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Abstract

Let Fq be the field of q elements. An (n, k)-affine extractor is a mapping D : Fn
q → {0, 1}

such that for any k-dimensional affine subspace X ⊆ Fn
q , D(x) is an almost unbiased bit when

x is chosen uniformly from X . Loosely speaking, the problem of explicitly constructing affine
extractors gets harder as q gets smaller and easier as k gets larger. This is reflected in previous
results: When q is ‘large enough’, specifically q = Ω(n2), Gabizon and Raz [3] construct affine
extractors for any k ≥ 1. In the ‘hardest case’, i.e. when q = 2, Bourgain [2] constructs
affine extractors for k ≥ δn for any constant (and even slightly sub-constant) δ > 0. Our main
result is the following: Fix any k ≥ 2 and let d = 5n/k. Then whenever q > 2 · d2 and
p = char(Fq) > d, we give an explicit (n, k)-affine extractor. For example, when k = δn for
constant δ > 0, we get an extractor for a field of constant size Ω(

(
1
δ

)2). Thus our result may be
viewed as a ‘field-size/dimension’ tradeoff for affine extractors. Although for large k we are not
able to improve (or even match) the previous result of [2], our construction and proof have the
advantage of being very simple: Assume n is prime and d is odd, and fix any non-trivial linear
map T : Fn

q 7→ Fq. Define QR : Fq 7→ {0, 1} by QR(x) = 1 if and only if x is a quadratic
residue. Then, the function D : Fn

q 7→ {0, 1} defined by D(x) , QR(T (xd)) is an (n, k)-affine
extractor.

Our proof uses a result of Heur, Leung and Xiang [4] giving a lower bound on the dimension
of products of subspaces.

1 Introduction

In this paper we consider the problem of explicitly constructing affine extractors: Color a vector
space , say with 2 colors, such that every large enough affine subspace has roughly the same number
of points of each color. Let us define this formally. First, we say that a distribution P on {0, 1} is
ε-close uniform if |Pr(P = 1)− 1/2| ≤ ε.
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Definition 1 (Affine extractor). Fix integers 1 ≤ k ≤ n and a field Fq. A function D : Fn
q 7→ {0, 1}

is an (n, k)-affine extractor with error ε, if for any k-dimensional affine subspace X ⊆ Fn
q D(X) is

ε-close to the uniform.
Remark 1.1. Affine extractors are usually defined as outputting many bits, and indeed one important
goal is constructing affine extractors with large output length. However, as in this paper our new
results are not related to the number of output bits, for simplicity we define affine extractors as
boolean functions (see also Remark 5.1).

Affine extractors can be motivated in at least two ways. First, as a derandomization question: A
central goal in the field of derandomization and pseudorandomness is to explicitly construct objects
that have properties a random function would have with high probability; and indeed, a random
function is with high probability a (n, k)-affine extractor, for example when k = O(log n) for any
q ≥ 2. A second motivation comes from the field of extractors: Consider a scenario when a com-
putation requires a random string but has access only to a ‘weak random source’. An extractor is
a function that converts ‘weak randomness’ to a string that is statistically close to a true random
string. There are many ways to formally define a weak random source. One way to define it would
be a uniform distribution on an unknown k-dimensional subspace. In such a case, an affine extrac-
tor would enable us to produce random bits from such a weak random source. See the survey of
Shaltiel[7] for a review of this broad field.

