
Are stable instances easy?

Yonatan Bilu∗

Mobileye Vision Technologies Ltd.
12 Hartom Street, PO Box 45157

Jerusalem, 91450 Israel.
yonatan.bilu@mobileye.com

Nathan Linial∗

Institute of Computer Science
Hebrew University

Jerusalem 91904, Israel.
nati@cs.huji.ac.il

November 23, 2008

Abstract

We introduce the notion of a stable instance for a discrete optimization problem, and argue that
in many practical situations only sufficiently stable instances are of interest. The question then arises
whether stable instances of NP–hard problems are easier to solve. In particular, whether there exist
algorithms that solve correctly and in polynomial time all sufficiently stable instances of some NP–hard
problem. The paper focuses on the Max–Cut problem, for whichwe show that this is indeed the case.

1 Introduction

Computational complexity theory as we know it today is concerned mostly with worst-case analysis of
computational problems. For example, we say that a problem is NP-hard if the existence of an algorithm
that correctly decidesevery instance of the problem implies that SAT can be decided in a polynomially
equivalent time complexity. However, the study of decisionand optimization problems is motivated not
merely by theoretical considerations. Much of our interestin such problems arises because they formalize
certain real-world tasks. From this perspective, we are notinterested inall problem instances, but only in
those which can actually occur in reality.

This is often the case with clustering problems, which are ubiquitous in most fields of engineering, exper-
imental and applied science. Any concrete formulation of the clustering problem is likely to be NP-hard.
However this does not preclude the possibility that the problem can be solved efficiently in practice. In fact,
in numerous application areas, large-scale clustering problems are solved on a regular basis. As mentioned
above, we are only interested in instances where the data is actually made up of fairly well-defined clusters
- the instances where solving the problem is interesting from the practical perspective.

Put differently, the usual way for proving that clustering is NP-hard is by a reduction to, say, SAT. This
reduction entails the construction of instances for the clustering problem, such that the existence of an
algorithm that can solve all of them efficiently implies the existence of an algorithm that efficiently solves
SAT. However, it may well be the case that all these instancesare clearly artificial, and solving them is of no
practical interest.

∗This research is supported by grants from the binational Science Foundation Israel-US and the Israel Science Foundation.

1

As a concrete example, consider the problem of clustering protein sequences into families. Out of the
enormous space of all possible sequences, only a tiny fraction is encountered in nature, and it is only about
these (or slight modifications thereof) that we actually care.

Our case in point is the Max-Cut problem, which can be thoughtof as a clustering into two clusters. It is
well known that this problem is NP-complete, and so it is believed that there is no algorithm that solves
it correctly onall graphs, in polynomial time. In this work we strive to identify properties of instances of
the Max-Cut problem (i.e., of weighted graphs), which capture the notion that the input has a well-defined
structure w.r.t Max-Cut (i.e., the maximal cut “stands out”among all possible cuts). Our goal is to show that
Max-Cut can be solved efficiently on inputs that have such properties.

Consideration of a similar spirit have led to the development of Smoothed Analysisinitiated in [15], (see
[16] for some of the exciting developments in that area. The similarity has two main facets: (i) Both lines of
research attempt to investigate the computational complexity of problems from a non-worst-case perspective,
(ii) Both are investigations of thegeometryof the instance space of the problem under consideration. The
goal being to discover interesting parts of this space in which the instances have complexity lower than the
worst case. Viewed from this geometric perspective, the set-up that we study here is very different than
what is done in the theory of smoothed analysis. There one shows that the hard instances form a discrete
and isolated subset of the input space. Consequently, for every instance of the problem, a small random
perturbation is very likely to have low computational complexity. In the problems that we study here the
situation is radically different. The “interesting” instances (stableinstances as we shall call them) are very
rare. Indeed, it is not hard to show that under reasonable models of random instances the probability that
a random instance be stable is zero, or at least tends to zero as the problem size grows. What we wish to
accomplish is to efficiently solveall instances within this subspace. We claim that this tiny set is interesting
because it includes all realistic clustering problems.

The notion ofstability is central to our work. This is a concrete way to formalize thenotion that the
only instances of interest are those for which small perturbation in the data (which may reflect e.g. some
measurement errors) do not change the optimal partition of the graph.

Definition 1.1. Let W be ann × n symmetric, non-negative matrix. Aγ-perturbationof W , for γ ≥ 1, is
ann × n matrixW ′ such that∀i, j = 1, . . . , n, Wi,j ≤ W ′

i,j ≤ γ · Wi,j.
Let (S, [n]\S) be a maximal cut ofW , i.e. a partition that maximizes

∑

i∈S,j /∈S Wi,j. The instanceW (of
the Max-Cut problem) is said to beγ-stable, if for everyγ-perturbationW ′ of W , (S, [n]\S) is the unique
maximal cut ofW ′.

This definition, by itself, proves not to be strong enough to make Max-Cut tractable. Indeed, consider
two bipartite graphs which are join togther by a single edge.The resulting graph isγ-stable for allγ, but
the alignment of the two bipratite graphs with respect to oneanother completely depends on the adjoining
edge. Hence, it is reasonable to demand, in addition to stability, that the graph contains no small cuts. The
combination of these two requirements indeed allows solving Max-Cut efficiently (Example 4.3).

