [GSS02].
The definition there is slightly different but the equivalence can be easily verified.

We continue by recalling some basic facts concerning undirected trees.
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Fact 5. Given an undirected tree T and two nodes u, v ∈ V (T ), the distance
dT (u, v) can be computed in FL.

Proof. Think of T as rooted in u and all edges directed away from u. The di-
rection of an edge e can be determined in logspace by computing the lexico-
graphically-first Euler tour starting at u that visits each edge once per direction
(cf. [AM04]). Then the unique path from v to u can be found by always choosing
the unique incoming edge as next step. Only the current node and the number
of steps have to be remembered. Upon reaching u, output the number of steps
taken. ⊓⊔

Fact 6. The center of an undirected tree T can be computed in FL.

Proof. We first show that the eccentricity eccT (u) of each node u ∈ V (T ) is com-
putable in logspace. This can be done by iterating over all v ∈ V (T ), each time
calculating dT (u, v) (this is possible in logspace by Fact 5). Only the maximum
distance to u has to be remembered, the result being eccT (u).

Observe now that also the maximum eccentricity eccmax of all nodes u ∈ V (T )
is computable in logspace by iterating over all u ∈ V (T ). Then compute again
the eccentricity of all nodes u, this time outputting u if eccT (u) = eccmax. ⊓⊔

Our goal is to canonize G by using Lindell’s algorithm [Lin92] to canonize
T (G). To achieve this, we declare the kernel K of G as the root of T (G). As a
consequence, we can identify each (k + 1)-clique M ∈ V (T (G)) \ {K} with the
unique vertex v ∈ M that is not present in the k-clique M ′ that lies next to
M on the path from K to M in T (G). For later use, we denote this vertex by
v(M) and for each v ∈ V (G) \K, we use Mv to denote the unique (k+ 1)-clique
M ∈ V (T (G)) \ {K} with v(M) = v.

It is clear that T (G) does not provide complete structural information about
G, since the vertices in the kernel K are indistinguishable in T (G) and further,
only one out of the k edges between each added vertex u and its support can be
recovered from T (G). To add the missing information, we give individual colors
to the kernel vertices and color the nodes of T (G) as well. Since the kernel K of
a given k-tree G can be determined in logspace, we can simplify the notation by
assuming that K consists of the vertices 1, . . . , k′, where k′ = ‖K‖ ∈ {k, k + 1}
equals the size of K.

Definition 7. Let G be a k-tree with vertex set V (G) = {1, . . . , n} and kernel
K = {1, . . . , k′}. For each vertex v of G, we denote by

lG(v) = min
{

dT (G)(K,M)
∣

∣M ∈ V (T (G)), v ∈M
}

the level of v in G. Further, for any permutation π ∈ Sk′ , let T (G,π) denote the
directed colored tree obtained from T (G) by choosing K as the root and coloring
each node M ∈ V (T (G)) by the set c(M) = {c(v) | v ∈M}, where

c(v) =

{

π(v) if v ∈ ker(G),

lG(v) + k′ otherwise.
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The definition of T (G, π) is similar to the construction of the colored tree
T (G,B, θ) in [ADK07]. The main advantage of our construction lies in the fact
that T (G, π) can be directly constructed from G in logspace, whereas the tree
representation used in [ADK07] (which in turn is related to the decomposition
defined in [KCP82]) is defined as the reachable subgraph of a mangrove derived
from G. This allows us to decide st-reachability in the tree T (G, π) in logspace,
an essential step to achieve our upper bound.

Another advantage of our construction comes with the usage of the kernel
K as a canonical base. This makes it superfluous to cycle through all k-cliques
of G (as in [ADK07]), leaving only the permutations of the vertices within K to
enumerate.

Lemma 8. For a k-tree G and a permutation π on the kernel K of G, T (G, π)
can be computed in FL.