1.1 Previous Work and Our Result

Intuitively, constructing affine extractors gets harder as the underlying field size q gets smaller and
easier as the dimension k of the subspace gets larger. Gabizon and Raz [3] construct affine extractors
for q = Ω(n2) for any k ≥ 1. When q = 2, Bourgain [2] constructs affine extractors for k ≥ δn for
any constant (and even slightly sub-constant) δ > 0 (see also the simplification and improvement by
Yehudayoff [9]).
Ben-Sasson and Kopparty [1] recently managed to break the ‘linear-entropy barrier’ for q = 2,
and construct weaker objects called affine dispersers for k = 6 · n4/5 over F2. It seems that the
results of [1] can easily be adapted using Weil’s theorem (see Section 2) to give affine extractors for
k, q = O(n4/5). Our main result may be viewed as a ‘field-size/dimension’ tradeoff. The larger the
dimension of the subspace, the smaller field size we can work with.
Theorem 1. Fix a field Fq of characteristic p and integers 2 ≤ k ≤ n and n ≥ 25. Let s = 6n

5·(k−1)
+

2. Assume that p > s and q > 2 · s2. There is an explicit (n, k)-affine extractor D : Fn
q 7→ {0, 1}

with error ε = s/
√

q. In particular, when p > (5n/k) and q ≥ 2 · (5n/k)2 the theorem holds and
we get an extractor with error ε = O((n/k)/

√
q).

One interesting instantiation of Theorem 1 is when k = δ · n for constant δ > 0. In this case,
we get an affine extractor for a field of constant size q = Ω((1/δ)2). Again, this does not match the
result of Bourgain[2]. For the range ω(1) < k < n/ log n no other result to our knowledge1 gives
explicit affine extractors for field size q = Ω((n/k)2). However, even for ranges of parameters where

1It seems that an unpublished result of the second author gives smaller field size for k = o(
√

n).
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we do not improve or match previous results, our construction and proof have the advantage of being
very simple. An annoying drawback is the requirement for large characteristic. Basically, this is to
due to the fact that many multinomial coefficients become zero in fields of small characteristic.

2 Overview of the Proof

A central component in our proof is a theorem of Weil[8, 6] on the number of points on curves over
finite fields and, more specifically, its applications to character sums. We roughly state the corollary
of Weil’s theorem that we will use (see Subsection 3.1 for a precise formulation): Let f(t1, . . . , tk)
be a non-constant polynomial of degree d over Fq where both d and q are odd. Then, when choosing
(t1, . . . , tk) uniformly at random, the probability that f(t1, . . . , tk) is a quadratic residue in Fq is
close to 1/2 provided q is a bit larger than d2. For simplicity, we forget about the requirement of
d being odd for the rest of this discussion. Thus, Weil’s theorem reduces the task of constructing
an affine extractor to that of constructing a low-degree polynomial f : Fn

q 7→ Fq of that is non-
constant on any k-dimensional subspace: Once we have such a polynomial, we simply output 0 or
1 according to whether f(x1, . . . , xn) is a quadratic residue in Fq, and we are guaranteed that this is
an almost unbiased bit. More specifically, if we manage to construct a polynomial of degree d that
is non-constant on affine subspaces of dimension k, we get an affine extractor for field size roughly
d2. Gabizon and Raz [3] used the polynomial f(x1, . . . , xn) =

∑n
i=1 xi

i. It is not hard to show
that this polynomial will be non-constant on any 1-dimensional affine subspace. Thus, they get an
(n, 1)-affine extractor for q = Ω(n2). In this paper we show how to construct a polynomial f of
degree roughly n/k that is non-constant on any k-dimensional affine subspace. Our construction is
as follows. Let d be an integer larger than n

k−1
. Let T : Fn

q 7→ Fq be a non-trivial Fq-linear function.
Given a vector x ∈ Fn

q , we think of x as an element in the field Fqn . Define f(x) , T (xd) (It is
easy to see that when thinking of f as a multivariate polynomial over Fq it indeed has degree d).
We want to show that f is non-constant when restricted to k-dimensional subspaces. Fix an affine
subspace X ⊆ Fn

q whose linear component has basis a1, . . . , ak ∈ Fn
q . When restricting f to X it

can be seen that the coefficients of the degree d monomials are Fq-scalar multiples of the T -image
of the monomials of degree d in a1, . . . , ak. If we could show that the monomials of total degree d in
a1, . . . , ak span Fn

q over Fq, it would follow that one of them must have a non-zero image under T ,
and therefore the restriction of f to X is non-constant of degree d. This will indeed follow from a
theorem of Heur, Leung and Xiang [4] about ‘products of subspaces’. From [4] we will deduce that
when a1, . . . , ak are linearly independent, the monomials of total degree d in them span2 a subspace
of dimension at least (k − 1) · d + 1, or span the whole space. The theorem of [4] is actually more
general, and we will give a self-contained proof of the specific result we need (see Subsection 3.2).