In section 3 we present an algorithm that solves correctly and in polynomial timeγ-stable instances of Max-
Cut: (i) On simple graphs of minimal degreeδ, whenγ > 2n

δ , and (ii) On weighted graphs of maximal
degree∆ when γ >

√
∆n. In section 4 we explore several spectral conditions which make Max-Cut

amenable on stable instances. This involves analyzing thespectral partitioningheuristic for Max-Cut. In
particular, we show that Max-Cut can be solved efficiently on(locally) stable expander graphs, and on
graphs where the solution is sufficiently distinct from all other cuts. We conclude by deducing an improved
approximation bound for the Goemans-Williamson algorithmon stable instances, and by showing that Max-
Cut is easy in a certain random model for such instances.

2

Finally, we should mention that this is just a first step. In particular, it is of great interest to study more
permissive notions of stability where a small perturbationcan slightly modify the optimal solution. There
are also other natural ways to capture the concept of stability. Similar considerations can be applied to many
other optimization problems. Some of these possibilities are briefly discussed below, but these questions are
mostly left for future investigations.

2 Preliminaries

2.1 Notation

Throughout the paper we denote the vertex set of the graphG under discussion by[n]. A vectorv ∈ R
n

induces the partition of[n] into the sets.({i : vi > 0}, {i : vi ≤ 0}). Viewed as a partition ofG’s vertex
set, we call it thecut induced byv in G.

The indicator vectorof a partition(S, S̄) of [n] (or a cut inG), is the vectorv ∈ {−1, 1}n, with vi = 1 iff
i ∈ S.
For a weighted graphG, we denote the indicator vector of its maximal cut bymc∗. We generally assume
that this cut is unique, otherwisemc∗ is an indicator of some maximal cut.

For a subsetA ⊂ [n], we denoteĀ = [n]\A.

For two disjoint subsets of vertices in the graph,A,B, we denote byE(A,B) the set of edges going between
them, andw(A,B) =

∑

(i,j)∈E(A,B) Wi,j. With a slight abuse of notation, we denotew(i) =
∑

j Wi,j.
Finally, for a set of edgesF ⊂ E, denotew(F) =

∑

(i,j)∈F Wi,j.

We switch freely between talking about the graph and about its associated weight matrix. Given a symmetric
nonnegativen × n matrix W with zero trace (as input to the max cut problem), we define itssupportas a
graphG = (V,E) with vertex setV = [n] where(i, j) ∈ E iff wij > 0.

2.2 Properties and equivalent definitions

A useful way to think ofγ-stability is as a game between two (computationally unbounded) players, Measure
and Noise: Given a graphG, Measure chooses a cut(S, S̄). Noise then multiplies weights of his choice
by factors between1 andγ, obtaining a graphG′ (over the same vertex and edge sets, but with possibly
different weights). He then chooses a different cut,(T, T̄). Noise wins if inG′ w(T, T̄) > w(S, S̄).
Otherwise, Measure wins. A graph isγ-stable if Measure has a winning strategy.

Observe that the players’ strategy is clear: Measure chooses the maximal cut, and Noise , w.l.o.g., multiplies
by γ the weights of the edges inE(T, T̄)\E(S, S̄). Multiplying weights of other edges either does not
changew(T, T̄) − w(S, S̄), or decreases it. Hence, we arrive at an equivalent definition for γ-stability is:

Proposition 2.1. Let γ ≥ 1. A graphG graph with maximal cut(S, S̄) is γ-stable (w.r.t. Max-Cut) if for
every vertex setT 6= S, S̄,

w(E(S, S̄)\E(T, T̄)) > γ · w(E(T, T̄)\E(S, S̄)).

This view of stability suggests howγ-stable graphs can be generated: LetG′ be aγ′-stable graph. Multiply-
ing the weights of all the edges in the maximum cut byγ

γ′ yields aγ-stable graphG. Moreover, it is not hard
to see that allγ-stable graphs can be obtained this way. In other words, in the following random process

3

everyγ-stable graph onn vertices has a positive probability: Generate a random graph onn vertices, say
according toG(n, p) (for somep 6= 0, 1); Find the maximal cut and its stabilityγ′. Multiply all cut edges
by γ

γ′ . Note, however, that in this naive model the maximal cut can be easily identified by simply examining
edge weights - those of weightγγ′ are the cut edges.

One pleasing aspect ofγ-stability is that it isoblivious to scale- multiplying all weights in a graph by a
constant factor does not change its stability. This can be readily seen from Proposition 2.1. It may seem
natural to defineγ two-way stability as robustness to perturbation by a multiplicative factor between1γ and
γ (so called, two-way perturbation). But obliviousness to scale easily implies that a graph isγ two-way
stable iff it isγ2-stable.

It is also natural to consider a solution as “interesting” ifit stands out among all the alternatives. Let(S, S̄)
be a maximal cut in a graphG, and consider an alternative cut,(T, T̄). Consider the setE(S, S̄)∆E(T, T̄)
of those edges on which the two cuts “disagree”. We seek to measure the difference between the cuts(S, S̄)
and(T, T̄) relative to the size ofw(E(S, S̄)∆E(T, T̄)). So say that(S, S̄) is α edge distinct(with α > 0),
if for any T ⊂ V ,

w(S, S̄) − w(T, T̄) > α · w(E(S, S̄)∆E(T, T̄)).

