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Abstract

We present new faster algorithms for the exact solution of the shortest vector problem in
arbitrary lattices. Our main result shows that the shortest vector in any n-dimensional lattice
can be found in time 23.199n and space 21.325n. This improves the best previously known
algorithm by Ajtai, Kumar and Sivakumar [Proceedings of STOC 2001] which was shown by
Nguyen and Vidick [J. Math. Crypto. 2(2):181–207] to run in time 25.9n and space 22.95n.
We also present a practical variant of our algorithm which provably uses an amount of space
proportional to τn, the “kissing” constant in dimension n. Based on the best currently known
upper and lower bounds on the kissing constant, the space complexity of our second algorithm is
provably bounded by 20.41n, and it is likely to be at most 20.21n in practice. No upper bound on
the running time of our second algorithm is currently known, but experimentally the algorithm
seems to perform fairly well in practice, with running time 20.48n, and space complexity 20.18n.

Keywords: Algorithm Analysis, Cryptography, Shortest Vector Problem, Sieving algorithms, Software im-

plementations

1 Introduction

The shortest vector problem (SVP) is the most famous and widely studied computational problem
on point lattices. It is the core of many algorithmic applications (see survey papers [14, 6, 21]),
and the problem underlying many cryptographic functions (e.g., [2, 3, 26, 27, 23, 9]). Still, our
understanding of the complexity of this problem, and the best known algorithms to solve it, is quite
poor. The asymptotically fastest known algorithm for SVP (namely, the AKS Sieve introduced by
Ajtai, Kumar and Sivakumar in [4]) runs in probabilistic exponential time 2O(n), where n is the
dimension of the lattice. However, even the fastest known practical variant of this algorithm [22] is
outperformed by the asymptotically inferior 2O(n2)-time Schnorr-Euchner enumeration algorithm
[30] at least up to dimension n ≈ 50, at which point it becomes impractical. A similar situation ex-
ists in the context of approximation algorithms for SVP, where the BKZ (block Korkine-Zolotarev)
algorithm of [30] (which is not even known to run in polynomial time) is preferred in practice to
provable polynomial time approximation algorithms like [29, 7].

This discrepancy between asymptotically faster algorithms and algorithms that perform well in
practice is especially unsatisfactory in the context of lattice based cryptography, where one needs
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to extrapolate the running time of the best known algorithms to ranges of parameters that are
practically infeasible in order to determine appropriate key sizes for the cryptographic function.

In this paper we present and analyze new algorithms to find the shortest vector in arbitrary lat-
tices that both improve the best previously known worst-case asymptotic complexity and also have
the advantage of performing pretty well in practice, thereby reducing the gap between theoretical
and practical algorithms. More specifically, we present

• a new probabilistic algorithm that provably finds the shortest vector in any n dimensional
lattice (in the worst case, and with high probability) in time Õ(23.199n) and space Õ(21.325n),
improving the Õ(25.9n)-time and Õ(22.95n)-space complexity bounds of the asymptotically
best previously known algorithm [4, 22], and

• a practical variant of our theoretical algorithm that admits much better space bounds, and
outperforms the best previous practical implementation [22] of the AKS sieve [4].

The space complexity of our second algorithm can be bounded by Õ(τn), where τn is the so called
“kissing” constant in n-dimensional space, i.e., the maximum number of equal n-dimensional spheres
that can be made to touch another sphere, without touching each other. The best currently known
lower and upper bounds on the kissing constant are 2(0.2075+o(1))n < τn < 2(0.401+o(1))n [5]. Based
on these bounds we can conclude that the worst-case space complexity of our second algorithm is
certainly bounded by 20.402n. Moreover, in practice we should expect the space complexity to be at
most 20.21n, because finding family of lattices for which the algorithm uses more than 20.21n space
would imply denser arrangements of hyperspheres than currently known, a long standing open
problem in the study of spherical codes. So, input lattices for which our algorithm uses more than
20.21n space either do not exists (i.e., the worst-case space complexity is 20.21n), or do not occur
in practice because they are very hard to find. The practical experiments reported in Section B
are consistent with our analysis, and suggest that the space complexity of our second algorithm is
indeed bounded by 20.21n. Unfortunately, we are unable to prove any upper bound on the running
time of our second algorithm, but our experiments suggest that the algorithm runs in time 20.48n.

The rest of the paper is organized as follows. In the following subsections we provide a more
detailed description of previous work (Section 1.1) and an overview of our new algorithms (Sec-
tion 1.2). In Section 2 we give some background about point lattices and the shortest vector
problem. In Section 3 we describe our new algorithms and state theorems for their complexity.
Finally, in Section 4 we discuss open problems. In the appendix we give the proof for the asymp-
totic bounds on time and space complexity in Section A, and we report experimental results in
Section B.

1.1 Prior work

Algorithms for the exact solution of the shortest vector problem can be classified in two broad cat-
egories: enumeration algorithms, and sieving algorithms. Enumeration algorithms, given a lattice
basis B, systematically explore a region of space (centered around the origin) that is guaranteed to
contain the shortest lattice vector. The running time of these algorithms is roughly proportional
to the number of lattice points in that region, which, in turn depends on the quality of the input
basis. Using LLL reduced basis [16], the Fincke-Pohst enumeration algorithm [24] finds the shortest
lattice vector in time Õ(2O(n2)). Several variants of this algorithm have been proposed (see [1] for a
survey,) including the Schnorr-Euchner enumeration method [30], currently used in state of the art
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practical lattice reduction implementations [31, 25]. Using a clever preprocessing method, Kannan
[13] has given an improved enumeration algorithm that finds the shortest lattice vector in time
2O(n logn). This is the asymptotically best deterministic algorithm known to date, but does not
perform well in practice due to the substantial overhead incurred during preprocessing (see [10] for
further information about the theoretical and practical performance of Kannan’s algorithm).

