
Lower Bounds for Testing Triangle-freeness in Boolean Functions

Arnab Bhattacharyya∗

MIT
abhatt@mit.edu

Ning Xie†

MIT
ningxie@csail.mit.edu

Abstract

Let f1, f2, f3 : Fn
2 → {0, 1} be three Boolean functions. We say a triple (x, y, x+ y) is a triangle in

the function-triple (f1, f2, f3) if f1(x) = f2(y) = f3(x+ y) = 1. (f1, f2, f3) is said to be triangle-free
if there is no triangle in the triple. The distance between a function-triple and triangle-freeness is the
minimum fraction of function values one needs to modify in order to make the function-triple triangle-
free. A canonical tester for triangle-freeness repeatedly picks x and y uniformly and independently at
random and checks if f1(x) = f2(y) = f3(x+ y) = 1. Based on an algebraic regularity lemma, Green
showed that the number of queries for the canonical testing algorithm is upper-bounded by a tower of 2’s
whose height is polynomial in 1/ε. A trivial query complexity lower bound of Ω(1/ε) is straightforward
to show. In this paper, we give the first non-trivial query complexity lower bound for testing triangle-
freeness in Boolean functions. We show that, for every small enough ε there exists an integer n0(ε)
such that for all n ≥ n0 there exists a function-triple f1, f2, f3 : Fn

2 → {0, 1} depending on all the n
variables which is ε-far from being triangle-free and requires (1

ε)4.847··· queries for the canonical tester.
For the single function case that f1 = f2 = f3, we obtain a weaker lower bound of (1

ε)3.409···. We also
show that the query complexity of any general (possibly adaptive) one-sided tester for triangle-freeness
is at least square-root of the query complexity of the corresponding canonical tester. Consequently,
this yields (1/ε)2.423··· and (1/ε)1.704··· query complexity lower bounds for multi-function and single-
function triangle-freeness respectively, with respect to general one-sided testers.

1 Introduction

Roughly speaking, property testing is concerned with the existence of an efficient algorithm that queries an
input object a small number of times and decides correctly with high probability whether the object has a
given property or whether it is “far away” from having the property. Formally, let D be a finite domain and
R be a finite range. Letting {D → R} denote the set of all functions from D to R, a property is specified
by a family F ⊆ {D → R} of functions. A tester is a randomized algorithm which is given a distance
parameter ε and has oracle access to an input function f : D → R, and accepts with probability at least 2/3
if f ∈ F and rejects (also with probability at least 2/3) if the function is ε-far from F . Distance between
functions f, g : D → R, denoted dist(f, g), is simply the fraction of the domain where f and g disagree,
and dist(f,F) = ming∈F{dist(f, g)}. For ε ∈ (0, 1), we say f is ε-far from F if dist(f,F) ≥ ε and ε-close
otherwise. A tester is one-sided if whenever f ∈ F , the tester accepts with probability 1. The central

∗Research supported in part by a DOE Computational Science Graduate Fellowship and NSF Awards 0514771, 0728645 and
0732334.

†Part of the work done while visiting ITCS, Tsinghua University. Research supported by NSF Awards 0514771, 0728645 and
0732334.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 66 (2009)

mailto:abhatt@mit.edu
mailto:ningxie@csail.mit.edu

parameter associated with a tester is the number of oracle queries it makes to the function f being tested. In
particular, a property is called strongly testable if, for every fixed ε, there is a tester with query complexity
that depends only on the distance parameter ε and is independent of the size of the domain. Property
testing was formally defined by Rubinfeld and Sudan [28], and the systematic exploration of property testing
for combinatorial properties was initiated by Goldreich, Goldwasser, and Ron [15]. Subsequently, a rich
collection of properties has been shown to be strongly testable [7, 6, 3, 12, 26, 5, 4, 21, 20].

A central quest of research in property testing has been to characterize properties according to their
query complexity. One can ask, for example, whether a large class of properties are all strongly testable, and
how the query complexity of a strongly testable property depends on the distance parameter ε. Such broad
understanding of testability has been achieved for graph and hypergraph properties. For graph properties, it
is known exactly ([3, 12]) which properties are strongly testable in the dense graph model. Furthermore, for
an important class of properties, H-freeness for fixed subgraphs H , it is known exactly for which H , testing
H-freeness requires the query complexity to be super-polynomial in 1/ε (ε being the distance parameter)
and for which only a polynomial number of queries suffice. Progress toward similar understanding has also
been made for hypergraph properties [27, 8, 6].

Somewhat ironically, algebraic properties, the main objects of study in the seminal work of Rubinfeld
and Sudan [28], are not as well understood as (hyper)graph properties from a high-level perspective. On the
one hand, there has been a lot of work in constructing low-query testers for specific algebraic properties,
such as linearity and membership in various error-correcting codes. However, the systematic study of the
query complexity of algebraic properties began only recently with the work of Kaufman and Sudan [22].
Formally, the class of properties under consideration here are linear-invariant properties. In this setting 1,
the domain D = Fn

2 and range R = {0, 1}, where F2 is the finite field with two elements. A property
F is said to be linear-invariant if for every f ∈ F and linear map L : Fn

2 → Fn
2 , it holds that f ◦ L ∈

F . Roughly speaking, Kaufman and Sudan showed strong testability of any locally-characterized linear-
invariant and linear 2 property. Moreover, the query complexity of all such properties is only poly(1/ε).
Nonlinear linear-invariant properties were studied formally in [11] where the authors isolated a particular
class of nonlinear linear-invariant properties, M-freeness for some fixed binary matroids M, and showed
an infinitely large set of strongly testable M-freeness properties. Subsequently, Shapira [29] and Král et
al [23] independently showed that, in fact for any fixed binary matroid M, M-freeness is strongly testable,
mirroring the analogous result of subgraph-freeness testing. However, unlike the case of graphs where it is
known exactly which subgraph-freeness properties can be tested in time poly(1/ε) and which cannot, there
are no similar results known for matroid-freeness properties. Indeed, to the best of our knowledge, prior to
our work, there were no non-trivial lower bounds known for the query complexity (in terms of ε) for any
natural linear-invariant algebraic property.

1.1 Our Results

We are interested in the property of triangle-freeness for Boolean functions. Let f1, f2, f3 : Fn
2 → {0, 1}

be three Boolean functions. We say a triple (x, y, x + y) is a triangle in the function-triple (f1, f2, f3) if
f1(x) = f2(y) = f3(x+y) = 1. (f1, f2, f3) is said to be triangle-free if there is no triangle among the three
functions. The canonical tester for triangle-freeness repeatedly picks x and y uniformly and independently
at random and checks if f1(x) = f2(y) = f3(x+y) = 1. Note that the canonical tester is a one-sided tester.
Moreover, if the number of triangles is N∆, then to reject a function-triple that is ε-far from being triangle-

1[22] considers linear invariance over general fields. In this paper, we restrict ourselves to Fn
2 for simplicity.

2Property F is linear if f, g ∈ F =⇒ f + g ∈ F

2

free with constant probability, the canonical tester needs to make Ω(22n

N∆
) number of queries. Green [18]

showed that the canonical tester for the property of triangle-freeness does indeed work correctly, though the
analysis is quite different from that of typical algebraic tests and is more reminiscent of the analysis for tests
of graph properties. In particular, Green developed an algebraic regularity lemma for the Boolean cube (his
result is much more general, in fact, it works for any abelian group). The query complexity upper bound
proved by Green has a huge dependency on ε: it is a tower of 2’s with height polynomial in 1/ε. A more
combinatorial version of Green’s result is that, for any function-triple ε-far from being triangle-free, there
are at least δ(ε)22n triangles in the function-triple, though this δ(ε) is only proved to be super tiny. A trivial
lower bound of Ω(1/ε) is straightforward to show. But, to the best of our knowledge, there is no non-trivial
lower bound for testing triangle-freeness in Boolean functions. This question was left open in [18].