Now, denoteWT = w(E(T, T̄)\E(S, S̄)) andWS = w(E(S, S̄)\E(T, T̄)). If G is α edge distinct then

WS − WT = w(S, S̄) − w(T, T̄) > α · w(E(S, S̄)∆E(T, T̄)) = α · (WS + WT).

Hence,WS ≥ α
1−αWT , and by Proposition 2.1G is 1+α

1−α -stable. Similarly, ifG is γ-stable, then it isγ−1
γ+1

edge distinct.

2.3 Variations on a theme

We shall also be interested in a weaker version of stability,which proves useful for some of the results in
sequel:

Definition 2.1. Let W be an instance of the Max-Cut problem and let(S, S̄) be its optimal partition. We
say thatW is γ-locally stableif for all v ∈ S

γ ·
∑

u∈S

Wu,v <
∑

u∈S̄

Wu,v,

and for all v ∈ S̄

γ ·
∑

u∈S̄

Wu,v <
∑

u∈S

Wu,v,

Observe that everyγ-stable graph is alsoγ-locally stable - this follows from Definition 2.1, withT being a
single vertex.

It is essentially known that Max-Cut is NP-hard even when restricted toγ-locally stable instances (forγ at
most exponential in the size of the input) [13]1. In fact, one can impose local stability, without altering the

1The NP-completeness of Max-Cut can be shown by a reduction from3-Not-all-equal SAT: Construct a graph over the formula’s
literals, and for every3-clause define three edges (a triangle) connecting the clause’s literals. It is not hard to see that the formula
is satisfyable iff the graph’s Max-Cut’s value is twice the number of clauses. It is also not hard to see that if this is indeed the case,
the cut is2-locally stable. Furthermore, by adding edges between a literal and its negation, the structure of the Max-Cut does not
change, and local stability increases.

4

overall stability: LetG be a graph with weighted adjacency matrixW . Let G× be a graph onV × {0, 1},
with weighted adjacency matrix:

G× =

(

W τ · w(i) · I
τ · w(i) · I W

)

(for someτ ≥ 1.)
It is not hard to see that the maximal cut inG× consists of two copies of that inG. Specifically,(S, S̄) is a
maximal cut inG iff (S × {0} ∪ S̄ × {1}, S × {1} ∪ S̄ × {0}) is a maximal cut inG×.
It is also not hard to see thatG is γ-stable, iffG× is, and thatG× is at least2τ -locally stable.

The definition of stability via edge distinctness formalizes the notion that in instances of interest, the Max-
Cut should be distinctly better than all other cuts. Clearly, cuts which differ only slightly from the maximum
one in structure can only differ slightly in value, so the difference in value should be quantified in terms of
of the distance between the cuts.

Definition 2.2. Let (S, S̄) be a cut in a (weighted) graphG = (V,E) andk > 0. We say that this cut is
k-distinct if for any cut(T, T̄),

w(e(S, S̄)) − w(e(T, T̄) ≥ k min{|S∆T |, |S∆T̄ |}.

We say that a graph is(k, γ)-distinct (w.r.t. Max-Cut) if its maximal cut isk-distinct andγ-locally stable.

In example 4.4 we show that Max-Cut can be solved on(k, γ)-distinct instance whenk andγ are sufficiently
large.

3 Combinatorial approach

One approach in solving a Max-Cut problem is to identify a pair of vertices which must to be on the same
side of the optional cut (e.g. in a simple graph, two verticeswith the same neighborhood). Two such vertices
can be safely merged into a single vertex - keeping multiple edges. If this can be repeated until a bipartite
graph is obtained, then the problem is solved.

Observe that ifG is aγ-stable graph, andi, j are two vertices on the same side of the maximal cut, then
the graphG′, obtained fromG by mergingi andj into a single vertexi′, is γ-stable as well. Indeed, any
γ-perturbation ofG′ induces aγ-perturbation ofG over the same edges. If as a result of this perturbation the
maximal cut changes inG′, then this new cut is also maximal in the similarly perturbedG, since it contains
the same edges (in contradiction withG beingγ-stable).

This observation implicitly guides the first algorithm presented below. In it we identify pairs of vertices
which are on opposite sides of the maximal cut. By continuingto do so, we grow bigger and bigger con-
nected bipartite subgraphs, until they all connect. In the second algorithm we explicitly merge together
vertices on the same side as long as we know how to, and then, once we have a much smaller graph, use the
first algorithm.

3.1 An efficient algorithm for n-stable instances

We start by describing an algorithm, that solves the Max-Cutproblem on (weighted) graphs of maximal
degree∆ which are

√
∆n-stable. The idea is to iteratively identify sets of edges which belong to the

maximal cut. When they form a connected spanning bipartite graph, the maximal cut is found.

5

FindMaxCut(G) (G is a weighted graph)

1. InitializeT = (V (G), ∅). Throughout the algorithmT will be a bipartite subgraph ofG.

2. WhileT is not connected, do:

(a) LetC1, . . . , Ct be the connected components ofT . Each of them is a bipartite graph,
with vertex bipartitionV (Ci) = (Li, Ri).

