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1 Introduction

Informally, a language L has speedup if, for any Turing machine (TM) for
L, there exists one that is better. Blum [2] showed that there are com-
putable languages that have almost-everywhere speedup. These languages
were unnatural in that they were constructed for the sole purpose of hav-
ing such speedup. We identify a condition apparently only slightly stronger
than P # NP which implies that accepting any coN P-complete language
has an infinitely-often (i.0.) superpolynomial speedup and NP # coNP. We
also exhibit a natural problem which unconditionally has a weaker type of
i.0. speedup based upon whether the full input is read.! Neither speedup
pertains to the worst case.
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2 Conditional Speedup for coN P-Complete Lan-
guages

Def 2.1 Define BHP = {(N,x,1")| there is at least one accepting path of
nondeterministic TM N on input = with ¢ or fewer steps}, DBHP is the
same but with N deterministic, and HP = {(N,x)| there is at least one
accepting path of NTM N on input x (with no bound on the number of
steps)}. If M is a deterministic TM then T, is the function that maps a
string x to how many steps M (x) takes.

Note that BHP is N P-complete with the accepting path as a certificate,
that coBH P is coN P-complete, and DBHP € P.

Suppose P # NP and therefore coBHP ¢ P. The following condition
rules out the absurd possibility that some M can nevertheless accept the
subset of inputs beginning with any particular machine-input pair within a
polynomial bound (for that subset):

(*) Let M be a deterministic TM accepting coBH P. Then there
exists (N, 2') € coH P such that the function f(t) = Ty(N', 2/, 1")
is not bounded by any polynomial.?

An intuition for why this condition might hold could be a belief that there is
at least one N’, 2’ for which M must infinitely often use brute force to rule
out all possible accepting paths of N’ on 2’ with at most t steps.

Def 2.2 For M and M’ accepting a language L, write M <, M’ if there
exists a polynomial p such that for all inputs x € L:

Ta () < p(|a], Tar (). (1)

If L has a least element M under <, say that M is p-optimal® and otherwise
say that L has i.0. superpolynomial speedup.

Theorem 2.3 IfL is NP-complete, L does not have superpolynomial speedup.

2The function f may depend on M, N’, and 2’. For inputs not in coBHP, M does
not accept, but otherwise its behavior is not constrained.
3See Krajicek and Pudlék [6].



Proof:  For any L € NP, there is a p-optimal TM for finding witnesses
for L, by Levin [7].* Levin’s universal witness search algorithm works for
any NP language by dovetailing every possible TM, running any output
produced through a predetermined witness verifier, and then printing out
the first witness that is verified. If L is N P-complete, then there is a p-
optimal algorithm accepting L using the self-reducibility of N P-complete
languages, by Schnorr [11]. 1

Theorem 2.4 If (*) holds, then coBHP has superpolynomial speedup, and
NP +# coNP.

Proof:  Given M accepting coBH P, choose N’ x’ for M in (*), so f(t) =
Ty ((N', ', 1%)) is not polynomially bounded. We create M’ as follows:

1. Input (N, x,1%).
2. If N,x # N', 2’ then run M(N,z,1%).
3. If N,x = N’, 2’ then reject immediately.

Then M’ <, M, and coBH P therefore has superpolynomial speedup. Since
coBHP is coN P-complete, and no N P-complete language has superpolyno-
mial speedup, then NP # coNP. |

Theorem 2.4 is a striking result: a condition only slightly stronger than
P # NP, which states that at least one instance of coBH P is hard, implies
NP # coNP.

Theorem 2.5 If one coN P-complete language has superpolynomial speedup,
then all of them do.

Proof:  For coN P-complete languages L; and Lo, suppose L; has super-
polynomial speedup and Ly does not. Let f, g be polynomial time reductions
from L; to Ly and vice versa, i.e., x € L; if and only if f(x) € Ls, and
x € Lo if and only if g(z) € Ly. Suppose M, is p-optimal for L,. Then
M} = My o fog(x)is also p-optimal for Ls. Let M; = Ms o f. Because Ly

4See Gurevich [5], Goldreich [4], Ben-Amram [1], Messner [8], and Sadowski [10].