2Actually, this will be true when n is prime
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3 Preliminaries

Notation: Let f : Fn
q 7→ Fq be a function. For an affine subspace X ⊆ Fn

q defined by basis vectors
a1, . . . , ak ⊆ Fn

q and translation vector b ∈ Fn
q , we denote f restricted to X by f |X . That is, for

t1, . . . , tk ∈ Fq, f |X(t1, . . . , tk) , f(a1 · t1 + . . . + ak · tk + b). For a set Ω, we denote by UΩ the
uniform distribution on Ω. For a function f : Ω 7→ Γ and a distribution P on Ω, we denote by f(P )
the distribution induced on Γ by sampling from P and applying f . Given a vector, x ∈ Fn

q we will
often view x as an element in Fqn and use multiplication in this field.

3.1 Characters of Finite Fields and Weil’s Theorem

Loosely speaking, given an abelian group G, a character on G is a map from G to complex roots of
unity that preserves the group action. The characters of a finite field are the characters of the additive
and multiplicative3 groups of the field. We will only use multiplicative characters.
Definition 2 (Multiplicative character). A function χ : Fq → C is a multiplicative character of Fq if
|χ(a)| = 1 for every a ∈ F∗q and χ(0) = 0 and

χ(ab) = χ(a)χ(b)

for every a, b ∈ Fq. The order of χ is the smallest integer m such that (χ(a))m = 1 for every a ∈ F∗q .

For our extractor we will use the ‘quadratic residue’ character (that exists whenever the field has
odd characteristic).
Definition 3 (Quadratic residue character). Let q = pl for some integer l and odd prime p. We define
the multiplicative character χ1 : Fq → {−1, 0, 1} to be 1 for a non-zero quadratic residue, −1 for a
quadratic non-residue, and 0 on 0. More concisely,

χ1(a) = a
q−1
2 .

We define the function QR : Fq → {0, 1} by QR(a) = 1 if χ1(a) = −1, and QR(a) = 0 otherwise.
That is, QR(a) = 1 for quadratic non-residues and 0 otherwise.

A very useful theorem of Weil [8] state that for any low degree polynomial f that is not of a
certain restricted form, the values of a field character ‘cancel out’ over the range of f (when viewed
as a multi-set). We state this theorem for multiplicative characters.
Theorem 1. [6][Theorem 2C ′, page 43] Let χ be a multiplicative character of Fq of order m > 1.
Let f(t) be a non-constant polynomial in Fq[t] of degree d. Suppose that f(t) is not of the form
c · g(t)m for any c ∈ Fq and g(t) ∈ Fq[t]. Then

∣∣∣∣∣∣
∑

t∈Fq

χ(f(t))

∣∣∣∣∣∣
≤ d · q1/2.

3A character χ of F∗q is extended to 0 by χ(0) = 0.
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For the case of a field character of order 2, Weil’s theorems actually show that the character is an
‘extractor’ for distributions of the form f(UFq) for a low odd degree polynomial f . We formalize
this in the following Corollary (see [3] for a proof).
Corollary 3.1. Let q = pl for some integer l and odd prime p. Let f(t) ∈ Fq[t] be a non-constant
polynomial of degree m that is not a square multiple in Fq[t]. Then QR(f(UFq)) is ε-close to uniform
for ε = d√

q
.

