
On Parity Check (0, 1)-Matrix over Zp

Nader H. Bshouty
Technion, Israel

bshouty@cs.technion.ac.il

Hanna Mazzawi
Technion, Israel

hanna@cs.technion.ac.il

February 21, 2012

Abstract

We prove that for every prime p ≤ poly(n) there exists a (0, 1)-matrix M of size tp(n,m) × n
where

tp(n,m) = O

(
m+

m log n
m

log min(m, p)

)
such that every m columns of M are linearly independent over Zp, the field of integers modulo p
(and therefore over any field of characteristic p and over the real numbers field R). In coding theory
this matrix is a parity-check (0, 1)-matrix over Zp of a linear code of minimal distance m+ 1. Using
the Hamming bound (for p < m) and information theoretic argument (for p ≥ m) it can be shown
that the above bound is tight.

To reduce the number of random bits, we use n random variables that are m-wise independent.
This gives O((m2 log2 n)/ logm) random bits. We then use a new technique to extend this result to
a (0, 1)-matrix of size sp(n,m, d) × n where sp(n,m, d) = O(t(n,m)) and each row in the matrix is

a tensor product of a constant d (0, 1)-vectors of size n1/d. This, for m = nc where c < 1 is any
constant, gives O(m1+ε) random bits for any constant ε.

This solves the following open problems:
• Coin Weighing Problem: Suppose that n coins are given among which there are at most m
counterfeit coins of arbitrary weights. There is a non-adaptive algorithm that finds the counterfeit
coins and their weights in t(n,m) = O((m log n)/ logm) weighings.

Previous algorithm, [CK08], solves the problem (with the same complexity) only for weights
between n−a and nb for constants a and b and finds the counterfeit coins but not their weights.
• Reconstructing Graph from Additive Queries: Suppose that G is an unknown weighted
graph with n vertices and m edges. There exists a non-adaptive algorithm that finds the edges of G
and their weights in O(t(n,m)) additive queries.

Previous algorithms, [CK08, BM09], solves the problem only for weights between n−a and nb for
constants a and b and finds the edges but not their weights.
• Signature Coding Problem: Consider n stations and at most m of them want to send messages
from Zp through an adder channel, that is, a channel that its output is the sum of the messages. Then
all messages can be sent (encoded and decoded) with O(t(n,m)) transmissions. Previous algorithms,
[BG07], run with the same number of transmissions only for messages in {0, 1}.

Simple information theoretic arguments show that all the above bounds are tight.
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1 Introduction

A t×n (0, 1)-matrix is called an m-independent column (0, 1)-matrix over Zp if every m columns in the
matrix are linearly independent over Zp. In coding theory this matrix is a parity-check (0, 1)-matrix over
Zp of a linear code of minimal distance m+ 1. Using the Hamming bound (for p < m) and information
theoretic argument (for p ≥ m) it can be shown that such a matrix must have at least

t = Ω

(
m+

m log n
m

log min(m, p)

)
rows. Using a straightforward probabilistic argument it is easy to show that an O(m log n) × n m-
independent column matrix exists. Simply take a random (0, 1)-matrix over Zp with such size and show
that the probability that every m columns are independent over Zp is greater than 0. In subsection 3.3
we use BCH code to give a simple explicit construction of a O(m log n) × n m-independent column
(0, 1)-matrix over Zp.
In this paper we close the gap between the lower and upper bound. We prove that there exists a
tp(n,m)× n m-independent column (0, 1)-matrix with

tp(n,m) = O

(
m+

m log n
m

log min(m, p)

)
rows. We give a new analysis that shows that for any prime p and a random (0, 1)-matrix M of
size tp(n,m) × n, the probability that every m columns in M are independent over Zp, is greater
than 0. Our proof is based on the following result from number theory: Given a prime p and any
sequence of m elements S = (a1, a2, . . . , am) ∈ Zmp . The number of subsequences T = (ai1 , . . . , air),

1 ≤ i1 < i2 < · · · < ir ≤ m for which the sum of its elements is equal to 0 is at most 2m/min(m0.278, p0.5).

One application is the (n,m)-coin weighing problem [D75, L75, C80, AS85, A86, A88, BG07, CK08].
Suppose that n coins are given among which there are at most m counterfeit coins of arbitrary weights.
The goal is to find a non-adaptive algorithm that finds the counterfeit coins and their weights. We show
that the above result implies that there exists a non-adaptive algorithm that finds the counterfeit coins
and their weights in

t(n,m) = O

(
m log n

logm

)
weighings. Previous algorithm in [CK08] solves the problem only for weights between n−a and nb for
constants a and b and finds the counterfeit coins but not their weights.

To reduce the number of random bits, we use n random variables that are m-wise independent. This
gives O((m2 log2 n)/ logm) random bits. We then use a new technique to extend this result to a (0, 1)-
matrix of size sp(n,m, d) × n where sp(n,m, d) = O(t(n,m)) and each row in the matrix is a tensor

product of a constant d (0, 1)-vectors of size n1/d. This, for m = nc where c < 1 is any constant, gives
O(m1+ε) random bits for any constant ε.
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One application of the construction that uses tensor product of (0, 1)-vectors is the problem of recon-
structing weighted graphs using additive queries [G98, GK98, GK00, BGK05, RS07, CK08, BM09]: Let
G = (V,E,w) be a weighted hidden graph where E ∈ V ×V , w : E → R and n is the number of vertices
in V . Denote by m the size of E. Suppose that the set of vertices V is known and the set of edges E
is unknown. Given a set of vertices S ⊆ V , an additive query, Q(S), returns the sum of weights in the
subgraph induces by S. That is,

Q(S) =
∑

e∈E∩(S×S)

w(e).

Our goal is to exactly reconstruct the set of edges and find their weights using additive queries. See the
many applications of this problem in [CK08].

Our result (for d = 2, tensor product of two vectors) implies that there exists a non-adaptive algorithm
to find the edges of G and their weights using O(t(n,m)) additive queries. Previous algorithms in
[CK08, BM09] solves the problem only for weights between n−a and nb for constants a and b and find
the edges but not their weights.