The AKS Sieve, introduced by Ajtai, Kumar and Sivakumar in [4], lowers the running time
complexity of SVP to a simple exponential function 2O(n) using randomization. We refer collectively
to the algorithm of [4] and its variants as proposed in [22] and in this paper, as sieve algorithms.
A major practical drawback of sieve algorithms (compared to the polynomial space deterministic
enumeration methods) is that they require exponential space. A careful analysis of the AKS Sieve
is given by Nguyen and Vidick in [22], building on ideas from [28]. Their analysis shows that the
AKS Sieve runs in Õ(25.9n)-time using Õ(22.95n) space. Nguyen and Vidick [22] also propose a
practical variant of the AKS sieve, and demonstrate experimentally that the algorithm can be run
in practice using reasonable computational resources, but it is not competitive with enumeration
methods at least up to dimension 50, at which point the algorithm is already impractical.

1.2 Overview

In this paper we improve on [4, 22] both in theory and in practice, proposing new variants of the
sieve algorithm with better exponential worst-case running time and space complexity bounds, and
better practical performance. In order to describe the main idea behind our algorithms, we first
recall how the sieve algorithm of [4] works. The algorithm starts by generating a large (exponential)
number of random lattice points P within a large (but bounded) region of space C. Informally, the
points P are passed through a sequence of finer and finer “sieves”, that produce shorter and shorter
vectors, while “wasting” some of the sieved vectors along the way. (The reader is referred to the
original article [4] as well as the recent analysis [22] for a more detailed and technical description
of the AKS sieve.)

While using many technical ideas from [4, 22], our algorithms depart from the general strategy
of starting from a large pool P of (initially long) lattice vectors, and obtaining smaller and smaller
sets of shorter vectors. Instead, our algorithms start from an initially empty list L of points, and
increase the length of the list by appending new lattice points to it. In our first algorithm, the
points in the list never change: we only keep adding new vectors to the list. Before a new point v
is added to the list, we attempt to reduce the length of v as much as possible by subtracting the
vectors already in the list from it. Reducing new lattice vectors against the vectors already in the
list allows to prove a lower bound on the angle between any two list points of similar norm. This
lower bound on the angle between list points allows us to apply the linear programming bound for
spherical codes of Kabatiansky and Levenshtein [12] to prove that the list L cannot be too long.
The upper bound on the list size then easily translates to corresponding upper bounds on the time
and space complexity of the algorithm.

Similarly to previous work [4, 22], in order to prove that the algorithm produces non-zero vectors,
we employ a now standard perturbation technique. Specifically, instead of generating a random
lattice point v and reducing it against the vectors already in the list, we generate a perturbed
lattice point v + e (where e is a small error vector), and reduce v + e instead. The norm of the
error e is large enough, so that the lattice point v is not uniquely determined by v + e. This
uncertainty about v allows to easily prove that after reduction against the list, the vector v is not
too likely to be zero.
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Our practical variant of the algorithm does the following. Beside reducing new lattice points v
against the points already in the list L, the algorithm also reduces the points in L against v, and
against each other. As a result, the list L has the property that any pair of vectors in L forms a
Gauss reduced basis. It follows from the properties of Gauss reduced bases that the angle between
any two list points is at least π/3, and the list forms a good spherical code. In particular, the list
length never exceeds the kissing constant τn, which is defined as the highest number of points that
can be placed on a sphere, while keeping the minimal angle between any two points at least π/3.1

As already discussed, this allows to bound the space complexity of our second algorithm by 20.402n

in theory, or 20.21n in practice. Unfortunately, we are unable to bound the running time of this
modified algorithm, as we don’t know how to prove that it produces nonzero vectors. However,
the algorithm seems to work very well in practice, and outperforms the best previously known
variants/implementations of the AKS Sieve [22] both in theory (in terms of provable space bounds)
and in practice (in terms of experimentally observed space and time complexity.)

2 Background

In this section we review standard definitions and notation used in the algorithmic study of lattices,
mostly following [20].

General: For any real x, bxc denotes the largest integer not greater than x. For a vector x =
(x1, . . . , xn) we define bxc as (bx1c, . . . , bxnc). We write log for the logarithm to the base 2, and
logq when the base q is any number possibly different from 2. We use ω(f(n)) to denote the set
of functions growing faster than c · f(n) for any c > 0. A function e(n) is negligible if e(n) < 1/nc

for any c > 0 and all sufficiently large n. We write f = Õ(g) when f(n) is bounded by g(n) up to
polylogarithmic factors, i.e., f(n) ≤ logc g(n) · g(n) for some constant c and all sufficiently large n.

The n-dimensional Euclidean space is denoted Rn. We use bold lower case letters (e.g., x) to
denote vectors, and bold upper case letters (e.g., M) to denote matrices. The ith coordinate of x
is denoted xi. For a set S ⊆ Rn, x ∈ Rn and a ∈ R, we let S + x = {y + x : y ∈ S} denote the
translate of S by x, and aS = {ay : y ∈ S} denote the scaling of S by a. The Euclidean norm
(also known as the `2 norm) of a vector x ∈ Rn is ‖x‖ = (

∑
i x

2
i )

1/2, and the associated distance is
dist(x,y) = ‖x− y‖. We will use φx,y to refer to the angle between the vectors x,y.