A similar statement can now be shown for multivariate low degree polynomials.
Lemma 3.2. Let q = pl for some integer l and odd prime p. Let f(t1, . . . , tk) ∈ Fq[t1, . . . , tk] be a
non-constant polynomial of total degree d for odd d < q. Then QR(f(UFk

q
)) is ε-close to uniform

for ε = d√
q
.

Proof. We note first that there must be an a ∈ Fn
q such that the univariate ‘line restriction’ polyno-

mial fa(t) , f(a · t, . . . , a · t) has degree (exactly) d: The coefficient of td in fa is fd(a) where
fd is the d-homogenous part of f , i.e., the sum of monomials of degree exactly d in f , and by the
Schwartz-Zippel lemma as d < q, there is an a such that fd(a) 6= 0. Furthermore, for such a ∈ Fn

q ,
for all b ∈ Fn

q fa,b(t) , f(a · t + b) has degree exactly d - as terms including b will have degree
smaller than d and cannot cancel out a d’th power of t. As the distribution f(UFk

q
) is a convex com-

bination of distributions fa,b(UFq) for different ‘shifts’ b ∈ Fn
q the claim now follows from Corollary

3.1.

3.2 Dimension Expansion of Products of Subspaces

For Fq-linear subspaces A,B ⊆ Fn
q we define the ‘product’ subspace A · B , span(a · b|a ∈

A, b ∈ B). Note that if a1, . . . , al and b1, . . . , bk are bases for A and B respectively, then A · B =
span(ai · bj|1 ≤ i ≤ l, 1 ≤ j ≤ k). Similarly, for an element a ∈ Fn

q and linear subspace B ⊆ Fn
q

we denote by aB the set {a · b|b ∈ B} (which is also a linear subspace of the same dimension as
multiplication by a is a non-singular Fq-linear transformation).

The following theorem of Hou, Leung and Xiang[4] generalizes a famous Theorem of Kneser
(see [4] for background). It gives a lower bound on the dimension of a product of subspaces. We
state the theorem for completeness but we will only use the corollary below.
Theorem 2 ([4] Theorem 2.4). Let E ⊂ K be fields and let A and B be finite-dimensional E-linear
subspaces of positive dimension. Suppose that every algebraic element in K is seperable over E.
Then

dimE(A ·B) ≥ dimE(A) + dimE(B)− dimE(H(A ·B))

where H(A ·B) = {x ∈ K|x · A ·B ⊆ A ·B} is the stabilizer of A ·B in K.
Corollary 3.3. Let Fq be any field, and let n be prime. Let A and B be Fq-linear subspaces of Fn

q

having positive dimension. Then

dim(A ·B) ≥ min{n, dim(A) + dim(B)− 1}

We give a self-contained proof of the corollary.
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Proof. We proceed by induction on dim(A). As a base, observe that the result holds trivially when
dim(A) = 1. For the inductive step, we may then assume that dim(A) > 1. We may also assume
that B 6= Fn

q as the theorem is immediate in this case.

Note that we may freely replace A by gA (or B by gB) for some g ∈ Fn
q as this has no effect

on dim(A) (dim(B)) or dim(A · B). By this operation, we may assume that 1 ∈ A ∩ B. Since
dim(A) > 1, we may choose a ∈ A \ Fq. Let ` be the smallest nonnegative integer so that a` 6∈ B
(this must exist since B 6= Fn

q = span(1, a, a2, . . . , an−1)) and note that ` > 0 by the assumption
that 1 ∈ B. Next, replace B by the set a−(`−1)B. It now follows that 1 ∈ B and a 6∈ B, so A ∩ B is
a proper nonempty subset of A.

Consider the Fq-linear subspaces A∩B and A+B and observe that (A∩B) · (A+B) ⊆ A ·B.
The next equation follows from this and the induction hypothesis applied to A ∩B and A + B.

dim(A ·B) ≥ dim((A ∩B) · (A + B))

≥ min{n, dim(A ∩B) + dim(A + B)− 1}
= min{n, dim(A) + dim(B)− 1}.

