
Speedup for Natural Problems and NoncomputabilityI

Hunter Monroe

International Monetary Fund, 700 19th St, NW, Washington, DC 20431

Abstract

A resource-bounded version of the statement “no algorithm recognizes all
non-halting Turing machines” is equivalent to an infinitely often (i.o.) super-
polynomial speedup for the time required to accept any (paddable) coNP-
complete language and also equivalent to a superpolynomial speedup in proof
length in propositional proof systems for tautologies, each of which implies
P 6= NP. This suggests a correspondence between the properties “has no
algorithm at all” and “has no best algorithm” which seems relevant to open
problems in computational and proof complexity.

Key words: Speedability, Speedup

1. Introduction

Informally, a language L has speedup if, for any Turing machine (TM)
for L, there exists one that is better. Blum [2] exhibited languages that have
almost-everywhere speedup, which are unnatural being constructed solely for
that purpose. The possibility of weaker speedups for natural languages has
received less attention [15]. Some suspect that integer multiplication and
matrix multiplication (MM) have a slight, superlinear speedup [18, 14, 3],

IThis paper is in honor of the retirement of Benjamin Klein from Davidson College. The
views expressed in this column are those of the author and should not be attributed to the
International Monetary Fund, its Executive Board, or its management. This paper could
not have been prepared without encouragement from Marius Zimand and Bill Gasarch.
This paper arose from a suggestion by Richard Beigel. I would also like to thank an
anonymous referee, Scott Aaronson, Amir Ben-Amram, Neil Christensen, Lance Fortnow,
Jörg Flum, Yijia Chen, and participants in a University of Maryland Complexity Seminar
who provided useful comments. Remaining errors are my own.

Email address: hmonroe.tcs@huntermonroe.com (Hunter Monroe)

Preprint submitted to Theoretical Computer Science April 14, 2011

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 56 (2009)

reflecting in part the large number of algorithms for these problems—about
13 and 18 respectively [1, 17]. In fact, there is no best Strassen-style bilinear
MM identity [7].

We identify an intuitive condition which, like several others in the lit-
erature, is equivalent to an infinitely often (i.o.) superpolynomial speedup
for the time required to accept any (paddable) coNP-complete language and
also equivalent to a superpolynomial speedup in proof length in propositional
proof systems for tautologies, each of which implies P 6= NP. This condition
is a resource-bounded version of the statement “no algorithm recognizes all
non-halting TMs”, suggesting a correspondence between the properties “has
no algorithm at all” and “has no best algorithm” which seems relevant to
open problems in computational and proof complexity.

2. Speedup for coNP-Complete Languages

Consider this well-known fact from computability theory:

Fact 2.1. Given any TM M accepting only “non-halting” 〈N, x〉 for which
TM N does not halt on input x, M fails to accept some particular non-halting
〈N ′, x′〉. In other words, the set of non-halting 〈N, x〉 is not computably
enumerable (c.e.).

By implication, there is a better TM M ′ that correctly accepts more non-
halting inputs than M by accepting the input 〈N ′, x′〉 and otherwise running
M . This section considers a corresponding resource-bounded statement in
complexity theory regarding N which do not halt on x within t steps.

Notation: M and M ′ will denote deterministic TMs throughout the
paper, and, henceforth, N and N ′ will denote nondeterministic TMs. De-
fine BHP = {〈N, x, 1t〉| there is at least one accepting path of nondeter-
ministic TM N on input x with t or fewer steps} and define coBHP =
{〈N, x, 1t〉|〈N, x, 1t〉 /∈ BHP}. If M is a deterministic TM, then TM is the
function that maps a string x to how many steps M(x) takes. Say that M
accepts a language L if M halts in an accepting state if and only if x ∈ L;
M may not halt on x /∈ L. Say that 〈N ′, x′〉 is non-halting if N ′ has no
accepting path on input x′, in which case Fact 2.1 continues to hold for non-
deterministic N . Note that BHP is NP-complete with the accepting path of
N on x as a certificate, and that coBHP is coNP-complete.

