
Speedup for Natural ProblemsI

Hunter Monroe

International Monetary Fund, 700 19th St, NW, Washington, DC 20431

Keywords: Speedability,, Speedup

1. Introduction

Informally, a language L has speedup if, for any Turing machine (TM)
for L, there exists one that is better. Blum [1] showed that there are com-
putable languages that have almost-everywhere speedup. These languages
were unnatural in that they were constructed for the sole purpose of having
such speedup. We identify an intuitive condition which, like several others
in the literature, implies that accepting any coNP -complete language has an
infinitely-often (i.o.) superpolynomial speedup. We also exhibit a natural
problem which unconditionally has a weaker type of i.o. speedup based upon
whether the full input is read.1 Neither speedup pertains to the worst case.

2. Conditional Speedup for coNP -Complete Languages

Def 2.1. Define BHP = {〈N, x, 1t〉| there is at least one accepting path of
nondeterministic TM N on input x with t or fewer steps}, DBHP is the
same but with N deterministic, and HP = {〈N, x〉| there is at least one

ICopyright 2009. This paper is in honor of the retirement of Benjamin Klein from
Davidson College. The views expressed in this column are those of the author and should
not be attributed to the International Monetary Fund, its Executive Board, or its man-
agement. This paper could not have been prepared without encouragement from Marius
Zimand and Bill Gasarch. I would also like to thank Scott Aaronson, Amir Ben-Amram,
Neil Christensen, Lance Fortnow, Jörg Flum, Yijia Chen, and participants in a semi-
nar at the University of Maryland Complexity Seminar who provided useful comments.
Remaining errors are my own.

Email address: hmonroe.bh@huntermonroe.com (Hunter Monroe)
1For a review of related literature, see Monroe [2].

Preprint submitted to Elsevier September 27, 2009

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 56 (2009)

accepting path of NTM N on input x (with no bound on the number of
steps)}. If M is a deterministic TM then TM is the function that maps a
string x to how many steps M(x) takes. M and M ′ will denote deterministic
Turing machines throughout the paper.

Note that BHP is NP -complete with the accepting path as a certificate,
that coBHP is coNP -complete, and DBHP ∈ P .

Suppose P 6= NP and therefore coBHP /∈ P . The following condition
rules out the absurd possibility that some M can nevertheless accept the
subset of inputs beginning with any particular machine-input pair within a
polynomial bound (for that subset).

(*) For M accepting coBHP , there exists some 〈N ′, x′〉 ∈ coHP
such that the function f(t) = TM(N ′, x′, 1t) is not bounded by
any polynomial.2

An intuition for why this condition might hold could be a belief that there is
at least one N ′, x′ for which M must infinitely often use brute force to rule
out all possible accepting paths of N ′ on x′ with at most t steps.3 Under (*),
coBHP has the following type of speedup.

Def 2.2. For M and M ′ accepting a language L, write M ≤p M ′ if there
exists a polynomial p such that for all inputs x ∈ L:

TM(x) ≤ p(|x|, TM ′(x)). (1)

If L has a least element M under ≤p, say that M is p-optimal4 and otherwise
that L has (i.o.) superpolynomial speedup.

Theorem 2.3. If (*) holds, then coBHP has superpolynomial speedup.

Proof: Given M accepting coBHP , choose N ′, x′ for M in (*), so f(t) =
TM(〈N ′, x′, 1t〉) is not polynomially bounded. We create M ′ as follows:

2The function f may depend on M , N ′, and x′. For inputs not in coBHP , M does
not accept, but otherwise its behavior is not constrained.

3Condition (*) is equivalent to the statement that there is no M deciding BHP within
time O(tf(|N,x|)). Chen and Flum [3] show that under certain complexity theoretic as-
sumptions, there is no such M for f computable.

4This definition is due to Kraj́ıček and Pudlák [4].

2

1. Input 〈N, x, 1t〉.
2. If N, x 6= N ′, x′ then run M(N, x, 1t).

3. If N, x = N ′, x′ then accept immediately.

Then M ′ <p M , so coBHP has superpolynomial speedup.

