
The Isomorphism Problem for k-Trees
is Complete for Logspace

V. Arvind1, Bireswar Das1, Johannes Köbler2, and Sebastian Kuhnert2

1 The Institute of Mathematical Sciences, Chennai 600 113, India,
{arvind, bireswar}@imsc.res.in

2 Institut für Informatik, Humboldt Universität zu Berlin, Germany,
{koebler, kuhnert}@informatik.hu-berlin.de

Abstract. We show that, for k constant, k-tree isomorphism can be de-
cided in logarithmic space by giving a logspace canonical labeling algo-
rithm. The algorithm computes a unique tree decomposition, uses colors
to fully encode the structure of the original graph in the decomposition
tree and invokes Lindell’s tree canonization algorithm. As a consequence,
the isomorphism, the automorphism, as well as the canonization problem
for k-trees are all complete for deterministic logspace. Completeness for
logspace holds even for simple structural properties of k-trees. We also
show that isomorphism of all k-trees, k ≥ 1, is fixed parameter tractable
with respect to k by giving an algorithm running in time O((k + 2)! ·m),
where m is the number of edges in the input graph.
Keywords: graph isomorphism, graph canonization, k-trees, space com-
plexity, logspace completeness.

1 Introduction

Two graphs G and H are called isomorphic if there is a bijective mapping φ
between the vertices of G and the vertices of H that preserves the adjacency
relation, i.e., φ relates edges to edges and non-edges to non-edges. Graph Iso-
morphism (GI) is the problem of deciding whether two given graphs are isomor-
phic. The problem has received considerable attention since it is one of the few
natural problems in NP that are neither known to be NP-complete nor known
to be solvable in polynomial time.

It is known that GI is contained in coAM [GS86,Sch88] and in SPP [AK06]
providing strong evidence that GI is not NP-complete. On the other hand, the
strongest known hardness result due to Torán [Tor04] says that GI is hard for
the class DET (cf. [Coo85]). DET is a subclass of NC2 (even of TC1) and contains
NL as well as all logspace counting classes [AJ93,BDH+92].

For some restricted graph classes the known upper and lower complexity
bounds for the isomorphism problem match. For example, a linear time al-
gorithm for tree isomorphism was already known in 1974 to Aho, Hopcroft
and Ullman [AHU74]. In 1991, an NC algorithm was developed by Miller and
Reif [MR91], and one year later, Lindell [Lin92] obtained an L upper bound.
On the other hand, in [JKM+03] it is shown that tree isomorphism is L-hard

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 53 (2009)

2 V. Arvind, B. Das, J. Köbler, S. Kuhnert

(provided that the trees are given in pointer notation). In [ADK08], Lindell’s
log-space upper bound has been extended to the class of partial 2-trees, a class
of planar graphs also known as generalized series-parallel graphs. Recently, it
has been shown that even the isomorphism problem for all planar graphs is
in logspace [DLN+09] (in fact, excluding one of K5 or K3,3 as minor is suffi-
cient [DNT+09]). Much of the recent progress on logspace algorithms for graphs
has only become possible through Reingold’s result that connectivity in undi-
rected graphs can be decided in deterministic logspace [Rei05]. Our result does
not depend on this, yielding a comparatively simple algorithm.

Our motivation for studying the isomorphism of k-trees is that graphs of tree
width k coincide with partial k-trees, i. e. subgraphs of k-trees. Isomorphism of
partial k-trees was known to be in TC1 [GV06] and canonization in TC2 [KV08].
We hope that our result can be generalized from k-trees to partial k-trees in
the future. Das, Torán and Wagner already used some of our techniques to
put isomorphism of tree distance width k graphs in L [DTW10], a subclass of
tree width k graphs that is incomparable to k-trees. They also reduce isomor-
phism of decomposed bounded tree width graphs to isomorphism of bounded
tree distance width graphs. The remaining obstacle to put isomorphism of par-
tial k-trees in L is thus the computation of compatible tree decompositions in
logspace, compatible meaning that if two partial k-trees are isomorphic then
there should be an isomorphism that maps one decomposition to the other.
Recently, Elberfeld, Jakoby and Tantau showed how to compute a tree decom-
position in logspace [EJT10] (previously, LogCFL was known [Wan94]), using and
improving the mangrove technique we employed in our intermediate StUL result
for k-tree isomorphism [ADK07]. However, the constructed tree decomposition
strongly depends on the order of the input vertices and computing compatible
tree decompositions seems to require new ideas.

In this article we show that the isomorphism problem for k-trees is in logspace
for each fixed k ∈ N+, matching the lower bound. This combines two confer-
ence papers that improved the previously known upper bound of TC1 [GV06]
first to StUL [ADK07] and then to L [KK09]. In fact, we prove the formally
stronger result that a canonical labeling for a given k-tree is computable in
logspace. Recall that the canonization problem for graphs is to produce a canon-
ical form canon(G) for a given graph G such that canon(G) is isomorphic to
G and canon(G1) = canon(G2) for any pair of isomorphic graphs G1 and G2.
Clearly, graph isomorphism reduces to graph canonization. A canonical labeling
for G is any isomorphism between G and canon(G). It is not hard to see that
even the search version of GI (i.e., computing an isomorphism between two given
graphs in case it exists) as well as the automorphism group problem (i.e., com-
puting a generating set of the automorphism group of a given graph) are both
logspace reducible to the canonical labeling problem.