This completes the proof.

4 The Main Construction

Theorem 3. Fix a field Fq of characteristic p and integers 2 ≤ k ≤ n such that n is prime. Fix
any integer d with n

k−1
≤ d < p. Let T : Fn

q 7→ Fq be a non-trivial Fq-linear mapping. Then
the polynomial f : Fn

q 7→ Fq defined by f(x) = T (xd) is non-constant on all affine subspaces of
dimension k. Furthermore, for any k-dimensional affine subspace X , f |X has total degree exactly
d.

Proof. Fix any k-dimensional affine subspace X . Then

f |X(t1, . . . , tk) = T ((a1 · t1 + . . . + ak · tk + b)d).

Fix non-negative integers i1, . . . , ik with i1 + . . . + ik = d. Note that the coefficient of ti11 · · · tikk in
f |X is

T

(
d!

i1! · · · ik! · a
i1
1 · · · aik

k

)
=

d!

i1! · · · ik! · T (ai1
1 · · · aik

k ),

where the equality follows as T is Fq-linear. We would like to prove that one of these coefficients is
non-zero. As p > d, the above coefficient is non-zero if and only if

T (ai1
1 · · · aik

k ) 6= 0.

We will prove that the set of monomials in the ai’s of total degree d span Fn
q over Fq. Thus, one of

these monomials must be mapped by T to a non-zero value in Fq, and therefore f |X is non-constant
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of total degree d. For this purpose, for 1 ≤ j ≤ d define Aj ⊆ Fn
q to be the subspace spanned by the

set of monomials in the ai’s of total degree exactly j. That is

Aj , span(ai1
1 · · · aik

k |i1 + . . . + ik = j).

We will prove by induction that dim(Aj) ≥ min{n, (k − 1) · j + 1} (from which the theorem
will follow): For j = 1, A1 = span(a1, . . . , ak) and as the ai’s are linearly independent the claim
follows. Now assume the claim for j − 1. Note that Aj = Aj−1 · A1. Thus, using Corollary 3.3,

dim(Aj) ≥ min{n, (k − 1) · (j − 1) + 1 + k − 1} = min{n, (k − 1) · j + 1}.

Remark 4.1. After writing the paper it was pointed to us that the dimension argument in the above
proof could be deduced directly from Theorem 4.1 of [4] (who were also interested in ‘the dimension
of powers of subspaces’). However, for the sake of simplicity and being self-contained we kept the
proof as is.

5 Our Affine Extractor

We restate and prove our main theorem.

Theorem 1. Fix a field Fq of characteristic p and integers 2 ≤ k ≤ n and n ≥ 25. Let
s = 6n

5·(k−1)
+ 2. Assume that p > s and q > 2 · s2. There is an explicit (n, k)-affine extractor

D : Fn
q 7→ {0, 1} with error ε = s/

√
q.

Proof. Choose a prime n ≤ n′ ≤ (6/5) · n (which always exists for n ≥ 25 according to Nagura’s
improvement of the Bertrand-Cebychev Theorem[5]) and pad x ∈ Fn

q with zeros to get a vector in
Fn′

q . Let f : Fn′
q 7→ Fq be the polynomial in Theorem 3 where we take d to be the smallet odd

integer that is at least n′
k−1

. Let D : Fn
q 7→ {0, 1} be defined as D(x) , QR(f(x)). From Theorem

3 we know that for any k-dimensional affine subspace X ⊆ Fn′
q , f |X is non-constant of degree

exactly d. Therefore, for any such X from Lemma 3.2 we know that D(X) is ε-close to uniform for
ε = (d/

√
q) ≤ (s/

√
q) and the theorem follows.

Remark 5.1. Using the methods of Gabizon and Raz[3] we could extend our extractor to extract
(1− δ) · log q bits for any constant δ > 0 at the expense of requiring a field of size q ≥ (n/k)O(1/δ).
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