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Abstract

We introduce the notion of a stable instance for a discretamigation problem, and argue that
in many practical situations only sufficiently stable imstes are of interest. The question then arises
whether stable instances of NP—hard problems are easi@ue. sin particular, whether there exist
algorithms that solve correctly and in polynomial time aiffciently stable instances of some NP-hard
problem. The paper focuses on the Max—Cut problem, for whiglshow that this is indeed the case.

1 Introduction

Computational complexity theory as we know it today is coned mostly with worst-case analysis of
computational problems. For example, we say that a probéeNPi-hard if the existence of an algorithm
that correctly decidesveryinstance of the problem implies that SAT can be decided inlgnpmially
equivalent time complexity. However, the study of decisiml optimization problems is motivated not
merely by theoretical considerations. Much of our intemestuch problems arises because they formalize
certain real-world tasks. From this perspective, we ardmietested imall problem instances, but only in
those which can actually occur in reality.

This is often the case with clustering problems, which aliguitbus in most fields of engineering, exper-
imental and applied science. Any concrete formulation efdlustering problem is likely to be NP-hard.
However this does not preclude the possibility that the j@mlcan be solved efficiently in practice. In fact,
in numerous application areas, large-scale clusteringl@nas are solved on a regular basis. As mentioned
above, we are only interested in instances where the dataually made up of fairly well-defined clusters

- the instances where solving the problem is interestingn filve practical perspective.

Put differently, the usual way for proving that clusterimgNP-hard is by a reduction to, say, SAT. This
reduction entails the construction of instances for thesteling problem, such that the existence of an
algorithm that can solve all of them efficiently implies thestence of an algorithm that efficiently solves
SAT. However, it may well be the case that all these instanpeslearly artificial, and solving them is of no
practical interest.
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As a concrete example, consider the problem of clusteringejor sequences into families. Out of the
enormous space of all possible sequences, only a tinydraitiencountered in nature, and it is only about
these (or slight modifications thereof) that we actuallyecar

Our case in point is the Max-Cut problem, which can be thowdjlats a clustering into two clusters. It is
well known that this problem is NP-complete, and so it isdadd that there is no algorithm that solves
it correctly onall graphs, in polynomial time. In this work we strive to identjfroperties of instances of
the Max-Cut problem (i.e., of weighted graphs), which ceptie notion that the input has a well-defined
structure w.r.t Max-Cut (i.e., the maximal cut “stands cationg all possible cuts). Our goal is to show that
Max-Cut can be solved efficiently on inputs that have suclpgnties.

Consideration of a similar spirit have led to the developtmdrSmoothed Analysisitiated in [15], (see
[16] for some of the exciting developments in that area. Timdarity has two main facets: (i) Both lines of
research attempt to investigate the computational coritplefproblems from a non-worst-case perspective,
(ii) Both are investigations of thgeometryof the instance space of the problem under consideratior. Th
goal being to discover interesting parts of this space irctvkiie instances have complexity lower than the
worst case. Viewed from this geometric perspective, thaigahat we study here is very different than
what is done in the theory of smoothed analysis. There oneskitat the hard instances form a discrete
and isolated subset of the input space. Consequently, oy énstance of the problem, a small random
perturbation is very likely to have low computational coexity. In the problems that we study here the
situation is radically different. The “interesting” insizes étableinstances as we shall call them) are very
rare. Indeed, it is not hard to show that under reasonableelmad random instances the probability that
a random instance be stable is zero, or at least tends to gehe groblem size grows. What we wish to
accomplish is to efficiently solvall instances within this subspace. We claim that this tinyssetteresting
because it includes all realistic clustering problems.

The notion ofstability is central to our work. This is a concrete way to formalize timtion that the
only instances of interest are those for which small pediiob in the data (which may reflect e.g. some
measurement errors) do not change the optimal partitioneoftaph.

Definition 1.1. Let W be ann x n symmetric, non-negative matrix. ~Aperturbationof W, for v > 1, is
ann x n matrix W' such thatvi, j = 1,...,n, W; ; < W/, <~ W, ;.