SHartmanis asked whether is there an optimal search algorithm similar to Levin’s that
also rejects when there is no witness (Trakhtenbrot [12]); in this case, there is not for
N P-complete languages.



has superpolynomial speedup by assumption, there exists M| <, M;. That
implies M{ o g <, M on inputs € Ly so in fact M, was not p-optimal, a
contradiction. |

3 Unconditional Speedup for coBHP

This section proves unconditionally that coBH P has a different form of
speedup which hinges upon whether the full input is read.® The intuition is
that it is useful for M accepting coBH P to be able to recognize that its in-
put begins with a non-halting N’, 2/, but no M can recognize all non-halting
N’ 2/, since coH P is not computably enumerable (c.e.).”

Def 3.1 For M and M’ accepting a language L, write M’ <, M if (1) there
exists an infinite subset of inputs S C L on which the runtime of M is
not bounded above by a constant but the runtime of M’ is bounded above
by a constant, and (2) there exists a constant cg such that the runtime
disadvantage of M’ on inputs in L — S is less than an additive factor cg. If
for any M there exists M’ such that M’ <, M, say that L has i.0. b-speedup.
The speedup is effective if M’ is computable from M.® Otherwise, say that
M is b-optimal.

Lemma 3.2 For any M accepting coBHP, there is some N',2' € coHP
computable from M for which Ty (N, 2/, 1%) > t.

Proof: Assume, by way of contradiction, that for some M and for all
N’ 2" € coHP there exists a ty such that Ty (N, 2/, 1%) < ty. This compu-
tation must have determined that (N’, 2/, 1%) € coBH P without reading the
entire input. In particular, it only read part of the 1%. Hence for all ¢ > tg,
Ty (N, 2/, 1%) < to. Therefore

(N,2) € coHP = (3to)[M(N,x,1") accepts and Ty (N, x, 1) < t].

6This consideration is excluded in inequality (1) by the |z| term.

"The proof below can be seen as a bounded version of the statement that every non-c.e.
language has speedup if M’ is “better” than M at accepting a language L if M’ correctly
accepts a strictly larger subset of L than M. If L is productive, then the speedup is
effective.

8The trivial linear speedup is not b-speedup. Geffert [3] describes nontrivial linear
speedups for nondeterministic machines.



Therefore coH P is c.e., a contradiction. Because coH P is productive,
N’ «’ for which no such t, exists is computable from M. |

Theorem 3.3 coBHP and coDBHP each have b-speedup, and the speedup
is effective.’

Proof:  Suppose M accepts coBHP. Compute N',x" € coHP for M by
Lemma 3.2. We create M’ as follows:

1. Input (N’ 2, 1") but without yet reading any of 1°.
2. If N,x # N', 2’ then run M(N, z,1%).
3. If N,x = N’, 2’ then reject immediately.

Note that there is a constant C' such that, for all ¢, Ty (N’,2',1%) > t and
Ty (N’ 2’ 1Y) < C. Hence, coBHP has b-speedup, with S = {(N', 2/, 1%)}.
The same proof applies to coDBHP. 1

4 Conclusion

We conjecture that any M which might serve as a counterexample to widely
believed complexity hypotheses could, as in Lemma 3.2, be modified to per-
form tasks known to be noncomputable. In particular:

Conjecture 4.1 If there exists M € P accepting a coN P-complete language
(for instance coBHP ), then M can be modified to accept a language that is
not c.e. (for instance coHP).

Similarly, some suspect that integer multiplication has speedup, and it is
generally believed that integer multiplication is a one-way function. These
conjectured properties could be related to a known property of integer mul-
tiplication that apparently has never been used to prove anything about the
complexity of multiplication itself: the Presburger arithmetic without multi-
plication is a decidable while arithmetic with multiplication is undecidable.

Conjecture 4.2 Suppose M can factor integers in polynomial time. Then
M can be modified to accept true arithmetic statements.

9There are coN P-complete languages which do not have b-speedup. For instance, a
b-optimal M for TAUT reads clause i + 1 only if the first ¢ clauses are a tautology.
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