Proof. It is clear that the nodes and edges of T (G) can be determined in logspace:
First iterate over all subsets M of V (G) of size k (this requires space k logn)
and output M as a node if M is a k-clique in G. Likewise, find and output all
(k+ 1)-cliques M , each time adding edges to all k+ 1 many k-cliques contained
inM . The (intermediate) result T (G) cannot be stored due to space limitations,
but it is possible to recompute it as needed (as long as only a constant number
of operations is chained).

Next determine the kernel K of G (Fact 6) and think of all edges in T (G)
directed away from K. As described in Fact 5, the direction can be determined
in logspace. It remains to compute the color c(M) of each node M ∈ V (T (G)).

For each v ∈ M calculate c(v) by examining the unique path from M to K
in T (G) (the path can be found by following the unique incoming edge at each
node). Store the length ℓ of the path and the position pv where v was last found
(this can be done in parallel for all v ∈ M). If pv = ℓ (i. e. v ∈ K), then add
the number c(v) = π(v) to the color c(M) of M . If pv < ℓ, add the number
c(v) = ℓ − pv + ‖K‖ to c(M). The latter is correct, because by Lemma 2 the
nodes containing v form a subtree of T (G) and thus the node that is closest to
K and contains v is on the path from K to M . ⊓⊔

We will need to compute a canonical labeling of T (G, π). We observe the
following generalization of the logspace tree canonization algorithm.

Lemma 9. Lindell’s algorithm [Lin92] can be extended to colored trees and to
output not only a canonical form, but also a canonical labeling. This modification
preserves the logarithmic space bound.

Proof sketch. Colors can be handled by extending the tree isomorphism order
defined in [Lin92] by using color(s) < color(t) as additional condition (where
s and t are the roots of the trees to compare). The canonical labeling can be
computed by using a counter i initialized to 0: Instead of printing (the first letter
of) the canon of a node v, increment i and print v Ô→ i. ⊓⊔

Next we show that the colored tree representations of isomorphic k-trees are
also isomorphic, provided that the kernels are labeled accordingly.
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Lemma 10. Let φ ∈ Sn be an isomorphism between two k-trees G and H with
V (G) = V (H) = {1, . . . , n} and ker(G) = ker(H) = K. Then φ (viewed as a
mapping from V (T (G)) to V (T (H))) is an isomorphism between T (G, π1) and
T (H,π2), provided that π1(u) = π2(φ(u)) for all u ∈ K.

Proof. It can be easily checked that any isomorphism between G and H is also
an isomorphism between T (G) and T (H) that maps the kernel K of G to the
kernel of H, which equals K by assumption. In order to show that the color of
a node M ∈ V (T (G, π1)) coincides with the color of φ(M) ∈ V (T (H,π2)), we
prove the stronger claim that c(v) = c(φ(v)) for all v ∈ V (G). For v ∈ K, we
have c(φ(v)) = π2(φ(v)) = π1(v) = c(v) by assumption. Since φ must preserve
the level of the vertices, it follows further for v ∈ V (G) \K that

c(φ(v)) = lH(φ(v)) + ‖K‖ = lG(v) + ‖K‖ = c(v) .

This completes the proof of the lemma. ⊓⊔

Conversely, the next lemma shows that from any isomorphic copy T of
T (G, π1) we can easily derive an isomorphic copy G′ of G. Moreover, any isomor-
phism φ between T (G, π) and T can be efficiently converted into an isomorphism
between G and G′.

Lemma 11. Let G be a k-tree and let π be a permutation on the kernel K of
G. Then from any colored tree T that is isomorphic to T (G, π), an isomorphic
copy G′ of G can be computed in logspace. Further, it is possible to compute in
logspace an isomorphism between G and G′ from any given isomorphism between
T (G, π) and T .

