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Abstract

Many commonly-used auction mechanisms are “maximal-in-range”. We show that any maximal-
in-range mechanism for n bidders and m items cannot both approximate the social welfare with a ratio
better than min(n,mη) for any constant η < 1/2 and run in polynomial time, unless NP ⊆ P/poly.
This significantly improves upon a previous bound on the achievable social welfare of polynomial time
maximal-in-range mechanisms of 2n/(n + 1) for constant n. Our bound is tight, as a min(n, 2m1/2)
approximation of the social welfare is achievable.

1 Introduction

In this paper, we analyze n-bidder combinatorial auctions with budget constraints. In this model, we con-
sider a group of n bidders bidding on m items at an auction. Each bidder i has a private valuation vi,j for
each item j, and a budget bi. Player i values receiving a set S ⊆ [m] at

min

∑
j∈S

vi,j

 , bi

 .

The goal of the auction is to allocate items to bidders in order to maximize the total value summed over
all of the bidders. This sum is called the social welfare. Even if we know the values vi,j and the budgets bi
for all i, it is NP-hard to maximize the social welfare, although an FPTAS does exist for a constant number
of bidders [AM04].

The auction setting introduces the additional difficulty that the bidders will not reveal their true valua-
tions unless it is to their advantage to do so. So in order to even learn the parameters of the problem, it is
necessary to design an auction in such a way that each bidder’s profit is maximized by revealing their true
valuations. Such an auction mechanism is called truthful.
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A natural property shared by many truthful mechanisms is that they are maximal-in-range [MPSS09].
This means that the mechanismM has an associated range R of possible assignments of items to bidders,
andM will always maximize the social welfare over R. All maximal-in-range allocation schemes can be
implemented truthfully by a VCG mechanism.

Since a mechanism is only useful if it can be implemented, it is desirable that mechanisms do not
require intractible computations. In this paper, we restrict our study to polynomial-time mechanisms, which
only require computation time polynomial in n and m, the number of bidders and items being auctioned,
respectively. We assume unless otherwise specified that n = n(m) ≤ poly(m), and that m is the main
growing parameter. Super-polynomial n can be handled using stronger complexity assumptions; see Section
3.

The technique we use to demonstrate the limits of polynomial-time maximal-in-range mechanisms relies
upon showing that the range has a large VC dimension1 which permits the embedding of hard sub-problems.
This general technique was originated in [PSS08] to show inapproximability for the Combinatorial Public
Projects Problem. More recently, the same idea was used in [MPSS09] to show that a polynomial-time
maximal-in-range mechanism cannot approximate the social welfare for n bidders with any constant ratio
less than 2n

n+1 unless NP ⊆ P/poly.
In this paper, we use the same general framework, together with several new ideas, to show that no

polynomial-time maximal-in-range mechanism can approximate the social welfare with a ratio better than
min(n,mη) for any constant η < 1/2 unless NP ⊆ P/poly. There are three new ideas that lead to our
improvements:

1. We devise a counting argument that shows that there must be a reasonably large subset of items that
are fully allocated in exponentially many different ways by the range. This allows us to overcome
one of the main difficulties in analyzing maximal-in-range mechanisms, which is dealing with unal-
located items (indeed, [MPSS09] are able to achieve an optimal ratio for the 2 bidder case when the
mechanism is required to allocate all items).

2. We use Sauer’s Lemma in a non-direct way to argue that there exists a partition of the bidders into
a single bidder and “everyone else,” so that all possible splittings of the relevant items across this
partition are realized by the range.

3. We show that this “splitting” structure, while weaker than the full n-ary shattering used in [MPSS09]
(for n > 2), nevertheless admits an embedding of Subset Sum.

Our bound (of min(n,mη) for any constant η < 1/2) is tight, as [DNS05] show a simple maximal-
in-range algorithm which achieves a ratio of min(n, 2m1/2). For completeness, we include in the next
subsection a brief description of their algorithm and a proof that it achieves a min(n, 2m1/2) ratio. That
it is maximal-in-range and runs in polynomial time can be easily verified. This algorithm works for all
subadditive valuations with free disposal. These are valuations in which vi(S) ≤ vi(S1) + vi(S2) when S
is the disjoint union of S1 and S2, and also vi(S) ≤ vi(S′) when S ⊆ S′.