It is interesting to compare the testability of algebraic triangle-freeness and graphic triangle-freeness.
Using Szemerédi’s regularity lemma, triangle-freeness in graphs is known to be testable with a tower-type
query complexity upper bound. Alon [1] gave a super-polynomial query complexity lower bound and it is
the strongest query lower bound for a natural strongly testable property known to date. However, the proof
technique in [1] does not seem to apply to the algebraic case. More generally, it seems to us that proving
lower bounds for the Boolean function case is more challenging than that of the graphic case. For example,
the lower bound given in [18] for regularity partitioning of the Boolean cube, though being of tower-type, is
much weaker than its graphic counterpart shown in [17] (and is also weaker than the upper bound proved in
the same paper).

In this paper we give the first non-trivial query lower bounds for testing triangle-freeness in Boolean
functions. In particular, we show that, for every small enough ε there exists an integer n0(ε) such that for all
n ≥ n0 there exists a function-triple f1, f2, f3 : Fn

2 → {0, 1} depending on all the n variables which is ε far
from being triangle-free and requires (1

ε)
4.847··· queries for the canonical tester. For the single function case

that f1 = f2 = f3, we obtain a weaker lower bound of (1
ε)

3.409··· for the canonical tester.
The goal of this research should be to understand the query complexity with respect to general testers.

To this end, we show that if there is a one-sided, possibly adaptive tester for triangle-freeness with query
complexity q, then one can transform that tester into a canonical one with query complexity at most O(q2).
Combining with our results for canonical testers, this implies a query complexity lower bound of (1

ε)
2.423···

for the multi-function triangle-freeness problem and of (1
ε)

1.704··· for single-function triangle-freeness, with
respect to one-sided testers. In fact our result is a bit more general: we prove a polynomial relationship be-
tween the query complexity of the canonical tester and arbitrary one-sided testers, for any matroid-freeness
property. This is analogous to a result in [2] for one-sided testers of subgraph-freeness in graphs 3. Another
related result is that of Ben-Sasson, Harsha and Raskhodnikova ([10]) who showed that there is no gap
between the query complexities of adaptive testers and non-adaptive ones for testing linear properties.

1.2 Techniques

From a combinatorial point of view, proving a lower bound for the query complexity of the canonical tester
for triangle-freeness amounts to constructing functions or function-triples which are far from being triangle-
free but contain only a small number of triangles.

Our lower bound for function-triples is based on constructing a vertex-disjoint function-triple, meaning
that all the triangles in the triple are pairwise disjoint. The property of being vertex-disjoint makes it simple
to calculate the function-triple’s distance from triangle-freeness as well as counting the number of triangles

3Goldreich and Trevisan in [16] prove a polynomial relationship between the query complexity of two-sided testers and canonical
testers, for any graph property. For the purposes of this paper, our weaker result is sufficient.

3

within the function-triple. We start our construction of a vertex-disjoint function-triple from three sets, each
of cardinality m, of k-bit binary vectors, {ai}m

i=1, {bj}m
j=1 and{c`}m

`=1, where k and m are fixed integers.
Next we define three sets, {AI}, {BJ} and{CL}, of mk-bit vectors, each consisting of the vectors obtained
by concatenating {ai}, {bj} and{c`}, respectively, in all possible orders. Finally we define our function-
triple (fA, fB, fC) to be the characteristic functions of the three sets {AI}, {BJ} and{CL}. In order to
make the triangles in this function-triple pairwise disjoint, we impose the constraint that {ai}, {bj} and{c`}
satisfy the 1-perfect-matching-free (1-PMF for short) property (see Section 4.1 for formal definition). To
make this construction work for arbitrarily small ε, we concatenate with some n′ ≥ 1 copies of each {ai},
{bj} and{c`} and require them to satisfy the n′-PMF property for any n′ ≥ 1. It turns out that {ai}, {bj}
and{c`} being PMF is equivalent to a (small) set of homogeneous Diophantine linear equations having no
non-trivial solution, which in turn can be checked by linear programming. Our numerical computation
indicates the existence of PMF family of vectors for k = 3, 4, and 5. Our findings show that larger values of
k give stronger lower bounds but unfortunately it was computationally infeasible to search for PMF families
of vectors for k ≥ 6. We conjecture that our approach may lead to super-polynomial query lower bounds
for testing multi-function triangle-freeness.

The lower bound for the single function case relies on the notion of regular functions. This is a natural
generalization of vertex-disjoint function-triples, in the sense that the number of triangle passing through
each point is not required to be 1 but can be some uniform constant. We also employ a notion of tensor
product between functions, which preserves their “triangle-degree regularity”. In analogy to the blow-up
operation on graphs [1], we tensor with bent functions (see Section 2 for definition) to construct functions
on arbitrarily long bits that actually depend on all these bits.

Our result on canonical tester vs. general one-sided tester for triangle-freeness is an adaptation of the
proof technique from [16] to the algebraic setting. The proof relies crucially on the fact that both of the
testers are one-sided and the property of being triangle-free is invariant under non-singular linear transfor-
mations of the underlying domain Fn

2 . The latter is used to show that, under a random non-singular linear
transformation, all linearly independent 2-tuples are basically equivalent. Therefore, in order to have guar-
anteed performance for every isomorphic copy of the input function, any tester (even an adaptive one) for
triangle-freeness has to pick some random points in the domain to query and check for triangles.

1.3 Multi-function vs. Single-function

Green in [18] used the term “triangle-freeness” to refer to the case f1 = f2 = f3, what we call the “single-
function case”. Arguably, it is a more natural property to examine than the multi-function case. However, it
is easily seen (and this has been explicitly observed previously, for example, in [24]) that Green’s analysis
extends to the multi-function version. Moreover, any analysis that goes through the route of a regularity
lemma in the usual way should extend to the multi-function case. Thus, to determine whether a different
notion of regularity is needed for which the number of partitions can be polynomial in 1/ε, it is reasonable
to examine the (easier) multi-function case first, as we are doing in this paper. Additionally, testability of
properties of a collection of functions is an interesting, but largely unexplored, question by itself.

1.4 Organization

After some necessary definitions in Section 2, the the query complexity lower bounds for testing triangle-
freeness in single functions and in function-triples are presented in Section 3 and Section 4, respectively.
In Section 5, we study the relationship between the query complexities of the canonical tester and of a

4

general one-sided tester for a broad class of algebraic properties. Some missing proofs may be found in the
Appendices.

2 Preliminaries

All logarithms in this paper are base 2. Let N = {0, 1, . . .} denote the set of natural numbers. Let n ≥ 1
be a natural number. We use [n] to denote the set {1, . . . , n}. The n × n identity matrix is denoted by In.
We view elements of Fn

2 as n-bit strings, that is elements of {0, 1}n, alternatively. If x and y are two n-bit
strings, then x+y denotes bitwise addition (i.e. XOR) of x and y. We use (x, y) to denote the concatenation
of two bit strings x and y.

Definition 2.1 (Tensor Product of Boolean Functions.). Let f1 : Fn1
2 → {0, 1} and f2 : Fn2

2 → {0, 1}.
Then the tensor product of f1 and f2, denoted by f1 ⊗ f2, is a Boolean function on Fn1+n2

2 such that
f1 ⊗ f2(x1, x2) = f1(x1) · f2(x2) for all x1 ∈ Fn1

2 and x2 ∈ Fn2
2 .

Note that if f1 depends on all the n1 variables and f2 depends on all the n2 variables, then f1 ⊗ f2

depends on all the n1 + n2 input bits.
In order to define and study some properties of bent functions, first we recall the notion of Fourier

transform.

Definition 2.2 (Fourier Transform). Let f : Fn
2 → R. The Fourier transform f̂ : Fn

2 → R of f is defined to
be f̂(α) = Ex[f(x)χα(x)], where χα(x) = (−1)

P
i∈[n] αixi . f̂(α) is called the Fourier coefficient of f at

α, and the {χα}α are called characters.

For α, β ∈ Fn
2 , the inner product between α and β: 〈χα, χβ〉

def= Ex∈Fn
2
[χα(x)χβ(x)] is 1 if α = β

and 0 otherwise. Therefore the characters form an orthonormal basis for Fn
2 , and we thus have the Fourier

inversion formula f(x) =
∑

α∈Fn
2
f̂(α)χα(x) and Parseval’s equality

∑
α∈Fn

2
f̂(α)2 = Ex[f(x)2]. For two

functions f, g : Fn
2 → R, we define their convolution as (f ∗ g)(x)def= 1

2n

∑
y∈Fn

2
f(y)g(x − y). By the

convolution theorem, f̂ · g = f̂ ∗ ĝ and f̂ ∗ g = f̂ · ĝ.