Another application is the signature coding problem [BG07]. Consider n stations where m of the
stations want to transmit messages in Zp through an adder channel, that is, a channel that its output
is the sum of the messages. Then all messages can be transmitted (encoded and decoded) in O(t(n,m))
transmissions. Previous algorithms run with the same transmission complexity in two stages: first
it decides which of the stations are active, that is, stations that want to transmit messages (that is,
messages in {0, 1} ⊂ Zp) and then, sequentially, asks each active station to send its message. Our
algorithm is non-adaptive and can detect the active stations and their messages in one stage.

Simple information theoretic arguments show that all the above bounds are tight.

This paper is organized as follows. In Section 2 we prove some basic probability results that will be
used throughout the paper. In Section 3 we give upper and lower bounds for m-independent column
(0, 1)-matrix over Zp. In Section 4 and Section 5 we give the m-independent column (0, 1)-matrix over
Zp where each row is a tensor product of (0, 1)-vectors.

2 Basic Probability

In this section we give some preliminary results in probability theory that will be used in the sequel.

We denote by R the set of real numbers and by Z the set of integers. For a prime number p we denote
by Zp the field of integers modulo p. For any positive integer r, we denote by [r] the set {1, 2, . . . , r}.
We will write a =p b for a = b mod p.

Let X be a vector or a matrix, we denote by wt(X) the Hamming weight of X, that is, the number of
non-zero entries in X. For two vectors x and y the distance dist(x, y) between x and y is the number
of entries in x and y that differ, that is, wt(x− y). For σ ∈ {0, 1}, we denote by σn the n-vector whose
entries are all equal to σ. We also denote by σn×m the n×m matrix whose entries are all equal to σ.
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The following three lemmas are well known from the literature over the field of real numbers. We give
the proofs for any field Zp.

Lemma 1. Let a ∈ Znp\{0n}. Then for a uniformly randomly chosen vector x ∈ {0, 1}n we have

Prx[aTx =p 0] ≤ 1/2.

Proof. Suppose w.l.o.g. that a1 6=p 0. For any fixed x2, . . . , xn ∈ {0, 1} we have aTx =p a1x1 + c for
some c ∈ Zp. Now this takes the value c for x1 = 0 and c + a1 for x1 = 1. Since a1 6= 0, one of the
values c or c+ a1 is not equal to zero.

Lemma 2. Let M ∈ Zn×np \{0n×n}. Then for a uniformly randomly chosen vectors x, y ∈ {0, 1}n we
have

Prx,y[x
TMy =p 0] ≤ 3/4.

Proof. By Lemma 1, My has a non-zero entry with probability greater or equal to 1/2. Assuming
My 6=p 0n, by Lemma 1 the probability that xTMy 6=p 0 is greater or equal to 1/2. This implies the
result.

The following lemma was proved in the literature for the real number field using Littlewood-Offord
Theorem [LO43, E45] (with β = 1/2). In this paper we prove it for any field Zp.

Lemma 3. Let a ∈ Znp\{0n} be a vector, where p is a prime number. Then for a uniformly randomly
chosen vector x ∈ {0, 1}n we have

Prx[aTx =p 0] ≤ max

(
1

wt(a)β
,

1

p1/2

)
,

where β = 1
2+log 3 = 0.278943 · · · .

Proof. Let S = {ai | i ∈ [n]} and α = log 3
2+log 3 . We take two cases:

• Case 1: The size of S is at most wt(a)α.

Using the pigeon hole principle, there is an element g ∈ Zp\{0} that appears in a more than
wt(a)1−α times. Suppose w.l.o.g. that a1 = a2 = . . . = at = g where t = min(wt(a)1−α, p). For
any fixed xt+1, xt+2, . . . , xn ∈ {0, 1} we have

aTx =p g(x1 + x2 + . . .+ xt) + c′.

Therefore, aTx = 0 implies
x1 + x2 + . . .+ xt =p −c′g−1.
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Since t ≤ p, we have for c =
√

2/π = 0.797885 · · · < 1

Prx[aTx =p 0] ≤

(
t
bt/2c

)
2t

≤ c√
t
≤ c

min
(
wt(a)

1−α
2 , p1/2

) ≤ max

(
1

wt(a)β
,

1

p1/2

)
.

• Case 2: The size of S is at least wt(a)α.
For a set of elements Q = {q1, q2, . . . , qr} ⊆ Zp denote by

ψ(Q) = |{(q1y1 + q2y2 + · · ·+ qryr) mod p | y1, . . . , yr ∈ {0, 1}}|,

and
A(Q) = {(q1z1 + q2z2 + · · ·+ qrzr) mod p | z1, . . . , zr ∈ {−1, 0, 1}}.

Since |S| > wt(a)α, we argue that there exists a set of entries Q = {ai1 , ai2 , . . . , aik} such that
k ≥ log3wt(a)α and ψ(Q) = 2k. We prove this claim by showing how to find such set of entries.
The process of finding the entries is iterative. At every iteration j we have a set of entries
Qj = {ai1 , ai2 , . . . , aij} of size j such that ψ(Qj) = 2j . It is easy to see that if aij+1 6∈ A(Qj) then

ψ(Qj ∪ {aij+1}) = 2j+1. An element aij+1 ∈ S can be added to Qj as long as |A(Qj)| ≤ 3j < |S|.
Therefore, we are able to find a set Q such that |Q| ≥ log3 |S| and ψ(Q) = 2|Q|.

Now, let W denote the set [n]\{i1, . . . , ik}. For any fixed values for entries in W we have that

aTx =p ai1xi1 + ai2xi2 + · · ·+ aikxik + c′′,

where c′′ is a constant. By the properties of Q, there is at most one y ∈ {0, 1}k such that
ai1y1 + ai2y2 + · · ·+ aikyk = −c′′. Therefore

Prx[aTx =p 0] ≤ 1

2k
≤ 1

2log3 wt(a)
α =

1

wt(a)α log3 2
=

1

wt(a)β
.