The following condition corresponds to Fact 2.1:

2

(*) For any M accepting coBHP, there exists some non-halting
〈N ′, x′〉 such that the function f(t) = TM(N ′, x′, 1t) is not bounded
by any polynomial.1

Supposing P 6= NP and therefore coBHP /∈ P, condition (*) rules out the
absurd possibility that some M nevertheless can accept the subset of inputs
beginning with any particular machine-input pair within a polynomial bound
(for that subset). An intuition for why this condition might hold could be a
belief that there is at least one 〈N ′, x′〉 for which M must infinitely often use
brute force to rule out all possible accepting paths of N ′ on x′ with at most
t steps.2 Under (*), coBHP has an i.o. superpolynomial speedup, defined as
follows:3

Def 2.2. For M and M ′ accepting a language L, write M ′ ≤p M if there
exists a polynomial p such that for all inputs x ∈ L,

TM ′(x) ≤ p(|x|, TM(x)). (1)

If M ′ ≤p M but it is not the case that M ≤p M ′, write M ′ <p M . If L has a
least element M under <p, say that M is p-optimal [12] and otherwise that
L has (i.o.) superpolynomial speedup.

It is shown below that (*) is equivalent to a superpolynomial speedup for
coBHP. This conclusion is significant, as superpolynomial speedup for accept-
ing a particular (paddable) coNP-complete language is in fact equivalent to
superpolynomial speedup for accepting any (paddable) coNP-complete lan-
guage.4 Furthermore, it is also equivalent to a superpolynomial speedup for

1The function f may depend on M , N ′, and x′. For inputs not in coBHP, M does not
accept, but otherwise its behavior is not constrained.

2Condition (*) is equivalent to the statement that there is no M deciding BHP within
time O(tf(|N,x|)). Chen and Flum [4] show that under certain complexity theoretic as-
sumptions, there is no such M for f computable.

3By contrast, Hirsch and Itsykson [9] exhibit a p-optimal heuristic randomized algo-
rithm for accepting the set of tautologies (TAUT), where the algorithm is allowed to accept
non-tautologies erroneously with bounded probability. Levin [13] exhibits a p-optimal wit-
ness search algorithm for any language in NP. Levin’s algorithm dovetails every possible
TM, runs any output produced through a predetermined witness verifier, and then prints
out the first witness that is verified. However, even though SAT ∈ NP, Köbler and Messner
[11] argue that accepting SAT is likely to have superpolynomial speedup.

4All known coNP-complete languages are paddable.

3

proof length in propositional proof systems for the set of tautologies (TAUT)
[12], defined as follows. A propositional proof system is a function h ∈ FP
with range TAUT [6]. The proof system h is p-optimal if for any other proof
system f , there exists g ∈ FP such that h(g(x)) = f(x) [12]. Thus, (*) holds
iff there is no p-optimal propositional proof system, so propositional proof
systems have a superpolynomial speedup for proof length.

Theorem 2.3. The condition (*) holds if and only if coBHP has superpoly-
nomial speedup.

Proof: ⇒ Suppose condition (*) holds. Given M accepting coBHP, choose
N ′, x′ for M in (*), so f(t) = TM(〈N ′, x′, 1t〉) is not polynomially bounded.
We create M ′ as follows:

1. Input 〈N, x, 1t〉.
2. If 〈N, x〉 6= 〈N ′, x′〉 then run M(〈N, x, 1t〉).
3. If 〈N, x〉 = 〈N ′, x′〉 then accept immediately.

Then M ′ <p M , so coBHP has superpolynomial speedup.
⇐ The converse follows from results of Chen and Flum;5 an anonymous

referee proposed the following more direct argument. If (*) does not hold,
it will be shown that there is a TM Mopt which is p-optimal for coBHP. The
strategy employed by this machine is to enumerate and simulate a limited
number of TMs Mi on the input of Mopt and accept if any Mi accepts, after
verifying that this Mi accepts correctly. Crucial to the strategy are: (1)
the existence of a nondeterministic machine Nc which is used to verify that
Mi accepts correctly, and (2) the existence if (*) fails of an M∗ which can
efficiently simulate Nc.

Assume that (*) does not hold. That is, there exists some deterministic
machine M∗ for coBHP such that for any non-halting 〈N ′, x′〉, there exists
some polynomial pN ′,x′ such that M∗ accepts 〈N ′, x′, 1t〉 in at most pN ′,x′(t)
steps for all t. Assume some enumeration M1,M2, . . . of deterministic ma-
chines and assume that the first machine M1 in the enumeration is a standard
2cn-time machine accepting coBHP by brute force. Consider the following de-
terministic machine Mopt:

5If (*) does not hold, then coBHP ∈ XPuni, where a parameterized problem (Q, κ) is in
XPuni if there is an M deciding x ∈ Q in time |x|f(κ(x)) (for coBHP, 〈N, x〉 is the parameter
κ). In that case, there is a p-optimal M accepting any coNP-complete language, including
coBHP ([5] Theorem 8 and Lemma 18).