Definition 2.3 (Bent Functions). Let φ : Fn
2 → {0, 1} be a Boolean function and let ψ(x) = (−1)φ(x). φ is

called a bent function if the Fourier coefficients of ψ satisfy that |ψ̂(α)| = 1
2n/2 for every α ∈ Fn

2 .

Bent functions have many applications in cryptographic constructions. For more properties of bent
functions, we refer interested readers to [25]. It is well known that bent functions exist when the number of
variables is an even integer. For example, the inner-product function φ(x) = x1x2 + x3x4 + · · ·+ xn−1xn

is a bent function for every even n.
Let f1, f2, f3 : Fn

2 → {0, 1} be a function-triple. We say (f1, f2, f3) is triangle-free if there is no x and
y such that f1(x) = f2(y) = f3(x+ y). We use T-FREE to denote the set of triangle-free function-triples.

Let f, g : Fn
2 → {0, 1}. The (relative) distance between f and g is defined to be the fraction of points

at which they disagree: dist(f, g)def= Prx∈Fn
2
[f(x) 6= g(x)]. The distance between (f1, f2, f3) and T-FREE

is the minimum fraction of function values one needs to modify (f1, f2, f3) to make it triangle-free, i.e.,

dist((f1, f2, f3), T-FREE)def= min(g1,g2,g3)∈T-FREE (dist(f1, g1) + dist(f2, g2) + dist(f3, g3)).

Let f1, f2, f3 be a Boolean function-triple. The number of triangles passing through f1 at x isDf1(x)
def= |{y ∈

Fn
2 : f1(x) = f2(y) = f3(x + y) = 1}|. We define the triangle degree of f1 at x, denoted by df1(x), to

5

be df1(x)
def=Df1(x)/2

n. Note that if f1(x) = 0 then df1(x) = 0, however the converse may not be true.
Triangle degrees of f2 and f3 are defined identically. The triangle degree of a single Boolean function f
at point x is defined in a similar way: df (x)def= 1

2n |{y ∈ Fn
2 : f(x) = f(y) = f(x + y) = 1}|. When the

function f is clear from context, we drop the subscript f and simply write the triangle degree as d(x).

3 Lower Bound for Triangle-freeness in Single Functions

Let f : Fn
2 → {0, 1} be a Boolean function. We define the density of f to be ρf

def= Prx[f(x) = 1]. We say
f is (ρ, d)-regular if ρf = ρ and df (x) = d for all x with f(x) = 1.

The reason that we are interested in (ρ, d)-regular functions is because there is an easy lower bound on
the distance between regular functions and T-FREE.

Proposition 3.1. Let f be a (ρ, d)-regular function on n variables. Then there are exactly ρd22n

6 triangles
of f and f is ρ/3-far from being triangle-free.

Proof. Since f is (ρ, d)-regular, there are ρ2n x’s with f(x) = 1 and for every such x there are d · 2n/2
triangles passing through it (since every triangle is counted twice in the definition of triangle degree). It
follows that there are in total ρd22n

6 triangles, since each triangle is counted once by each of its three vertices.
Since triangle-freeness is a monotone property, one can only change the function values from 1 to 0 to
possibly remove triangles. Now changing the function value at one point can remove at most d · 2n/2
triangles, so one needs to change the function value of f (from 1 to 0) on at least ρd22n/6

d·2n/2 = ρ2n/3 points in
the domain. That is, dist(f, T-FREE) ≥ ρ/3.

Next we observe that tensor product preserves the triangle-degree regularity of Boolean functions.

Lemma 3.2. Let f1 : {0, 1}n1 → {0, 1} and f2 : {0, 1}n2 → {0, 1} such that f1 is (ρ1, d1)-regular and f2

is (ρ2, d2)-regular. Then f1 ⊗ f2 is (ρ1 · ρ2, d1 · d2)-regular.

Proof. The density of f1 ⊗ f2 is straightforward from definition. For the degree part, notice that for any
x = (x1, x2) and y = (y1, y2), where x1, y1 ∈ {0, 1}n1 and x2, y2 ∈ {0, 1}n2 , (x, y, x+ y) is a triangle of
f1 ⊗ f2 if and only if both (x1, y1, x1 + y1) is a triangle of f1 and (x2, y2, x2 + y2) is a triangle of f2.

We will use two simple functions defined below as the basic building blocks of our constructions.

Fact 3.3. The function G on two variables, defined by G(00) = 0, G(01) = G(10) = G(11) = 1, is
(3/4, 1/2)-regular. Also, the functionH on three variables, defined byH(000) = H(111) = 0 andH(x) =
1 otherwise, is (3/4, 1/2)-regular.

The next lemma shows that, by tensoringGwith itself appropriate number of times, we obtain a Boolean
function which is far from triangle-free yet does not contain too many triangles.

Lemma 3.4. For all small enough ε, there is a Boolean function which is ε-far from being triangle-free and
the query complexity of the canonical triangle-freeness tester is Ω((1/ε)3.409···).

Proof. Let ` = b log (1
3ε

)

log (4/3)c and let fε = G⊗ · · · ⊗G︸ ︷︷ ︸
` times

. Then fε is a Boolean function on n = 2` variables.

By Lemma 3.2, fε is a (ρ, d)-regular function with ρ = (3
4)` ≥ 3ε (and also ρ = O(ε)) and d = (1

2)` =

O(ε
log 2

log (4/3)) = O(ε2.409···). By Proposition 3.1, fε is at least ε-far from being triangle-free and the number

of triangles in fε is ρd22n

6 = O(ε
log 4

log (4/3))22n = O(ε3.409···)22n.

6

In order to construct Boolean functions on arbitrarily large Boolean domains, we utilize bent functions
to “stretch" the input bits. We show next that there are many bent functions which are regular and satisfy
ρ ≈ 1/2 and d ≈ 1/4. Moreover, these regular bent functions on Fm

2 exist for every even number m ≥ 2.

Lemma 3.5. For every even number m ≥ 2, if φ : Fm
2 → {0, 1} is a bent function with φ(0) = 0, then φ is(

1
2 ±O(2−m/2), 1

4 ±O(2−m/2)
)
-regular.

Proof. Let φ(x) be a bent function on m variables and let ψ(x) = (−1)φ(x). Note that ψ(x) = 1 − 2φ(x)
and φ(x) = 1

2(1− ψ(x)). Then by linearity of Fourier coefficients,

φ̂(α) =

{
1
2 −

1
2 ψ̂(0), if α = 0,

−1
2 ψ̂(α), otherwise.

It follows that ρφ = φ̂(0) = 1
2 ±

1
2
√

2m .
Without loss of generality, we can assume that φ(0) = 0. This is because, if otherwise, we can do a

shift without changing the magnitudes of the Fourier coefficients of ψ. By definition of dφ, for all x with
φ(x) = 1,

dφ(x) =
1

2m

∑
y

φ(y)φ(x+ y) = (φ ∗ φ)(x),

therefore d̂φ(α) = φ̂2(α).
Now we have, for all x with φ(x) = 1 (note that x 6= 0),

dφ(x) =
∑
α

d̂φ(α)χα(x)

=
∑
α

φ̂2(α)χα(x)

= (
1
2
− 1

2
ψ̂(0))2χ0(x) +

∑
α 6=0

1
4
ψ̂2(α)χα(x)

= (
1
2
− 1

2
ψ̂(0))2 +

1
2m+2

∑
α 6=0

χα(x).

Since x 6= 0,
∑

α χα(x) = 0, so
∑

α 6=0 χα(x) = −χ0(x) = −1. Plugging this into dφ(x), we conclude

that, for all x with φ(x) = 1, dφ(x) = 1
4 −

1
2 ψ̂(0) = 1

4 ±
1

2
√

2m .

Combining Lemma 3.2 and Lemma 3.5 gives the following single function triangle-freeness lower
bound.

Theorem 3.6. For every small enough ε there is an integer n0(ε) such that for all n ≥ n0, there is a Boolean
function f on n variables with the following properties. f is ε-far from being triangle-free and the query
complexity of the canonical triangle-freeness tester for f is Ω((1/ε)3.409···). Furthermore, f depends on all
n input variables.