Note that Lemma 3 is not true for non-prime p. Consider an even number p. Then with probability
1/2 we have (p/2)x1 + · · ·+ (p/2)xn =p 0.

We now prove some properties of the rank of random (0,1)-matrices over Zp. Similar properties was
proved for the field of real numbers in [K67, B01, BG08].

Lemma 4. Let M ∈ {0, 1}k×m be a matrix of rank r = r(M) < m. For a uniformly randomly chosen
row vector y ∈ {0, 1}m the rank of the matrix

M ′ =

(
M
y

)
over Zp is r with probability at most 1/2.
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Proof. Denote by Mi the ith column of M . Let Mi1 ,Mi2 , . . . ,Mir be any r linearly independent columns
of M . Let Mj be any other column of the matrix, that is, j 6= is for all s ∈ [r]. Then, there are unique
constants α1, α2, . . . , αr such that

Mj =p α1Mi1 + α2Mi2 + . . .+ αrMit .

Therefore,
α1Mi1 + α2Mi2 + . . .+ αtMit −Mj =p 0.

Let a be the m-vector, where aj = −1, ais = αis for all s ∈ [r] and all other entries are zeros. Then,

Pr[r(M ′) = r] ≤ Pr[aT y =p 0].

Now by Lemma 1 the result follows.

We will also make use of the following

Lemma 5. (Chernoff bound) Let X1, . . . , Xt be independent Poisson trials such that Xi ∈ {0, 1} and
E[Xi] = pi. Let P =

∑t
i=1 pi and X =

∑t
i=1Xi. Then

Pr [X ≤ (1− λ)P ] ≤ e−λ2P/2.

3 m-Independent Column (0, 1)-Matrix

In this section we prove the existence of an m-independent column (0, 1)-matrix over Zp with optimal
size. For completeness we first give the lower bound.

3.1 Lower Bound

The following lower bound follows from the Hamming bound and using an information theoretic argu-
ment. We give the proof for completeness.

Theorem 6. Let p be any prime number. A (0, 1)-matrix M ∈ {0, 1}k×n such that every m columns
in M are linearly independent over Zp must have at least

k = Ω

(
m+

m log n
m

log min(m, p)

)
rows.
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Proof. For p < m and by the Hamming bound we have

pk ≥
m/2∑
i=0

(
n

i

)
(p− 1)i.

Therefore,

k ≥
log
∑m/2

i=0

(
n
i

)
(p− 1)i

log p
≥ log(p− 1)

2 log p
m+

log
(
n
m/2

)
log p

= Ω

(
m+

m log n
m

log p

)
.

For p > m, notice that for every v, u ∈ {0, 1, . . . ,m}n of weight equal to m/2 we have Mv 6=p Mu.
Otherwise, M(v − u) =p 0k and the columns that corresponds to the (at most m) entries that are not
zero in v − u are linearly dependent. Since for every v ∈ {0, 1, . . . ,m}n of weight at most m/2 we have
Mv ∈ {0, 1, . . . ,m2/2}k we must have(

m2

2
+ 1

)k
≥
(

n

m/2

)
(m− 1)m/2.

Therefore,

k = Ω

(
m+

m log n
m

logm

)
.

3.2 Upper Bound and Derandomization

It is easy to prove the following (see the first part of the proof of Theorem 8).

Theorem 7. For any prime p there exists a matrix M ∈ {0, 1}k×n such that

k = O
(
m log

n

m

)
,

and every m columns are linearly independent over Zp.

Notice that this bound meets Gilbert-Varshamove bound for parity check matrix over Zp. An explicit
construction with the same bound is given in the next subsection

The following theorem closes the gap between the upper and the lower bound

Theorem 8. For any prime p < nγ, for some constant γ, there exists a matrix M ∈ {0, 1}k×n such
that

k = O

(
m+

m log n
m

log min(m, p)

)
,

and every m columns are linearly independent over Zp.
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Proof. Let t = m/ log2m. We first prove the existence of a matrix M∗ ∈ {0, 1}k1×n such that

k1 = t+ log t+ 2 log

(
n

t

)
where every t columns are linearly independent. We use probabilistic method. We randomly uniformly
choose k1 (0, 1)-vectors of size n to be the rows of the matrix. Denote by Mi the ith column of the
matrix M∗. Now, let Mi1 ,Mi2 , . . . ,Mit be any t columns. Consider the matrix

M ′ = [Mi1 |Mi2 | · · · |Mit ]

and let M ′(j) be the jth row of M ′ and M ′[j] be the first j rows of M ′. Consider the random variable
Xj ∈ {0, 1} where Xj = 1 if and only if r(M ′[j−1]) = t or the jth row M ′(j) increases the rank of M ′[j−1],

i.e., r(M ′[j]) = r(M ′[j−1]) + 1. By Lemma 4,

Pr[Xj = 0|X1, X2, . . . , Xj−1] ≤ 1/2.

Therefore, the probability that the rank of the matrix M ′ is smaller than t is bounded by

Pr[X1 + · · ·+Xk1 ≤ t− 1] =
∑

ξ1+···+ξk1≤t−1,ξj∈{0,1}

Pr[X1 = ξ1, X2 = ξ2, . . . , Xk1 = ξk1 ]

≤
∑t−1

i=0

(
k1
i

)
2k1−t+1

≤ t2t−1
(
k1
t

)
2k1

<

(
n
t

)
2
(
n
t

)2 ≤ 1

2
(
n
t

) .
Using union bound, the probability that there exists a set of t columns that are linearly dependent is
less than 1/2. This implies the existence of M∗.

Now, we have a matrix M∗ that every m/ log2m columns are linearly independent. We add k2 uniformly
randomly chosen rows to the matrix, where

k2 =
m log p+ log

(
n
m

)
log q

, (1)

where
q = min(tβ, p1/2).