(b) Let Ci∗ be a component with the least number of vertices. For eachj = 1, . . . , t,
j 6= i∗, let E0

j = E(Li∗ , Lj) ∪ E(Ri∗ , Rj) andE1
j = E(Li∗ , Rj) ∪ E(Ri∗ , Lj).

Let j∗ andc∗ be such that the weight ofEc∗

j∗ is the largest among allEc
j .

(c) Add the edges ofEc∗

j∗ to T

3. Output the cut defined by the two sides ofT .

Theorem 3.1.There is an algorithm that solves correctly and in polynomial time every instance of weighted
Max-Cut that isγ-stable for everyγ >

√
∆n. Here an instance is ann-vertex graph of maximal degree∆.

Proof: We will show that the above algorithm is well defined, and outputs the correct solution on
√

n∆-
stable instances of Max-Cut. Let(S, S̄) be the maximal cut. We maintain that throughout the algorithm, S
separateseach connected componentCi = (Li, Ri). Namely, eitherLi ⊂ S, Ri ⊂ V \S or Ri ⊂ S, Li ⊂
V \S.
This clearly holds at the outset. If it holds at termination,the algorithm works correctly. So consider the
first iteration when this does not hold. LetCi∗ be a smallest connected component at this stage, and denote
k = |Ci∗ |. Up to this point our assumption holds, so sayLi∗ ⊂ S andRi∗ ∩ S = ∅. Let j∗ and c∗

be those chosen as in step 2b. Since this is the point where thealgorithm errs,Ec∗
j∗ is added toT , yet

Ec∗
j∗ ∩ E(S, S̄) = ∅.

Now consider theγ-perturbation of the graph obtained by multiplying the edges inEc∗
j∗ by γ. If the original

graph isγ-stable, the maximal cut of the perturbed graph is(S, S̄) as well. Consider the cut obtained by
flipping the sides ofLi∗ andRi∗ . That is, denoteZ = S\Li∗ ∪ Ri∗ , and consider the cut(Z, Z̄).
The cut(Z, Z̄) contains the edgesEc∗

j∗ , which (S, S̄) does not. For eachj 6= j∗, let cj be such thatE
cj

j is in
the cut(S, S̄) (we’ll be interested only in non-empty subsets). In the extreme case, all these edges are not
in the cut(Z, Z̄). Observe that all other edges inE(S, S̄) are also inE(Z, Z̄).
DefineJ = {j 6= i : E

cj

j 6= ∅}. Since the weight of(Z, Z̄), even in the perturbed graph, is smaller than that
of (S, S̄), we have that:

γ · w(Ec∗

j∗) <
∑

j∈J

w(E
cj

j).

(The l.h.s. is a lower bound on what we gain when we switch fromS to Z, and the r.h.s. is an upper
bound on the loss.) Recall thatEc∗

j∗ was chosen to be the set of edges with the largest total weight. Hence,
∑

j∈J w(E
cj

j) ≤ |J |w(Ec∗
j∗), and soγ < |J |. Clearly,|J | ≤ min{n

k , k∆}, and so:

γ2 <
n

k
k∆ = n∆.

This is a contradiction to the assumption that the input is
√

n∆-stable.

Note that we have actually proven that the algorithm works aslong as it can find a connected component
Ci∗ , such that|{j : Ec

j 6= ∅}| < γ, for c = 0, 1.

The concept of stability clearly applies to other combinatorial optimization problems. Similarly, the al-
gorithm above can be adjusted to solve highly stable instances of other problems. For example, a similar
algorithm finds the optimal solution to (weighted)

√
n∆-stable instances of the Multi-way Cut problem, and

6

∆-stable instances of the Vertex Cover problem (where againn is the number of vertices in the graph, and
∆ the maximal degree).

3.2 An efficient algorithm for simple graphs of high minimal degree

A complementary approach is useful when the graph is unweighted, and of high minimal degree. Suppose
a γ-stable graph, for some big (but bounded)γ has minimal degreen/2. Then by local stability each side
in the maximal cut must be of size nearlyn/2, and the neighborhoods of any two vertices on the same side
have most of their vertices in common. Thus we can easily cluster together the vertices into the two sides
of the maximal cut. Even when the minimal degree is lower, we can use the same scheme to obtain several
clusters of vertices which are certain to be on the same side,and then use the algorithm from the previous
subsection to find the maximal cut.

Theorem 3.2. There is an algorithm that solves correctly and in polynomial time every instance of un-
weighted Max-Cut that isγ-stable for everyγ ≥ 2n

δ . Here an instance is ann-vertex graphG = (V,E) of
minimal degreeδ. Furthermore, ifδ = Ω(n

log n), thenγ-local stability suffices.

It clearly suffices to considerγ = 2n
δ . Let Ni ⊂ V be the neighbor set of vertexi anddi = |Ni|. Define

H to be a graph onV with i, j adjacent if|Ni ∩ Nj | >
min{di,dj}

γ+1 . SinceG is in particularγ-locally stable,

every vertexi has at most di

γ+1 of its neighbors on its own side of the maximal cut. Hence, thevertices of
each connected component ofH must be on the same side of the maximal cut.