The parallel complexity of k-tree isomorphism has been previously investi-
gated by Del Greco, Sekharan, and Sridhar [GSS02] who introduced the concept
of the kernel of a k-tree in order to restrict the search for an isomorphism be-
tween two given k-trees. We show that the kernel of a k-tree can be computed in

Isomorphism of k-Trees is Complete for Logspace 3

logspace and exploit this fact to restrict the search for a canonical labeling of a
given k-tree G. To be more precise, we first transform G into an undirected tree
T (G) whose nodes are formed by the k-cliques and (k+1)-cliques of G. Then we
compute the center node of T (G) which coincides with the kernel of G and try
all labelings of the vertices in ker(G). In order to extend a labeling of the kernel
vertices of G to the other vertices of G in a canonical way, we color the nodes of
the tree T (G) to encode additional structural information about G. Finally, we
apply a variant of Lindell’s algorithm to compute a canonical labeling for the
colored T (G) and derive a canonical labeling for the k-tree G.

This main result is presented in Section 3. In Section 4 we show that several
simple structural properties of k-trees that can be computed using our tree
representation are also hard for logspace. In Section 5 we consider a variant of
our algorithm to prove that isomorphism of k-trees is fixed parameter tractable
with respect to k.

2 Preliminaries

As usual, L is the class of all languages decidable by Turing machines with read-
only input tape and an O(logn) bound on the space used on the working tapes.
FL is the class of all functions computable by Turing machines that additionally
have a write-only output tape.

Given a graph G, we use V (G) and E(G) to denote its vertex and edge
sets, respectively. We define the following notations for subgraphs of G. For
M ⊆ V (G), G[M] denotes the subgraph of G induced by M and we use G−M
as a shorthand for G[V (G) \M].

Given a graph G and two vertices u, v ∈ V (G), the distance dG(u, v) is the
length of the shortest path from u to v. The eccentricity of a vertex v ∈ V (G) is
the longest distance to another vertex, i.e., eccG(v) = max{dG(u, v) |u ∈ V (G)}.
The center of G consists of all vertices with minimal eccentricity.

Given two graphs G and H, an isomorphism from G to H is a bijection
φ : V (G) → V (H) with {u, v} ∈ E(G) ⇔ {φ(u), φ(v)} ∈ E(H). On colored
graphs, an isomorphism must additionally preserve colors. G and H are called
isomorphic, in symbols G ∼= H, if there is an isomorphism from G to H. Given
a graph class G, a function f defined on G computes an invariant for G if

∀G,H ∈ G : G ∼= H ⇒ f(G) = f(H) .

If the reverse implication also holds, f is a complete invariant for G. If addition-
ally f(G) ∼= G for all G ∈ G, f computes canonical forms for G. Given a function
f that computes canonical forms, an isomorphism ψG from G to its canonical
form f(G) is called a canonical labeling.

The isomorphisms from a graph G to itself are called automorphisms; they
form a group which we denote by Aut(G). An automorphism is called non-
trivial if it is not the identity. The graph automorphism problem (GA) is to
decide if a graph has non-trivial automorphisms. A graph without non-trivial
automorphisms is called rigid.

4 V. Arvind, B. Das, J. Köbler, S. Kuhnert

In the next section, we present an FL algorithm that, given a k-tree G, com-
putes a canonical labeling ψG.

3 Canonizing k-trees

Fix any k ∈ N+. The class of k-trees is inductively defined as follows. Any k-
clique is a k-tree. Further, given a k-tree G and a k-clique C in G, one can
construct another k-tree by adding a new vertex v and connecting v to every
vertex in C. The initial k-clique is called base of G, and the k-clique C the new
vertex v is connected to is called support of v. Note that each k-clique of a k-
tree G can be used as base for constructing G – but once the base is fixed, the
support of each vertex is uniquely determined.

An interesting special case of k-trees are k-paths, where the support Ci of
any new vertex vi (except the first vertex added to G) must either contain the
vertex vi−1 added in the previous step or be equal to the support Ci−1 of the
latter. Fig. 1 shows a 2-tree that is a 2-path as well.

Before we go into the k-tree canonization we observe that the following char-
acterization of k-trees gives a logspace algorithm for recognizing k-trees.

Definition 3.1. [Klo94] Let G = (V,E) be a graph. A subset S ⊂ V is a vertex
separator for two nonadjacent vertices u, v ∈ V , if u and v are in different
connected components of G − S. A vertex separator S for u and v is called
minimal, if no proper subset of S is a vertex separator for u and v. A subset
S ⊂ V is a minimal vertex separator if S is a minimal vertex separator for some
pair of vertices u, v ∈ V .

Lemma 3.2. [CI88] A graph G with n > k vertices is a k-tree if and only if

– every pair of nonadjacent vertices u and v has a k-clique as a minimal vertex
separator and

– E(G) contains exactly
(
k
2
)

+ k(n− k) edges.

It is easy to see that the two conditions of Lemma 3.2 can be checked in logspace.
Hence, from now on we can assume that the input graph G is a k-tree.