Let (S, [r]\5) be a maximal cut ofV’, i.e. a partition that maximizes_,. 5 .« Wi ;. The instancéV” (of
the Max-Cut problem) is said to bestable, if for everyy-perturbationW’ of W, (S, [n]\S) is the unique
maximal cut oV’

This definition, by itself, proves not to be strong enough takenMax-Cut tractable. Indeed, consider
two bipartite graphs which are join togther by a single edfiee resulting graph ig-stable for ally, but
the alignment of the two bipratite graphs with respect to amether completely depends on the adjoining
edge. Hence, it is reasonable to demand, in addition tolisgatiat the graph contains no small cuts. The
combination of these two requirements indeed allows sgliiax-Cut efficiently (Example 4.3).

In section 3 we present an algorithm that solves correctllimpolynomial timey-stable instances of Max-
Cut: (i) On simple graphs of minimal degréewhen~ > 27”, and (ii) On weighted graphs of maximal
degreeA when~y > v/An. In section 4 we explore several spectral conditions whictkenMax-Cut
amenable on stable instances. This involves analyzinggbetral partitioningheuristic for Max-Cut. In
particular, we show that Max-Cut can be solved efficiently(lacally) stable expander graphs, and on
graphs where the solution is sufficiently distinct from daler cuts. We conclude by deducing an improved
approximation bound for the Goemans-Williamson algoritmstable instances, and by showing that Max-
Cut is easy in a certain random model for such instances.



Finally, we should mention that this is just a first step. Imtigalar, it is of great interest to study more
permissive notions of stability where a small perturbatian slightly modify the optimal solution. There
are also other natural ways to capture the concept of gialimilar considerations can be applied to many
other optimization problems. Some of these possibilitiesbaiefly discussed below, but these questions are
mostly left for future investigations.

2 Preliminaries

2.1 Notation

Throughout the paper we denote the vertex set of the gfaphder discussion bjn|. A vectorv € R™
induces the partition ofz] into the sets.({i : v; > 0}, {: : v; < 0}). Viewed as a partition ofs’s vertex
set, we call it thecut induced by in G.

Theindicator vectorof a partition(S, S) of [n] (or a cut inG), is the vectow € {—1,1}", with v; = 1 iff
1€ 8.

For a weighted grapli7, we denote the indicator vector of its maximal cuts/by*. We generally assume
that this cut is unique, otherwisec* is an indicator of some maximal cut.

For a subsetl C [n], we denoted = [n]\ A.

For two disjoint subsets of vertices in the gragh B, we denote by¥ (A, B) the set of edges going between
them, andw(A, B) = >_; iyep(a,p) Wi;- With a slight abuse of notation, we denat¢i) = >, Wi ;.
Finally, for a set of edges’ C E, denotew(F) = >_; ;e Wi ;.

We switch freely between talking about the graph and absatsisociated weight matrix. Given a symmetric
nonnegativen x n matrix W with zero trace (as input to the max cut problem), we definsufgportas a
graphG = (V, E) with vertex set’” = [n] where(i, j) € Eiff w;; > 0.

2.2 Properties and equivalent definitions

A useful way to think ofy-stability is as a game between two (computationally unbledh players, Measure
and Noise: Given a grapi, Measure chooses a c(#, S). Noise then multiplies weights of his choice
by factors between and-y, obtaining a graplG’ (over the same vertex and edge sets, but with possibly
different weights). He then chooses a different @, 7). Noise wins if inG’ w(T,T) > w(S,S).
Otherwise, Measure wins. A graphjsstable if Measure has a winning strategy.

Observe that the players’ strategy is clear: Measure clsdbsemaximal cut, and Noise , w.l.0.g., multiplies
by v the weights of the edges iB(T,T)\E(S,S). Multiplying weights of other edges either does not
changew (T, T) — w(S, S), or decreases it. Hence, we arrive at an equivalent defirfitioy-stability is:

Proposition 2.1. Lety > 1. A graphG graph with maximal cutS, S) is y-stable (w.r.t. Max-Cut) if for
every vertex sef’ # S, S,

w(E(S,S)\E(T,T)) >~ -w(E(T,T)\E(S, S)).

This view of stability suggests howstable graphs can be generated: &Zebe ay’-stable graph. Multiply-
ing the weights of all the edges in the maximum cut;"byields ay-stable graplt;. Moreover, it is not hard
to see that ally-stable graphs can be obtained this way. In other words,drfaliowing random process



every~-stable graph om vertices has a positive probability: Generate a randomhgoag vertices, say
according toG(n, p) (for somep # 0,1); Find the maximal cut and its stability. Multiply all cut edges
by % Note, however, that in this naive model the maximal cut caedwsily identified by simply examining
edge weights - those of weigl,ﬁyit are the cut edges.