Proof. Given ε > 0, let ` = b log (1
3ε

)

log (4/3)c and let fε be the function constructed in Lemma 3.4 on 2` bits.
If n is even, then m = n − 2` is even. Then we let φm be the bent function on m bits constructed in

Lemma 3.5, and define a Boolean function on n variables by f(x) = fε⊗φm. If n is odd, thenm = n−2`−3

7

is even, we instead define f(x) = fε ⊗ φm ⊗H . Now setting n0 = 2` + 3 makes our construction works
for all n ≥ n0. Since fε is regular and by Lemma 3.5 φm (or φm ⊗H)is also regular, therefore following
Lemma 3.2 f is a regular function. Moreover, as proved in Lemma 3.5, ρ(φm) = Θ(1) and d(φm) = Θ(1).
Therefore the triangle degree d and density ρ of the regular function f still satisfy that d = O(ρ2.409···) as in
Lemma 3.4, hence the same lower bound follows.

4 Lower Bound for Triangle-freeness in Function-triples

4.1 Perfect-matching-free Families of Vectors

Our goal in this section is to construct function-triples such that all the triangles in a function-triple are
disjoint. In other words, for each of the three functions, we want the triangle degree at each point to be
either 0 or 2. We will build such function-triples using constructions of perfect-matching free families of
vectors.

Definition 4.1 (Perfect-Matching-Free Families of Vectors). Let k and m be integers such that 0 < k <
m < 2k. Let {ai}m

i=1 and {bi}m
i=1 be two families of vectors, with ai, bi ∈ {0, 1}k for every 1 ≤ i ≤ m. Let

ci = ai + bi.

1. Let {AI}I be the set of (mk)-bit vectors formed by concatenating them vectors in {ai} in all possible
orders (there are m! such vectors), where I = (i1, i2, . . . , im) is a permutation of [m]. Similarly
define {BJ}J and {CL}L as the concatenations of vectors in {bi} and {ci} with J = (j1, j2, . . . , jm)
and L = (`1, `2, . . . , `m), respectively. We say the set of vectors {ai, bi, ci} is a (k,m) 1-perfect-
matching-free (abbreviated as 1-PMF) family of vectors if AI + BJ = CL necessarily implies that
I = J = L (i.e., is = js = `s for every 1 ≤ s ≤ m).

2. Let n′ ≥ 1 be an integer and now let {AI}I , {BJ}J and {CL}L be the sets of n′mk-bit vectors by
concatenating n′ copies of {ai}, {bi} and {ci}, respectively, in all possible orders (two concatenations
are regarded the same if they give rise to two identical strings in {0, 1}n′mk). We say the set of vectors
{ai, bi, ci} is a (k,m) n′-PMF family of vectors ifAI +BJ = CL necessarily implies that I = J = L.

3. Finally we say {ai, bi, ci} is a (k,m)-PMF family of vectors if it is n′-PMF for all n′ ≥ 1.

In other words, suppose we color all the 3m vectors in {ai, bi, ci} with m different colors so that ai, bi
and ci are assigned the same color. Suppose further we are given equal number of copies of {a1, b1, c1; . . . ;
am, bm, cm} and we wish to arrange them in three aligned rows such that all the ai’s are in the first row,
all the bi’s are in the second row and all the ci’s are in the third row. Then the only way of making every
column summing to 0k is to take the trivial arrangement in which every column is monochromatic.

4.2 Construction Based on PMF Families of Vectors

Let {ai, bi, ci} be a (k,m)-PMF family of vectors. Let n be an integer such that mk|n and let n′ = n
mk .

let {AI}I , {BJ}J and {CL}L be the sets of n-bit vectors by concatenating n′ copies of {ai}, {bi} and {ci}
respectively. Note that |{AI}| = |{BJ}| = |{CL}| = (n′m)!

(n′!)m . Now let fA, fB, fC : Fn
2 → {0, 1} be three

Boolean functions which are the characteristic functions of sets {AI}I , {BJ}J and {CL}L respectively.
That is, fA(x) = 1 iff x ∈ {AI}, fB(x) = 1 iff x ∈ {BJ} and fC(x) = 1 iff x ∈ {CL}.

Proposition 4.2. All the triangles in the function-triple (fA, fB, fC) are pairwise disjoint.

8

Proof. This follows directly from the definition that {ai, bi, ci} is a PMF family of vectors.

Theorem 4.3. If (k,m)-PMF family of vectors exists, then there exists ε0 = ε0(k,m) such that for all
ε < ε0, there is a n0 = n0(ε) and functions fA, fB, fC : Fn0

2 → {0, 1} such that (fA, fB, fC) is ε-far from
being triangle-free and testing triangle-freeness in (fA, fB, fC) requires the canonical tester to query the

functions Ω((1
ε)

α−o(1)) times, where α = 2− log m
k

1− log m
k

.

Proof. Given a small enough ε > 0, let n′ be the largest integer such that ε ≤
(n′m)!

(n′!)m

2n′mk . Let fA, fB and fC

be the characteristic functions of {AI}I , {BJ}J and {CL}L respectively defined above. Set n0 = n′mk
and then fA, fB and fC are Boolean functions on n0 variables. Let N∆ be the number of triangles in
(fA, fB, fC). Then by Stirling’s formula, for all small enough ε (therefore large enough n′ since we assume
that m and k are fixed constants),

N∆ =
(n′m)!
(n′!)m

=

√
2πmn′(mn′

e)mn′(1 +O(1
n′))(√

2πn′(n′

e)n′(1 +O(1
n′))

)m

= Θ

(
mmn′

n′
m−1

2

)
= 2(m log m)n′−m−1

2
log n′−o(1)

= 2(β−o(1))n0 ,

where β = log m
k .

By Proposition 4.2, all the triangles in (fA, fB, fC) are pairwise disjoint, therefore modifying the
function-triple at one point in the domain can remove at most one triangle. Hence dist((fA, fB, fC), T-FREE) ≥
N∆
2n0 ≥ ε. Consequently, the query complexity of the canonical tester is at least Ω(22n0

N∆
) = Ω(2(2−β+o(1))n0) =

Ω((1
ε)

α−o(1)).

One can construct fA, fB, fC to be Boolean functions on Fn
2 for any n ≥ n0, by simply making the

functions ignore the last n − n0 bits and behave as defined above on the first n0 bits. In Theorem 4.11, we
give a construction by tensoring with bent functions so that the resulting functions depend on all n bits.

We conjecture the following to be true.

Conjecture 4.4. There are infinitely many (k,m)-PMF families of vectors with m ≥ 2k(1−o(1)).

By Theorem 4.3, Conjecture 4.4 would imply a super-polynomial query lower bound for testing triangle-
freeness in function-triples using the canonical tester. Moreover, when composed with Theorem 5.4 it would
also give a super-polynomial lower bound for any one-sided triangle-freeness tester.

4.3 Existence of PMF Families of Vectors

In this section we present an efficient algorithm which, given a family of vectors {ai, bi, ci}m
i=1, checks if

it is PMF. Let {ai, bi, ci}m
i=1 be a family of vectors such that ai, bi, ci ∈ Fk

2 and ci = ai + bi for every
1 ≤ i ≤ m. First we observe that if {ai, bi, ci} is PMF, then all the vectors in {ai} must be distinct. The

9

same distinctness condition holds for vectors in {bi} and {ci}. From now on, we assume these to be true.
Next we define a set of “collision blocks”.

Definition 4.5 (Collision Blocks). Let {ai, bi, ci}m
i=1 be a family of vectors satisfying the distinctness condi-

tion. We say (i, j, `) is a collision block if ai + bj = c`, and for simplicity will just call it a block. We denote
the set of all blocks by B. We will call a block trivial if i = j = ` and non-trivial otherwise.

Since {ai, bi, ci} satisfies the distinctness condition, clearly |B| < m2. Let r be the number of non-
trivial blocks, and let {bl1, . . . , blr} be the set of non-trivial blocks. For a collision block bls, we use blas , blbs
and blcs to denote the three indices of the colliding vectors. That is, if bls = (i, j, `) is a block, then blas = i,
blbs = j and blcs = `.