We define a tree representation T (G) for k-trees G.

Definition 3.3. For a k-tree G, its tree representation T (G) is defined by

V (T (G)) =
{
M ⊆ V (G)

∣∣M is a k-clique or a (k + 1)-clique
}

E(T (G)) =
{
{M1,M2} ⊆ V (T (G))

∣∣M1 (M2
}
.

Note that T (G) reflects the iterative construction of G: The base of G is a
k-clique and thus a node in T (G). Each time a new vertex u is added to G, it is
connected to all vertices of its support Pu (a k-clique), forming a new (k + 1)-
clique Cu that is a superset of Pu. In T (G), the addition of u results in a new
node Cu being added and connected to Pu. Additionally, the k many k-cliques in

Isomorphism of k-Trees is Complete for Logspace 5

G:

1

23

45

67 8 T (G):

1
21

3 2

3
1

3 2

2
1 4
1 4

2
43

5 1
5 1

5
3

6
1 4

1
6 6

47
5 1

5
7 7

1 4
6 8
6 8

4
8

Fig. 1. A 2-tree G and its tree representation T (G)

Cu that contain the new vertex u are added as new nodes to T (G) and connected
to Cu. From these observations it is clear that T (G) is indeed a tree.

We continue by proving some basic properties of our tree representation
T (G).

Lemma 3.4. For any k-tree G and any vertex v ∈ V (G), the nodes of T (G)
that contain v form a subtree of T (G).

Proof. We prove by induction over the construction of G that any nodeM added
to T (G) with v ∈ M either is the unique node first introducing v or is hooked
up to a previously added node that contains v. If M is a k-clique in G this is
immediately clear as it is either the base node in T (G) or it is a subset of a
(k + 1)-clique node and hence does not introduce any new vertices. So assume
that M is a (k + 1)-clique Cu, which was added to T (G) upon the addition of
some vertex u to G. If u = v then M is the single node of T (G) introducing v.
If u 6= v we have v ∈ Cu \ {u} = Pu and thus there is an edge to a previously
added k-clique node Pu that contains v. ut

Lemma 3.5. For any k-tree G, the center of T (G) is a single node.

Proof. Suppose not. Then the center consists of two adjacent nodes, one a k-
clique and one a (k + 1)-clique. This leads to a contradiction because k-clique
nodes have even eccentricity while that of (k+ 1)-clique nodes is odd: All leaves
are k-clique nodes, and k-cliques and (k+1)-cliques alternate on every path. ut

Definition 3.6. The clique corresponding to the center node of T (G) is called
kernel of G and denoted ker(G).

Note that ker(G) can be either a k-clique or a (k + 1)-clique, depending on the
structure of G. The concept of the kernel of a k-tree was introduced in [GSS02].
The definition there is slightly different but the equivalence can be easily verified.

We continue by recalling some basic facts concerning undirected trees.

Fact 3.7. Given an undirected tree T and two nodes u, v ∈ V (T), the distance
dT (u, v) can be computed in FL.

6 V. Arvind, B. Das, J. Köbler, S. Kuhnert

Proof. Think of T as rooted in u and all edges directed away from u. The di-
rection of an edge e can be determined in logspace by computing the lexico-
graphically-first Euler tour starting at u that visits each edge once per direction
(cf. [AM04]). Then the unique path from v to u can be found by always choosing
the unique incoming edge as next step. Only the current node and the number
of steps have to be remembered. Upon reaching u, output the number of steps
taken. ut

Fact 3.8. The center of an undirected tree T can be computed in FL.

Proof. We first show that the eccentricity eccT (u) of each node u ∈ V (T) is
computable in logspace. This can be done by iterating over all v ∈ V (T), each
time calculating dT (u, v) (this is possible in logspace by Fact 3.7). Only the
maximum distance to u has to be remembered, the result being eccT (u).

Observe now that also the maximum eccentricity eccmax of all nodes u ∈ V (T)
is computable in logspace by iterating over all u ∈ V (T). Then compute again
the eccentricity of all nodes u, this time outputting u if eccT (u) = eccmax. ut

Our goal is to canonize G by using Lindell’s algorithm [Lin92] to canonize
T (G). To achieve this, we declare the kernel K of G as the root of T (G). As a
consequence, we can identify each (k + 1)-clique M ∈ V (T (G)) \ {K} with the
unique vertex v ∈ M that is not present in the k-clique M ′ that lies next to
M on the path from K to M in T (G). For later use, we denote this vertex by
v(M) and for each v ∈ V (G) \K, we use Mv to denote the unique (k+ 1)-clique
M ∈ V (T (G)) \ {K} with v(M) = v.

It is clear that T (G) does not provide complete structural information about
G, since the vertices in the kernel K are indistinguishable in T (G) and further,
only one out of the k edges between each added vertex u and its support can be
recovered from T (G). To add the missing information, we give individual colors
to the kernel vertices and color the nodes of T (G) as well. Since the kernel K of
a given k-tree G can be determined in logspace, we can simplify the notation by
assuming that K consists of the vertices 1, . . . , k′, where k′ = ‖K‖ ∈ {k, k + 1}
equals the size of K.