One pleasing aspect afstability is that it isoblivious to scale multiplying all weights in a graph by a
constant factor does not change its stability. This can bdilseseen from Proposition 2.1. It may seem
natural to definey two-way stability as robustness to perturbation by a miigtive factor betweer% and

~ (so called, two-way perturbation). But obliviousness talseasily implies that a graph istwo-way
stable iff it isy2-stable.

It is also natural to consider a solution as “interestingt gtands out among all the alternatives. [6t.5)
be a maximal cut in a grapfi, and consider an alternative c(f;, T'). Consider the set (S, S)AE(T,T)
of those edges on which the two cuts “disagree”. We seek tsunedhe difference between the c($55)
and (T, T) relative to the size ofu(E(S, S)AE(T,T)). So say thatS, S) is a edge distinc{with o > 0),
if forany T C V,

w(S,S) —w(T,T) > a-w(E(S,S)AE(T,T)).

Now, denoteéWy = w(E(T, T)\E(S, S)) andWs = w(E(S,S)\E(T,T)). If G is a edge distinct then
Ws —Wr =w(S,S) —w(T,T) > a- w(E(S,S)AE(T,T)) = a - (Ws + Wr).

Hence,Ws > %Wy, and by Proposition 2.& is 1X2-stable. Similarly, ifG is v-stable, then it is%
edge distinct.

2.3 Variations on a theme

We shall also be interested in a weaker version of stabilityich proves useful for some of the results in
sequel:

Definition 2.1. Let W be an instance of the Max-Cut problem and(16t.5) be its optimal partition. We
say thatWV is y-locally stableif forall v € S

7/'§£:LVﬁm <:§£:LVﬁma

u€eS uesS

and for allv € S

7/'§£:LVﬁm <:§£:LVﬁma

ues ues
Observe that every-stable graph is alsg-locally stable - this follows from Definition 2.1, with’ being a
single vertex.

It is essentially known that Max-Cut is NP-hard even whefrigted to~y-locally stable instances (for at
most exponential in the size of the input) [£3]In fact, one can impose local stability, without alterihe t

The NP-completeness of Max-Cut can be shown by a reductiondeNot-all-equal SAT: Construct a graph over the formula’s
literals, and for everg-clause define three edges (a triangle) connecting theesgliterals. It is not hard to see that the formula
is satisfyable iff the graph’s Max-Cut’s value is twice thember of clauses. It is also not hard to see that if this isedde case,
the cut is2-locally stable. Furthermore, by adding edges betweeregalitind its negation, the structure of the Max-Cut does not
change, and local stability increases.



overall stability: LetG be a graph with weighted adjacency mafiix Let G* be a graph oV x {0, 1},
with weighted adjacency matrix:

= (utyr W)

(for somer > 1.)

It is not hard to see that the maximal cutd consists of two copies of that i@@. Specifically,(S, S) is a
maximal cut inG iff (S x {0} U S x {1}, 5 x {1} US x {0}) is a maximal cut irG*.

It is also not hard to see thét is y-stable, iffG* is, and thatG* is at leas7-locally stable.

The definition of stability via edge distinctness formadizhe notion that in instances of interest, the Max-
Cut should be distinctly better than all other cuts. Clgeanlys which differ only slightly from the maximum
one in structure can only differ slightly in value, so thefeliénce in value should be quantified in terms of
of the distance between the cuts.

Definition 2.2. Let (S, S) be a cut in a (weighted) grapt = (V, E) andk > 0. We say that this cut is
k-distinctif for any cut(T,T),

w(e(S,S)) —w(e(T,T) > kmin{|SAT|,|SAT|}.

We say that a graph i, v)-distinct (w.r.t. Max-Cut) if its maximal cut is-distinct andy-locally stable.

In example 4.4 we show that Max-Cut can be solvedgry)-distinct instance wheh and- are sufficiently
large.

3 Combinatorial approach

One approach in solving a Max-Cut problem is to identify a p&iertices which must to be on the same
side of the optional cut (e.g. in a simple graph, two vertig#h the same neighborhood). Two such vertices
can be safely merged into a single vertex - keeping multiglges. If this can be repeated until a bipartite
graph is obtained, then the problem is solved.