Let c be the number of connected components inH and letU ⊂ V be a set ofc vertices, with exactly one
vertex from each of these connected components. Let the degrees of the vertices inU bedi1 ≤ di2 ≤ . . . ≤
dic . For anyu, v ∈ U we have that|Nu ∩ Nv| ≤ min{du,dv}

γ+1 . We claim thatc < γ. If this is not the case, let
us apply the inclusion-exclusion formula and conclude:

|
γ

⋃

1

Ni| ≥
γ

∑

j=1

(dij −
j−1
∑

k=1

dik

γ + 1
) =

γ
∑

j=1

dij (1 − 1

γ + 1

j−1
∑

k=1

dik

dij

) ≥
γ

∑

j=1

dij (1 − j − 1

γ + 1
)

since, by assumptiondik ≤ dij for k < j. Also, dij ≥ δ for all j, and clearly|⋃γ
1 Ni| < n. Therefore,

n > |
γ
⋃

1

Ni| ≥ δ

γ
∑

j=1

(1 − j − 1

γ + 1
) = δ(γ − γ(γ − 1)

2(γ + 1)
) ≥ γδ

2

a contradiction which impliesc < γ.

Now consider the graphG′ obtained fromG by contracting all vertices in eachCi into a single vertex,
keeping multiple edges. By our previous observation,G′ has the same max-cut value asG. Consequently,
as discussed at the beginning of this section, the graphG′ is γ-stable. It follows thatG′ is a weighted graph
whose stability exceeds its number of vertices. By Theorem 3.1, the optimal cut inG′ (and hence inG) can
be found in polynomial time, as claimed.

It is also worth mentioning that ifδ = Ω(n
log n) thenγ is O(log n), and we can find the maximal cut inG′

by going over all cuts. Moreover, in this case it suffices to assume thatG is γ-locally stable.

7

4 A spectral approach

4.1 Definitions

Spectral partitioningis a general name for a number of heuristic methods for various graph partitioning
problems which are popular in several application areas. The common theme is to consider an appropriate
eigenvector of a possibly weighted adjacency matrix of the graph in question, and partition the vertices
according to the corresponding entries. Why is it at least conceivable that such an approach should yield a
good solution for Max-Cut? The Max-Cut problem can can clearly be formulated as:

min
y∈{−1,1}n

∑

(i,j)∈E

Wi,jyiyj.

The Goemans-Williamson algorithm [7] works by solving an SDP relaxation of the problem. In other words,
where as above we multiply the matrixW by a rank1 PSD matrix, in the SDP relaxation, we multiply it be
a PSD matrix of rank (at most)n. Let us consider instead the relaxation of the conditiony ∈ {−1, 1}n, to
y ∈ R

n, ||y||2 = n. The resulting problem is well-known: By the variational characterization of eigenvalues,
this relaxation amounts to finding the eigenvector corresponding to the least eigenvalue ofW . Letu be such
a vector. This suggests aspectral partitioning ofW that is the partition of[n] induced byu.
We also consider what we callextended spectral partitioning: Let D be a diagonal matrix. Think ofW + D
as the weighted adjacency matrix of a graph, with loops added. Such loops do not change the weight of any
cut, so that regardless of whatD we choose, a cut is maximal inW iff it is maximal in W +D. Furthermore,
it is not hard to see thatW is γ-stable, iffW + D is. Our approach is to first find a “good”D, and then take
the spectral partitioning ofW +D as the maximal cut. These observations suggest the following question: Is
it true that for everyγ-stable instanceW with γ large enough there exists a diagonalD for which extended
spectral partitioning solves Max-Cut? If so, can such aD be found efficiently? Below we present certain
sufficient conditions for these statements.

4.2 Spectral partitions of stable instances

The input to the max cut problem is a symmetric nonnegativen× n matrixW with zero trace. Thesupport
of W is a graphG = (V,E) with vertex setV = [n] where(i, j) ∈ E iff wij > 0.

Lemma 4.1. Let W be aγ-stable instance of Max-Cut with supportG = (V,E). Let D be a diagonal

matrix, andu an eigenvector corresponding to the least eigenvalue ofW + D. If γ ≥ max(i,j)∈E |uiuj |
min(i,j)∈E |uiuj | , then

the spectral partitioning induced byW + D yields the maximal cut.

Proof: As noted above, for any diagonal matrixD, the problems of finding a maximal cutW + D and in
W are equivalent. Normalizeu so thatmin(i,j)∈E |ui · uj | = 1. (If u has any0 coordinates, the statement
of the lemma is meaningless). LetD′ be the diagonal matrixD′

i,i = Di,i · u2
i . Let W ′ be the matrix

W ′
i,j = Wi,j · |uiuj|. Observe thatW ′ is a γ-perturbation ofW , hence the maximal cut inW ′ (and in

W ′ + D′), is the same as inW . In other words,mc∗ is a vector that minimizes the expression:

min
x∈{−1,1}n

x(W ′ + D′)x.

Also, the vectoru minimizes the expression

min
y∈R

n
(
∑

i,j

Wi,jyiyj +
∑

i

Di,iy
2
i)/||y||2.

8

Think of u as being revealed in two steps. First, the absolute value of each coordinate is revealed, and then,
in the second step, its sign. Thus, in the second step we are looking for a sign vectorx that minimizes the
expression:

(
∑

i,j

Wi,j · |ui|xi · |uj |xj +
∑

i

Di,iu
2
i)/||u||2.

Clearly,mc∗ is such a vector. Since the input is stable, the optimal cut isunique, and somc∗ and−mc∗ are
the only such vectors. Hence, the partition they induce is the same as that induced byu.