Since every m/ log2m columns in M∗ are linearly independent, every t = m/ log2m columns in M are
linearly independent. Therefore if Mj1 ,Mj2 , . . . ,Mjm are columns of M and λ1, . . . , λm ∈ Zp satisfies
λ1Mj1 + · · ·+ λmMim = 0 then at least m/ log2m of the λis are not zero.

Therefore, by Lemma 3, the probability that some m columns Mj1 ,Mj2 , . . . ,Mjm are linearly dependent
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is

Pr

[
(∃Mj1 ,Mj2 , . . . ,Mjm)(∃λ1, . . . , λm ∈ Zp)

m∑
i=1

λiMji = 0

]

≤
(
n

m

)
pmPr

[
m∑
i=1

λiMji = 0

]
≤
(
n

m

)
pmq−k2 ≤ 1

2

Therefore, the probability that there exists m columns of M that are linearly dependent is bounded by
1/2.

This, together with the fact that

k1 + k2 = O

(
m+

m log n
m

log min(m, p)

)
,

implies the result.

The following corollary solves the coin weighing problem and the signature coding problem.

Corollary 1. There exists a matrix M ∈ {0, 1}k×n where

k = O

(
m+

m log n
m

logm

)
,

and for every two distinct vectors x, y ∈ Rn such that wt(x) ≤ m and wt(y) ≤ m we have Mx 6= My.

Proof. Choose a prime 2m < p. By Theorem 8 there exists a k × n matrix M such that every 2m
columns are linearly independent over Zp, and therefore, over R. For any two vector x, y ∈ Rn such
that wt(x) ≤ m, wt(y) ≤ m and x 6= y we have that 0 < wt(x− y) ≤ 2m. Therefore,

M(x− y) 6= 0k,

and
Mx 6= My.

Notice that the proof of Theorem 8 is true even if the random bits are m-wise independent. It is known
that such set can be generated using a BCH code from O(m log n) random bits. This gives a construction
with O(m2 log2 n/ logm) random bits. In section 5 Corollary 5 we give another construction. This
construction, for m = nc where c < 1 is a constant, uses O(m1+ε) random bits for any constant ε < 1.
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3.3 An Explicit O(m log n) Construction

Explicit m-independent column (0, 1)-matrix M over R was studied in the area of compressed sensing
of sparse signals [I08, IR08]. See also the referenced papers in [IR08]. In compressed sensing of sparse
signals the goal is also to be able to decode Mx (find x from Mx) in near linear time (in m) when x is
m-sparse. That is, when at most m entries in x are not zero. Indyk [I08] gave an explicit construction

of size O(m2(log logn)
2
) that have near linear (in m) decoding time. His construction can be applied to

any field Zp.
In this subsection we give an explicit m-independent column (0, 1)-matrix over Zp (and R) of size
O(m log n). Our construction is based on BCH code over Zp. Decoding time of BCH code over Zp can
be done in O(n · poly(log n)) time. For the field R (and fields of characteristic 0) one can use the BCH
code over Z2. This is because independent columns over Z2 implies independent columns over R. But
it is not clear how to decode Mx over R. 1

To build such matrix we first build a matrix over Zp with entries from Zp and then write each entry
in its binary representation as a column vector. To formalize this, consider an integer ` such that
p` ≥ n > p`−1. Consider the field GF (p`) and a primitive element α ∈ GF (p`). Consider the first n
columns of the parity check matrix of the (primitive) BCH code over GF (p`),

V =


1 α α2 · · · αn−1

1 α2 (α2)2 · · · (αn−1)2

...
...

...
...

...
1 αm (α2)m · · · (αn−1)m

 .
Every αi can be written as αi = zi,0 + zi,1α + zi,2α

2 + · · · + zi,`−1α
`−1 where zi,j ∈ Zp. Denote

zi = (zi,0, zi,1, zi,2, · · · , zi,`−1)T . For q ∈ Zp let bin(q) = (q0, q1, . . . , qr−1)
T ∈ {0, 1}r where r = dlog pe

and q = (1, 2, 22, . . . , 2r−1) · bin(q). That is, bin(q) is the binary representation column vector of q ∈ Zp.
Let

βi =


bin(zi,0)
bin(zi,1)

...
bin(zi,`−1)

 .

We now prove

Lemma 9. The (0, 1)-matrix

W =


β0 β1 β2 · · · βn−1
β0 β2 β2·2 · · · β2·(n−1)
...

...
...

...
...

β0 βm βm·2 · · · βm·(n−1)

 ,
1If the entries of x are integer numbers then using the BCH code over Z2, one can decode Mx in time O(n·poly(logn)|x|)

where |x| = maxi log xi.
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is of size O(m log n)× n and every m columns in W are linearly independent over Zp.

Proof. Suppose for the contrary that there are m = |I| columns in W where I ⊆ [n] that are linearly
dependent. Then for every j = 1, 2, . . . ,m we have

∑
i∈I λiβji = 0 for some λi that are not all equal to

zero. Therefore,
∑

i∈I λi · bin(zji,s) = 0 for all j = 1, 2, . . . ,m and s = 0, 1, . . . , ` − 1. Therefore for all
j = 1, 2, . . . ,m and s = 0, 1, . . . , `− 1,

0 =
`−1∑
s=0

αs(1, 2, 22, . . . , 2r−1)
∑
i∈I

λi · bin(zji,s)

=

`−1∑
s=0

αs
∑
i∈I

λi(1, 2, 2
2, . . . , 2r−1)bin(zji,s)

=
`−1∑
s=0

αs
∑
i∈I

λizji,s

=
∑
i∈I

λi

`−1∑
s=0

αszji,s

=
∑
i∈I

λiα
ji.

That is, there are m dependent column in V . A contradiction.

4 (0, 1)-Matrices with Rows that are Tensor Product of Two Vectors

In this section we show that there is an m-independent column t × n (0, 1)-matrix that its rows are

tensor product of two (0, 1)-vectors in {0, 1}
√
n and

t = O

(
m+

m log n
m

log min(m, p)

)
.

In the next section we extend this result to (0, 1)-matrix that its rows are tensor product of d (0, 1)-

vectors in {0, 1}n1/d
.