Now suppose {ai, bi, ci}m
i=1 is not PMF. Then by the definition of PMF, there exists an integer n′ such

that AI , BJ , CL ∈ {0, 1}n′mk, AI + BJ = CL and I , J , and L are not the same sequence of indices. We
consider the equation AI + BJ = CL as a tiling of 3 × (n′m) k-bit vectors: the first row consists of the
n′m vectors from {ai} with each ai appearing exactly n′ times and the ordering is consistent with that of
AI . Similarly we arrange the second row with vectors from {bi} according to BJ and the third row with
vectors from {ci} according to CL. Observe that when we look at the columns of the tiling, each column
corresponds to a block in B. Now we remove all the trivial blocks, then because I , J , and L are not identical
sequences of indices, there are some non-trivial blocks left in the tiling. Since all the blocks removed are
trivial blocks, the remaining tiling still has equal number of ai, bi and ci for every 1 ≤ i ≤ m. We denote
these numbers by y1, . . . , ym. Note that yi’s are non-negative integers and not all of them are zero. Let the
number of blocks bli left in the tiling be xi, 1 ≤ i ≤ r. Again xi’s are non-negative integers and not all zero.
Moreover, we have the following constraints when counting the number of ai, bi and ci vectors, respectively,
left in the tiling:

∑

j∈[r]:blaj =i xj − yi = 0∑
j∈[r]:blbj=i xj − yi = 0 (for every 1 ≤ i ≤ m)∑
j∈[r]:blcj=i xj − yi = 0

(1)

xj = number of type j blocks left after removing trivial blocks

yi = number of vectors ai (equiv. bi or ci) left after removing trivial blocks

Lemma 4.6. {ai, bi, ci}m
i=1 is not PMF if and only there is a non-zero integral solution to the system of

linear equations (1).

Proof. We only need to show that if there is a non-zero solution to (1), then {ai, bi, ci}m
i=1 is not PMF. Let

{xi, yj} be a set of non-zero integer solution. Note that the solution corresponds to a partial tiling with equal
number of ai, bi and ci for every 1 ≤ i ≤ m. Set n′ = maxi yi. Since the solution is non-trivial, n′ ≥ 1.
Now for each 1 ≤ i ≤ m, add (n′ − yi) number of trivial blocks (i, i, i) to the tiling. Then the resulting
tiling gives AI , BJ , CL ∈ {0, 1}n′mk and AI +BJ = CL such that I, J and L are not identical.

Writing equations (1) in matrix form, we have

M~Z = ~0,

10

where

M =

1 · · · 1 −1

1 · · · . . .
· · · −1
· · · 1 −1

1 · · · . . .
1 · · · −1

1 · · · −1

· · · . . .
1 · · · 1 −1

is a 3m× (r +m) integer-valued matrix (actually all entries are in {−1, 0, 1}) and

~Z = [x1, . . . , xr, y1, . . . , ym]T

is an (r + m) × 1 non-negative integer-valued column vector. Note that each of first r columns of M has
exactly three 1s and all other entries are zero, and the lastm columns of M consist of three−Im×m matrices.

The following observation of Domenjoud, which essentially follows from Carathéodory’s theorem, gives
an exact characterization of when the system of equations (1) has a non-zero integral solution. We include a
proof in Appendix A for completeness.

Theorem 4.7 ([14]). Let M be an s × t integer matrix, then the Diophantine linear system of equations
M~Z = ~0 with ~Z ∈ Nt has a non-zero solution if and only if ~0 ∈ Conv(M1, . . . ,Mt), where Mi’s are the
column vectors of M and Conv(M1, . . . ,Mt) denotes the convex hull of vectors M1, . . . ,Mt.

It is well known that checking point-inclusion in a convex hull can be solved by Linear Programming,
see e.g. [9]. In particular, following the definition of convex hulls, ~0 ∈ Conv(M1, . . . ,Mt) if and only if
there exist real numbers θ1 ≥ 0, . . . , θt ≥ 0 such that

t∑
i=1

θiMi = ~0

and
t∑

i=1

θi = 1.

After introducing additional slack variables and plugging in our collision matrix M into the formalism, we
finally have the following characterization of a family of vectors being PMF.

Lemma 4.8. The family of vectors {ai, bi, ci}m
i=1 is PMF if and only if the following LP

Maximize W = ~c · ~θ

Subject to M′~θ = ~b

~θ ≥ ~0

has no feasible solution with W ≥ 0.

11

Here

M′ =
[

M I(3m+1)1 · · · 1

]
is a (3m + 1) × (4m + r + 1) integer matrix with M being the collision matrix of the family of vectors
{ai, bi, ci}m

i=1,
~b = [0, . . . , 0, 1]T

is a 3m+ 1-dimensional integer vector and

~c = [0, . . . , 0︸ ︷︷ ︸
r+m

,−1, . . . ,−1︸ ︷︷ ︸
3m+1

]T

is the objective function vector of dimension 4m+ r + 1.

Using this procedure for checking if a family of vectors {ai, bi, ci}m
i=1 is PMF or not, we find the fol-

lowing (k,m)-PMF families of vectors.

Theorem 4.9. There are (3, 4)-PMF, (4, 7)-PMF and (5, 13)-PMF families of vectors.

Proof. See Appendix B.

We were unable to check the cases k ≥ 6 since they are too large to do numerical calculations. How-
ever, our best findings for k = 3, 4, 5 indicates that the exponent α defined in Theorem 4.3 increases as k
increases, which we view as a supporting evidence for Conjecture 4.4.

Now using the (5, 13)-PMF family of vectors as the building block, Theorem 4.3 implies the following.

Theorem 4.10. For all small enough ε, there is an n0 = n0(ε) and functions fA, fB, fC : Fn0
2 → {0, 1}

such that (fA, fB, fC) is ε-far from being triangle-free and testing triangle-freeness of (fA, fB, fC) requires
the canonical tester to query the functions Ω((1

ε)
4.847···) times.

Tensoring regular bent functions on appropriate number of bits with the function-triples constructed in
Theorem 4.10 yields the following Theorem.

Theorem 4.11. For all small enough ε there is an integer n0(ε) such that the following holds. For all integers
n ≥ n0, there is a function-triple (f ′A, f

′
B, f

′
C) such that (f ′A, f

′
B, f

′
C) is ε-far from being triangle-free and

testing triangle-freeness in (f ′A, f
′
B, f

′
C) requires the canonical tester to query the functions Ω((1

ε)
4.847···)

times. Moreover, (f ′A, f
′
B, f

′
C) depends on all n input variables.

Proof. Note that the function-triple (fA, fB, fC) constructed in Theorem 4.10 are all (ρ, d)-regular, where
ρ = N∆

2n′mk = Θ(ε) and d = 2
2n′mk satisfying 1

ρd = Ω((1
ρ)4.847···). Now we can tensor each of fA, fB and

fC with the same φm′ (or φm′ ⊗ H , depending on the parity of n) as constructed in Theorem 3.6 to get
f ′A, f ′B and f ′C , respectively. The densities and degrees of f ′A, f ′B and f ′C still satisfy the condition that
1
ρd = Ω((1

ρ)4.847···), therefore the query lower bound follows.

12

5 Query Complexities of the Canonical Tester and General One-sided Testers

In this section, we prove a general result between the query complexities of an arbitrary one-sided tester
and the canonical tester, for a large class of algebraic properties. A property in our class is specified 4 by
k vectors v1, . . . , vk in the vector space Fr

2. Following the notation in [11], we call this set of vectors a
rank-r matroid M 5. An alternative, equivalent notation based on solutions of systems of linear equations
is adopted in [29].

Definition 5.1 (M∗-free). Given a rank-r matroid M = (v1, . . . , vk) with each vi ∈ Fr
2, a k-tuple of

Boolean functions f1, . . . , fk : Fn
2 → {0, 1} is said to be M∗-free if there is no full-rank linear transforma-

tion L : Fr
2 → Fn

2 such that fi(L(vi)) = 1 for every i ∈ [k]. Otherwise, if such an L exists, f1, . . . , fk is
said to contain M at L, or equivalently, L is called a violating linear transformation of M.