Note 4.1. A more careful analysis shows a somewhat stronger result. Itsuffices that

γ ≥
max(i,j)∈E : uiuj<0 −uiuj

min(i,j)∈E : uiuj≥0 uiuj
.

4.3 A sufficient condition for extended spectral partitioning

Lemma 4.2. Let W be a γ-stable instance of Max-Cut, forγ > 1, and letD be the diagonal matrix
Di,i = mc∗i

∑

j Wi,jmc∗j . If W + D is positive semi-definite, then extended spectral partitioning solves
Max-Cut forW efficiently.

Proof: It is easy to see that the vectormc∗ is in the kernel ofW +D. SinceW +D is positive semidefinite,
0 is its least eigenvalue, andmc∗ is an eigenvector ofW + D corresponding to the smallest eigenvalue.
Hence, the assertion of Lemma 4.1 holds. It remains to show that Max-Cut can be found efficiently.

Observe thattrace(D) = w(Ecut) − w(Enotcut) = 2 · w(Ecut) − w(E), whereEcut is the set of edges in
the maximal cut, andEnotcut is the set of all other edges. Hence, to determine the value ofthe Max-Cut, it
suffices to computem = trace(D). Sincemc∗(W + D)mc∗ = 0, it follows thatmc∗ W mc∗ = −m.

We claim thatm = min trace(A) overA ∈ A, whereA is the set of all positive definite matricesA such
thatAi,j = Wi,j for i 6= j. (As we discuss in subsection 5.1 below, this is the dual problem of the Goemans-
Williamson relaxation ([7]).)

That the smallest such trace is≤ m follows sinceW + D ∈ A. For the reverse inequality note that every
A ∈ A satisfiesmc∗Amc∗ = −m + trace(A). But A is positive semidefinite sotrace(A) ≥ m as claimed.

As observed by Delorme and Poljak [4] (and, in fact already in[1]), the theory developed by Grötschel,
Lovász and Schrijver [8, 9] around the ellipsoid algorithmmakes it possible to efficiently solve the above
optimization problem.

Note that the solution to the optimization problem is not necessarily unique, but this can be overcome by
slightly perturbingW at random. IfW is stable, then such a modification leavesmc∗ unchanged.

If W is a real symmetric matrix under consideration, we denote its eigenvalues byλ1 ≥ · · · ≥ λn. We show
next that if the last two eigenvalues are sufficiently small in absolute value, then the assertion in Lemma
4.2 holds. We also recall the notationw(i) =

∑

j Wi,j. Sincew(i) can be viewed as a “weighted vertex

degree”, we denotemini{w(i)} by δ̃ = δ̃(W).

Lemma 4.3. Let W be aγ-locally stable instance of Max-Cut with spectrumλ1 ≥ · · · ≥ λn, supportG
and smallest weighted degreeδ̃. LetD be a diagonal matrix withDi,i = mc∗i

∑

j Wi,jmc∗j . If

2δ̃ · γ − 1

γ + 1
+ λn + λn−1 > 0,

9

thenW + D is positive semidefinite. Furthermore, ifW is γ stable forγ > 1 then Max-Cut can be found
efficiently.

Proof: Let x (resp. y) be a unit eigenvectors ofW + D corresponding to the smallest (second smallest)
eigenvalue ofW + D. We can and will assume thatx andy are orthogonal. Since0 is an eigenvalue of
W + D (with eigenvectormc∗) it follows thatx(W + D)x ≤ 0. If we can show thaty(W + D)y > 0, then
the second smallest eigenvalue ofW + D is positive, and this matrix is positive semidefinite, as claimed.

By local stability,Di,i ≥ γ−1
γ+1 δ̃, so all ofD’s eigenvalues are at leastγ−1

γ+1 δ̃.

Therefore

xWx ≤ −xDx ≤ −γ − 1

γ + 1
δ̃.

By the variational theory of eigenvalues (the Courant-Fischer Theorem), sincex andy are two orthogonal
unit vectors there holds

λn + λn−1 ≤ xWx + yWy.

Also,

γ − 1

γ + 1
δ̃ ≤ yDy.

When we sum the three inequalities it follows that

2
γ − 1

γ + 1
δ̃ + λn + λn−1 ≤ y(W + D)y.

The Lemma follows. Lemma 4.2 implies that extended spectralpartitioning solves Max-Cut forW .

4.4 Examples of graph families on which Max-Cut can be found efficiently

Lemma 4.3 gives a sufficient conditon under which the extended spectral partitioning solves Max-Cut ef-
ficiently. In this subsection we identify certain families of graphs for which the assertion in the lemma
holds.

Example 4.1. LetG be a1 + ǫ stable,γ-locally stable graph with allw(i) equal. Letλn−1 ≥ λn be its two
smallest eigenvalues. Max-Cut can be found efficiently onG if

λn−1

λn
<

γ − 3

γ + 1
,

andǫ > 0.

10

Proof: By the Perron-Frobenius theorem,λ1 = δ̃, and the all-one vector is the corresponding eigenvector.
It also implies that̃δ = λ1 ≥ |λn|. For the condition in lemma 4.3 to hold, it thus suffices that

−2 · λn
γ − 1

γ + 1
+ λn + λn−1 > 0,

which is exactly the stated condition.