Proof sketch. Construct G′ as follows. Let V (G′) = {1, . . . , n}, where n is k plus
the number of (k + 1)-clique nodes in T (we call m ∈ V (T ) a l-clique node,
if l = ‖c(m)‖). This is correct due to the one-to-one correspondence between
the vertices v ∈ V (G) \ K and the (k + 1)-clique nodes Mv ∈ T (G, π) \ {K}.
Next determine the center node z of T (see Lemma 6) and make {1, . . . , k′}
a clique in G′, where k′ = ‖c(z)‖. Further, for any non-center (k + 1)-clique
node m ∈ V (T ) \ {z}, let v(m) denote the corresponding vertex in V (G′) (to
make this mapping unique, let v(m) preserve the order of (k+1)-clique nodes in
V (T )). Based on the color c(m) = {c1, . . . , ck+1} of m add the following edges
to E(G′): For each ci ≤ k

′ add an edge {ci, v(m)} and for each ci > k
′ with

ci < cmax = max{ci | ci ∈ c(m)} add an edge {v(m), v(m′)}, where m′ is the
(ci − k

′)-th node on the path from z to m. This completes the construction of
G′.
Now let φ be an isomorphism from T (G, π) to T . Construct an isomorphism

φ′ from G to G′ as follows. For v ∈ K, let φ′(v) = π(v), and for v /∈ K, let
φ′(v) = v(φ(Mv)). By induction on the level of v in G, it can be proven that
this is indeed an isomorphism. Both constructions can easily be seen to be in
logspace. ⊓⊔

Now we are ready to prove our main result.
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Theorem 12. Given a k-tree G with vertex set V (G) = {1, . . . , n} and kernel
K = {1, . . . , k′}, a canonical labeling ψG ∈ Sn can be computed in FL.

Proof. In order to compute ψG we iterate over all permutations π ∈ Sk′ and
compute a canonical labeling ψT (G,π) for the colored tree T (G, π) using the
algorithm from Lemma 9. Let π1 be one of the permutations that give rise
to the lexicographically smallest colored tree ψT (G,π1)(T (G, π1)). By applying
Lemma 11, we can reconstruct from this tree an isomorphic copy canon(G) of
G together with an isomorphism ψG between G and canon(G). By Lemmas 8
and 9, it is clear that ψG is computable in logspace.
It remains to show that the canonical labelings of any two isomorphic k-

trees G and H map these graphs to the same canon ψG(G) = ψH(H). To see
this, let π1, π2 ∈ Sk′ be two permutations that give rise to the lexicographically
smallest trees ψT (G,π1)(T (G, π1)) and ψT (H,π2)(T (H,π2)), respectively. Since by
Lemma 10 for any tree T (G, π1) that can be derived from G via some permu-
tation π1 there is an isomorphic tree T (H,π2) that can be derived from H via
some permutation π2 (and vice versa), it follows that ψT (G,π1)(T (G, π1)) and
ψT (H,π2)(T (H,π2)) are equal, implying that canon(G) = canon(H). ⊓⊔

We note that the above construction can be extended to colored k-trees as fol-
lows. Let ζ : V (G)→ C be a vertex coloring of G. Modify the coloring of T (G, π)
(cf. Definition 7) by replacing c(v) with the pair c′(v) = (c(v), ζ(v)).
Theorem 12 immediately yields the following corollaries.

Corollary 13. For any fixed k, k-tree canonization is in FL.

Corollary 14. For any fixed k, k-tree isomorphism is L-complete.

The L-hardness can be seen by a reduction from the isomorphism problem for
trees in pointer notation, which is known to be L-hard [JKM+03]. The reduction
transforms a tree T into a k-tree Ek(T ) by adding a (k − 1)-clique C and
connecting C to all nodes in V (T ) (cf. Fig. 2). It can easily be seen that Ek(T )
is a k-tree and that T1

∼= T2 ⇔ Ek(T1) ∼= Ek(T2).
We note that fixing k is essential, as the isomorphism problem for the class

of all k-trees, k ∈ N+, is isomorphism complete [KCP82] and thereby unlikely
to be decidable in polynomial time.
Furthermore, there is a standard Turing reduction of the automorphism

group problem (i.e., computing a generating set of the automorphism group of a
given graph) to the search version of GI for colored graphs (cf. [Hof82,KST93]).
It is not hard to see that this reduction can be performed in logspace.

Corollary 15. For any fixed k, computing a generating set of the automorphism
group of a given k-tree, and hence computing a canonical labeling coset for a given
k-tree is in FL.