The following theorem follows from Case 1 in the proof of Theorem 11.

Theorem 10. Let p < nγ be a prime number for some constant γ > 1. There exists a set of S =
{(x1, y1), (x2, y2) , . . . , (xk, yk)} where xi, yi ∈ {0, 1}n and

k = O

(
m log

n2

m

)
,

such that: for any matrix A ∈ Zn×np \{0n×n} with wt(A) ≤ m, there exists an i such that xTi Ayi 6=p 0.
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We now prove the following:

Theorem 11. Let p < nγ be a prime number for some constant γ > 1. There exists a set of S =
{(x1, y1), (x2, y2) , . . . , (xk, yk)} where xi, yi ∈ {0, 1}n and

k = O

(
m+

m log n2

m

log min(m, p)

)
,

such that: for any matrix A ∈ Zn×np \{0n×n} with wt(A) ≤ m, there exists an i such that xTi Ayi 6=p 0.

Proof. First notice that when m is constant then

O

(
m+

m log n2

m

log min(m, p)

)
= O

(
m log

n2

m

)
,

and Theorem 10 implies the result. Therefore we may assume that m = ω(1). Note also that we may
assume that m < n2/2. Otherwise, we can just take all the n2 pairs (ei, ej) where {ei}i∈[n] is the
standard basis.

We divide the set of matrices

A = {A | A ∈ Zn×np \{0n×n} and wt(A) ≤ m}

into three (non-disjoint) sets:

• A1: The set of all non-zero matrices A ∈ Zn×np such that wt(A) ≤ m/ logm.

• A2: The set of all non-zero matrices A ∈ Zn×np such that m ≥ wt(A) > m/ logm and there are at

least
√

m
logm non-zero rows.

• A3: The set of all non-zero matrices A ∈ Zn×np such that m ≥ wt(A) > m/ logm and there are at

least
√

m
logm non-zero columns.

Note that for any matrix A of weight wt(A) > d = m/ logm, either A has more than
√
d non-zero rows

or more than
√
d non-zero columns. Therefore, A = A1 ∪ A2 ∪ A3.

Using the probabilistic method, we give three sets S1, S2 and S3 of vector pairs, such that for every
j = 1, 2, 3 and A ∈ Aj there exists a pair of vectors (x, y) ∈ Sj such that xTAy 6=p 0 and

|S1|+ |S2|+ |S3| = O

(
m+

m log n2

m

log min(m, p)

)
.
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Case 1: A ∈ A1.
By Lemma 2 for randomly chosen vectors x, y ∈ {0, 1}n and A ∈ A1 we have

Pr[xTAy =p 0] ≤ 3/4.

Randomly uniformly choose

k1 = c

(
m+

m log n2

m

log min(m, p)

)
> c

(
m+

m log n2

m

logm

)
= c

(
m log n2

logm

)
,

vectors xi, yi ∈ {0, 1}n where c = 3(2 + γ). Then, the probability that for all xi, yi we have xTi Ayi =p 0
is bounded by

Pr[∀i ∈ [k1] : xTi Ayi =p 0] ≤
(

3

4

)k1
.

Therefore, by union bound, the probability that there exists a matrix A of weight smaller than m/ logm
such that xTi Ayi =p 0 for all i ∈ [k1] is

Pr[∃A ∈ A1,∀i ∈ [k1] : xTi Ayi =p 0] ≤
(
n2

m
logm

)
p

m
logm

(
3

4

)k1
< n2

m
logmn

γ m
logm

(
1

2

)k1/3
< n

(2+γ) m
logm

(
1

2

)k1/3
< n

(2+γ) m
logm 2

−(c/3)m logn2

logm

= n
−(2+γ) m

logm < 1.

This implies the result.

Case 2: A ∈ A2.
We start by proving the following two lemmas

Lemma 12. Let U ⊂ Znp be the set of all non-zero vectors with weight smaller than m3/4. For any
constant C > (1 + γ)16/ log e and

k2 = C

(
m+

m log n2

m

log min(m, p)

)
> C

(
m+

m log n2

m

logm

)
= C

(
m log n2

logm

)
, (2)

there exists a multiset of (0,1)-vectors Y = {y1, y2, . . . , yk2} such that for every u ∈ U the size of the
multiset

Yu = {i |uT yi 6=p 0}
is at least k2/4.

13



Proof. By Lemma 1 for a randomly chosen vector y ∈ {0, 1}n and any u ∈ U we have

Pr[uT y =p 0] ≤ 1/2.

Therefore, if we randomly uniformly choose the vectors of Y , then the expected size of Yu is greater
than k2/2 for any u ∈ U . Using Chernoff bound (Lemma 5) we have that

Pr[|Yu| < k2/4] ≤ e−
k2
16

Therefore, the probability that there exists u ∈ U such that |Yu| < k2/4 is

Pr[∃u ∈ U : |Yu| < k2/4] ≤ |U |

e
C
16

(
m logn2

logm

)

≤
∑m3/4

i=0

(
n
i

)
(p− 1)i

n
C log e

8

(
m

logm

)

≤ nm
3/4
nγm

3/4

n
C log e

8

(
m

logm

)
≤ n

(1+γ)
(
m3/4−2 m

logm

)
< 1.

This implies the result.

Note that the constant C will be determined later in the proof. Now for the next lemma, define for
non-negative integer r, ι(r) = min(r, p) if r > 0 and ι(0) = 1.

Lemma 13. Let m1,m2, . . . ,mk2 be integers in [m] ∪ {0} such that

m1 +m2 + · · ·+mk2 = ` ≥ k2.

Then
k2∏
i=0

ι(mi) ≥ min(m, p)b(`−k2)/(m−1)c.

Proof. We first proof that when 1 < m1 ≤ m2 < m then

ι(m1 − 1)ι(m2 + 1) ≤ ι(m1)ι(m2). (3)

We have four cases: When p ≤ m1−1 then (3) gives p2 ≤ p2. When p = m1 then (3) gives (p−1)p ≤ p2.
When m1 < p ≤ m2 then (3) gives (m1−1)p ≤ m1p. When p ≥ m2+1 then (3) gives (m1−1)(m2+1) <
m1m2. In all cases the inequality is true.