1.1 An algorithm achieving a min(n, 2m1/2) approximation ratio

Given valuation functions vi for each bidder i, first form a bipartite graph with nodes on one side rep-
resenting items and nodes on the other representing bidders. Form edges with weight vi(j) between the

1Actually we show that the VC dimension is large after an injective mapping, from which we infer that the range possesses a
weaker, but still useful type of “diversity”.
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nodes representing bidder i and item j. Find a maximum weighted matching in this graph. Call the value
of this matching Vmatching. Now, consider vi([m]), the value to player i of getting all the items. Let
Vall = maxi vi([m]), and let i∗ be the bidder that maximizes vi([m]). If Vmatching ≥ Vall, assign items to
bidders as in the maximum weighted matching. Otherwise, give every item to bidder i∗.

Theorem 1 ([DNS05], slightly rephrased). The above algorithm achieves a min(n, 2m1/2) approximation
of the social welfare under subadditive valuations with free disposal.

Proof. Consider an assignmentAwhich maximizes the social welfare. There are at most
√
m bidders which

get
√
m or more of the items each. Call this set of bidders Bhigh, and call the others Blow.

If the bidders in Bhigh get more than half of the social welfare, Vall will be at least as great as the
maximum value received by any bidder in Bhigh. Thus, Vall is at least 1/

√
m times the social welfare from

bidders in Bhigh. So the social welfare is at most 2
√
m times Vall. Similarly, since there are n bidders

overall, the social welfare is at most n times Vall regardless of how the social welfare is distributed among
Bhigh and Blow.

Otherwise, the bidders in Blow get at least half the social welfare. Consider the matching in the bidder-
and-item graph in which every bidder in Blow receives the item maximizing vi(j) out of the items assigned
to them in A. Since the valuations are subadditive and each bidder in Blow receives at most

√
m items, the

total value of Blow is at most
√
m times the value of this matching. Since Vmatching is the maximal value

over any matching, we see that the social welfare from Blow is at most
√
mVmatching. Thus, the social

welfare of A is at most 2
√
m times Vmatching.

Since Vall is always an n approximation and one of Vall, Vmatching is a 2
√
m approximation of the social

welfare, assigning items to achieve the max of these two welfares yields a min(n, 2
√
m) approximation.

1.2 History of this paper

The problem formulation and the general framework for attacking it appear in [MPSS09], which is as yet
unpublished; our results would not have been possible without [MPSS09] and we are grateful to the authors
of that paper for sharing their manuscript with us. Dughmi, Fu and Kleinberg [DFK09] have independently
obtained the same results as in this paper, for all constant n, using different techniques. Both sets of au-
thors are aware of the others’ work, and we exchanged manuscripts at the beginning of June. Dughmi,
Fu and Kleinberg have subsequently extended their results to a class of randomized mechanisms that they
denote by MIWR, and a broader class of valuation functions (any valuation function for which the 2-player
maximization problem is NP-hard).

2 Main Result

In this section, we prove the main theorem:

Theorem 2. LetM be a polynomial-time maximal-in-range mechanism for auctions with n bidders and m
items, with n = n(m) ≤ mη for positive constant η < 1/2. IfM approximates the social welfare with a
ratio of n/(1 + ε) for positive constant ε, then NP ⊆ P/poly.

Theorem 2 is a direct consequence of Lemmas 5, 8 and 9 below. It also leads to the following theorem,
which shows that it is not possible to find a polynomial-time maximal-in-range mechanism that achieves an
approximation much better than the min(n, 2m1/2) in Theorem 1.
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Theorem 3. For any positive constant ε and n = n(m) ≤ poly(m), no polynomial-time maximal-in-
range auction mechanism can approximate the social welfare with a ratio better than min(n,m1/2−ε) by a
constant factor unless NP ⊆ P/poly.

Proof. This follows from Theorem 2 by simply noting that any mechanism M which performs well on
n = n(m) ≤ m1/2−ε bidders will perform well on n = n(m) ≤ poly(m) bidders when all butm1/2−ε of the
bidders have valuation functions which are identically zero. Thus, by setting all but m1/2−ε of the valuation
functions to 0, and simulating M, we are effectively simulating M on an auction with n = m1/2−ε, as
assigning items to bidders with valuations functions equal to zero has the same effect as not assigning them
at all. Thus, setting n′ = min(n,m1/2−ε), we see by Theorem 2 that achieving an approximation ratio better
than n′ implies NP ⊆ P/poly.

We begin the proof of Theorem 2 by examining the structure of the range. Below we omit floors and
ceilings when dealing with them would be routine.