Definition 3.9. Let G be a k-tree with vertex set V (G) = {1, . . . , n} and kernel
K = {1, . . . , k′}. For each vertex v of G, we denote by

lG(v) = min
{
dT (G)(K,M)

∣∣M ∈ V (T (G)), v ∈M
}

the level of v in G. Further, for any permutation π ∈ Sk′ , let T (G, π) denote the
directed colored tree obtained from T (G) by choosing K as the root and coloring
each node M ∈ V (T (G)) by the set c(M) = {c(v) | v ∈M}, where

c(v) =
{
π(v) if v ∈ ker(G),
lG(v) + k′ otherwise.

Isomorphism of k-Trees is Complete for Logspace 7

The definition of T (G, π) is similar to the construction of the colored tree
T (G,B, θ) in [ADK07]. The main advantage of our construction lies in the fact
that T (G, π) can be directly constructed from G in logspace, whereas the tree
representation used in [ADK07] (which in turn is related to the decomposition
defined in [KCP82]) is defined as the reachable subgraph of a mangrove derived
from G. This allows us to decide reachability in the tree T (G, π) in logspace, an
essential step to achieve our upper bound.

Another advantage of our construction comes with the usage of the kernel
K as a canonical base. This makes it superfluous to cycle through all k-cliques
of G (as in [ADK07]), leaving only the permutations of the vertices within K to
enumerate.

Lemma 3.10. For a k-tree G and a permutation π on the kernel K of G,
T (G, π) can be computed in FL.

Proof. It is clear that the nodes and edges of T (G) can be determined in logspace:
First iterate over all subsets M of V (G) of size k (this requires space k logn)
and output M as a node if M is a k-clique in G. Likewise, find and output all
(k+ 1)-cliques M , each time adding edges to all k+ 1 many k-cliques contained
inM . The (intermediate) result T (G) cannot be stored due to space limitations,
but it is possible to recompute it as needed (as long as only a constant number
of operations is chained).

Next determine the kernel K of G (Fact 3.8) and think of all edges in T (G)
directed away from K. As described in the proof of Fact 3.7, the direction can
be determined in logspace. It remains to compute the color c(M) of each node
M ∈ V (T (G)).

For each v ∈ M calculate c(v) by examining the unique path from M to K
in T (G) (the path can be found by following the unique incoming edge at each
node). Store the length ` of the path and the position pv where v was last found
(this can be done in parallel for all v ∈ M). If pv = ` (i. e. v ∈ K), then add
the number c(v) = π(v) to the color c(M) of M . If pv < `, add the number
c(v) = ` − pv + ‖K‖ to c(M). The latter is correct, because by Lemma 3.4 the
nodes containing v form a subtree of T (G) and thus the node that is closest to
K and contains v is on the path from K to M . ut

We will need to compute a canonical labeling of T (G, π). We observe the
following generalization of the logspace tree canonization algorithm.

Lemma 3.11. Lindell’s algorithm [Lin92] can be extended to colored trees and
to output not only a canonical form, but also a canonical labeling. This modifi-
cation preserves the logarithmic space bound.

Proof sketch. Colors can be handled by extending the tree isomorphism order
defined in [Lin92] by using color(s) < color(t) as additional condition (where
s and t are the roots of the trees to compare). The canonical labeling can be
computed by using a counter i initialized to 0: Instead of printing (the first letter
of) the canon of a node v, increment i and print “v 7→ i”. ut

8 V. Arvind, B. Das, J. Köbler, S. Kuhnert

Next we show that the colored tree representations of isomorphic k-trees are
also isomorphic, provided that the kernels are labeled accordingly.

Lemma 3.12. Let φ ∈ Sn be an isomorphism between two k-trees G and H
with V (G) = V (H) = {1, . . . , n} and ker(G) = ker(H) = K. Then φ (viewed as
a mapping from V (T (G)) to V (T (H))) is an isomorphism between T (G, π1) and
T (H,π2), provided that π1(u) = π2(φ(u)) for all u ∈ K.

Proof. It can be easily checked that any isomorphism between G and H is also
an isomorphism between T (G) and T (H) that maps the kernel K of G to the
kernel of H, which equals K by assumption. In order to show that the color of
a node M ∈ V (T (G, π1)) coincides with the color of φ(M) ∈ V (T (H,π2)), we
prove the stronger claim that c(v) = c(φ(v)) for all v ∈ V (G). For v ∈ K, we
have c(φ(v)) = π2(φ(v)) = π1(v) = c(v) by assumption. Since φ must preserve
the level of the vertices, it follows further for v ∈ V (G) \K that

c(φ(v)) = lH(φ(v)) + ‖K‖ = lG(v) + ‖K‖ = c(v) .

This completes the proof of the lemma. ut

Conversely, the next lemma shows that from any isomorphic copy T of
T (G, π1) we can easily derive an isomorphic copy G′ of G. Moreover, any isomor-
phism φ between T (G, π) and T can be efficiently converted into an isomorphism
between G and G′.

Lemma 3.13. Let G be a k-tree and let π be a permutation on the kernel K of
G. Then from any colored tree T that is isomorphic to T (G, π), an isomorphic
copy G′ of G can be computed in logspace. Further, it is possible to compute in
logspace an isomorphism between G and G′ from any given isomorphism between
T (G, π) and T .