Also when m1 = 0 and 1 < m2 < m then ι(m1 + 1)ι(m2 − 1) = min(m2 − 1, p) ≤ min(m2, p) =
ι(m1)ι(m2). Therefore the optimal value of ι(m1)ι(m2) · · · ι(mt) is obtained when for every 0 < i < j ≤
k2 we either have mi ∈ {1,m} or mj ∈ {1,m}. This is equivalent to: all mi ∈ {1,m} except at most
one. This implies that at least b(`− k2)/(m− 1)c of the mis are equal to m.

14



Now let U be the set of vectors defined in Lemma 12. Let A ∈ A2. Since wt(A) ≤ m there are at most
m1/4 rows in A with weight greater than m3/4. Therefore, there are at least

q =

√
m

logm
−m1/4

rows in A that are in U . Let AU be q × n matrix that its rows are any q rows in A that are in U . Let
Y = {y1, y2, . . . , yk2} be the set we proved its existence in Lemma 12 (see (2)). Note that∑

i

wt(AUyi) ≥
qk2
4

Since wt(AUyi) ≤ q for all i ∈ [k2], by Lemma 13 we have∏
i

ι(wt(AUyi)) ≥ (min(q, p))
b
qk2
4 −k2
q−1

c ≥ (min(q, p))c1k2 ≥ (min(m, p))c2k2 ,

where c1 and c2 are constants. If we randomly choose x1, x2, . . . , xk2 then by Lemma 3, we have

Pr[∀i ∈ [k2] : xTi Ayi 6=p 0] ≤
∏
i

1

min((wt(Ayi))β, p1/2)
,

≤
∏
i

1

ι(wt(Ayi))β
,

≤
∏
i

1

ι(wt(AUyi))β

=

(
1∏

i ι(wt(AUyi))

)β
≤ 1

(min(m, p))βc2k2

= (min(m, p))−c3k2 ,

where c3 is a constant. Therefore, the probability that there exists a matrix A ∈ A2 such that for all
xi, yi we have xTi Ayi =p 0 is

Pr[∃A ∈ A2, ∀i ∈ [k2] : xTi Ayi =p 0] ≤ |A2|
(min(m, p))c3k2

≤
(
n2

m

)
pm

(min(m, p))c3k2

≤

(
n2

m

)m
(ep)m(

n2

m

)c3Cm
min(m, p)c3Cm

.
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For p < m, since m < n2/2, the above is less than 1 for c3C > 3. For p ≥ m we get(
n2

m

)m
(ep)m(

n2

m

)c3Cm
min(m, p)c3Cm

=

(
n2

m

)m
(ep)m

n2c3Cm
≤ n(2+2γ)m

nc3Cm
< 1,

for C > (2 + 2γ)/c3. Thus, the result follows.

Case 3: A ∈ A3.
Let S2 = {(x1, y1), (x2, y2), . . . , (xk2 , yk2)} be the set of vectors we proved their existence in Case 2.
Define S3 = {(y1, x1), (y2, x2), . . . , (yk2 , xk2)}. We argue that S3 is the desired set we are looking for.
For any A ∈ A3 we have that AT ∈ A2. Therefore, there exist i such that

xTi A
T yi 6= 0.

Note that
0 6= xTi A

T yi = (xTi A
T yi)

T = yTi Axi.

Thus,
0 6= yTi Axi.

This implies the result.

Now we can prove our main result

Corollary 2. There exists a matrix M ∈ {0, 1}k×n where

k = O

(
m+

m log n
m

log min (m, p)

)
,

every row of M is a tensor product of two vectors x, y ∈ {0, 1}
√
n and every m columns of M are linearly

independent over Zp.
In particular the same matrix is (0, 1)-matrix with m-independent columns over any field of character-
istic p and over the real field R.

Proof. Assume n is a perfect square. Let S = {(x1, y1), (x2, y2), . . . , (xk, yk)} be the set we found in

Theorem 11 with vectors in {0, 1}
√
n. Define the matrix M where the ith row is xi⊗ yi. We argue that

every m columns of M are linearly independent. Suppose on the contrary that there is a set of columns
Mi1 ,Mi2 , . . . ,Mim that are linearly dependent. Then, there are constants α1, . . . , αm that are not all
equal to 0 such that

α1Mi1 + α2Mi2 + · · ·+ αmMim = 0k.
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Define the following matrix A ∈ Z
√
n×
√
n

p : For every column’s index ij let the entry (u, v) of the matrix
be equal to αj where u = b(ij − 1)/

√
nc+ 1 and v = (ij − 1 mod

√
n) + 1. All other entries are zero.

It is easy to see that
xTi Ayi

equals the ith entry of the vector α1Mi1 + α2Mi2 + · · ·+ αmMim . Therefore we get that

xTi Ayi = 0,

for all i ∈ [k]. Since A 6= 0n×n and wt(A) ≤ m we get a contradiction.

Corollary 3. There exists a set S = {(x1, y1), (x2, y2), . . . , (xk, yk)} where xi, yi ∈ {0, 1}n and

k = O

(
m log n

logm

)
where for any matrix A ∈ Rn×n such that wt(A) ≤ m and A 6= 0n×n, there exists an i such that
xTi Ayi 6= 0.

Proof. Again, we argue that the set S found in Theorem 11 is the desired set. Let A be a matrix, let
A(i) denote the ith row. Define the n2-vector

Av = [A(1)|A(2)| · · · |A(n)].

Then, for any x, y ∈ {0, 1}n we have
xTAy = (x⊗ y)TAv.

Define the matrix M where the ith row is xi ⊗ yi. In the previous corollary we showed that every m
columns of M are linearly independent over R. Now, suppose that there exists a matrix A such that
wt(A) ≤ m and for all i ∈ [k] we have

xTi Ayi = 0.