Observe that if7 is a~-stable graph, and j are two vertices on the same side of the maximal cut, then
the graphG’, obtained fromG by merging: and into a single vertex’, is y-stable as well. Indeed, any
~-perturbation of5’ induces ay-perturbation of7 over the same edges. If as a result of this perturbation the
maximal cut changes i’ then this new cut is also maximal in the similarly perturlé&dsince it contains

the same edges (in contradiction withbeing~-stable).

This observation implicitly guides the first algorithm peeged below. In it we identify pairs of vertices
which are on opposite sides of the maximal cut. By continusngo so, we grow bigger and bigger con-
nected bipartite subgraphs, until they all connect. In #eord algorithm we explicitly merge together
vertices on the same side as long as we know how to, and thea yamhave a much smaller graph, use the
first algorithm.

3.1 An efficient algorithm for n-stable instances
We start by describing an algorithm, that solves the Max{@ablem on (weighted) graphs of maximal

degreeA which arev/An-stable. The idea is to iteratively identify sets of edgesctbelong to the
maximal cut. When they form a connected spanning bipartéply the maximal cut is found.
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FindMaxCut(G) (G is a weighted graph)
1. Initialize T = (V(G), 0). Throughout the algorithri” will be a bipartite subgraph af.
2. WhileT is not connected, do:

(a) LetChy,...,C: be the connected componentsIaf Each of them is a bipartite graph,
with vertex bipartitionV' (C;) = (Ls, R;).

(b) Let C;~ be a component with the least number of vertices. For gaeh1,... ¢,
j #i* letE) = E(Li,L;) UE(Ri+, R;) andE} = E(Ls, R;) U E(Ri~, Lj).
Let;* andc” be such that the weight dfjff is the largest among all’;.

(c) Add the edges oF%- to T

3. Output the cut defined by the two sidesiaf

Theorem 3.1. There is an algorithm that solves correctly and in polyndrtirae every instance of weighted
Max-Cut that isy-stable for everyy > +/An. Here an instance is an-vertex graph of maximal degrek.

Proof: We will show that the above algorithm is well defined, and atggthe correct solution of'nA-
stable instances of Max-Cut. Lg§, S) be the maximal cut. We maintain that throughout the algorjtd
separatesach connected componeftit = (L;, R;). Namely, eithel; ¢ S, R, C V\SorR; C S, L; C
V\S.

This clearly holds at the outset. If it holds at terminatitime algorithm works correctly. So consider the
first iteration when this does not hold. L&t~ be a smallest connected component at this stage, and denote
k = |Ci|. Up to this point our assumption holds, so sy < S andR;» NS = (. Letj* andc*

be those chosen as in step 2b. Since this is the point wheralgbhathm errs,EjI is added tdrl", yet
ES. NE(S,8) =0.

Now consider they-perturbation of the graph obtained by multiplying the esj'geEj-f by ~. If the original
graph isy-stable, the maximal cut of the perturbed grapligsS) as well. Consider the cut obtained by
flipping the sides of_;« and R;+. That is, denote&Z = S\ L;» U R;+, and consider the cytZ, 7).

The cut(Z, Z) contains the edg@ﬁ, which (S, S) does not. For each+ j*, letc; be such thaE]‘?j isin

the cut(S, S) (we'll be interested only in non-empty subsets). In theaxie case, all these edges are not
in the cut(Z, Z). Observe that all other edges#{S, S) are also inE(Z, 7).

DefineJ = {j #i: ch’ # (}. Since the weight of Z, Z), even in the perturbed graph, is smaller than that
of (S, S), we have that:

v-w(EL) < Zw(E]cJ)
=
(The Lh.s. is a lower bound on what we gain when we switch fioto Z, and the r.h.s. is an upper
bound on the loss.) Recall thEgI was chosen to be the set of edges with the largest total wetitghtce,
Y jes w(EY) <|Jlw(ES), and soy < |J|. Clearly,|.J| < min{#, kA}, and so:

V2 < %m = nA.

This is a contradiction to the assumption that the inpufigA-stable. 1

Note that we have actually proven that the algorithm workkbag as it can find a connected component
Ci+, such that{j : £ # 0}| <, forc=0,1.

The concept of stability clearly applies to other combinatooptimization problems. Similarly, the al-
gorithm above can be adjusted to solve highly stable insto€ other problems. For example, a similar
algorithm finds the optimal solution to (weightedh A-stable instances of the Multi-way Cut problem, and
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A-stable instances of the Vertex Cover problem (where agagnthe number of vertices in the graph, and
A the maximal degree).