Proof sketch. Construct G′ as follows. Let V (G′) = {1, . . . , n}, where n is k plus
the number of (k + 1)-clique nodes in T (we call m ∈ V (T) an l-clique node,
if l = ‖c(m)‖). This is correct due to the one-to-one correspondence between
the vertices v ∈ V (G) \ K and the (k + 1)-clique nodes Mv ∈ T (G, π) \ {K}.
Next determine the center node z of T (see Lemma 3.8) and make {1, . . . , k′}
a clique in G′, where k′ = ‖c(z)‖. Further, for any non-center (k + 1)-clique
node m ∈ V (T) \ {z}, let v(m) denote the corresponding vertex in V (G′) (to
make this mapping unique, let v(m) preserve the order of (k+1)-clique nodes in
V (T)). Based on the color c(m) = {c1, . . . , ck+1} of m add the following edges
to E(G′): For each ci ≤ k′ add an edge {ci, v(m)} and for each ci > k′ with
ci < cmax = max{ci | ci ∈ c(m)} add an edge {v(m), v(m′)}, where m′ is the
(ci − k′)-th node on the path from z to m. This completes the construction of
G′.

Now let φ be an isomorphism from T (G, π) to T . Construct an isomorphism
φ′ from G to G′ as follows. For v ∈ K, let φ′(v) = π(v), and for v /∈ K, let
φ′(v) = v(φ(Mv)). By induction on the level of v in G, it can be proved that
this is indeed an isomorphism. Both constructions can easily be seen to be in
logspace. ut

Isomorphism of k-Trees is Complete for Logspace 9

Now we are ready to prove our main result.
Theorem 3.14. Given a k-tree G with vertex set V (G) = {1, . . . , n} and kernel
K = {1, . . . , k′}, a canonical labeling ψG ∈ Sn can be computed in FL.
Proof. In order to compute ψG we iterate over all permutations π ∈ Sk′ and
compute a canonical labeling ψT (G,π) for the colored tree T (G, π) using the
algorithm from Lemma 3.11. Let π1 be one of the permutations that give rise
to the lexicographically smallest colored tree ψT (G,π1)(T (G, π1)). By applying
Lemma 3.13, we can reconstruct from this tree an isomorphic copy canon(G) of
G together with an isomorphism ψG between G and canon(G). By Lemmas 3.10
and 3.11, it is clear that ψG is computable in logspace.

It remains to show that the canonical labelings of any two isomorphic k-
trees G and H map these graphs to the same canon ψG(G) = ψH(H). To see
this, let π1, π2 ∈ Sk′ be two permutations that give rise to the lexicographically
smallest trees ψT (G,π1)(T (G, π1)) and ψT (H,π2)(T (H,π2)), respectively. Since by
Lemma 3.12 for any tree T (G, π1) that can be derived from G via some permu-
tation π1 there is an isomorphic tree T (H,π2) that can be derived from H via
some permutation π2 (and vice versa), it follows that ψT (G,π1)(T (G, π1)) and
ψT (H,π2)(T (H,π2)) are equal, implying that canon(G) = canon(H). ut

We note that the above construction can be extended to colored k-trees as fol-
lows. Let ζ : V (G)→ C be a vertex coloring of G. Modify the coloring of T (G, π)
(cf. Definition 3.9) by replacing c(v) with the pair c′(v) = (c(v), ζ(v)).

Theorem 3.14 immediately yields the following corollaries.
Corollary 3.15. For any fixed k, k-tree canonization is in FL.
Corollary 3.16. For any fixed k, k-tree (and k-path) isomorphism is L-complete.
We delay the hardness part to Proposition 4.3.

We note that fixing k is essential, as the isomorphism problem for the class
of all k-trees, k ∈ N+, is isomorphism complete [KCP82] and thereby unlikely
to be decidable in polynomial time.

Furthermore, there is a standard Turing reduction of the automorphism
group problem (i.e., computing a generating set of the automorphism group
of a given graph) to the search version of GI for colored graphs; a similar reduc-
tion exists for counting the number of automorphisms (cf. [Hof82,KST93]). It is
not hard to see that these reductions can be performed in logspace.
Corollary 3.17. For any fixed k, computing a generating set of the automor-
phism group of a given k-tree, and hence computing a canonical labeling coset
for a given k-tree is in FL.
Corollary 3.18. For any fixed k, computing the number of automorphism of a
given k-tree is in FL.
Corollary 3.19. For any fixed k, the k-tree (and k-path) automorphism problem
(i. e., deciding whether a given k-tree has a non-trivial automorphism) is L-
complete.
We postpone the proof of the hardness to Proposition 4.2.

10 V. Arvind, B. Das, J. Köbler, S. Kuhnert

4 Complete problems for logspace

In this section we prove some additional completeness results for logspace that
are related to our main result. The hardness is under DLOGTIME-uniform AC0-
reductions. We first recall that Ord is L-complete, where Ord is the problem
of deciding for a directed path P and two vertices s, t ∈ V (P) if there is a path
from s to t [Ete97].

In Lemma 3.8 we have seen that the center of an undirected tree can be
computed in FL. We now show that the decision variant is hard for L even when
restricted to paths.