Since xTAy = (x⊗ y)TAv and xTi Ayi = 0 for all i ∈ [k] we get that

MAv = 0k.

This is a contradiction since wt(Av) = wt(A) ≤ m and every m columns of M are linearly independent.

Consider the following problem of reconstructing weighted graphs using additive queries [G98, GK98,
GK00, BGK05, RS07, CK08, BM09]: Let G = (V,E,w) be a weighted hidden graph where E ∈ V ×V ,
w : E → R and n is the number of vertices in V . Denote by m the size of E. Suppose that the set
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of vertices V is known and the set of edges E is unknown. Given a set of vertices S ⊆ V , an additive
query, Q(S), returns the sum of weights in the subgraph induces by S. That is,

Q(S) =
∑

e∈E∩(S×S)

w(e).

Our goal is to exactly reconstruct the set of edges and find their weights using additive queries.

Consider a variable xi for each node vi ∈ V . Define for each subset of vertices V ′ ⊆ V a {0, 1}-vector
aV ′ where aV ′i = 1 if and only if vi ∈ V ′. Consider the matrix AG where AG[i, j] = w((vi, vj)) if and
only if (vi, vi) ∈ E and AG[i, j] = 0 otherwise. It is easy to see that

aTV ′AGaV ′ = 2 ·Q(V ′).

So the Q oracle is equivalent to the assignment oracle of the function fAG(x) = xTAGx over the domain
{0, 1}n. The problem now is to reconstruct a symmetric matrix A using the assignment oracle to
fA(x) = xTAx over the domain x ∈ {0, 1}n.

Grebinski and Kucherov, [G98, GK00], show that for any symmetric matrix A one can turn this oracle
to an oracle to fA(x, y) = xTAy in 5 queries. The following, [P], shows that 4 queries are sufficient: Let
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and define x ∧ y = (x1y1, x2y2, . . . , xnyn), x ∨ y = (x1 + y1 −
x1y1, x2 + y2 − x2y2, . . . , xn + yn − xnyn) and x̄ = (1− x1, 1− x2, . . . , 1− xn). Then

xTAy =

(x ∨ y)TA(x ∨ y) + (x ∧ y)TA(x ∧ y)− (x ∧ ȳ)TA(x ∧ ȳ)− (x̄ ∧ y)TA(x̄ ∧ y)

2
.

We now prove

Corollary 4. There exists a non-adaptive algorithm that uses

k = O

(
m log n

logm

)
additive queries and reconstruct any weighted hidden graph with at most m edges.

Proof. From Corollary 3 it follows that that there exists a set S = {(x1, y1), (x2, y2), . . . , (xk, yk)} where
xi, yi ∈ {0, 1}n and

k = O

(
m log n

logm

)
where for any matrix A ∈ Rn×n such that wt(A) ≤ 4m and A 6= 0n×n, there exists an i such that
xTi Ayi 6= 0. Now we use (xi, yi) to find zi = xTi AGyi. We claim that the answers (zi)i uniquely
determines AG. Otherwise, there are two weighted graphs G 6= G′ with at most m edges such that for all
i, xTi AGyi = xTi AG′yi. This implies that for every i, xTi (AG−AG′)yi = 0. Since 1 ≤ wt(AG−AG′) ≤ 4m
we get a contradiction.
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5 (0, 1)-Matrices with Rows that are Tensor Product of Vectors

In this section we show that there is an m-independent column t × n (0, 1)-matrix that its rows are

tensor product of d (0, 1)-vectors in {0, 1}n1/d
and

t = O

(
m+

m log n
m

log min(m, p)

)
.

A d-dimensional matrix A of size n1× · · · ×nd over a field F is a map A :
∏d
i=1[ni]→ F . We denote by

Fn1×···×nd the set of all d-dimensional matrices A of size n1×· · ·×nd. We write Ai1,...,id for A(i1, . . . , id).
The zero map is denoted by 0n1×···×nd . For Ij ⊆ [nj ], the matrix B = (Ai1,i2,...,id)i1∈I1,i2∈I2,...,id∈Id is the
|I1|×· · ·×|Id| matrix where Bj1,...,jd = A`1,...,`d where `i is the jith smallest number in Ii. When Ij = [nj ]
we just write j and when Ij = {`} we just write j = `. For example (Ai1,i2,...,id)i1,i2=`,i3∈I2,...,id∈Id =
(Ai1,i2,...,id)i1∈[n1],i2∈{`},i3∈I2,...,id∈Id

When n1 = n2 = · · · = nd = n then we denote Fn1×···×nd by F×dn and 0n1×···×nd by 0×dn. For
d-dimensional matrix A we denote by wt(A) the number of points in

∏d
i=1[ni] that are mapped to

non-zero elements in F . For d-dimensional matrix A of size n1 × · · · × nd and xi ∈ Fni we define

A(x1, . . . , xd) =

n1∑
i1=1

· · ·
nd∑
id=1

Ai1,i2,...,idx1i1 · · ·xdid .

The vector v = A(·, x2, . . . , xd) is n1-dimensional vector that its i1 entry is

n2∑
i2=1

· · ·
nd∑
id=1

Ai1,i2,...,idx2i2 · · ·xdid .

We first prove the following:

Theorem 14. Let p < nγ be a prime number for some constant γ. There exists a set S = {(x11, . . . , x1d),
(x21, . . . , x2d) , . . . , (xk1, . . . , xkd)} where xij ∈ {0, 1}n and

k = O

(
m+

m log nd

m

log min(m, p)

)
,

such that: for any d-dimensional matrix A ∈ Z×dnp \{0×dn} with wt(A) ≤ m, there exists an i such that

A(xi1, . . . , xid) 6=p 0.

Proof. We divide the set of matrices

A = {A | A ∈ Z×dnp \{0×dn} and wt(A) ≤ m}

into d+ 1 (non-disjoint) sets:
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• A0: The set of all matrices A ∈ Z×dnp \{0×dn} such that wt(A) ≤ m/ logm.