The distance function is extended to sets in the customary way: dist(x, S) = dist(S,x) =
miny∈S dist(x,y). We often use matrix notation to denote sets of vectors. For example, matrix
S ∈ Rn×m represents the set of n-dimensional vectors {s1, . . . , sm}, where s1, . . . , sm are the columns
of S. We denote by ‖S‖ the maximum length of a vector in S. The linear space spanned by a set
of m vectors S is denoted span(S) = {

∑
i xisi : xi ∈ R for 1 ≤ i ≤ m}. For any set of n linearly

independent vectors S, we define the half-open parallelepiped P(S) = {
∑

i xisi : 0 ≤ xi < 1 for 1 ≤
i ≤ n}. Finally, we denote by Bn(x, r) the closed Euclidean n-dimensional ball of radius r and
center x, Bn(x, r) = {w ∈ Rn : ‖w − x‖ ≤ r}. If no center is specified, then the center is zero
Bn(r) = Bn(0, r).

1The name “kissing” constant originates from the fact that π/3 is precisely the minimal angle between the centers
of two nonintersecting equal spheres that touch (kiss) a third sphere of the same radius.
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Lattices: We now describe some basic definitions related to lattices. For a more in-depth discus-
sion, see [19]. An n-dimensional lattice is the set of all integer combinations{ n∑

i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, . . . ,bn in Rn.2 The set of vectors b1, . . . ,bn is called a basis
for the lattice. A basis can be represented by the matrix B = [b1, . . . ,bn] ∈ Rn×n having the basis
vectors as columns. The lattice generated by B is denoted L(B). Notice that L(B) = {Bx : x ∈
Zn}, where Bx is the usual matrix-vector multiplication.

For any lattice basis B and point x, there exists a unique vector y ∈ P(B) such that y − x ∈
L(B). This vector is denoted y = x mod B, and it can be computed in polynomial time given B
and x. A sub-lattice of L(B) is a lattice L(S) such that L(S) ⊆ L(B). The determinant of a lattice
det(L(B)) is the (n-dimensional) volume of the fundamental parallelepiped P(B) and is given by
| det(B)|.

The minimum distance of a lattice Λ, denoted λ(Λ), is the minimum distance between any two
distinct lattice points, and equals the length of the shortest nonzero lattice vector:

λ(Λ) = min{dist(x,y) : x 6= y ∈ Λ} = min{‖x‖ : x ∈ Λ \ {0}} . (1)

We often abuse notation and write λ(B) instead of λ(L(B)).

Definition 2.1 (Shortest Vector Problem) An input to SVP is a lattice B, and the goal is to
find a lattice vector of length precisely λ(B).

Theorem 2.2 (Kabatiansky and Levenshtein [12]) Let A(n, φ0) be the maximal size of any
set C of points in Rn such that the angle between any two distinct vectors vi,vj ∈ C (denoted
φvi,vj ) is at least φ0. If 0 < φ0 < 63◦, then for all sufficiently large n, A(n, φ0) = 2cn for some

c ≤ −1
2

log(1− cos(φ0))− 0.099.

3 Algorithms

In this section we describe our two algorithms for the shortest vector problem. In Section 3.1, we
describe List Sieve. List Sieve takes as input a lattice basis and a target norm µ. If there exist
lattice vectors with norm less then or equal to µ, it finds one with high probability, else it gives ⊥.
Notice that using List Sieve we can easily find the shortest vector with high probability by doing
binary search on the value of µ. In Section 3.2 we describe the Gauss Sieve, a practical variant of
the List Sieve with much better provable worst-case space complexity bound Õ(τn), where τn is the
kissing constant in dimension n.

3.1 The List Sieve

The List Sieve algorithm works by iteratively building a list L of lattice points. At every iteration,
the algorithm attempts to add a new point to the list. Lattice points already in the list are never

2Strictly speaking, this is the definition of a full-rank lattice. Since only full-rank lattices are used in this paper,
all definitions are restricted to the full-rank case.
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Algorithm 1 ListSieve(B, µ) Output: v : v ∈ B ∧ ‖v‖ ≤ µ OR: ⊥
function ListSieve(B, µ)

L← {0}, δ ← 1− 1/n, i← 0
ξ ← 0.685 . The choice of ξ is explained in

the analysis
K ← 2cn . c is going to be defined in the

analysis
while i < K do

i← i+ 1
(pi, ei)← Sample(B, ξµ)
pi ← ListReduce(pi, L, δ)
vi ← pi − ei
if (vi 6∈ L) then

if ∃vj ∈ L : ‖vi − vj‖ < µ then
return vi − vj

end if
L← L ∪ {vi}

end if
end while
return ⊥

end function

function Sample(B, d)

e $← Bn(d)
p← e mod B
return (p, e)

end function

function ListReduce(p, L, δ)
while (∃vi ∈ L : ‖p− vi‖ ≤ δ‖p‖) do

p← p− vi
end while
return p

end function

modified or removed. The goal of the algorithm is to produce shorter and shorter lattice vectors,
until two lattice vectors within distance µ from each other are found, and a lattice vector achieving
the target norm can be computed as the difference between these two vectors. At every iteration,
a new lattice point is generated by first picking a (somehow random, in a sense to be specified)
lattice point v, and reducing the length of v as much as possible by repeatedly subtracting from it
the lattice vectors already in the list L when appropriate. Finally, once the length of v cannot be
further reduced, the vector v is included in the list.