4

1. Input y = 〈N, x, 1t〉 for the coBHP problem (let n = |y|);
2. For each τ = n, n + 1, . . ., run all machines M1, . . . ,Mn on y within τ

steps:
If M1 terminates and accepts y, then accept y and halt;
If some Mi accepts y, then accept y and halt after verifying that:

(**) There is no instance of BHP of length ≤ τ such that Mi

wrongly accepts it in τ steps.

Clearly Mopt accepts coBHP and otherwise does not halt.
The key idea is to reduce the problem of checking (**) to some halting

problem in coBHP. Consider the execution of the following nondeterministic
machine Nc:

1. Input x′ = Mi;

2. For each τ ′ = 1, 2, . . .,
Guess z (= 〈N, x, 1t〉) of length ≤ τ ′ and w in {0, 1}τ ′ ;
If Mi accepts z within τ ′ steps and w witnesses z in BHP, then accept
x′ and halt.

Then 〈Nc,Mi〉 is non-halting if Mi accepts coBHP. Furthermore, there is a
polynomial pc(τ) (≈ τ(τ − 1)/2) independent from x′ = Mi such that:

1. If Nc on Mi does not halt in pc(τ) steps (i.e., Nc on Mi has no accepting
path of length ≤ pc(τ)), then (**), and

2. Nc on Mi does not halt in pc(τ) steps iff M∗ accepts 〈Nc,Mi, 1
pc(τ)〉 in

pNc,Mi
(pc(τ)) steps.

Thus, by running M∗ on 〈Nc,Mi, 1
pc(τ)〉, we can guarantee (**) (if it is

indeed possible) in p(τ) steps for some polynomial determined by Mi.
Then the running time of Mopt satisfies condition (1) of Def. 2.2, which

contradicts that coBHP has superpolynomial speedup.

Interestingly, each problem identified by Chen and Flum [5] as having the
same complexity as coBHP under fixed parameter tractable reductions, such
as the set of arithmetic statements φ with no proof of fewer than t steps, is
also the resource-bounded version of a non-c.e. language.

5

3. Conclusion

Their result and the parallel between Fact 2.1 and condition (*) suggest a
correspondence between known facts in computability theory and hypotheses
in complexity theory. As another example, Gödel demonstrated speedup
in the length of proofs of arithmetic statements [8], and a corresponding
conjecture in proof complexity is that there is speedup in the length of proofs
of tautologies (no p-optimal propositional proof system).

This correspondence serves several purposes. First, it suggests state-
ments such as (*) which are interesting in themselves. Second, the correspon-
dence may be interpreted as (weak) evidence that there are superpolynomial
speedups for accepting coNP-complete languages and for proof length for
propositional proof systems as has been conjectured [12]. Finally, we suspect
that the validity of the corresponding statements such as Fact 2.1 and (*)
are closely linked.6 Resource-bounded versions of noncomputable problems
may misbehave by failing to have an optimal algorithm or proof system,
just as their noncomputable counterparts misbehave by failing to have any
algorithm or proof system at all.

To pursue this linkage, we can define a version of (*) which like Fact
2.1 is constructive. For M accepting coBHP, let E be the set of non-halting
〈N, x〉 for which f(t) is polynomially bounded. Suppose there is an ME which
accepts E. Then a constructive version of (*) is:7

Conjecture 3.1. The 〈N ′, x′〉 for ME predicted by Fact 2.1 satisfies (*) for
M .

The condition (*) was motivated by our suspicion that the existence of a
polynomial time M accepting coBHP would violate the information constraint
imposed by the noncomputability of the halting problem. More precisely:

6Fact 2.1 implies a very weak, model dependent speedup for coBHP (for details see
[16]). For M accepting coBHP, let SM be the set of non-halting 〈N, x〉 such that M
accepts 〈N, x, 1∞〉 in finite time, where the encoding is such that M does not necessarily
read the full input. By Fact 2.1, SM does not include some non-halting 〈N ′, x′〉. Then for
any M , there exists M ′ such that SM ′ = SM ∪ {〈N ′, x′〉} is a strictly larger set than SM .
This M ′ avoids reading the full input in more cases than does M . This line of argument
also holds for coBHP with N deterministic, and does not hinge on the fact that coBHP is
NP-complete.