Remark Let (e1, . . . , er) be a set of basis vectors in Fr
2. Each linear map L in the above definition is then

specified by r vectors (z1, . . . , zr) in Fn
2 such that L(ei) = zi for every 1 ≤ i ≤ r. The linear map L is full

rank if (z1, . . . , zr) are linearly independent.

To see that this generalizes the triangle-freeness property, let e1 and e2 be the two unit vectors in F2
2

and consider the matroid (e1, e2, e1 + e2). Then the three elements of the matroid will be mapped to all
triples of the form (x, y, x+ y) by the set of full-rank linear transformations, where x and y are two distinct
non-zero elements in Fn

2 . Also note that in this case, r = 2 and k = 3.
The property of being M∗-free is not linear-invariant. The original notion of M-freeness, as defined

in [11], allows L in the above definition be arbitrary linear transformations, not restricted to full-rank ones,
and is hence truly linear-invariant. However, from a conceptual level, for a fixed matroid M, the property of
being M-free and being M∗-free are very similar. It is analogous to the distinction between a graph being
free of H as a subgraph and being free of homomorphic images of H , for a fixed graph H .

In terms of testability, we have some evidence that the distinction is unimportant, although we are
unable to prove a formal statement at this time. For the case when M = (e1, e2, e1 + e2), we can show
that a tester for triangle-freeness can be converted to one for triangle∗-freeness. Consider a function-triple
(f1, f2, f3) that is promised to be either triangle∗-free or ε-far from being triangle∗-free, where the distance
parameter ε is a constant. Define a new function-triple (f ′1, f

′
2, f

′
3) by setting, for i = 1, 2, 3, f ′i(0) = 0

and f ′i(x) = fi(x) for all x 6= 0. Observe that if (f1, f2, f3) is triangle∗-free, then (f ′1, f
′
2, f

′
3) is triangle-

free because setting f ′i(0) = 0 removes all degenerate triangles. On the other hand, if (f1, f2, f3) is ε-far
from triangle∗-free, then (f ′1, f

′
2, f

′
3) is still ε′ ≥ ε − 3/2n far from triangle∗-free and, hence, also from

triangle-free. Since ε′ approaches ε as n goes to infinity, assuming the continuity of the query complexity as
a function of the distance parameter, the query complexity of triangle-freeness is therefore lower-bounded 6

by the query-complexity of triangle∗-freeness.
For general binary matroids M = (v1, . . . , vk) with each vi ∈ Fr

2, observe that if a function tuple is far
from being M-free, then almost all the linear maps where M is contained are full-rank. This is because the
main theorems of [29] and [23] show that if a function tuple is Ω(1)-far from M-free, then M is contained
at Ω(2nr) many linear maps, while there are only o(2nr) many linear maps L : Fr

2 → Fn
2 of rank less

than r. Therefore, in fact, any M∗-free function tuple is o(1)-close to M-free. If there were a more query

4We assume that r is the minimal dimension of the vector space which preserves the linear dependencies between v1, . . . , vk.
That is, r is the rank of the matrix with v1, . . . , vk as its columns.

5In this paper we do not employ any property of matroids. Here matroid is simply a synonym for a collection of binary vectors.
6The other direction is easy to show in general: for any binary matroidM and constant ε, an ε-tester forM∗-freeness can be

used to ε-testM-freeness (again assuming continuity of the query complexity function).

13

efficient one-sided tester for M-freeness than for M∗-freeness, it must be the case that the few linear maps
with rank less than r where M is contained can somehow be discovered more efficiently than the full-rank
maps. But on the other hand, we know of a large class of matroids M for which there exist functions
that are far from M-free but do not contain M at any non-full-rank linear map. More precisely, letting
Ck = (e1, . . . , ek−1, e1 + · · · + ek−1) be the graphic matroid of the k-cycle, Theorem 1.3 in [11] proves
that for any odd k ≥ 5, there exist functions which are far from Ck-free but contain Ck only at full-rank
linear maps (by showing a separation between the classes Ck-free and Ck−2-free). So, for these reasons, it
seems unlikely that the query complexities of testing M∗-freeness properties are very different from those
of testing M-freeness properties. We conjecture that the query complexities of testing M-freeness and
M∗-freeness properties are the same 7 and leave this as an open problem.

We first observe a simple fact about the behavior of any one-sided tester for M∗-freeness.

Lemma 5.2. Let M be a matroid of k vectors. Then any one-sided tester T for M∗-freeness rejects if and
only if it detects a violating full-rank linear transformation L of M.

Proof. Let f1, . . . , fk : Fn
2 → {0, 1} be the input k-tuple of Boolean functions. If T finds a violating

full-rank linear transformation L, clearly it should reject. For the other direction, suppose that T rejects
(f1, . . . , fk) without seeing any violating linear maps from the points it queried. Since M∗-freeness is a
monotone property, we can set all the points of the function-tuple that have not been queried by T to 0, thus
making (f1, . . . , fk) M∗-free. Therefore T errs on this function-tuple. But this contradicts our assumption
that T is a one-sided tester for M∗-freeness.

Next, we define the canonical tester for M∗-freeness, which naturally extends the previously described
canonical tester for triangle-freeness.

Definition 5.3 (Canonical Tester). Let M = (v1, . . . , vk), with each vi ∈ Fr
2, be a rank-r matroid of

k vectors. A tester T for M∗-freeness is canonical if T operates as follows. Given as input a distance
parameter ε and oracle access to k-tuple of Boolean functions f1, . . . , fk : Fn

2 → {0, 1}, the tester T repeats
the following process independently `(ε) times: select uniformly at random a rank-r linear transformation
L : Fr

2 → Fn
2 and check if f contains M at L. If so, T rejects and halts. If T does not reject after `(ε)

iterations, then T accepts. The query complexity of the canonical tester is therefore at most `(ε) · k.

Our main theorem in this section is the following.

Theorem 5.4. For a given rank-r matroid M = (v1, . . . , vk) with each vi ∈ Fr
2, suppose there is a one-

sided tester forM∗-freeness with query complexity q(M, ε). Then the canonical tester forM∗-freeness has
query complexity at most O(k · q(M, ε)r).

Proof. Since the rank ofM is r, without loss of generality, we assume that v1, . . . , vr are the r basis vectors
e1, . . . , er. Thus, any linear transformation L : Fr

2 → Fn
2 is uniquely determined by L(v1), . . . , L(vr).

Suppose we have a one-sided, possibly adaptive, tester T forM-freeness with query complexity q(M, ε).
We say T operates in steps, where at each step i ∈ [q(M, ε)], T selects an element yi from Fn

2 (based on
a distribution that depends arbitrarily on internal coin tosses and oracle answers in previous steps) and then
queries the oracle for the value of fj(yi), for some 1 ≤ j ≤ k.

7It seems possible that some functions may have quite different query complexities for these two properties. However, the query
complexities in our conjecture are measured as (non-increasing) functions of the distance parameter ε, which are worst-case query
complexities among all input functions that are ε-far from the corresponding properties.

14

We convert the tester T into another tester T ′ that operates as follows. Given oracle access to a function
tuple f1, . . . , fk : Fn

2 → {0, 1}, T ′ first selects, uniformly at random, a non-singular linear map Π : Fn
2 →

Fn
2 , and then invokes the tester T , providing it with fj(Π(y)) whenever it queries for fj(y). For convenience

the linear map may be generated on-the-fly in the following sense. Suppose in the first i−1 queries, T queries
(y1, . . . , yi−1) and T ′ queries (x1, . . . , xi−1). Now if T chooses a new point yi to query, tester T ′ picks a Π
uniformly at random from all non-singular maps that are consistent with all the points queried previously,
that is, maps satisfying Π(y1) = x1, . . . ,Π(yi−1) = xi−1, and feeds the query result at Π(yi) to the original
tester T .

Claim 5.5. T ′ is also a tester of (f1, . . . , fk) for M∗-freeness with the same query complexity as T .

Proof. If (f1, . . . , fk) is M∗-free, then (f1 ◦Π, . . . , fk ◦Π) is also M∗-free because M∗-freeness is closed
under composition with non-singular linear transformations. Therefore T accepts (f1 ◦Π, . . . , fk ◦Π) with
probability 1 and so does T ′ to (f1, . . . , fk).