The main idea behind our algorithm design and analysis is that reducing v with the list vectors
L ensures that no two points in the list are close to each other. This is because if v is close to a list
vector u ∈ L, then u is subtracted from v before v is considered for inclusion in the list. In turn,
using linear programming bounds from the study of sphere packings, this allows to prove an upper
bound on the size of the list L. This immediately gives upper bounds on the space complexity of the
algorithm. Moreover, if at every iteration we were to add a new lattice point to the list, we could
immediately bound the running time of the algorithm as roughly quadratic in the list size, because
the size of L would also be an upper bound on the number of iterations, and each iteration takes
time proportional3 to the list size |L|. The problem is that some iterations might give collisions,
lattice vectors v that already belong to the list. These iterations leave the list L unchanged, and
as a result they just waste time. So the main hurdle in the time complexity analysis is bounding
the probability of getting collisions.

This is done using the same method as in the original sieve algorithm [4]: instead of directly
working with a lattice point v, we use a perturbed version of it p = v + e, where e is a small

3Each iteration involves a small (polynomial) number of scans of the current list L.
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random error vector of length ‖e‖ ≤ ξµ for an appropriate value of ξ > 0.5. Since e is small, the
vectors p and v are close to each other, and reducing the length of p (by subtracting list vectors
from it) results in a short lattice vector v = p− e. Using standard techniques [17], one can ensure
that the conditional distribution of the lattice vector v = p − e, given p, is uniform within the
sphere of radius ξµ centered around p. So, if this sphere contains two lattice points at distance at
most µ < 2ξµ one from the other, the probability of sampling the same of these two vectors twice is
the same as sampling two vectors withing distance at most µ. This directly translates to an upper
bound on the probability of getting a collision. Using this bound we can bound from above the
number of samples needed to find a solution vector with high probability. The complete pseudo-
code of the List Sieve is given as Algorithm 1. Here we explain the main operations performed by
the algorithm.

Sampling. The pair (p, e) is chosen picking e uniformly at random within a sphere of radius
ξµ, and setting p = e mod B. This ensures that, by construction, the sphere B(p, ξµ) contains
at least one lattice point v = p − e. Moreover, the conditional distribution of v (given p) is
uniform over all lattice points in this sphere. Notice also that for any ξ > 0.5, the probability that
B(p, ξµ) contains more than one lattice point is strictly positive: if s is a lattice vector achieving
the target norm, then the intersection of B(0, ξµ) and B(s, ξµ) is not empty, and if e falls within
this intersection, then v and v + s are within distance ξµ from p. As we will see, larger values of
ξ result in larger bounds on the size of the list L, while smaller values of ξ result in the algorithm
producing collisions with higher probability. The running time of the algorithm depends both on
the list size and the collision probability. Therefore, in order to minimize the running time we need
to choose ξ as an appropriate trade-off between keeping both the list size and collision probability
small. In Section A we show how to choose ξ.

List reduction. The vector p is reduced by subtracting (if appropriate) lattice vectors in L
from it. The vectors from L can be subtracted in any order. Our analysis applies independently
from the strategy used to choose vectors from L. For each v ∈ L, we subtract v from p only if
‖p − v‖ < ‖p‖. Notice that reducing p with respect to v may make p no longer reduced with
respect to some other v′ ∈ L. So, all list vectors are repeatedly considered until the length of p can
no longer be reduced. Since the length of p decreases each time it gets modified, and p belongs
to a discrete set L(B)− e, this process necessarily terminates after a finite number of operations.
In order to ensure fast termination, as in the LLL algorithm, we introduce a slackness parameter
δ < 1, and subtract v from p only if this reduces the length of p by at least a factor δ. As a result,
the running time of each invocation of the list reduction operation is bounded by the list size |L|
times the logarithm (to the base 1/δ) of the length of p. For simplicity, we take δ(n) = 1− 1/n, so
that the number of iterations is bounded by a polynomial log(n‖B‖)/ log(1− 1/n)−1 = nO(1), and
δ(n) = 1− o(1) is equal to 1 in the limit.

Termination. When the algorithm starts it computes the maximum number K of samples it is
going to use. If a lattice vector achieving norm at most µ is not found after reducing K samples,
the algorithm decides that λ1(B) > µ and outputs ⊥. This behavior results a one-sided error
algorithm. If λ1(B) > µ the algorithm cannot find a lattice vector with norm at most µ and as
a result it will always decide correctly ⊥. However if λ1(B) ≤ µ, the algorithm might terminate
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before finding a vector with norm ≤ µ. In Section A we will show how to choose K so that this
error probability is exponentially small.

Now we are ready to state our main theorem for List Sieve:

Theorem 3.1 Let ξ be a real number greater than 0.5 and c1(ξ) = log(ξ +
√
ξ2 + 1) + 0.401,

c2(ξ) = 0.5log(ξ2/(ξ2−0.25)). Given a basis B and a target norm µ, such that λ1(B) ≤ µ, List Sieve
outputs a lattice vector with norm less or equal to µ with high probability, using K = Õ(2(c1+c2)n)
samples. The total space required is N = Õ(2c1n), and total time = Õ(2(2·c1+c2)n).

The proof is given in Section A.

Corollary 3.2 For ξ ' 0.685 we achieve optimal time complexity < Õ(23.199n) with space com-
plexity Õ(21.325n).