• Aj , j = 1, . . . , d: The set of all matrices A ∈ Z×dnp such that m ≥ wt(A) > m/ logm and there are
at least (

m

logm

)1/d

non-zero elements in

Ij = {ij | ∃(i1, . . . , ij−1, ij+1, . . . , id) Ai1,i2,...,id 6= 0}.

Note that I = {(i1, . . . , ij) | Ai1,...,ij 6= 0} ⊆ I1×I2×· · ·×Id and therefore either |I| = wt(A) ≤ m/ logm

or there is j such that |Ij | > (m/ logm)1/d. Therefore, A = A0 ∪ A1 ∪ · · · ∪ Ad.
Using the probabilistic method, we give d+1 sets of d-tuples of vectors S0, S1, . . . , Sd such that for every
j ∈ {0}∪ [d] and A ∈ Aj there exists a d-tuple of vectors (x1, . . . , xd) ∈ Sj such that A(x1, . . . , xd) 6=p 0
and

|S0|+ |S1|+ · · ·+ |Sd| = O

(
m+

m log nd

m

log min(m, p)

)
.

Case 1: A ∈ A0.
As in the proof of Lemma 2 it can be shown that for randomly chosen vectors xi1, . . . , xid ∈ {0, 1}n and
A ∈ A0 we have

Pr[A(xi1, xi2, . . . , xid) =p 0] ≤ 2d − 1

2d
.

Randomly uniformly choose

k1 = c

(
m+

m log nd

m

log min(m, p)

)
d-tuples of (0, 1)-vectors xi = (xi1, . . . , xid) ∈ ({0, 1}n)d where c is a constant. The probability that for
all xi we have A(xi) =p 0 is bounded by

Pr[∀i ∈ [k1] : A(xi) =p 0] ≤
(

2d − 1

2d

)k1
.

Therefore, by union bound, the probability that there exists a matrix A of weight smaller than m/ logm
such that A(xi) =p 0 for all i ∈ [k1] is

Pr[∃A ∈ A0,∀i ∈ [k1] : A(xi) =p 0] ≤
(
nd

m
logm

)
p

m
logm

(
2d − 1

2d

)k1
< 1,

for some constant c. This implies the result.

Case 2: A ∈ A1.
We start by proving the following two lemmas
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Lemma 15. Let U ⊂ Z×d−1n
p be the set of all non-zero d− 1-dimensional matrices with weight smaller

than md/(d+1). Then there is a constant c0 such that for any constant C > c0 and

k2 = C

(
m+

m log nd

m

log min(m, p)

)

there exists a multiset of d − 1-tuple of (0,1)-vectors Y = {y1, y2, . . . , yk2} ⊆ ({0, 1}n)d−1 such that for
every A ∈ U the size of the multiset

YA = {i |A(yi) 6=p 0}

is at least k2
2d

.

Proof. As above for a randomly chosen vector y ∈ ({0, 1}n)d−1 and any A ∈ U we have

Pr[A(y) =p 0] ≤ 2d−1 − 1

2d−1
.

Therefore, if we randomly uniformly choose the vectors of Y , then the expected size of Yu is greater
than k2/2

d−1 for any A ∈ U . Using Chernoff bound (Lemma 5) we have that

Pr[|YA| < k2/2
d] ≤ e

k2
2d+2 .

Therefore, the probability that there exists A ∈ U such that |YA| < k2/2
d is

Pr[∃A ∈ U : |YA| < k2/2
d] ≤ |U |

e
k2
2d

≤
∑md/(d+1)

i=0

(
nd−1

i

)
(p− 1)i

e
k2
2d

< 1,

for some constant c0 and all C > c0. This implies the result.

Now let U be the set of d−1-dimensional matrices defined in Lemma 15. Let A ∈ A1. Since wt(A) ≤ m
there are at most m1/(d+1) d − 1-dimensional matrices (Ai1,i2,...,id)i1=j,i2,...,id with weight greater than

md/(d+1). Therefore, there are at least

q =

(
m

logm

)1/d

−m1/(d+1)

indices j such that (Ai1,i2,...,id)i1=j,i2,...,id ∈ U . Let U ′ contains q indices j such that (Ai1,i2,...,id)i1=j,i2,...,id ∈
U . Let AU be the matrix (Ai1,i2,...,id)i1∈U ′,i2,...,id . Let Y = {y1, y2, . . . , yk2} be the set we proved its ex-
istence in Lemma 15. Note that ∑

i

wt(AU (·, yi)) ≥
qk2
2d
.
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Since wt(AU (·, yi)) ≤ q for all i ∈ [k2] and by Lemma 13 we have

∏
i

ι(wt(AU (·, yi))) ≥ (min(q, p))

⌊ qk2
2d
−k2

q−1

⌋
= (min(q, p))c1k2 = (min(m, p))c2k2 ,

where c1 and c2 are constants. If we randomly choose x1, x2, . . . , xk2 then by Lemma 3, we have

Pr[∀i ∈ [k2] : A(xi, yi) 6= 0] ≤
∏
i

1

ι(wt(A(·, yi)))β
,

≤
∏
i

1

ι(wt(AU (·, yi)))β

=

(
1∏

i ι(wt(AU (·, yi)))

)β
≤ 1

(min(m, p))βc2k2

= (min(m, p))−c3k2

where c3 is a constant. Therefore, the probability that there exists a matrix A ∈ A1 such that for all
xi, yi we have A(xi, yi) =p 0 is

Pr[∃A ∈ A1,∀i ∈ [k2] : A(xi, yi) =p 0] ≤ |A1|
(min(m, p))c3k2

≤
(
nd

m

)
pm

(min(m, p))c3k2
< 1,

for constant some constant C. Thus, the results follows.

Now we get our main result

Corollary 5. There exists a matrix M ∈ {0, 1}k×n where

k = O

(
m+

m log n
m

log min(m, p)

)
,

every row of M is a tensor product of d vectors x1, . . . , xd ∈ {0, 1}n
1/d

and every m columns of M are
linearly independent over Zp.
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