Corollary 16. For any fixed k, the k-tree automorphism problem (i. e., deciding
whether a given k-tree has a non-trivial automorphism) is L-complete.
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Observe that the mapping T Ô→ Ek(T ) does not provide a correct reduction of
tree automorphism (which is L-complete [JKM+03]) to k-tree automorphism,
as the vertices within the newly added clique can always be permuted without
changing the graph. To sidestep this difficulty, we use a transformation E′k that
preserves rigidity. Let T be a rooted tree with n = ‖V (T )‖ and root r ∈ V (T ).
Then E′

k
(T, r) is defined as follows (cf. Fig. 2):

V (E′k(T, r)) = V (T ) ∪
{

ui
∣

∣ 1 ≤ i ≤ k + n
}

E(E′k(T, r)) = E(T ) ∪
{

{v, ui}
∣

∣ v ∈ V (T ), 1 ≤ i ≤ k − 1
}

∪
{

{r, uk}
}

∪
{

{ui, uj}
∣

∣ 1 ≤ i < j ≤ k + n, j − i ≤ k
}

It is easy to see that E′k(T, r) is a k-tree and that any non-trivial automorphism
of (T, r) induces a non-trivial automorphism of E′k(T, r). To see that E

′
k(T, r)

is rigid whenever (T, r) is rigid, assume n > k (all smaller trees can be hard-
coded in the reduction). Any automorphism of E′k(T, r) must fix all newly added
vertices ui: Each of the vertices ui, 1 ≤ i ≤ k − 1, is uniquely determined by its
degree n + k − 2 + i (unless r is connected to all vertices of T , but then T is a
star and not rigid anyway). The vertices ui, k+ 1 ≤ i ≤ k+n, are the only ones
not adjacent to u1 and uniquely identified by the structure of E

′
k(T, r) (examine

the tree representation T (E′k(T, r)) to see this). Finally, the vertex uk is unique
among the remaining ones by the shortest distance to uk+n.

Ek(T ):

T

u1 u2 uk−1· · ·

E′k(T, r):

r

T

u1 u2 uk−1 uk uk+1 uk+2 uk+n· · · · · ·

· · ·

r

Fig. 2. The transformations Ek(T ) and E′k(T, r)

4 Complete problems for logspace

In this section we prove some additional completeness results for logspace that
are related to our main result. The hardness is under DLOGTIME-uniform AC

0-
reductions. We first recall that ORD is L-complete, where ORD is the problem
of deciding for a directed line graph P and two vertices s, t ∈ V (P ) if there is a
path from s to t [Ete97].
In Lemma 6 we have seen that the center of an undirected tree can be com-

puted in FL. We now show that the decision variant is hard for L even when
restricted to paths.

Theorem 17. Given an undirected path P and a vertex c ∈ V (P ), it is L-hard
to decide if c belongs to the center of P .
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This implies the L-hardness of the following problem: Given a k-tree (or k-path)
G and a vertex c ∈ V (G), decide whether c belongs to the kernel of G. The
reduction for this is (P, c) Ô→ (Ek(P ), c), where Ek is as defined above.

Proof. We reduce from ORD using (P, s, t) Ô→ (P ′, n) as reduction, where

V (P ′) = V (P ) ∪
{

i′
∣

∣ i ∈ V (P )
}

∪ {s′′}

E(P ′) =
{

{i, j}
∣

∣ (i, j) ∈ E(P ) ∧ j Ó= t
}

∪
{

{n, n′}
}

∪
{

{i′, j′}
∣

∣ (i, j) ∈ E(P ) ∧ j /∈ {s, t}
}

∪
{

{i′, s′′}
∣

∣ (i, s) ∈ E(P )
}

∪ {{s′′, s′}}

and n is the vertex without successor in P . P ′ is the undirected path that consists
of two copies of P that are twisted before t, connected at their ends and have the
second copy of s duplicated (cf. Fig. 3). If s precedes t in P (left side), then n is
the center of P ′, but if t precedes s then n′ is the center of P ′ (right side). ⊓⊔