3.2 The Gauss Sieve

Algorithm 2 GaussSieve(B) Output: v : v ∈ B ∧ ‖v‖ ≤ λ1(B)
function GaussSieve(B, µ)

L← {0}, S ← { },K ← 0
while K < c do

if S is not empty then
vnew ←S.pop()

else
vnew ←SampleGaussian(B)

end if
vnew ←GaussReduce(vnew, L, S)
if (vnew = 0) then

K ← K + 1
else

L← L ∪ {vnew}
end if

end while
end function

function GaussReduce(p, L, S)
while (∃vi ∈ L : ‖vi‖ ≤ ‖p‖

∧ ‖p− vi‖ ≤ ‖p‖) do
p← p− vi

end while
while (∃vi ∈ L : ‖vi‖ > ‖p‖

∧ ‖vi − p‖ ≤ ‖vi‖) do
L← L \ {vi}
S.push(vi − p)

end while
return p

end function

We now present a practical variant of the List Sieve with much better space complexity. The
Gauss Sieve follows the same general approach of building a list of shorter and shorter lattice
vectors, but when a new vector v is added to the list, not only we reduce the length of v using
the list vectors, but we also attempt to reduce the length of the vectors already in the list using
v. In other words, if min(‖v ± u‖) < max(‖v‖, ‖u‖), then we replace the longer of v,u with the
shorter of v ± u. As a result, the list L always consists of vectors that are pairwise reduced, i.e.,
they satisfy the condition min(‖u± v‖) ≥ max(‖u‖, ‖v‖). This is precisely the defining condition
of reduced basis achieved by the Gauss/Lagrange basis reduction algorithm for two dimensional
lattices, hence the name of our algorithm.

It is well known that if u,v is a Gauss reduced basis, then the angle between u and v is at
least π/3 (or 60 degree). As a result, the maximum size of the list (and space complexity of the
algorithm) can be immediately bounded by the kissing number τn. Unfortunately, we are unable
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to prove interesting bounds on the running time of the algorithm. As for the List Sieve, the main
problem encountered in the analysis is to prove that collisions are not likely to occur, unless we
have already found a shortest lattice vector. In our first algorithm we solved the problem by adding
an error term e to the new lattice vector v being added to the list. We could still do this here in
order to guarantee that, with reasonably high probability, after reducing v with the list, v is not
too likely to be one of the vectors already present in the list. The problems arise when we try to
reduce the vectors already in the list using the newly added vector v. We recall that all vectors in
the list belong to the lattice: there is no error term or residual randomness in the list vectors, and
we cannot use the same information theoretic argument used for v to conclude that the list vectors
do not collide with each other. Notice that collisions are problematic because they reduce the list
size, possibly leading to nonterminating executions that keep adding and removing vectors from
the list. In practice (see experimental results in Section B) this does not occur, and the running
time of the algorithm seems to be slightly more than quadratic in the list size, but we do not know
how to prove any worst-case upper bound.

Since we cannot prove any upper bound on the running time of the Gauss Sieve algorithm, we
apply some additional simplifications and practical improvements to the List Sieve. For example,
in the Gauss Sieve, we remove the use of error vectors e from the initial sampling algorithm, and
choose p = v at random. This has the practical advantage that the Gauss Sieve only works with
lattice points, allowing an integer only implementation of the algorithm (except possibly for the
sampling procedure which may still internally use floating point numbers). Following [22], we
sample the new lattice vectors v using Klein’s randomized rounding algorithm [15], but since we
cannot prove anything about running time, this choice is largely arbitrary.

The Gauss Sieve pseudo-code is shown as Algorithm 2. The algorithm uses a stack or queue
data structure S to temporarily remove vectors from the list L. When a new point v is reduced with
L, the algorithm checks if any point in L can be reduced with v. All such points are temporarily
removed from L, and inserted in S for further reduction. The Gauss Sieve algorithm reduces the
points in S with the current list before inserting them in L. When the stack S is empty, all list
points are pairwise reduced, and the Gauss Sieve can sample a new lattice point v for insertion in
the list L. Unfortunately, we cannot bound the number of samples required to find the shortest
vector with high probability. As a result we have to use a heuristic termination condition. Based on
experiments a good heuristic is to terminate after a certain number c(n) of collisions has occurred
(see section B).

4 Extensions and open problems

An interesting feature common to all sieve algorithms is that they can be slightly optimized to take
advantage of the structure of certain lattices used in practical cryptographic constructions, like the
NTRU lattices [11], or the cyclic lattices of [18]. The idea is the following. The structured lattices
used in this constructions have a non-trivial automorphism group, i.e., they are invariant under
certain (linear) transformations. For example, cyclic lattices have the property that whenever a
vector v is in the lattice, then all n cyclic rotations of v are in the lattice. When reducing a
new point p against a list vector v, we can use all rotations of v to decrease the length of p.
Effectively, this allows us to consider each list point as the implicit representation of n list points.
This approximately translates to a reduction of the list size by a factor n. While this reduction
may not be much from a theoretical point of view because the list size is exponential, it may have
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a substantial impact on the practical performance of the algorithm.
There are a number of open problems concerning algorithms for the shortest vector problem.

It is still unclear if we can get a 2O(n) algorithm that is using only polynomial space, or even
how to get a deterministic 2O(n) on time and space algorithm. Concerning sieve based algorithms
we identify two possible lines of research. Firstly, improving the current algorithms. Bounding
the running time of Gauss Sieve, or getting a faster heuristic would be very interesting. Another
interesting question is whether the bound of Kabatiansky and Levenshtein [12] can be improved
when the lattice is known to be cyclic, or has other interesting structure. The second line of research
is to use sieving as a subroutine for other algorithms that currently use enumeration techniques.
Our early experimental results hint that sieving could solve SVPs in higher dimensions than we
previously thought possible. It is especially interesting for example, to examine if such a tool can
give better cryptanalysis algorithms.
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editors, Mathematical Foundations of Computer Science 1997, volume 1295 of LNCS, pages
44–51. Springer, Aug. 1997.

[7] N. Gama and P. Q. Nguyen. Finding short lattice vectors within mordell’s inequality. In
Proceedings of STOC ’08, pages 207–216. ACM, May 2008.

[8] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proceedings of EUROCRYPT
’08, volume 4965 of LNCS, pages 31–51. Springer, 2008.