3.2 An efficient algorithm for simple graphs of high minimal degree

A complementary approach is useful when the graph is unwegigland of high minimal degree. Suppose
a~-stable graph, for some big (but boundedhas minimal degree /2. Then by local stability each side

in the maximal cut must be of size nearly2, and the neighborhoods of any two vertices on the same side
have most of their vertices in common. Thus we can easilytedusgether the vertices into the two sides
of the maximal cut. Even when the minimal degree is lower, are use the same scheme to obtain several
clusters of vertices which are certain to be on the same aitthen use the algorithm from the previous
subsection to find the maximal cut.

Theorem 3.2. There is an algorithm that solves correctly and in polyndntiilme every instance of un-
weighted Max-Cut that is-stable for everyy > 27" Here an instance is an-vertex graphG = (V, E) of
minimal degree. Furthermore, if6 = Q(%), then~-local stability suffices.

It clearly suffices to considey = 2. Let N; C V be the neighbor set of vertéxandd; = |N;|. Define

H to be a graph ol with 4, g adjacent iflN; N N;| > M Sinced is in particulary-locally stable,

every vertex; has at mos t== of its neighbors on its own S|de of the maximal cut. Hence Wértices of
each connected component[dfmust be on the same side of the maximal cut.

Let ¢ be the number of connected componenté#fimnd letU C V be a set ot vertices, with exactly one
vertex from each of these connected components. Let theeeof the vertices ity bed;, < d;, <... <
d;,. For anyu, v € U we have thatN,, N N,| < 24} e claim thae < 4. If this is not the case, let

us apply the inclusion-exclusion formula and conclude:

-

since, by assumptiomik < dij for k < j. Also, dij > ¢ for all j, and clearly| U] N;| < n. Therefore,
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a contradiction which implies < ~.

Now consider the graplt’ obtained fromG by contracting all vertices in eadfi; into a single vertex,
keeping multiple edges. By our previous observati@hhas the same max-cut value @s Consequently,
as discussed at the beginning of this section, the gfdph~-stable. It follows that?’ is a weighted graph
whose stability exceeds its number of vertices. By TheoreimtBe optimal cut irG’ (and hence ir7) can
be found in polynomial time, as claimed.

Itis also worth mentioning that f = Q(;7;) then~ is O(log n), and we can find the maximal cut @
by going over all cuts. Moreover, in this case it suffices wuase thatz is y-locally stable. |



4 A spectral approach

4.1 Definitions

Spectral partitioningis a general name for a number of heuristic methods for vargraph partitioning
problems which are popular in several application areag cbmmon theme is to consider an appropriate
eigenvector of a possibly weighted adjacency matrix of treply in question, and partition the vertices
according to the corresponding entries. Why is it at leasteivable that such an approach should yield a
good solution for Max-Cut? The Max-Cut problem can can ¢yelae formulated as:
min Z Wi iyiy;-

yel-LU" s
The Goemans-Williamson algorithm [7] works by solving anfSi@laxation of the problem. In other words,
where as above we multiply the matiik by a rankl PSD matrix, in the SDP relaxation, we multiply it be
a PSD matrix of rank (at most). Let us consider instead the relaxation of the condigon {—1,1}", to
y € R™, ||y||? = n. The resulting problem is well-known: By the variationahchcterization of eigenvalues,
this relaxation amounts to finding the eigenvector corredpw to the least eigenvalue Bf. Letu be such
a vector. This suggestsspectral partitioning ofit that is the partition ofr| induced byu.
We also consider what we calktended spectral partitionind.et D be a diagonal matrix. Think i + D
as the weighted adjacency matrix of a graph, with loops ad8adh loops do not change the weight of any
cut, so that regardless of whAtwe choose, a cut is maximal W iff it is maximal in W + D. Furthermore,
it is not hard to see thal’ is v-stable, iff W + D is. Our approach is to first find a “good, and then take
the spectral partitioning diV + D as the maximal cut. These observations suggest the foldpgiestion: Is
it true that for everyy-stable instanc&/” with ~ large enough there exists a diagonafor which extended
spectral partitioning solves Max-Cut? If so, can such &e found efficiently? Below we present certain
sufficient conditions for these statements.

4.2 Spectral partitions of stable instances

The input to the max cut problem is a symmetric nonnegativen matrix W with zero trace. Theupport

of Wis agraphG = (V, E) with vertex set” = [n] where(i, j) € Eiff w;; > 0.