On the other hand, if (f1, . . . , fk) is ε-far from M∗-free, then (f1 ◦ Π, . . . , fk ◦ Π) is also ε-far from
M∗-free since Π preserves the distance between (f1, . . . , fk) and M∗-free functions. To see this, suppose
dist((f1 ◦Π, . . . , fk ◦Π),M∗-free) = ε′ and moreover, some (g1, . . . , gk) ∈M∗-free achieves this distance
from (f1 ◦Π, . . . , fk ◦Π). Since Π is invertible and hence a permutation of the elements in Fn

2 , we have

dist((f1, . . . , fk),M∗-free) ≤ dist((f1, . . . , fk), (g1 ◦Π−1, . . . , gk ◦Π−1))
= dist ((f1 ◦Π, . . . , fk ◦Π), (g1, . . . , gk))
= dist((f1 ◦Π, . . . , fk ◦Π),M∗-free),

because if (g1, . . . , gk) is in M∗-free, so is (g1 ◦ Π−1, . . . , gk ◦ Π−1). By the same argument, dist((f1 ◦
Π, . . . , fk◦Π),M∗-free) ≤ dist((f1, . . . , fk),M∗-free) and consequently dist((f1◦Π, . . . , fk◦Π),M∗-free) =
dist((f1, . . . , fk),M∗-free). Finally we have, since (f1 ◦ Π, . . . , fk ◦ Π) is ε-far from M∗-free, T rejects
(f1 ◦Π, . . . , fk ◦Π) with probability at least 2/3 and so does T ′ to (f1, . . . , fk).

For convenience, let us fix the following notation. At a step i ∈ [q(M, ε)], the element whose value
is requested by T is denoted yi, and the element of Fn

2 queried by T ′ (and whose value is supplied to T)
is denoted xi. Both xi and yi are of course random variables, and also xi = Π(yi). We now make the
simple observation that at each step, no matter how cleverly T selects the yi’s, each xi is either uniformly
distributed outside or lies inside the span of elements selected at previous steps. More precisely:

Lemma 5.6. Fix an integer i ∈ [q(M, ε)]. Let y1, . . . , yi be the elements in Fn
2 requested by T in the

first i stages, and elements x1, . . . , xi−1 be the points queried by T ′ in the first i − 1 steps. Then, xi, the
element queried by T ′ at the ith step is either an element in span(x1, . . . , xi−1) or is uniformly distributed
in Fn

2 − span(x1, . . . , xi−1).

Proof. Recall that we may pick the random non-singular linear transformation in an on-the-fly fashion: after
T queries yi, Π is chosen uniformly among all non-singular linear transformations that satisfy Π(y1) =
x1, . . . ,Π(yi−1) = xi−1. If yi ∈ span(y1, . . . , yi−1), then clearly xi ∈ span(x1, . . . , xi−1). Otherwise, Π
maps yi to a uniformly chosen element xi ∈ Fn

2 − span(x1, . . . , xi−1).

Due to Lemma 5.6, we may divide the queries of T into two types: staying query if the newly queried
point is in the span of the previously queried points, and expanding query if the newly queried point is a
random point outside the span of previously queried points. Let the number of expanding queries of T ′ be t,
t ≤ q(M, ε) and let the subspace spanned by (x1, . . . , xq(M,ε)) be VT ′ , then clearly dim(VT ′) = t and the

15

expanding query points generate VT ′ (i.e., the set of expanding queries (xi1 , . . . , xit) form a basis for VT ′).
Therefore, as a corollary to Lemma 5.6, we have the following property of VT ′ .

Corollary 5.7. The subspace VT ′ spanned by the query points of tester T ′ is a random subspace of dimension
t in Fn

2 .

Since each non-singular linear transformation is determined by the images of the first r vectors in the
matroid, it suffices to study the distribution of these r-tuples. The next Lemma shows, when we look at any
fixed linearly independent r-tuple inspected by T , the corresponding r-tuple queried by T ′ after a random
non-singular transformation of the space Fn

2 , distributes uniformly over all linearly independent r-tuples.

Lemma 5.8. Let VT ′ be a random subspace in Fn
2 of dimension t < n generated by picking uniformly

at random a set of t linearly independent vectors (b1, . . . , bt) 8 in Fn
2 as basis. Let x = (x1, . . . , xr) be

any fixed linearly independent r-tuple, r ≤ t, given by a set of linear combinations of the basis vectors
(b1, . . . , bt). Then x is uniformly distributed over all linearly independent r-tuples in (Fn

2)r.

Proof. Let ~b and ~x be the column vectors representing (b1, . . . , bt) and (x1, . . . , xr), respectively. Let
A ∈ Fr×t

2 be the matrix representation of the linear combinations of (x1, . . . , xr) in terms of (b1, . . . , bt),
that is, ~x = A~b. By the SVD (singular-value decomposition) theorem, A = UΣV , where U ∈ Fr×r

2

and V ∈ Ft×t
2 are orthogonal matrices, and Σ ∈ Fr×t

2 is a diagonal matrix. Since the rank of A is r, Σ
consists of r 1’s in the diagonals and 0’s otherwise. Now, since (b1, . . . , bt) is distributed uniformly over

all t linearly independent vectors and V is invertible, ~b′def=V~b is also a set of t random linearly independent
vectors. Therefore, the first r vectors in~b′,

~b′[r]
def=ΣV~b = Σ~b′ =

b
′
1
...
b′r

 ,
is a random linearly independent r-tuple. Finally because U is also invertible, ~x = U~b′[r] is a random linearly
independent r-tuple.

By Lemma 5.2, T ′ rejects if and only if it detects a violating full-rank linear transformation. No-
tice that each full-rank linear transformation L : Fr

2 → Fn
2 corresponds to a linearly independent r-tuple

(z1, . . . , zr) ∈ (Fn
2)r, where the corresponding linear transformation is given by Lz1,...,zr(u1, . . . , ur) =∑r

i=1 uizi. Thus, T ′ rejects iff it finds a linearly independent r-tuple (z1, . . . , zr) such that the correspond-
ing linear transformation is violating. Furthermore, because v1 = e1, . . . , vr = er, the elements z1, . . . , zr
must lie in the set of samples made by T ′. Then, since T ′ makes q(M, ε) queries, the total number of linearly
independent r-tuples T ′ can check is at most q(M, ε) · (q(M, ε) − 1) · · · (q(M, ε) − r + 1) < q(M, ε)r.
Let δ be the fraction of violating linearly independent r-tuples z = (z1, . . . , zr) ∈ (Fn

2)r. By Lemma 5.8,
each linearly independent r-tuple checked by T ′ is drawn uniformly at random from the set of all linearly
independent r-tuples in (Fn

2)r. That is, the probability that T ′ rejects after checking any non-singular linear
transformation it inspects is exactly δ. By union bound, the probability that T ′ rejects (f1, . . . , fk) after
q(M, ε) queries is at most δq(M, ε)r. In order to reject with probability at least 2/3, the query complexity
of T ′ is at least q(M, ε) ≥ (2

3δ)1/r. Now consider the canonical tester T ′′ that runs in ` independent stages
which, at each stage, selects uniformly at random a linearly independent r-tuple (z1, . . . , zr) and checks for

8One may think of the basis of VT ′ as the set of expanding query points (xi1 , . . . , xit) of tester T ′.

16

violation of M∗-freeness. How many queries does T ′′ need to make to achieve the same rejection proba-
bility on (f1, . . . , fk) as T ′ does after q(M, ε) queries? Clearly the probability that T ′′ rejects (f1, . . . , fk)
after ` stages is 1− (1− δ)` ≥ 2/3, for all ` ≥ `0 = 2

δ = O(q(M, ε)r). Since T ′′ makes k queries in each
stage, the total number of queries T ′′ makes is at most k`0 = O(k · q(M, ε)r).

6 Concluding Remarks and Open Problems

We have given polynomial lower bounds on the query complexities of canonical triangle-free tester for both
the triple function case and single function case. We strongly believe that there exist super-polynomial
lower bounds for both of these problems. One possible approach is try to prove Conjecture 4.4 for the triple
function case. It seems that one of the main difficulties in understanding triangle-freeness lower bound is
that there is no good characterization of the distance between a Boolean function and the set of triangle-
free functions (as opposed to the linearity case, where the distance is exactly characterized by the Fourier
coefficients of the function). It is also interesting to study the query complexities of (cycle) Cr-freeness for
r ≥ 4.