[9] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Proceedings of STOC ’08, pages 197–206. ACM, May 2008.

10
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APPENDIX

A Analysis of List Sieve

In this section prove time and space upper bounds for the List Sieve algorithm. In subsection A.1
we use the fact that the list points are far apart to get an upper bound N on the number of list
points. Then in subsection A.2 we prove that collisions cannot happen too often. We use this fact
to prove that after a certain number of samples we get a vector with norm less then or equal to µ
with high probability, provided such a vector exists.

A.1 Space complexity

We first establish a simple lemma that will be useful to bound the distance between lattice points.

Lemma A.1 For any two vectors x,y and real 0 < δ < 1, ‖x − y‖ > δ · ‖x‖ if and only if
‖(1− δ2)x− y‖ > δ‖y‖.

Proof. Squaring both sides in the first inequality, we get ‖x− y‖2 > δ2‖x‖2. Expanding ‖x− y‖2
into ‖x‖2 + ‖y‖2 − 2〈x,y〉 and rearranging the terms gives

(1− δ2)‖x‖2 + ‖y‖2 − 2〈x,y〉 > 0.

Next, multiply by 1− δ2 > 0 and rearrange, to get

(1− δ2)2‖x‖2 + ‖y‖2 − 2(1− δ2)〈x,y〉 > δ2‖y‖2.

Finally, notice that the left hand side is the expansion of ‖(1− δ2)x− y‖2.

We can now prove a bound on the size of the list generated by the List Sieve algorithm.

Theorem A.2 The number of points in L is bounded from above by N = poly(n) · 2c1n where

c1 = log(ξ +
√
ξ2 + 1) + 0.401.

Proof: Let B be the input basis, and µ be the target length of the List Sieve algorithm. Notice that
as soon as the algorithm finds two lattice vectors within distance µ from each other, the algorithm
terminates. So, the distance between any two points in the list L must be greater than µ. In order
to bound the size of L, we divide the list points into groups, according to their length, and bound
the size of each group separately. Consider all list points belonging to a sphere of radius µ/2

S0 = L ∩ B(µ/2).

Clearly S0 has size at most 1, because the distance between any two points in B(µ/2) is bounded
by µ. Next, divide the rest of the space into a sequence of coronas

Si = {x : γi−1µ/2 ≤ ‖x‖ < γiµ/2}

for i = 1, 2, . . . and γ = 1 + 1/n. Notice that we only need to consider a polynomial number of
coronas logγ(2n‖B‖/µ) = O(nc), because all list points have length at most n‖B‖. We will prove

13



an exponential bound on the number of points in each corona. The same bound will hold (up to
polynomial factors) for the total number of points in the list L.

So, fix a corona Si = {v ∈ L : R ≤ ‖v‖ ≤ γR} for some R = γi−1µ/2, and consider two
arbitrary points va,vb ∈ Si. We will show that

cos(φva,vb
) ≤ 1

2
+ ξ2(

√
1 + 1/ξ2 − 1) + o(1) = 1− 1

2(ξ +
√
ξ2 + 1)2

+ o(1). (2)

Notice that this upper bound on cos(φ) is greater than 0.5, and as a result φva,vb
< 60◦. Therefore,

we can safely use Theorem 2.2 with the bound (2), and conclude that the number of points in Si
is at most 2c1n where

c1 = −1
2

log(1− cos(φ))− 0.099

≤ log
(√

2(ξ +
√
ξ2 + 1)

)
− 0.099

= log(ξ +
√
ξ2 + 1) + 0.401

as stated in the theorem. It remains to prove (2). First note that

‖va − vb‖2 = ‖va‖2 + ‖vb‖2 − 2‖va‖ · ‖vb‖ · cos(φva,vb
).

Solving for cos(φva,vb
) we obtain

cos(φva,vb
) =

1
2

(
‖va‖
‖vb‖

+
‖vb‖
‖va‖

− ‖va − vb‖2

‖va‖ · ‖vb‖

)
. (3)

We bound (3) in two different ways. Using the fact that the distance between any two list points
is at least µ we immediately get

cos(φva,vb
) ≤ 1

2

(
‖va‖
‖vb‖

+
‖vb‖
‖va‖

− µ2

‖va‖ · ‖vb‖

)
≤ 1− µ2

2R2
+ o(1) (4)

Notice that this bound is very poor when R is large. So, for large R, we bound (3) differently.
Without loss of generality, assume that vb was added after va. As a result the perturbed point
pb = vb + eb is reduced with va, i.e., ‖pb − va‖ > δ‖pb‖. Using Lemma A.1, we get

‖(1− δ2)pb − va‖ > δ‖va‖.

We use triangular inequality to replace pb, with vb:

‖(1− δ2)vb − va‖ ≥ ‖(1− δ2)pb − va‖ − (1− δ2)‖eb‖ > δ‖va‖ − (1− δ2)ξµ.

Substituting in (3) we get

cos(φva,vb
) = cos(φva,(1−δ2)vb

)

=
1
2

(
‖va‖

(1− δ2)‖vb‖
+

(1− δ2)‖vb‖
‖va‖

− ‖va − (1− δ2)vb‖2

(1− δ2)‖va‖ · ‖vb‖

)
≤ ‖va‖2 + (1− δ2)2‖vb‖2 − (δ‖va‖ − (1− δ2)ξµ)2

2(1− δ2)‖va‖ · ‖vb‖

=
‖va‖
2‖vb‖

+
ξµδ

‖vb‖
+ (1− δ2)

‖vb‖2 − (ξµ)2

2‖va‖‖vb‖

=
1
2

+
ξµ

R
+ o(1).
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Combining this bound with (3), we see that

cos(φva,vb
) ≤ min

{
1− µ2

2R2
,
1
2

+
ξµ

R

}
+ o(1). (5)

Notice that as R increases, the first bound gets worse and the second better. So, the minimum (5)
is maximized when

1− µ2

2R2
=

1
2
− ξµ

R
.