Theorem 4.1. Given an undirected path P and a vertex c ∈ V (P), it is L-
complete to decide if c belongs to the center of P . The hardness also holds if P
is required to have odd length.

We will call this problem PathCenter. This theorem implies the L-hardness
of the following problem: Given a k-tree (or k-path) G and a vertex c ∈ V (G),
decide whether c belongs to the kernel of G. The reduction for this is (P, c) 7→
(Ek(P), c), where Ek transforms a path P (resp. tree T) into a k-path Ek(P)
(resp. a k-tree Ek(T)) by adding a (k−1)-clique C and connecting C to all nodes
in V (P) (resp. V (T)) (cf. Fig. 2).

T

u1 u2 uk−1· · ·

Fig. 2. The transformation Ek(T)

Proof. We reduce from Ord using (P, s, t) 7→ (P ′, n) as reduction, where

V (P ′) = V (P) ∪
{
i′
∣∣ i ∈ V (P)

}
∪ {s′′}

E(P ′) =
{
{i, j}

∣∣ (i, j) ∈ E(P) ∧ j 6= t
}
∪
{
{n, n′}

}
∪
{
{i′, j′}

∣∣ (i, j) ∈ E(P) ∧ j /∈ {s, t}
}

∪
{
{i′, s′′}

∣∣ (i, s) ∈ E(P)
}
∪
{
{s′′, s′}

}
∪
{
{i, t′}

∣∣ (i, t) ∈ E(P)
}
∪
{
{i′, t}

∣∣ (i, t) ∈ E(P)
}

and n is the vertex without successor in P . P ′ is the undirected path that consists
of two copies of P that are twisted before t, connected at their ends and have the
second copy of s duplicated (cf. Fig. 3). If s precedes t in P (left side), then n is
the center of P ′, but if t precedes s then n′ is the center of P ′ (right side). ut

Using the hardness of PathCenter, we now prove the hardness of the au-
tomorphism and isomorphism problems for k-paths.

Isomorphism of k-Trees is Complete for Logspace 11

s

t′ n′

s′′

s′

t n

t′

s′′

s′ n′

t s n

Fig. 3. The reduction of Ord to PathCenter

Proposition 4.2. For any fixed k, the automorphism problem for k-paths (and
thereby k-trees) is L-hard.

Proof. We reduce from PathCenter using the function (P, c) 7→ P ′ where the
neighbors of c are n1 and n2 and

V (P ′) = V (P) ∪ {c1, c2}
E(P ′) =

{
{u, v}

∣∣ 1 ≤ dP (u, v) ≤ k for u, v ∈ V (P)
}

∪
{
{u, ci}

∣∣ 0 ≤ dP−{ni}(u, c) < k for u ∈ V (P), i ∈ {1, 2}
}

We assume that c has distance more than k to both ends, as otherwise the
problem is trivial. It is easy to see that P ′ is a k-path: The first k vertices on
the path are the base. As the following vertices are added, the support is always
a set of k consecutive nodes on the path, with the additional vertices ci being
added after c enters the support and before c leaves the support, respectively. It
is obvious that P ′−{c1, c2} has the nontrivial automorphism that maps the ith
vertex on the path to the (n− i)-th one, but is otherwise rigid (all other pairs of
vertices have different eccentricity). This automorphism can be extended to all
of P ′ by exchanging c1 and c2 if and only if c is the center of P . ut

Proposition 4.3. For any fixed k, the isomorphism problem for k-paths (and
thereby k-trees) is L-hard.

Proof. Again we reduce from PathCenter. Modifying the previous construc-
tion, we reduce (P, c) 7→ (P1, P2) where the neighbors of c are n1 and n2, the
ends of P are v1 and v2 and

V (Pj) = V (P) ∪ {c1, c2, e1, e2}
E(Pj) =

{
{u, v}

∣∣ 1 ≤ dP (u, v) ≤ k for u, v ∈ V (P)
}

∪
{
{u, ci}

∣∣ 0 ≤ dP−{ni}(u, c) < k for u ∈ V (P), i ∈ {1, 2}
}

∪
{
{u, ei}

∣∣ 0 ≤ dP (u, vj) < k for u ∈ V (P), i ∈ {1, 2}
}

We assume that c has distance more than k+1 to both ends. If c is the center of
P , the function that maps the ith vertex of P to the (n− i)-th, exchanges c1 and
c2 and maps e1, e2 to themselves is an isomorphism from P1 to P2. Conversely,
if there is such an isomorphism then the ei force the original path vertices to be
mirrored and the ci ensure that c is the center. ut

12 V. Arvind, B. Das, J. Köbler, S. Kuhnert

Finally, we examine two problems related to the structure of k-trees. Let
G be a graph. A vertex v ∈ V (G) is called simplicial in G, if its neighborhood
induces a clique. A bijective mapping σ : {1, . . . , ‖V (G)‖} → V (G) of the vertices
of G is called perfect elimination order (PEO), if for all i, σ(i) is simplicial in
G−

⋃
j<i{σ(j)}. Note that a graph can have several perfect elimination orders,

so finding a PEO is not a functional but a search problem. It is well-known that
a graph has a PEO if and only if it is chordal. As k-trees are a subclass of chordal
graphs, each k-tree has a PEO.