Example 4.2. Let G be a1 + ǫ stable,γ-locally stabled-regular simple graph with second eigenvalueλ.
Max-Cut can be found efficiently onG if

γ >
5d + λ

d − λ
,

andǫ > 0.

Proof: Let A be the adjacency matrix ofG, andAin the adjacency matrix of the graph spanned by the edges
of the maximal cut. LetAout = A−Ain. SinceG is γ-locally stable the maximal degree inAout, and hence
its spectral radius, is at mostdγ+1 . Therefore, by subtractingAout from A, eigenvalues are shifted by at most
this value (this follows, e.g., by Weyl’s theorems on matrixspectra). In other words, the second eigenvalue
of Ain is at mostλ+ d

γ+1 . SinceAin is bipartite, its spectrum is symmetric, and so|λn−1(Ain)| ≤ λ+ d
γ+1 .

Now addingAout to Ain again shifts the spectrum by at mostdγ+1 , and so|λn−1(A)| ≤ λ+ 2d
γ+1 . In addition,

by the Perron-Forbenius theorem,|λn(A)| ≤ d and so

−(λn(A) + λn−1(A)) ≤ d + λ +
2d

γ + 1
.

For the condition in lemma 4.3 to hold, it thus suffices that

2d · γ − 1

γ + 1
> d + λ +

2d

γ + 1
,

as claimed.

Example 4.3. LetG = (V,E) be a1 + ǫ stable,d-regular simple graph with Chegger constanth. Max-Cut
can be found efficiently onG if

γ >
5 +

√

1 − (h/d)2

1 −
√

1 − (h/d)2
,

andǫ > 0.

Proof: Recall that the Cheeger constant of a graph is defined as

h(G) = min
U⊂V : |U |≤n

2

|E(U, Ū)|
|U | ,

and provides on upper bound onG’s second eigenvalue (e.g. [12]):

λ2(G) ≤
√

d2 − h(G)2.

By Example 4.2 Max-Cut can be found efficiently onG.

Example 4.4. Let G = (V,E) be a1 + ǫ stable,(k, γ)-distinct d-regular simple graph. Max-Cut can be
found efficiently onG if

γ >
5 +

√

1 − (k/d)2

1 −
√

1 − (k/d)2
,

andǫ > 0.

11

Proof: Let (S, S̄) be the largest cut inG. Pick an arbitrary setU ⊂ V of size≤ n/2. We will derive a lower
bound on|E(U, Ū)| and therefore a lower bound onG’s Cheeger constant.

So let us consider the cut(T, T̄) obtained from(S, S̄) by swapping the position of each vertex inU . Since
|U | < n/2,

min{|S∆T |, |S∆T̄ |} = min{|U |, |Ū |} = |U |.
Nowk-distinctness implies that|E(T, T̄)| ≤ |E(S, S̄)|−k|U |. But every edge inE(S, S̄)\E(T, T̄) belongs
to E(U, Ū). Consequently,|E(U, Ū)| ≥ k|U |, and sinceU was arbitrary,h ≥ k.

By Example 4.3 Max-Cut can be found efficiently onG.

5 Results derived from previous works

5.1 Performance of the Goemans-Williamson approximation algorithm

Let us quickly recall the Goemans and Williamson approximation algorithm for Max-Cut [7]. We first
rephrase the Max-Cut problem as:

Maximize
1

2

∑

(i,j)∈E

Wi,j(1 − yiyj)

overy ∈ {−1, 1}n.

Equivalently, we seek to minimize
∑

(i,j)∈E Wi,jYi,j over all {−1, 1}-matricesY that are positive semi-
definite and of rank 1. In the G-W algorithm the rank constraint is relaxed, yielding a semi-definite pro-
gramming problem which can be solved efficiently with approximation guarantee of∼ 0.8786. Moreover,
they show that when the weight of the maximal cut is sufficiently big, this guarantee can be improved.
Namely, letR (≥ 1

2) be the ratio between the weight of the maximal cut and the total weight of the edges.
Let h(t) = arccos(1 − 2t)/π. Then the approximation ratio is at leasth(R)/R.
By local stability, the contribution of eachv ∈ V to the maximal cut is γ

γ+1 the total weight of the edges
incident with it. Summing this over all vertices, we get thatthe maximal cut weighs at leastR = γ

γ+1 of
the total weight. Thus, the performance guarantee of the G-Walgorithm onγ-stable instances is at least
(1 − O(1√

γ)).

Note that for this we only required local stability.

The semi-definite program used in the G-W algorithm can be strengthened when the input isγ-stable, by
inequalities that express this stability. It is interesting whether these additional constraints can improve the
approximation ratio further.

5.2 Spectrally partitioning random graphs

Consider the following model for random weighted graphs. Let P be some probability measure on[0,∞).
Generate a matrixW ′ (a weighted adjacency matrix), by choosing each entryW ′

i,j, i < j, independently
from P . SetW ′

i,j = W ′
j,i for i > j, andW ′

i,i = 0. Let C be the set of edges in the maximal cut ofW (for
“reasonable”P ’s, this will be unique w.h.p.). SetWi,j = γ · W ′

i,j for (i, j) ∈ C.
It is easy to see thatW is indeedγ-stable, yet for certain probability measures the problem becomes trivial.
For example, ifP is a distribution on{0, 1}, the maximal cut inW simply consists of all the edges with
weightγ.