This is a quadratic equation in x = µ/R, with only one positive solution

µ

R
=
√

1 + ξ2 − ξ = ξ(
√

1 + 1/ξ2 − 1),

which, substituted in (5), gives the bound (2).

A.2 Time Complexity

Let us revisit List Sieve. It samples random perturbations ei from Bn(ξµ), sets pi = ei mod B and
reduces it with the list L. Then it considers the lattice vector vi = pi − ei. This vector might be
one of the following:

• Event C: vi is a collision (dist(L,vi) = 0)

• Event L: vi is a new list point (dist(L,vi) > µ)

• Event S: vi is a solution (0 < dist(L,vi) ≤ µ).

We will prove that if there exist a lattice vector s with ‖s‖ ≤ µ, event S will happen with high
probability after a certain number of samples.

We first give a lower bound to the volume of a hypersphere cap. We will use this to upper
bound the probability of getting collisions:

Lemma A.3 Let CapR,h be the n-dimensional cap with height h of a hypersphere Bn(R). Then
for Rb =

√
2hR− h2:

Vol(Caph,R)
Vol(Bn(R))

>

(
Rb
R

)n
· h

2Rbn

Proof: The basis of CapR,h is an n − 1 dimensional hypersphere with radius Rb =
√

2hR− h2.
Therefore CapR,h includes a cone C1 with basis Bn−1(Rb) and height h. Also notice that a cylinder
C2 with basis Bn−1(Rb) and height 2 ·Rb includes Bn(Rb). Using the facts above we have:

Vol(Caph,R) > Vol(C1) = Vol(Bn−1(Rb))
h

n
= Vol(C2)

h

2Rbn
> Vol(Bn(Rb))

h

2Rbn

Therefore:
Vol(Caph,R)
Vol(Bn(R))

>
Vol(Bn(Rb))
Vol(Bn(R))

· h

2Rbn
=
(
Rb
R

)n
· h

2Rbn
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Theorem A.4 If there exists a lattice point s with ‖s‖ ≤ µ, then List Sieve will output a lattice
point with norm ≤ µ with high probability after using K = Õ(2(c1+c2)n) samples, with

c1 = log(ξ +
√
ξ2 + 1) + 0.401 c2 = log

(
ξ√

ξ2 − 0.25

)
.

Proof: Consider the intersection of two hyperspheres with radius ξµ and centers 0 and −s, I =
Bn(0, ξµ) ∩ Bn(−s, ξµ). Also we will use I ′ = I + s = Bn(0, ξµ) ∩ Bn(s, ξµ). Notice that ei ∈ I if
and only if e′i = ei + s ∈ I ′, therefore both perturbations ei, e′i are equally probable. Now notice
that Sample will give exactly the same point pi for both ei, e′i.

p′i = e′i mod B = ei mod B + s mod B = ei mod B = pi

As a result ListReduce given pi is oblivious to which perturbation of ei, e′i was chosen. After the
reduction, pi can correspond to vi = pi − ei and v′i = pi − e′i = vi − s with equal probability. The
distance between vi,v′i is at most ‖s‖ ≤ µ therefore they cannot be both in L. So at least one of
vi,v′i is not a collision. As a result we can organize the perturbations of I ∪ I ′ in pairs. From each
pair at least one perturbation does not give a collision. As a result the probability of not C given
ei ∈ I ∪ I ′ is Pr[C’|ei ∈ I ∪ I ′] ≥ 0.5.

Now notice that I ∪ I ′ contains two disjoint caps with height h = ξµ− ‖s‖/2 ≥ ξµ− µ/2 on a
n-dimensional hypersphere of radius ξµ. We use lemma A.3 to bound from below the probability
of getting ei in I ∪ I ′:

Pr[ei ∈ I ∪ I ′] =
2Vol(Capξµ−0.5µ,ξµ)

Vol(Bn(ξµ))
>

(√
ξ2 − 0.25
ξ

)n
· ξ − 0.5

n
√
ξ2 − 0.25

= 2−c2n · ξ − 0.5

n
√
ξ2 − 0.25

.

Therefore the probability of not getting a collision is bounded from below by

Pr[C’] ≥ Pr[C’|ei ∈ I ∪ I ′]Pr[ei ∈ I ∪ I ′] ≥ 2−c2n · ξ − 0.5

2n
√
ξ2 − 0.25

= p.

Now given that the probability of event C’ is at least p, the number of occurrences of C’ after K
samples is lower bounded by a random variable X following binomial distribution Binomial(K, p).
Let F (N ;K, p) = Pr[X ≤ N ] the probability of getting no more than N occurrences of C’ after K
samples. If we set K = 2Np−1 = Õ(2(c1+c2)n) we can use Chernoff’s inequality:

F (N ;K, p) ≤ exp
(
− 1

2p
(Kp−N)2

K

)
= exp

(
−N

4

)
≤ 1

2O(n)

As a result after K samples we will get at least N+1 occurrences of event C’ with high probability.
These events can either be L or S events. However the list size cannot grow more than N , and as
a result the number of L events can be at most N . So event S will happen with high probability.