A related problem is the fast reordering problem (FRP) which is defined
in [GSS02] as a preprocessing step for parallel algorithms. It consists of finding a
sequence of sets R0, . . . , Rk ⊆ V (G), such that each Ri is a maximal independent
set of simplicial vertices of G−

⋃
j<iRj and that G−

⋃
0≤j≤k Rj is a clique. For

general chordal graphs there can be several such sequences, but for k-trees this
sequence is unique and the remaining clique is the kernel. In [GSS02] it was
shown that if the input graphs are restricted to k-trees, the FRP can be solved
in NC. We improve this and show logspace completeness for both problems:
Theorem 4.4. For k-trees (k fixed), it is logspace complete to find a perfect
elimination order and to solve the fast reordering problem.

Proof. We first show FRP ∈ FL: Let G be a k-tree. We compute the level
lG(v) for each v ∈ V (G) (cf. Definition 3.9). As observed in Lemma 3.10, this
is possible in logspace. Let lmax = max{lG(v) | v ∈ V (G)}. Output Ri := {v ∈
V (G) | lG(v) = lmax − 2i} for i = 0, . . . , dlmax /2e − 1. The correctness follows
from the structure of T (G).

Next, we note that a perfect elimination order can be efficiently computed
when a solution to the FRP is known (i. e. finding a PEO reduces to solving the
FRP): Take the members of the Ri in ascending order (first those from R0, then
those from R1 and so on up to Rk) and finally those from ker(G) = V (G)\

⋃
iRi.

No matter which order is chosen within the Ri and the kernel, the result is a
PEO, as each Ri is independent and ker(G) is a clique.

Finally we show that finding a perfect elimination order is hard for logspace
even for paths. The result for k-trees (and k-paths) can be obtained using the
construction of Ek given above. We solve an Ord instance (P, s, t) in DLOGTIME-
uniform AC0 with a single oracle gate for computing a PEO of the path P ′ given
by

V (P ′) = V (P) ∪
{
i′
∣∣ i ∈ V (P) \ {n}

}
E(P ′) =

{
{i, j}

∣∣ (i, j) ∈ E(P)
}

∪
{
{i′, j′}

∣∣ (i, j) ∈ E(P), j 6= n
}
∪
{
{i′, n}

∣∣ (i, n) ∈ E(P)
}

where n is the vertex in P without successor. We claim that for any PEO σ of
P ′ (where pi is a shorthand for the position σ−1(i) of a vertex in σ):

(P, s, t) ∈ Ord⇔ ps ≤ pt ≤ pn ∨ ps′ ≤ pt′ ≤ pn

If (P, s, t) /∈ Ord, then s is between t and n, and s′ is between t′ and n in
P ′ (right side in Fig. 4). Thus σ cannot satisfy both ps ≤ pt and ps′ ≤ pt′ . If

Isomorphism of k-Trees is Complete for Logspace 13

(P, s, t) ∈ Ord (left side of Fig. 4), n does not become simplicial until at least
one copy of P is completely removed. Similarly, if the first copy is completely
removed before n, t does not become simplicial before s is removed; and if the
second copy is completely removed before n, t′ does not become simplicial before
s′ is removed. ut

s t

n

t′s′

t s

n

s′t′

Fig. 4. The reduction of Ord to finding a PEO

5 Fixed parameter tractability

A problem is called fixed parameter tractable with respect to some parameter k,
if it is solved by an algorithm in time f(k)nO(1), where f(k) can be an arbitrary
function not depending on the input size n.
Theorem 5.1. The isomorphism problem of the class of all k-trees, k ∈ N+, is
fixed parameter tractable with respect to k: There is an algorithm that runs in
time O((k + 2)! · n), where n is the number of nodes in the input graph.
As noted before, this class is isomorphism complete [KCP82]. The fixed param-
eter tractability is no immediate consequence of the logspace algorithm for fixed
k, as there are already nk choices for k-cliques that are searched by brute force.
Proof. First note that any k-tree has less than k ·n edges, and that k can easily
be obtained from the input graph, as all inclusion-maximal cliques have size
k + 1. The tree representation T (G) of the input graph G can be computed in
time O(k ·n) by iteratively removing simplicial vertices [KCP82]. In this process
it can also be checked that G is indeed a k-tree. Additionally, for each of the
k′! ≤ (k+ 1)! permutations π ∈ Sk′ , the colored tree T (G, π) can be constructed
in linear time by first finding the center of T (G), computing all distances from the
center to the other tree nodes using breadth first search and finally outputting
the color sets. Finally, tree isomorphism can be decided in linear time [AHU74,
p. 84]. ut

Previously, Toda has proved that isomorphism of chordal graphs whose so-
called s-components are of size k is fixed parameter tractable [Tod06]. This
class is a generalization of chordal graphs of bounded clique size k and thus
includes (k − 1)-trees. However, the time bound obtained there is far from our
O((k+2)! ·n). Relatedly, Yamazaki, Bodlaender, de Fluiter, and Thilikos showed
how to check isomorphism for graphs of rooted tree distance width k in time
O(k!2k2n2) [YBF+00]. This graph class is incomparable to k-trees but like those
a subclass of tree width k graphs.