Lemma 4.1. Let W be a~-stable instance of Max-Cut with suppart = (V, E). Let D be a diagonal

matrix, andu an eigenvector corresponding to the least eigenvalué of D. If v > %}m then
1,7 (i}

the spectral partitioning induced By + D yields the maximal cut.

Proof: As noted above, for any diagonal matiix the problems of finding a maximal cit + D and in
W are equivalent. Normalize so thatmin; j g [u; - u;| = 1. (If u has any0 coordinates, the statement
of the lemma is meaningless). L&t be the diagonal matrixX);; = D;; - uf. Let W’ be the matrix
W{,j = Wi, - lu;uj|. Observe thal?V”’ is a~-perturbation ofi¥, hence the maximal cut i’ (and in
W'+ D'), is the same as ii’. In other wordsync* is a vector that minimizes the expression:

min (W' + D).
ze{-1,1}"

Also, the vector: minimizes the expression

%ﬁé}z(z Wi iviy; + Z Dzzyzz)/HyHQ
Yy i,j 1
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Think of « as being revealed in two steps. First, the absolute valuaalf eoordinate is revealed, and then,
in the second step, its sign. Thus, in the second step we akmépfor a sign vector: that minimizes the
expression:
O Wi - Juilas - Jugles + > D) /||l
2,] 7
Clearly,mc* is such a vector. Since the input is stable, the optimal cumigue, and senc* and—mc* are
the only such vectors. Hence, the partition they inducedssttime as that induced by |

Note 4.1. A more careful analysis shows a somewhat stronger resudtflices that

v > max(; j)eE : uu;<0 — Uil

MIN G HEE : uu; >0 Willy

4.3 A sufficient condition for extended spectral partitionng

Lemma 4.2. Let W be a~-stable instance of Max-Cut, foy > 1, and let D be the diagonal matrix
D;; = mc; ) ; Wi jmc;. If W + D is positive semi-definite, then extended spectral paniitigp solves
Max-Cut forWV efficiently.

Proof: It is easy to see that the vectorc* is in the kernel of// + D. SincelV + D is positive semidefinite,
0 is its least eigenvalue, andc* is an eigenvector ofV + D corresponding to the smallest eigenvalue.
Hence, the assertion of Lemma 4.1 holds. It remains to shatwMlax-Cut can be found efficiently.

Observe thatrace(D) = w(Eeyt) — w(Enoteut) = 2 - w(Eeyt) — w(E), whereE,,, is the set of edges in
the maximal cut, and,,;...; is the set of all other edges. Hence, to determine the valtleedflax-Cut, it
suffices to computer = trace(D). Sincemc* (W + D)mc* = 0, it follows thatmc* W mc* = —m.

We claim thatm = min tracgA) over A € A, whereA is the set of all positive definite matricessuch
thatA; ; = W, ; fori # j. (As we discuss in subsection 5.1 below, this is the duallproof the Goemans-
Williamson relaxation ([7]).)

That the smallest such tracedsm follows sinceWW + D € A. For the reverse inequality note that every
A € A satisfiesnc* Amc* = —m + trace(A). But A is positive semidefinite sorace(A) > m as claimed.

As observed by Delorme and Poljak [4] (and, in fact alreadjl]) the theory developed by Grotschel,
Lovasz and Schrijver [8, 9] around the ellipsoid algorithmakes it possible to efficiently solve the above
optimization problem.

Note that the solution to the optimization problem is notassarily unigque, but this can be overcome by
slightly perturbingl? at random. Ifit” is stable, then such a modification leaves* unchanged. i

If W is a real symmetric matrix under consideration, we densteigenvalues by; > --- > \,,. We show
next that if the last two eigenvalues are sufficiently snralhbsolute value, then the assertion in Lemma
4.2 holds. We also recall the notatian(i) = >, W; ;. Sincew(i) can be viewed as a “weighted vertex

degree”, we denotsin,; {w(i)} by d = 6(W).

Lemma 4.3. Let W be a~-locally stable instance of Max-Cut with spectrum > --- > )\, supportG
tf

and smallest weighted degréeLet D be a diagonal matrix withD; ; = mc; > Wi jme;.

- "}/—1
20—+ A A 0
'Y+1+ n+ An—1 >0,



thenW + D is positive semidefinite. Furthermore Jif is v stable fory > 1 then Max-Cut can be found
efficiently.