Theorem A.5 The total running time of the algorithm is 2(2·c1+c2)n with

c1 = log(ξ +
√
ξ2 + 1) + 0.401 c2 = log

(
ξ√

ξ2 − 0.25

)
.
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Proof: Let us consider the running time of List Reduce. After every pass of the list L the input vector
pi to List Reduce gets δ times shorter. Therefore the total running time is logδ(‖B‖n) = poly(n)
passes of the list and each pass costs O(N) operations. Now notice that our algorithm will run List
Reduce for K samples, this gives us total running time of Õ(K ·N) = Õ(2(2c1+c2)n).

Setting the parameter ξ: The space complexity gets better as ξ grows smaller. By choosing
ξ arbitrarily close to 0.5, we can achieve space complexity 2sn for any s > (log 0.401)+(1+

√
5)/2 ≈

1.095, and still keep 2O(n) running time, but with a large constant in the exponent. At the cost of
slightly increasing the space complexity, we can substantially reduce the running time. The value
of ξ that yields the best running time is ξ ' 0.685 which yields space complexity < 21.325n and
time complexity < 23.199n.

B Practical performance of Gauss Sieve

In this section we describe some preliminary experimental results on the Gauss Sieve. We will
describe the design of our experiments and then we will discuss the results on the space and time
requirements of our algorithm.

Experiment setting: For our preliminary experiments we have generated square n × n bases
corresponding to random knapsack problems modulo a prime of ' 10 · n bits. These bases are
considered “hard” instances and are frequently used in bibliography [22, 8] to evaluate lattice algo-
rithms. In our experiments we used the Gauss Sieve with c = 500, the NV Sieve implementation
from [22] and the NTL library for standard enumeration techniques [30]. For every n = 30, . . . , 62
we generated 6 random lattices, and measured the average space and time requirements of the
algorithms. For sieving algorithms the logarithms of these measures grow almost linearly with the
dimension n. We use a simple model of 2cn to fit our results and we use least squares estima-
tion to compute c. We run our experiments on a Q6600 Pentium, using only one core, and the
algorithms were compiled with exactly the same parameters. The experiments are certainly not
exhaustive, however we believe that they are enough to give a sense of the practical performance
of our algorithm, at least in comparison to previous sieving techniques.

Size complexity: To evaluate the size complexity of the Gauss Sieve we measure the maximum
list size. (We recall that in the Gauss Sieve the list can both grow and shrink, as list points collide
with each other. So, we consider the maximum list size during each run, and then average over
the input lattice.) Our experiments show that the list size grows approximately as 20.18n. This
is consistent with our theoretical worst-case analysis, which bounds the list size by the kissing
constant τn. Recall that τn can be reasonably conjectured to be at most 20.21n. The fact that
the experimental results are even better than that should not be surprising, as τn is a bound on
the worst-case list size, rather than average list size when the input lattice is chosen at random.
The actual measured exponent 0.18 may depend on the input lattice distribution, and it would
be interesting to run experiments on other distributions. However, in all cases, we can expect the
space complexity to be bounded by 20.21n. Somehow similar bounds on space complexity are given
in Nguyen and Vidick’s work [22]. Gauss Sieve improves NV Sieve results in two ways:

• Theory: Our τn bound is proven under no heuristic assumptions, and gives an interesting
connection between sieving techniques and spherical coding.

17



 100

 1000

 10000

 100000

 1e+06

 35  40  45  50  55  60

#S
am

pl
es

 (
Lo

g-
sc

al
e)

Dimension

Space requirements comparisson

NV Sieve
Gauss Sieve

Figure 1: Space requirements of Sieving algorithms

• Practice: In practice Gauss Sieve uses far fewer points (e.g., in dimension n ' 40, the list
size is smaller approximately by a factor ' 70) See figure 1.

Running time: We cannot bound the number of samples required by Gauss Sieve to find the
shortest vector with high probability. However we found that a good termination heuristic is to stop
after a certain number c of collisions. For our experiments we used c = 500, and Gauss Sieve was
always able to find the solution. However better understanding for a good termination condition
of the algorithm is required.

The running grows approximately as 2(0.48n), which is similar to the experiments of NV Sieve.
However once more Gauss Sieve is by far superior in practice. For example, in dimension ' 40, the
70-fold improvement on the list size and the (at least) quadratic dependency of the running time on
the space bound, already suggested a 702 ' 0.5 · 104 speedup. In practice we measured an slightly
bigger ' 104 improvement. In Figure 2 we also give the running time of the Schnorr-Euchner (SE)
enumeration algorithm as implemented in NTL.4 This preliminary comparison with SE is meant
primarily to put the comparison between sieve algorithms in perspective. In [22], Nguyen and
Vidick had compared their variant of the sieve algorithm with the same implementation of SE used
here, and on the same class of random lattices. Their conclusion was that while sieve algorithms
have better asymptotics, the SE algorithm still reigned in practice, as the cross-over point is way
beyond dimension n ' 50, and their algorithm was too expensive to be run in such high dimension.

4The running time of enumeration algorithms, is greatly affected by the quality of the initial basis. To make a
fair comparison we have reduced the basis using BKZ with window 20.
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Figure 2: Running Times

Including our sieve algorithm in the comparison, changes the picture quite a bit: the crossover
point between the Gauss Sieve and the Schnorr-Euchnerr reference implementation used in [22]
occurs already in dimension n ' 40. This improved performance shows that sieve algorithms have
the potential to be used in practice as an alternative to standard enumeration techniques. We
remark that the enumeration algorithms have been the subject of intensive study and development
over several decades, and many heuristics are known (e.g., pruning) to substantially speed up
enumeration. The development of similar heuristics for sieve algorithms, and a through comparison
of how heuristics affect the comparison between enumeration and sieving, both in terms of running
time and quality of the solution, is left to future research.
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