If (*) holds, then in fact all coNP -complete languages have superpolynomial
speedup:

Theorem 2.4. The following statements are equivalent: (i) at least one
coNP -complete language has superpolynomial speedup; (ii) all coNP -complete
languages have superpolynomial speedup; and (iii) there is no p-optimal propo-
sitional proof system.5

Proof: To show (i) ⇔ (ii): For coNP -complete languages L1 and L2,
suppose L1 has superpolynomial speedup and L2 does not. Let f, g be poly-
nomial time reductions from L1 to L2 and vice versa, i.e., x ∈ L1 if and
only if f(x) ∈ L2, and x ∈ L2 if and only if g(x) ∈ L1. Suppose M2 is
p-optimal for L2. Then M ′

2 = M2 ◦ f ◦ g(x) is also p-optimal for L2. Let
M1 = M2◦f . Because L1 has superpolynomial speedup by assumption, there
exists M ′

1 <p M1. That implies M ′
1 ◦ g <p M ′

2 on inputs x ∈ L2 so in fact M2

was not p-optimal, a contradiction.
For a proof of the equivalence of (ii) and (iii), see Kraj́ıček and Pudlák [4],

who show that any of the statements in the above theorem imply P 6= NP
and EXP 6= NEXP .6

It is known that the search problem for any language in NP such as
BHP does not have superpolynomial speedup, by Levin [7].7 Levin’s univer-
sal witness search algorithm dovetails every possible TM, runs any output
produced through a predetermined witness verifier, and then prints out the
first witness that is verified. However, Köbler and Messner [13] argue that
accepting SAT is likely to have superpolynomial speedup.

5A propositional proof system is a function h ∈ FP with range TAUT (Cook and
Reckhow [5]). The proof system h is p-optimal if for any other proof system f , there
exists g ∈ FP such that h(g(x))=f(x) (Kraj́ıček and Pudlák [4]).

6Although it is not known whether the converse to Theorem 2.3 holds, the final theorem
of Sadowski [6] states that if there is no p-optimal propositional proof system, then a
condition similar to (*) holds.

7See Gurevich [8], Goldreich [9], Ben-Amram [10], Messner [11], and Sadowski [12].

3

3. Unconditional Speedup for coBHP

This section proves unconditionally that coBHP has a different form of
speedup which hinges upon whether the full input is read.8 The intuition
is that it is useful for M accepting coBHP to be able to recognize that its
input begins with a non-halting N ′, x′, but no M can recognize all non-halting
N ′, x′, since coHP is not computably enumerable (c.e.).9

Def 3.1. For M and M ′ accepting a language L, write M ′ <b M if (1)
there exists an infinite subset of inputs S ⊂ L on which the runtime of
M is not bounded above by a constant but the runtime of M ′ is bounded
above by a constant, and (2) there exists a constant cS such that the runtime
disadvantage (if any) of M ′ on inputs in L − S is less than an additive
factor cS. If L has a least element M under <b, say that M is b-optimal,
and otherwise that L has i.o. b-speedup. The speedup is effective if M ′ is
computable from M .10

Lemma 3.2. For any M accepting coBHP , there is some N ′, x′ ∈ coHP
computable from M for which TM(N ′, x′, 1t) ≥ t.

Proof: Assume, by way of contradiction, that for some M and for all
N ′, x′ ∈ coHP there exists a t0 such that TM(N ′, x′, 1t0) < t0. This compu-
tation must have determined that 〈N ′, x′, 1t0〉 ∈ coBHP without reading the
entire input. In particular, it only read part of the 1t0 . Hence for all t > t0,
TM(N ′, x′, 1t) < t0. Therefore

〈N, x〉 ∈ coHP =⇒ (∃t0)[M(N, x, 1t0) accepts and TM(N, x, 1t0) < t0].

Therefore coHP is c.e., a contradiction. Because coHP is productive,
N ′, x′ for which no such t0 exists is computable from M .

8This consideration is excluded in inequality (1) by the |x| term.
9The proof below can be seen as a bounded version of the statement that every non-c.e.

language has speedup if we say that M ′ is “better” than M at accepting a language L if
M ′ correctly accepts a strictly larger subset of L than M . If L is productive, then this
speedup is effective.

10The trivial linear speedup is not b-speedup. Geffert [14] describes nontrivial linear
speedups for nondeterministic machines.

