Speedup for Natural Problems and
NP =7coNP

Hunter Monroe*

June 19, 2009

1 Introduction

Informally, a language L has speedup if, for any Turing machine (TM) for
L, there exists one that is better. Blum [2] showed that there are com-
putable languages that have almost-everywhere speedup. These languages
were unnatural in that they were constructed for the sole purpose of hav-
ing such speedup. We identify a condition apparently only slightly stronger
than P # NP which implies that accepting any coN P-complete language
has an infinitely-often (i.0.) superpolynomial speedup and NP # coNP. We
also exhibit a natural problem which unconditionally has a weaker type of
i.0. speedup based upon whether the full input is read.! Neither speedup
pertains to the worst case.

*Copyright 2009. This paper is in honor of the retirement of Benjamin Klein from
Davidson College. The views expressed in this column are those of the author and should
not be attributed to the International Monetary Fund, its Executive Board, or its man-
agement. This paper could not have been prepared without encouragement from Marius
Zimand and Bill Gasarch. I would also like to thank participants in a seminar at the
University of Maryland Complexity Seminar who provided useful comments. Remaining
errors are my own. Email: hkmbh@huntermonroe.com.

IFor a review of related literature, see Monroe [9].



2 Conditional Speedup for coN P-Complete Lan-
guages

Def 2.1 Define BHP = {(N,x,1")| there is at least one accepting path of
nondeterministic TM N on input = with ¢ or fewer steps}, DBHP is the
same but with N deterministic, and HP = {(N,x)| there is at least one
accepting path of NTM N on input x (with no bound on the number of
steps)}. If M is a deterministic TM then T, is the function that maps a
string x to how many steps M (x) takes.

Note that BHP is N P-complete with the accepting path as a certificate,
that coBH P is coN P-complete, and DBHP € P.

Suppose P # NP and therefore coBHP ¢ P. The following condition
rules out the absurd possibility that some M can nevertheless accept the
subset of inputs beginning with any particular machine-input pair within a
polynomial bound (for that subset):

(*) Let M be a deterministic TM accepting coBH P. Then there
exists (N, 2') € coH P such that the function f(t) = Ty(N', 2/, 1")
is not bounded by any polynomial.?

An intuition for why this condition might hold could be a belief that there is
at least one N’, 2’ for which M must infinitely often use brute force to rule
out all possible accepting paths of N’ on 2’ with at most t steps.

Def 2.2 For M and M’ accepting a language L, write M <, M’ if there
exists a polynomial p such that for all inputs x € L:

Ta () < p(|a], Tar (). (1)

If L has a least element M under <, say that M is p-optimal® and otherwise
say that L has i.0. superpolynomial speedup.

Theorem 2.3 IfL is NP-complete, L does not have superpolynomial speedup.

2The function f may depend on M, N’, and 2’. For inputs not in coBHP, M does
not accept, but otherwise its behavior is not constrained.
3See Krajicek and Pudlék [6].



Proof:  For any L € NP, there is a p-optimal TM for finding witnesses
for L, by Levin [7].* Levin’s universal witness search algorithm works for
any NP language by dovetailing every possible TM, running any output
produced through a predetermined witness verifier, and then printing out
the first witness that is verified. If L is N P-complete, then there is a p-
optimal algorithm accepting L using the self-reducibility of N P-complete
languages, by Schnorr [11]. 1

Theorem 2.4 If (*) holds, then coBHP has superpolynomial speedup, and
NP +# coNP.

Proof:  Given M accepting coBH P, choose N’ x’ for M in (*), so f(t) =
Ty ((N', ', 1%)) is not polynomially bounded. We create M’ as follows:

1. Input (N, x,1%).
2. If N,x # N', 2’ then run M(N,z,1%).
3. If N,x = N’, 2’ then reject immediately.

Then M’ <, M, and coBH P therefore has superpolynomial speedup. Since
coBHP is coN P-complete, and no N P-complete language has superpolyno-
mial speedup, then NP # coNP. |

Theorem 2.4 is a striking result: a condition only slightly stronger than
P # NP, which states that at least one instance of coBH P is hard, implies
NP # coNP.

Theorem 2.5 If one coN P-complete language has superpolynomial speedup,
then all of them do.

Proof:  For coN P-complete languages L; and Lo, suppose L; has super-
polynomial speedup and Ly does not. Let f, g be polynomial time reductions
from L; to Ly and vice versa, i.e., x € L; if and only if f(x) € Ls, and
x € Lo if and only if g(z) € Ly. Suppose M, is p-optimal for L,. Then
M} = My o fog(x)is also p-optimal for Ls. Let M; = Ms o f. Because Ly

4See Gurevich [5], Goldreich [4], Ben-Amram [1], Messner [8], and Sadowski [10].

SHartmanis asked whether is there an optimal search algorithm similar to Levin’s that
also rejects when there is no witness (Trakhtenbrot [12]); in this case, there is not for
N P-complete languages.



has superpolynomial speedup by assumption, there exists M| <, M;. That
implies M{ o g <, M on inputs € Ly so in fact M, was not p-optimal, a
contradiction. |

3 Unconditional Speedup for coBHP

This section proves unconditionally that coBH P has a different form of
speedup which hinges upon whether the full input is read.® The intuition is
that it is useful for M accepting coBH P to be able to recognize that its in-
put begins with a non-halting N’, 2/, but no M can recognize all non-halting
N’ 2/, since coH P is not computably enumerable (c.e.).”