s

t′ n′

s′′

s′

t n

t′

s′′

s′ n′

t s n

Fig. 3. The reduction of ORD to verifying the center

Finally, we examine two problems related to the structure of k-trees. Let G be
a graph. A vertex v ∈ V (G) is called simplicial in G, if its neighborhood induces
a clique. A bijective mapping σ : {1, . . . , ‖V (G)‖} → V (G) of the vertices of G
is called perfect elimination order (PEO), if for all i, σ(i) is simplicial in
G−
⋃

j<i{σ(j)}. Note that a graph can have several perfect elimination orders,
so finding a PEO is not a functional but a search problem. It is well-known that
a graph has a PEO if and only if it is chordal. As k-trees are a subclass of chordal
graphs, each k-tree has a PEO.
A related problem is the fast reordering problem (FRP) which is defined

in [GSS02] as a preprocessing step for parallel algorithms. It consists of finding a
sequence of sets R0, . . . , Rk ⊆ V (G), such that each Ri is a maximal independent
set of simplicial vertices of G−

⋃

j<iRj and that G−
⋃

0≤j≤k Rj is a clique. For
general chordal graphs there can be several such sequences, but for k-trees this
sequence is unique and the remaining clique is the kernel. In [GSS02] it was
shown that if the input graphs are restricted to k-trees, the FRP can be solved
in NC. We improve this and show logspace completeness for both problems:

Theorem 18. For k-trees (k fixed), it is logspace complete to find a perfect
elimination order and to solve the fast reordering problem.

Proof. We first show FRP ∈ FL: Let G be a k-tree. We compute the level lG(v)
for each v ∈ V (G) (cf. Definition 7). As observed in Lemma 8, this is possible in
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logspace. Let lmax = max{lG(v) | v ∈ V (G)}. Output Ri := {v ∈ V (G) | lG(v) =
lmax −2i} for i = 0, . . . , ⌈lmax /2⌉−1. The correctness follows from the structure
of T (G).
Next, we note that a perfect elimination order can be efficiently computed

when a solution to the FRP is known (i. e. finding a PEO reduces to solving the
FRP): Take the members of the Ri in ascending order (first those from R0, then
those from R1 and so on up to Rk) and finally those from ker(G) = V (G)\

⋃

iRi.
No matter which order is chosen within the Ri and the kernel, the result is a
PEO, as each Ri is independent and ker(G) is a clique.
Finally we show that finding a perfect elimination order is hard for logspace

even for paths. The result for k-trees (and k-paths) can again be obtained us-
ing the construction of Ek given above. We solve an ORD instance (P, s, t) in
DLOGTIME-uniform AC

0 with a single oracle gate for computing a PEO of the
path P ′ given by

V (P ′) = V (P ) ∪
{

i′
∣

∣ i ∈ V (P ) \ {n}
}

E(P ′) =
{

{i, j}
∣

∣ (i, j) ∈ E(P )
}

∪
{

{i′, j′}
∣

∣ (i, j) ∈ E(P ), j Ó= n
}

∪
{

{i′, n}
∣

∣ (i, n) ∈ E(P )
}

where n is the vertex in P without successor. We claim that for any PEO σ of
P ′ (where pi is a shorthand for the position σ

−1(i) of a vertex in σ):

(P, s, t) ∈ ORD⇔ ps ≤ pt ≤ pn ∨ ps′ ≤ pt′ ≤ pn

If (P, s, t) /∈ ORD, then s is between t and n, and s′ is between t′ and n in
P ′ (right side in Fig. 4). Thus σ cannot satisfy both ps ≤ pt and ps′ ≤ pt′ . If
(P, s, t) ∈ ORD (left side of Fig. 4), n does not become simplicial until at least
one copy of P is completely removed. Similarly, if the first copy is completely
removed before n, t does not become simplicial before s is removed; and if the
second copy is completely removed before n, t′ does not become simplicial before
s′ is removed. ⊓⊔

s t

n

t′s′

t s

n

s′t′

Fig. 4. The reduction of ORD to finding a PEO
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