Another interesting problem is whether the tower of 2’s type query upper bound of testing triangle-
freeness can be improved. Is it possible that some two-sided testers can achieve much better upper bound?
Finally, is there a separation between multi-function and single-function versions of triangle-freeness or
other matroid-freeness properties?

Acknowledgments

We thank Victor Chen and Madhu Sudan for collaboration during the early stages of this research as well
as enlightening discussions. We are indebted to Ilan Newman for asking a question that initiated the work
presented in Section 5. We thank Avinatan Hassidim, Ronitt Rubinfeld and Andy Yao for helpful discussions
and Alex Samorodnitsky for valuable comments.

References

[1] Noga Alon. Testing subgraphs in large graphs. Random Structures and Algorithms, 21(3-4):359–370,
2002.

[2] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large graphs.
Combinatorica, 20(6):451–476, 2000.

[3] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characterization of the
testable graph properties: it’s all about regularity. In STOC’06: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pages 251–260, 2006.

[4] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing low-degree
polynomials over GF(2). In Proceedings of Random 2003, pages 188–199, 2003.

[5] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages are testable
with a constant number of queries. SIAM Journal on Computing, 30(6):1842–1862, 2000.

17

[6] Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testable with one-
sided error. In FOCS’05: Proceedings of the 46th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 429–438. IEEE Computer Society, 2005.

[7] Noga Alon and Asaf Shapira. Every monotone graph property is testable. In Harold N. Gabow and
Ronald Fagin, editors, STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, pages 128–137. ACM, 2005.

[8] Tim Austin and Terence Tao. On the testability and repair of hereditary hypergraph properties. http:
//arxiv.org/abs/0801.2179, 2008.

[9] Thomas Bailey and John Cowles. A convex hull inclusion test. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 9(2):312–316, 1987.

[10] Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF properties are hard to test.
SIAM Journal on Computing, 35(1):1–21, 2005. Early version in STOC’03.

[11] Arnab Bhattacharyya, Victor Chen, Madhu Sudan, and Ning Xie. Testing linear-invariant non-linear
properties. In STACS’09, pages 135–146, 2009.

[12] Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós, Balázs Szegedy, and Katalin Veszter-
gombi. Graph limits and parameter testing. In STOC’06: Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pages 261–270, 2006.

[13] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer, 2000.

[14] Eric Domenjoud. Solving systems of linear diophantine equations: an algebraic approach. In In Proc.
16th Mathematical Foundations of Computer Science, Warsaw, LNCS 520, pages 141–150. Springer-
Verlag, 1991.

[15] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750, 1998.

[16] Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties. Random
Structures and Algorithms, 23(1):23–57, 2003.

[17] Timothy Gowers. Lower bounds of tower type for Szemerédi’s uniformity lemma. Geom. Funct. Anal.,
7(2):322–337, 1997.

[18] Ben Green. A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct.
Anal., 15(2):340–376, 2005.

[19] Peter Gruber. Convex and Discrete Geometry. Springer, New York, 2007.

[20] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree poly-
nomials over prime fields. In FOCS’04: Proceedings of the 45th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 423–432, 2004.

[21] Tali Kaufman and Dana Ron. Testing polynomials over general fields. In FOCS’04: Proceedings of
the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 413–422, 2004.

18

http://arxiv.org/abs/0801.2179
http://arxiv.org/abs/0801.2179

[22] Tali Kaufman and Madhu Sudan. Algebraic property testing: The role of invariance. In STOC’08:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 403–412, 2008.

[23] Dan Král, Oriol Serra, and Lluis Vena. A removal lemma for systems of linear equations over finite
fields, 2008.

[24] Daniel Král’, Oriol Serra, and Lluís Vena. A combinatorial proof of the removal lemma for groups.
Journal of Combinatorial Theory, 116(4):971–978, May 2009.

[25] Florence J. MacWilliams and Neil J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland,
1977.

[26] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic Boolean formulae. SIAM Journal
on Discrete Mathematics, 16(1):20–46, 2003.

[27] Vojtěch Rödl and Mathias Schacht. Generalizations of the removal lemma. Combinatorica, To appear.
Earlier version in STOC’07.

[28] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[29] Asaf Shapira. Green’s conjecture and testing linear-invariant properties. In STOC’09: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pages 159–166, 2009.

A Proof of Theorem 4.7

We will need the following well-known theorem of Carathéodory in convex geometry (see, e.g., [19]).

Theorem A.1 (Carathéodory’s Theorem). Suppose V is a subset of Rn that contains a point X ∈ Rn in its
convex hull. Then there exists a set V ′ ⊆ V such that |V ′| ≤ n+ 1 and X is contained in the convex hull of
V ′. An implication is that if V contains ~0 in its convex hull and there is no strict subset V ′ containing ~0 in
its convex hull, then rank(V) = |V | − 1.

Proof of Theorem 4.7. If there exists a non-zero vector ~Z ∈ Nt such that M~Z = ~0, the vector ~z = ~Z
‖~Z‖1

also satisfies M~z = ~0. But then, ~0 ∈ Conv(M1, . . . ,Mt) because
∑

i ziMi = ~0 and each zi ≥ 0 with∑
i zi = 1.
In the other direction, suppose ~0 ∈ Conv(M1, . . . ,Mt). Let {Mi1 , . . . ,Mik} be a minimal subset of

{M1, . . . ,Mt} which contains ~0 in its convex hull. Carathéodory’s theorem (Theorem A.1) implies that the
rank of {Mi1 , . . . ,Mik} is k − 1 ≤ s. Let M′ be the s-by-k matrix with columns {Mi1 , . . . ,Mik}. Then 9

there exists a unimodular (that is, the determinant of the matrix is either 1 or −1) s-by-s matrix U such that

UM′ =

N
0
...
0

 ,
9See, for example, Theorem 2.4.3 in [13].

19

where N is a (k− 1)-by-k integer matrix of rank (k− 1) in row-echelon form. It follows that the nullspace
of N is spanned by a single non-zero vector in Rk. Since ~0 is in the convex hull of {Mi1 , . . . ,Mik},
there exists a non-zero vector ~X ∈ (R≥0)k such that N ~X = ~0. It follows that all the vectors in the
nullspace of N have the same sign at each coordinate. But the vector consists of the cofactors of N, namely,
~Y = (

∣∣N2 · · ·Nk

∣∣ , . . . , (−1)k−1
∣∣N1 · · ·Nk−1

∣∣) is a solution to N ~X = ~0. Furthermore, all the entries in ~Y
are non-zero since the rank of N is k − 1. Hence either ~Y or −~Y is a positive integer solution to N ~X = ~0,
and because U is invertible, the same positive integer vector satisfies M′ ~X = ~0. Appending 0 entries to ~X
at all the remaining (t− k) coordinates gives a non-negative integer solution to M~Z = ~0.

B Proof of Theorem 4.9

Proof of Theorem 4.9. By numerical calculation, the following set of vectors is (3, 4)-PMF:

a1 = 110 b1 = 001
a2 = 010 b2 = 100
a3 = 101 b3 = 111
a4 = 011 b4 = 011.

The following set of vectors is (4, 7)-PMF:

a1 = 1101 b1 = 0011
a2 = 0001 b2 = 1011
a3 = 0010 b3 = 0111
a4 = 0110 b4 = 1001
a5 = 0000 b5 = 0000
a6 = 0111 b6 = 0100
a7 = 1001 b7 = 0101.

The following set of vectors is (5, 13)-PMF:

a1 = 11101 b1 = 01101
a2 = 11001 b2 = 11101
a3 = 11000 b3 = 10011
a4 = 00101 b4 = 10001
a5 = 10010 b5 = 00101
a6 = 11110 b6 = 10100
a7 = 10000 b7 = 10000
a8 = 01000 b8 = 01111
a9 = 00011 b9 = 01010
a10 = 11100 b10 = 00111
a11 = 00010 b11 = 11010

20

a12 = 01100 b12 = 10010
a13 = 01010 b13 = 11111.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