7Joseph and Young [10] and Wang [19] define p-productive languages where the pro-
ductive function yields a single problematic input, whereas in Conjecture 3.1 an infinite
family of inputs is produced.

6

Conjecture 3.2. If there exists M ∈ P accepting coBHP, then M can be
modified to accept all non-halting 〈N, x〉.

More broadly, we wonder whether the obstacle to the existence of a TM M
which acts contrary to various widely believed complexity hypotheses is that
M could be modified to perform a related task known to be noncomputable.
For instance, it is curious that arithmetic is undecidable only if it incorporates
multiplication, and that this fact has not been used to say anything about
the complexity of integer multiplication (which may have a slight speedup)
or the inverse operation of factorization.

References

[1] D. Bernstein, Multidigit multiplication for mathematicians, mimeo-
graph, http://cr.yp.to/papers/m3.pdf (2001).

[2] M. Blum, A machine-independent theory of the complexity of recursive
functions, J. ACM 14 (1967) 322–36.

[3] M. Blum, 2007. Private communication.

[4] Y. Chen, J. Flum, A logic for PTIME and a parameterized halting
problem, in: LICS ’09: Proceedings of the 2009 24th Annual IEEE
Symposium on Logic In Computer Science, IEEE Computer Society,
Washington, DC, USA, 2009, pp. 397–406.

[5] Y. Chen, J. Flum, On slicewise monotone parameterized problems and
optimal proof systems for TAUT, in: A. Dawar, H. Veith (Eds.), Com-
puter Science Logic, volume 6247 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2010, pp. 200–214.

[6] S.A. Cook, R.A. Reckhow, The relative efficiency of propositional proof
systems, J. Symb. Log. 44 (1979) 36–50.

[7] D. Coppersmith, S. Winograd, On the asymptotic complexity of matrix
multiplication, SIAM J. Comput. 11 (1982) 472–92.

[8] K. Gödel, Uber die lange von beweisen, Ergebnisse eines Mathematis-
chen Kolloquiums 7 (1936) 23–24.

7

[9] E.A. Hirsch, D. Itsykson, On optimal heuristic randomized semideci-
sion procedures, with application to proof complexity, in: J.Y. Marion,
T. Schwentick (Eds.), STACS, volume 5 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010, pp. 453–464.

[10] D. Joseph, P. Young, Some remarks on witness functions for nonpoly-
nomial and noncomplete sets in NP, Theor. Comput. Sci. 39 (1985)
225–237.

[11] J. Köbler, J. Messner, Is the standard proof system for SAT P-optimal?,
in: S. Kapoor, S. Prasad (Eds.), FSTTCS, volume 1974 of Lecture Notes
in Computer Science, Springer, 2000, pp. 361–372.

[12] J. Kraj́ıček, P. Pudlák, Propositional proof systems, the consistency of
first order theories and the complexity of computations, J. Symb. Log.
54 (1989) 1063–79.

[13] L.A. Levin, Universal sequential search problems, Problems of Informa-
tion Transmission 9 (1973) 265–66.

[14] A.R. Meyer, P.C. Fischer, Computational speed-up by effective opera-
tors, J. Symb. Log. 37 (1972) 55–68.

[15] H. Monroe, Are there natural problems with speedup?, Bulletin of the
European Association for Theoretical Computer Science 94 (2008) 212–
20.

[16] H. Monroe, Speedup for natural problems and coNP?=NP, Electronic
Colloquium on Computational Complexity (ECCC) (2009).

[17] V. Pan, How to Multiply Matrices Faster, Springer-Verlag, New York,
NY, 1984.

[18] C.P. Schnorr, G. Stumpf, A characterization of complexity sequences,
Zeitschr. für Math. Logik und Grundlagen der Mathematik 21 (1975)
47–56.

[19] J. Wang, P-productivity and polynominal time approximations, in:
Structure in Complexity Theory Conference (1990), pp. 254–265.

8

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