Proof: Let x (resp. y) be a unit eigenvectors a¥ + D corresponding to the smallest (second smallest)
eigenvalue o + D. We can and will assume thatandy are orthogonal. Since is an eigenvalue of
W + D (with eigenvectornc*) it follows thatz(W + D)x < 0. If we can show thay(WW + D)y > 0, then
the second smallest eigenvaluel@f+ D is positive, and this matrix is positive semidefinite, asnokd.
By local stability, D; ; > 214, so all of D's eigenvalues are at lea¥; .
Therefore

y—1z

sWrx < —xDx < ——9.
v+1

By the variational theory of eigenvalues (the CourantiiéscTheorem), since andy are two orthogonal
unit vectors there holds

A+ Ao < aWax + yWy.

Also,

1%
Y= 5 <yDy.
S0 =YY

When we sum the three inequalities it follows that

-1z
2——0+ Ay + A1 <y(W + D)y.
) 1< y( )y

The Lemma follows. Lemma 4.2 implies that extended spep#gtitioning solves Max-Cut fol. |

4.4 Examples of graph families on which Max-Cut can be foundféiciently

Lemma 4.3 gives a sufficient conditon under which the extdrapectral partitioning solves Max-Cut ef-
ficiently. In this subsection we identify certain familieg graphs for which the assertion in the lemma
holds.

Example 4.1. LetG be al + € stable,y-locally stable graph with altv(i) equal. Let\,,_; > X, be its two
smallest eigenvalues. Max-Cut can be found efficientlg din
)\nfl v 3

< ;
An v+1

ande > 0.
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Proof: By the Perron-Frobenius theorer, = 4, and the all-one vector is the corresponding eigenvector.
It also implies that = \; > |\, |. For the condition in lemma 4.3 to hold, it thus suffices that

v—1
—2-Ap——+ A A 0
n"}/+1+ n+ Ap—1 >0,

which is exactly the stated condition. I

Example 4.2. Let G be al + ¢ stable,v-locally stabled-regular simple graph with second eigenvalie

Max-Cut can be found efficiently a@rif
5d + A

T

ande > 0.

Proof: Let A be the adjacency matrix ¢f, and A;, the adjacency matrix of the graph spanned by the edges
of the maximal cut. Letd,,; = A— A;,. SinceG is~v-locally stable the maximal degree ih,,;, and hence

its spectral radius, is at mosfj. Therefore, by subtracting,,; from A, eigenvalues are shifted by at most
this value (this follows, e.g., by Weyl's theorems on masipectra). In other words, the second eigenvalue
of A;, is at most\ + #1. SinceA;, is bipartite, its spectrum is symmetric, and/ag_1(Ain)| < A+ #1.

Now addingA,.; to A;, again shifts the spectrum by at meﬁﬁ, and s\, _1(A)| < A+ f—fl. In addition,

by the Perron-Forbenius theorefh,,(A)| < d and so

2d
—(AM(A) +XN1(A) <d+ N+ ——.
(An(A) + Au-a(4)) —
For the condition in lemma 4.3 to hold, it thus suffices that
2 - y-1 >d+ N+ 2_d,
v+1 y+1

as claimed. |
Example 4.3.LetG = (V, E) be al + ¢ stable,d-regular simple graph with Chegger constantMax-Cut

can be found efficiently off if
- 5++/1—(h/d)?
T (h/d)?’

ande > 0.
Proof. Recall that the Cheeger constant of a graph is defined as

h(G) = min 7|E(U’ U)|,
vev:juice (U]

and provides on upper bound 6i#s second eigenvalue (e.g. [12]):

A2 (G) < /@ = h(G)2.

By Example 4.2 Max-Cut can be found efficiently 6h I
Example 4.4. LetG = (V, E) be al + ¢ stable,(k, v)-distinct d-regular simple graph. Max-Cut can be

found efficiently ortx if
- 54 /11— (k/d)?
T A= kjae

ande > 0.
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Proof: Let (S,.5) be the largest cut iv’. Pick an arbitrary set/ C V' of size< n/2. We will derive a lower
bound on|E(U, U)| and therefore a lower bound @¥s Cheeger constant.

So let us consider the c(’, T') obtained from(S, S) by swapping the position of each vertextin Since
|U| < n/2, ) )
min{|SAT|,|SAT|} = min{|U|,|U|} = |U|.

Now k-distinctness implies thal (T, T)| < |E(S, S)|—k|U|. Butevery edge i (S, S)\ E(T, T) belongs
to E(U,U). Consequently,E(U,U)| > k|U|, and sincd/ was arbitraryh > k.