4

Theorem 3.3. coBHP and coDBHP each have b-speedup, and the speedup
is effective.11

Proof: Suppose M accepts coBHP . Compute N ′, x′ ∈ coHP for M by
Lemma 3.2. We create M ′ as follows:

1. Input 〈N, x, 1t〉 but without yet reading any of 1t.

2. If N, x 6= N ′, x′ then run M(N, x, 1t).

3. If N, x = N ′, x′ then accept immediately.

Note that there is a constant C such that, for all t, TM(N ′, x′, 1t) ≥ t and
TM ′(N ′, x′, 1t) ≤ C. Hence, coBHP has b-speedup, with S = {〈N ′, x′, 1t〉|t =
1, 2, 3 . . .}. The same proof applies to coDBHP .

4. Conclusion

We conjecture that any M which might serve as a counterexample to
widely believed complexity hypotheses could, as in Lemma 3.2, be modified
to perform tasks known to be noncomputable. In particular:

Conjecture 4.1. If there exists M ∈ P accepting a coNP -complete lan-
guage (for instance coBHP), then M can be modified to accept a language
that is not c.e. (for instance coHP).

Similarly, some suspect that integer multiplication has speedup, and it is
generally believed that integer multiplication is a one-way function. These
conjectured properties could be related to a known property of integer mul-
tiplication that apparently has never been used to prove anything about the
complexity of multiplication itself: the Presburger arithmetic without mul-
tiplication is decidable while arithmetic with multiplication is undecidable.

Conjecture 4.2. Suppose M can factor integers in polynomial time. Then
M can be modified to accept true arithmetic statements.

[1] M. Blum, A machine-independent theory of the complexity of recursive
functions, J. ACM 14 (1967) 322–36.

11There are coNP -complete languages which do not have b-speedup. For instance, a
b-optimal M for TAUT reads clause i + 1 only if the first i clauses are a tautology.

5

[2] H. Monroe, Are there natural problems with speedup?, Bulletin of the
European Association for Theoretical Computer Science 94 (2008) 212–
20.

[3] Y. Chen, J. Flum, A logic for PTIME and a parameterized halting
problem, Electronic Colloquium on Computational Complexity (ECCC)
15 (083).

[4] J. Kraj́ıček, P. Pudlák, Propositional proof systems, the consistency of
first order theories and the complexity of computations, J. Symb. Log.
54 (1989) 1063–79.

[5] S. A. Cook, R. A. Reckhow, The relative efficiency of propositional proof
systems, J. Symb. Log. 44 (1979) 36–50.

[6] Z. Sadowski, On an optimal propositional proof system and the structure
of easy subsets of TAUT, Theor. Comput. Sci. 288 (1) (2002) 181–193.

[7] L. A. Levin, Universal sequential search problems, Problems of Infor-
mation Transmission 9 (1973) 265–66.

[8] Y. Gurevich, Kolmogorov machines and related issues, Bulletin of the
European Association for Theoretical Computer Science 35 (1988) 71–
82.

[9] O. Goldreich, Foundations of Cryptography, Vol. Basic Tools, Cam-
bridge University Press, New York, NY, 2001.

[10] A. Ben-Amram, The existence of optimal programs, in: N. D. Jones
(Ed.), Computability and Complexity from a Programming Perspective,
MIT Press, Cambridge, MA, 1997.

[11] J. Messner, On optimal algorithms and optimal proof systems, Lecture
Notes in Computer Science 1563 (1999) 541–50.

[12] Z. Sadowski, On an optimal deterministic algorithm for SAT, in: G. Got-
tlob, E. Grandjean, K. Seyr (Eds.), CSL, Vol. 1584 of Lecture Notes in
Computer Science, Springer, 1998, pp. 179–187.

[13] J. Köbler, J. Messner, Is the standard proof system for SAT P-optimal?,
in: S. Kapoor, S. Prasad (Eds.), FSTTCS, Vol. 1974 of Lecture Notes
in Computer Science, Springer, 2000, pp. 361–372.

6

[14] V. Geffert, A speed-up theorem without tape compression, Theor. Com-
put. Sci. 118 (1) (1993) 49–79.

7

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