2.1 The Counting Argument

LetM be a maximal-in-range mechanism with range R ⊆ ([n]∪{?})m. For a vector x ∈ R, xi = j means
that item i is given to bidder j, while xi = ? indicates that no bidder is given item i. For S ⊆ [m], we define
RS to be the subset of the range where all of the items in S are assigned to bidders,

RS = {x ∈ R : xi ∈ [n] for all i ∈ S}.

When considering RS we wish to focus on the bidders that the items in S are assigned to, so we define
TS to be the projection of RS to the indices in S. So TS ⊆ [n]|S|.

In order to show thatM can solve a hard problem, we will show that there is some TS with sufficiently
many elements so that subset sum can be embedded in the valuations of S by the various bidders in such
a way thatM will solve it. This differs from the approach in [MPSS09] in that by focusing on a portion
of the range such that there are no unassigned items within a fixed subset S, we can ignore the difficulties
associated with unassigned items. This idea allows for simpler and more powerful arguments. First, we
show that there must be some exponentially large TS . We begin with a helpful lemma.

Lemma 4. For any positive constant ε and any m,n for which the binomial coefficients below are positive,(
m

εm/n

)(((1+2ε)/n)m
εm/n

) < ( n

1 + ε

)εm/n
.

Proof. First, note that (
m

εm/n

)(((1+2ε)/n)m
εm/n

) =
εm/n−1∏
i=0

m− i
((1 + 2ε)/n)m− i

.

Now,

m− i
((1 + 2ε)/n)m− i

=
m− i

((1 + 2ε)/n)m− i

<
m

(1 + 2ε)m/n− εm/n

=
n

1 + ε
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So multiplying the εm/n terms together, we have(
m
αm

)(((1+2ε)/n)m
εm/n

) =
εm/n−1∏
i=0

m− i
((1 + 2ε)/n)m− i

<

εm/n−1∏
i=0

n

1 + ε

=
(

n

1 + ε

)εm/n
,

which proves the lemma.

Lemma 5. LetM be a maximal-in-range mechanism for auctions with n bidders and m items that approx-
imates the social welfare with a ratio of n/(1 + 2ε), for positive constant ε. Then there exists a set S ⊆ [m]
with |S| = εm/n where TS has size |TS | ≥ (1 + ε)εm/n.

Proof. To begin, we associate with each x ∈ [n]m a set of valuation functions. The valuation functions are
such that

vi,j =
{

1 xj = i
0 otherwise

bi = m.

Let x ∈ [n]m. BecauseM approximates the social welfare with a ratio of (1 + 2ε)/n and the maximum
social welfare is m, there must be a member r ∈ R of the range such that ri = xi for at least ((1+2ε)/n)m
different indices i. Let Sx be the set of these indices,

Sx = {i : ri = xi}.

There are at least
( |Sx|
εm/n

)
≥
(((1+2ε)/n)m

εm/n

)
subsets S′ ⊆ Sx of size εm/n. For each such set S′, TS′ contains

the projection of x to S′. If TS′ contains the projection of x to S′, we say that x is covered by TS′ . If t ∈ TS′
is the projection of x to S′, we say that t covers x.

For a subset S ⊆ [m], define C(S) to be the number of vectors x ∈ [n]m which are covered by TS .
Since each x ∈ [n]m is covered by at least

(((1+2ε)/n)m
εm/n

)
sets TS with |S| = εm/n,

∑
S⊆[m],|S|=εm/n

C(S) ≥ nm
(

((1 + 2ε)/n)m
εm/n

)
. (1)

We now bound the sum
∑

S⊆[m],|S|=εm/nC(S). Suppose by way of contradiction that for every subset
S ⊆ [m] of size εm/n, |TS | < (1 + ε)εm/n. Consider a subset S ⊂ [m] such that |S| = εm/n. Each t ∈ TS
covers nm−εm/n elements of [n]m. So C(S) < (1 + ε)εm/nnm−εm/n, which gives the bound∑

S⊆[m],|S|=εm/n

C(S) <
(

m

εm/n

)
(1 + ε)εm/nnm−εm/n. (2)

So by Equations 1 and 2, we have(
m

εm/n

)
(1 + ε)εm/nnm−εm/n > nm

(
((1 + 2ε)/n)m

εm/n

)
,
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which we simplify to (
m

εm/n

)(((1+2ε)/n)m
εm/n

)(1 + ε)εm/n > nεm/n. (3)

By Lemma 4, we get(
m

εm/n

)(((1+2ε)/n)m
εm/n

)(1 + ε)εm/n <
(

n

1 + ε

)εm/n
(1 + ε)εm/n = nεm/n,

which contradicts Equation 3, proving that there exists some S ⊆ [m] with |S| = εm/n such that |TS | ≥
(1 + ε)εm/n.