12

An even simpler random model is the following. Taken even. Generate ann × n matrix W ′ as above.
ChooseS ⊂ [n], |S| = n/2 uniformly at random. LetC be the set of edges in the cut(S, S̄). Set
Wi,j = γ · W ′

i,j for (i, j) ∈ C. Denote this distributionG(n, P, γ). For an appropriateγ, w.h.p.(S, S̄) will
be the maximal cut inW . This random model is close to what is sometimes known as “theplanted partition
model” ([2, 1, 5, 10, 3, 6, 11, 14]).
Following work by Boppana [1] on a similar random model (for unweighted graphs), we can deduce that
w.h.p. the maximal cut of graphs from this distribution can be found efficiently:

Theorem 5.1. LetP be a distribution with bounded support, expectationµ and varianceσ2. There exists a

polynomial time algorithm that w.h.p. solves Max-Cut forG ∈ G(n, P, γ), whenγ = 1 + Ω(
√

log n
n).

The theorem follows from Lemma 4.2 and the following one, which is an easy consequence of [1]:

Lemma 5.1. Let P be a distribution with bounded support, expectationµ and varianceσ2. Let G ∈
G(n, P, γ), andS the subset chosen in the generatingG. Letmc ∈ {−1, 1}n be the indicator vector of the

cut (S, S̄). LetD be the diagonal matrix defined byDi,i = mc W mc. If γ ≥ 1 + Ω(
√

log n
n), then w.h.p.:

1. mc is the indicator vector of the maximal cut inG.
2. W + D is positive semi-definite.

6 Conclusion and open problems

In this work we have shown that stability, supplemented by certain properties of the input instance, allows
for an efficient algorithm for Max-Cut. However, if nothing is assumed about the input, we only know that
n-stability is sufficient. Can this be improved? Note thatγ ≥ n is very far from what happens in the random

model, where it is only required thatγ ≥ 1 + Ω(
√

log n
n). A bold conjecture is that there is some constant,

γ∗, s.t.γ∗-stable instances can be solved in polynomial time.

Our motivation in defining stability and distinctness is to identify natural properties of a solution to an NP-
hard problem, which “make it interesting”, and allow findingit in polynomial time. Stability and distinctness
indeed make Max-Cut amenable, but are in no way the only possible properties, and it would be very
interesting to suggest others.

References

[1] R. Boppana. Eigenvalues and graph bisection: An averagecase analysis. In28th Annual Symposium
on Foundations of Computer Science, October 12–14, 1987, Los Angeles, California, pages 280–285.
IEEE Comput. Soc. Press, 1987.

[2] T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser. Graph bisection algorithms with good average
case behavior.Combinatorica, 7(2):171–191, 1987.

[3] A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted partition model.Random
Structures Algorithms, 18(2):116–140, 2001.

[4] C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem.Math. Programming,
62(3, Ser. A):557–574, 1993.

13

[5] M. E. Dyer and A. Frieze. Fast solution of some random np-hard problems. In27th Annual Symposium
on Foundations of Computer Science, October 27–29, 1986, Toronto, Ontario, Canada, pages 313–
321. IEEE Comput. Soc. Press, 1986.

[6] U. Feige and J. Kilian. Heuristics for semirandom graph problems.J. Comput. System Sci., 63(4):639–
671, 2001. Special issue on FOCS 98 (Palo Alto, CA).

[7] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.J. Assoc. Comput. Mach., 42(6):1115–1145,
1995.

[8] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial
optimization.Combinatorica, 1(2):169–197, 1981.

[9] M. Grötschel, L. Lovász, and A. Schrijver. Corrigendum to our paper: “The ellipsoid method and its
consequences in combinatorial optimization” [Combinatorica 1 (1981), no. 2, 169–197.Combinator-
ica, 4(4):291–295, 1984.

[10] M. Jerrum and G. B. Sorkin. The Metropolis algorithm forgraph bisection.Discrete Appl. Math.,
82(1-3):155–175, 1998.

[11] F. McSherry. Spectral partitioning of random graphs. In 42nd IEEE Symposium on Foundations of
Computer Science (Las Vegas, NV, 2001), pages 529–537. IEEE Computer Soc., Los Alamitos, CA,
2001.

[12] B. Mohar. Isoperimetric numbers of graphs.J. Combin. Theory Ser. B, 291:47–274, 1989.

[13] C. H. Papadimitriou.Computational complexity. Addison-Wesley Publishing Company, Reading, MA,
1994.

[14] R. Shamir and D. Tsur. Improved algorithms for the random cluster graph model. InProceedings of
the 8th Scandinavian Workshop on Algorithm Theory, pages 230–239. 2002.

[15] D. Spielman and S. H. Teng. Smoothed analysis of algorithms: why the simplex algorithm usually
takes polynomial time. In ACM, editor,Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing: Hersonissos, Crete, Greece, July 6–8, 2001, pages 296–305, New York, NY, USA,
2001. ACM Press. ACM order number 508010.

[16] R. Vershynin. Beyond hirsch conjecture: Walks on random polytopes and smoothed complexity of the
simplex method. InFOCS, pages 133–142. IEEE Computer Society, 2006.

14