Def 3.1 For M and M’ accepting a language L, write M’ <, M if (1) there
exists an infinite subset of inputs S C L on which the runtime of M is
not bounded above by a constant but the runtime of M’ is bounded above
by a constant, and (2) there exists a constant cg such that the runtime
disadvantage of M’ on inputs in L — S is less than an additive factor cg. If
for any M there exists M’ such that M’ <, M, say that L has i.0. b-speedup.
The speedup is effective if M’ is computable from M.® Otherwise, say that
M is b-optimal.

Lemma 3.2 For any M accepting coBHP, there is some N',2' € coHP
computable from M for which Ty (N, 2/, 1%) > t.

Proof: Assume, by way of contradiction, that for some M and for all
N’ 2" € coHP there exists a ty such that Ty (N, 2/, 1%) < ty. This compu-
tation must have determined that (N’, 2/, 1%) € coBH P without reading the
entire input. In particular, it only read part of the 1%. Hence for all ¢ > tg,
Ty (N, 2/, 1%) < to. Therefore

(N,2) € coHP = (3to)[M(N,x,1") accepts and Ty (N, x, 1) < t].

6This consideration is excluded in inequality (1) by the |z| term.

"The proof below can be seen as a bounded version of the statement that every non-c.e.
language has speedup if M’ is “better” than M at accepting a language L if M’ correctly
accepts a strictly larger subset of L than M. If L is productive, then the speedup is
effective.

8The trivial linear speedup is not b-speedup. Geffert [3] describes nontrivial linear
speedups for nondeterministic machines.



Therefore coH P is c.e., a contradiction. Because coH P is productive,
N’ «’ for which no such t, exists is computable from M. |

Theorem 3.3 coBHP and coDBHP each have b-speedup, and the speedup
is effective.’

Proof:  Suppose M accepts coBHP. Compute N',x" € coHP for M by
Lemma 3.2. We create M’ as follows:

1. Input (N’ 2, 1") but without yet reading any of 1°.
2. If N,x # N', 2’ then run M(N, z,1%).
3. If N,x = N’, 2’ then reject immediately.

Note that there is a constant C' such that, for all ¢, Ty (N’,2',1%) > t and
Ty (N’ 2’ 1Y) < C. Hence, coBHP has b-speedup, with S = {(N', 2/, 1%)}.
The same proof applies to coDBHP. 1

4 Conclusion

We conjecture that any M which might serve as a counterexample to widely
believed complexity hypotheses could, as in Lemma 3.2, be modified to per-
form tasks known to be noncomputable. In particular:

Conjecture 4.1 If there exists M € P accepting a coN P-complete language
(for instance coBHP ), then M can be modified to accept a language that is
not c.e. (for instance coHP).

Similarly, some suspect that integer multiplication has speedup, and it is
generally believed that integer multiplication is a one-way function. These
conjectured properties could be related to a known property of integer mul-
tiplication that apparently has never been used to prove anything about the
complexity of multiplication itself: the Presburger arithmetic without multi-
plication is a decidable while arithmetic with multiplication is undecidable.

Conjecture 4.2 Suppose M can factor integers in polynomial time. Then
M can be modified to accept true arithmetic statements.

9There are coN P-complete languages which do not have b-speedup. For instance, a
b-optimal M for TAUT reads clause i + 1 only if the first ¢ clauses are a tautology.



References

1]

[7]

8]

[9]

[10]

[11]

Amir Ben-Amram, The existence of optimal programs, Computability
and Complexity from a Programming Perspective (Neil D. Jones, ed.),
MIT Press, Cambridge, MA, 1997.

Manuel Blum, A machine-independent theory of the complezity of recur-
sive functions, J. ACM 14 (1967), 322-36.

Viliam Geffert, A speed-up theorem without tape compression, Theor.
Comput. Sci. 118 (1993), no. 1, 49-79.

Oded Goldreich, Foundations of cryptography, vol. Basic Tools, Cam-
bridge University Press, New York, NY, 2001.

Yuri Gurevich, Kolmogorov machines and related issues, Bulletin of the
European Association for Theoretical Computer Science 35 (1988), 71—
82.

Jan Krajicek and Pavel Pudlak, Propositional proof systems, the con-

sistency of first order theories and the complexity of computations, J.
Symb. Log. 54 (1989), 1063-79.

Leonid A. Levin, Universal sequential search problems, Problems of In-
formation Transmission 9 (1973), 265-66.

Jochen Messner, On optimal algorithms and optimal proof systems, Lec-
ture Notes in Computer Science 1563 (1999), 541-50.

Hunter Monroe, Are there natural problems with speedup?, Bulletin of
the European Association for Theoretical Computer Science 94 (2008),
212-20.

Zenon Sadowski, On an optimal deterministic algorithm for SAT, CSL
(Georg Gottlob, Etienne Grandjean, and Katrin Seyr, eds.), Lecture
Notes in Computer Science, vol. 1584, Springer, 1998, pp. 179-187.

Claus-Peter Schnorr, Optimal algorithms for self-reducible problems,
ICALP, 1976, pp. 322-37.



[12] Boris A. Trakhtenbrot, A survey of Russian approaches to perebor
(brute-force search) algorithms, Annals of the History of Computing 6
(1984), 384-400.