2.2 Using the VC Dimension

In previous work [MPSS09], showing a size 2Ω(m)-sized subset was used to show large VC-dimension in
the n = 2 case. Unfortunately, this does not generalize well to auctions with three or more bidders because
for n > 2 there exist sets of size (n − 1)m > 2m with n-ary VC dimension equal to 0. To get around this
difficulty, we map TS injectively from [n]εm/n into [2]εm, and show that the image of this map has a large
VC dimension. The large VC dimension then permits the embedding of an NP-hard problem (see Section
2.3. In order to show a lower-bound on the VC dimension, we use Sauer’s Lemma:

Lemma 6 (Sauer’s Lemma). Let S be a subset of [2]` with |S| >
∑k−1

i=0

(
`
i

)
. The VC dimension of S is at

least k.

We will make use of the following corollary:

Corollary 7. Let T be a subset of [2]`. For any constant δ > 1/2 and any ε > 0, the following holds for all
sufficiently large `: if |T | > (1 + ε)ε`

δ
then T has VC dimension at least `1/2.

Proof. Since for sufficiently large `, `1/2 < `/2,

`1/2−1∑
i=0

(
`

i

)
≤

`1/2−1∑
i=0

(
`

`1/2

)

≤ `1/2
(
e`

`1/2

)`1/2
= `1/2

(
e`1/2

)`1/2
= (1 + ε)1/2 log1+ε `+`

1/2 log1+ε(e`
1/2)

= (1 + ε)`
1/2((1/2) log1+ε `+log1+ε e+o(1))

= (1 + ε)`
1/2+o(1)

which is less than |T | = (1 + ε)ε`
δ

for sufficiently large `, since δ > 1/2.

Let φi be the map

φi(j) =
{

1 i = j
0 i 6= j

.

The next lemma is the main lemma in this section; it refers to the range R and the subsets TS defined in
Section 2.1.
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Lemma 8. LetM be a maximal-in-range mechanism for auctions with n bidders and m items, with n =
n(m) ≤ mη for positive constant η < 1/2. For all sufficiently large m, if there exists a subset S ⊆ [m] with
|S| = εm/n such that |TS | ≥ (1 + ε)εm/n, then there exists a bidder i∗ such that φi∗(R) has VC dimension
at least

√
ε ·m1/2−η.

Proof. Define vectors ej = (0, . . . , 0, 1, 0, . . . , 0), where the single 1 is in position j, and the number of
coordinates of ej is n. We define f : [n]εm/n → [2]nεm/n = [2]εm by f(x) = ex1ex2 · · · exεm/n . We write
f(T ) for a subset T to mean the set {f(t) : t ∈ T}.

The function f is injective, so

|f(TS)| = |TS | ≥ (1 + ε)εm/n.

Note that (1 + ε)εm/n ≥ (1 + ε)εm
1−η ≥ (1 + ε)ε(εm)1−η . We are assuming that m is sufficiently large, so

we can apply Corollary 7 (with δ = 1− η > 1/2 and ` = εm) to conclude that f(TS) has VC dimension at
least (εm)1/2.

Let Q be a size (εm)1/2 subset of [εm] that is shattered by f(TS). Recall that each member of f(TS) is
the concatenation of vectors of length n, where a 1 in the ith position of the jth such vector corresponds to
the ith bidder getting item j. In this way each element in Q corresponds to one of the n bidders. Partition
Q into sets Qi, where Qi contains those coordinates that correspond to bidder i. There are n parts in the
partition, so there is some i∗ ∈ [n] for which Qi∗ has size at least (εm)1/2/n.

Since Q is shattered by f(TS), so is the subset Qi∗ . This means exactly that φi∗(TS) has VC dimension
at least |Qi∗ | ≥ (εm)1/2/n. Since the members of TS are projections of members of R onto the coordinates
in S, this implies that φi∗(R) also has VC dimension at least (εm)1/2/n ≥

√
ε ·m1/2−η.

2.3 Embedding Subset Sum

We now show that if φi∗(R) has VC dimension at least mγ for constant γ > 0, we can embed a subset sum
instance into the auction in such a way that it is solved byM. We use a reduction similar to one used in
[LLN06] to show that exactly maximizing the social welfare of these auctions is NP-hard.