By Example 4.3 Max-Cut can be found efficiently 6h I

5 Results derived from previous works

5.1 Performance of the Goemans-Williamson approximation gorithm

Let us quickly recall the Goemans and Williamson approxiomaglgorithm for Max-Cut [7]. We first
rephrase the Max-Cut problem as:

.1
Maximize - Z Wi ;i (1 —yiy;)
(i,j)EE
overy € {—1,1}".

Equivalently, we seek to minimiz®_; ., Wi ;Y;; over all {—1,1}-matricesY” that are positive semi-
definite and of rank 1. In the G-W algorithm the rank constrérelaxed, yielding a semi-definite pro-
gramming problem which can be solved efficiently with apjimation guarantee of 0.8786. Moreover,
they show that when the weight of the maximal cut is suffitiebtg, this guarantee can be improved.
Namely, letR (> %) be the ratio between the weight of the maximal cut and thé weaht of the edges.
Let h(t) = arccos(1 — 2t) /7. Then the approximation ratio is at ledstR)/ R.

By local stability, the contribution of each € V' to the maximal cut i% the total weight of the edges
incident with it. Summing this over all vertices, we get tkia# maximal cut weighs at lea&t = % of
the total weight. Thus, the performance guarantee of the @gbfrithm on-~-stable instances is at least

(1-0(%)).

Note that for this we only required local stability.

The semi-definite program used in the G-W algorithm can lengthened when the input isstable, by
inequalities that express this stability. It is interegtimhether these additional constraints can improve the
approximation ratio further.

5.2 Spectrally partitioning random graphs

Consider the following model for random weighted graphst Péde some probability measure @h o).
Generate a matri¥V’’ (a weighted adjacency matrix), by choosing each eﬁt’yx i < j, independently
from P. SetW’ W’ fori > j, andW!, = 0. Let C be the set of edges in the maximal cutl®f (for
"reasonable”P’s this WI|| be unique w.h. p) Sév; ; =~ W, for (i,5) € C.

It is easy to see thdl/ is indeedy-stable, yet for certain probability measures the problecomes trivial.
For example, ifP is a distribution on{0, 1}, the maximal cut i/ simply consists of all the edges with
weight-~.

12



An even simpler random model is the following. Takeeven. Generate am x n matrix W’/ as above.
ChooseS C [n], |S| = n/2 uniformly at random. LetC be the set of edges in the c($,S). Set
Wij=n- W{,j for (i,7) € C. Denote this distributior® (n, P,~). For an appropriate, w.h.p. (S, S) will

be the maximal cut if’. This random model is close to what is sometimes known aspidrged partition
model” ([2, 1, 5, 10, 3, 6, 11, 14]).

Following work by Boppana [1] on a similar random model (fomeeighted graphs), we can deduce that
w.h.p. the maximal cut of graphs from this distribution canféund efficiently:

Theorem 5.1. Let P be a distribution with bounded support, expectatioand variances2. There exists a
polynomial time algorithm that w.h.p. solves Max-Cute G(n, P,~), wheny =1 + Q(y/ k’%).

The theorem follows from Lemma 4.2 and the following one,aktis an easy consequence of [1]:

Lemma 5.1. Let P be a distribution with bounded support, expectatiorand variances?. Let G <
G(n, P,v), andS the subset chosen in the generatiigLetmc € {—1,1}" be the indicator vector of the

cut (S, S). Let D be the diagonal matrix defined 4y, ; = me W me. If v > 1+ Q(y/ 1"%), then w.h.p.:

1. mcis the indicator vector of the maximal cut (.
2. W + D is positive semi-definite.

6 Conclusion and open problems

In this work we have shown that stability, supplemented byage properties of the input instance, allows
for an efficient algorithm for Max-Cut. However, if nothing @assumed about the input, we only know that
n-stability is sufficient. Can this be improved? Note that n is very far from what happens in the random

model, where it is only required that> 1 + Q(4/ 1"%). A bold conjecture is that there is some constant,
~*, s.t.y*-stable instances can be solved in polynomial time.

Our motivation in defining stability and distinctness isdeitify natural properties of a solution to an NP-
hard problem, which “make it interesting”, and allow findibgn polynomial time. Stability and distinctness

indeed make Max-Cut amenable, but are in ho way the only Ipesproperties, and it would be very
interesting to suggest others.
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