14 V. Arvind, B. Das, J. Köbler, S. Kuhnert

References

[ADK07] Arvind, V., Das, B., Köbler, J.: The space complexity of k-tree isomor-
phism. In: Algorithms and Computation. Proceedings of 18th ISAAC.
LNCS 4853, Springer (2007) 822–833

[ADK08] Arvind, V., Das, B., Köbler, J.: A logspace algorithm for partial 2-tree
canonization. In: Proceedings of the 3rd International Computer Science
Symposium in Russia (CSR). LNCS 5010, Springer (2008) 40–51

[AHU74] Aho, A., Hopcroft, J., Ullman, J.: The design and analysis of computer
algorithms. Addison-Wesley (1974)

[AJ93] Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoretical
Computer Science 107(1) (1993) 3–30

[AK06] Arvind, V., Kurur, P.P.: Graph isomorphism is in SPP. Information and
Computation 204(5) (2006) 835–852

[AM04] Allender, E., Mahajan, M.: The complexity of planarity testing. Informa-
tion and Computation 139(1) (February 2004)

[BDH+92] Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and impor-
tance of logspace-MOD classes. Mathematical Systems Theory 25 (1992)
223–237

[CI88] Chandrasekharan, N., Iyengar, S.S.: NC algorithms for recognizing chordal
graphs and k trees. IEEE Transactions on Computers 37(10) (1988) 1178–
1183

[Coo85] Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Infor-
mation and Control 64 (1985) 2–22

[DTW10] Das, B., Torán, J., Wagner, F.: Restricted space algorithms for isomorphism
on bounded treewidth graphs. In STACS (2010) 227–238

[DLN+09] Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar
graph isomorphism is in log-space. In CCC (2009) 203–214

[DNT+09] Datta, S., Nimbhorkar, P., Thierauf, T., and Wagner, F.: Graph isomor-
phism for K3,3-free and K5-free graphs is in log-space. In FSTTCS (2009)
145–156

[EJT10] Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems
of Bodlaender and Courcelle. ECCC TR10-062 (2010) http://eccc.uni-
trier.de/report/2010/062/

[Ete97] Etessami, K.: Counting quantifiers, successor relations, and logarithmic
space. Journal of Computer and System Sciences 54(3) (1997) 400–411

[GS86] Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive
proof systems. In: Randomness and Computation. Volume 5 of Advances
in Computing Research. JAI Press (1989) 73–90

[GSS02] Del Greco, J.G., Sekharan, C.N., Sridhar, R.: Fast parallel reordering and
isomorphism testing of k-trees. Algorithmica 32(1) (2002) 61–72

[GV06] Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing
a game. In: Automata, Languages and Programming, 33rd International
Colloquium, ICALP 2006, Proceedings. LNCS 4051. Springer (2006) 3–14

[Hof82] Hoffmann, C.: Group-Theoretic Algorithms and Graph Isomorphism.
LNCS 136. Springer (1982)

[JKM+03] Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for
graph isomorphism. Journal of Computer and System Sciences 66 (2003)
549–566

Isomorphism of k-Trees is Complete for Logspace 15

[KCP82] Klawe, M.M., Corneil, D.G., Proskurowski, A.: Isomorphism testing in
hookup classes. SIAM Journal on Algebraic and Discrete Methods 3(2)
(June 1982) 260–274

[KK09] Köbler, J., Kuhnert, S.: The isomorphism problem for k-trees is complete
for logspace. In: Proceedings of 34th International Symposium Mathemati-
cal Foundations of Computer Science (MFCS). LNCS 5734. Springer (2009)
537–548.

[Klo94] Kloks, T.: Treewidth. Computations and approximations. LNCS 842.
Springer (1994)

[KST93] Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem:
Its Structural Complexity. Progress in Theoretical Computer Science.
Birkhäuser, Boston (1993)

[KV08] Köbler, J., Verbitsky, O.: From invariants to canonization in parallel. In:
Proceedings of 3rd Computer Science in Russia (CSR’08). LNCS 5010,
Springer (2008) 216–227

[Lin92] Lindell, S.: A logspace algorithm for tree canonization. extended abstract.
In: Proceedings of the 24th STOC, New York, ACM (1992) 400–404

[MR91] Miller, G., Reif, J.: Parallel tree contraction part 2: further applications.
SIAM Journal on Computing 20 (1991) 1128–1147

[Rei05] Reingold, O.: Undirected st-connectivity in log-space. In: Proceedings of
the 37th STOC, New York, ACM (2005) 376–385

[Sch88] Schöning, U.: Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences 37 (1988) 312–323

[Tod06] Toda, S.: Computing automorphism groups of chordal graphs whose sim-
plicial components are of small size. IEICE Transactions on Information
and Systems E89-D(8) (2006) 2388–2401

[Tor04] Torán, J.: On the hardness of graph isomorphism. SIAM Journal on
Computing 33(5) (2004) 1093–1108

[Wan94] Wanke, E.: Bounded tree-width and LOGCFL. Journal of Algorithms 16(3)
(1994) 470–491

[YBF+00] Yamazaki, K., Bodlaender, H.L., de Fluiter, B., and Thilikos, D.M.: Iso-
morphism for graphs of bounded distance width. Algorithmica 24(2) (1999)
105–127

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