Lemma 9. LetM be a polynomial-time maximal-in-range mechanism for auctions with n bidders and m
items. Suppose there exists a constant γ > 0 such that for all sufficiently large m, there exists a bidder i∗

such that φi∗(R) has VC dimension at least mγ (where R is the range). Then NP ⊆ P/poly.

Proof. We take as advice the set L ⊆ [m] of size mγ that is shattered by φi∗(R). For ease of exposition we
re-order the items so that L is the set of the first mγ items. Let a1, . . . , amγ be a subset sum instance with
target sum K. For all bidders i 6= i∗, we set

vi,j =
{
aj , j ≤ γm
0, j > γm

bi =
∑
j

aj

and for bidder i∗, we set

vi∗,j =
{

2aj , j ≤ γm
0, j > γm

bi∗ = 2K.
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If there is a subset V of {a1, . . . , amγ} summing to K, there is an assignment in R with social welfare
of
∑

j aj + K. This can be any assignment where bidder i∗ gets the items in V , and the other items are
distributed among the other bidders. R must contain such an assignment because φi∗(R) shatters L. Since
M is maximal-in-range with range R, it will output an assignment with at least this social welfare.

If there is no subset of {a1, . . . , amγ} summing to K,M will assign bidder i∗ a subset V ⊆ M such
that

∑
j∈V aj 6= K. If

∑
j∈V aj < K, the total value is at most∑

j /∈V

aj +
∑
j∈V

2aj =
∑
j

aj +
∑
j∈V

aj

<
∑
j

aj +K.

If
∑

j∈V aj > K, bidder i∗ gets value 2K. Let ` =
∑

j∈V 2aj − 2K. The total value is at most∑
j /∈V

aj +
∑
j∈V

2aj − ` =
∑
j

aj +
∑
j∈V

aj − `

=
∑
j

aj + 2K −
∑
j∈V

aj

<
∑
j

aj + 2K −K

=
∑
j

aj +K.

So every assignment has social welfare less than
∑

j aj +K. So taking L as advice, we can solve a subset
sum instance with k integers in polynomial time (in m = k1/γ and the size of the binary representations of
the integers). Therefore, subset sum is in P/poly, so NP ⊆ P/poly.

2.4 Proof of the Main Result

We can now prove Theorem 2. We have a polynomial-time maximal-in-range mechanismM for auctions
with n bidders and m items, with n = n(m) ≤ mη for positive constant η < 1/2. By Lemma 5, for each
m there exists a subset S ⊆ [m] of size (ε/2)m/n such that |TS | ≥ (1 + ε/2)(ε/2)m/n. By Lemma 8,
this implies that for sufficiently large m, the range ofM has VC dimension at least

√
ε/2 ·m1/2−η. Since

η < 1/2, we have
√
ε/2 ·m1/2−η ≥ mγ for some fixed positive constant γ and sufficiently large m. By

Lemma 9, we thus have that NP ⊆ P/poly.

3 Super-polynomially many bidders

In this section, we observe that our results can be extended to handle the case of n super-polynomial in m,
at the expense of a stronger complexity assumption. For n larger than m, our technique shows a limit of
m1/2−ε on the approximation ratio of any mechanism which runs in time polynomial in m. However, by
our definition an efficient mechanism need only run in time polynomial in n and m, which is greater than
poly(m) for super-polynomial n. By strengthening the complexity assumption, we can still prove limits on
the achievable social welfare.
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For instance, if n is sub-exponential in m, we can begin by assuming that NP does not have sub-
exponential size circuits. Then applying the same reduction leads to a circuit family of size poly(n,m) (or
sub-exponential in m), which solves subset sum instances of size mγ for constant γ > 0, and this implies
that NP has subexponential size circuits.

If n is sufficiently large as a function of m, it can even become possible to maximize the social welfare
exactly in polynomial time.

Theorem 10. There exists a maximal-in-range mechanism M for auctions with n bidders and m items,
which maximizes the social welfare and runs in polynomial time when Bm ∈ O(poly(n)), where Bm is the
mth Bell number, the number of partitions of [m] into any number of disjoint subsets with union [m].

Proof. If Bm ∈ O(poly(n)), it is possible to enumerate all of the partitions of [m] into any number of
disjoint subsets in polynomial time. For each such partition into sets S1, . . . , Sk, form a bipartite graph
where one side has nodes representing the sets S1, . . . , Sk and the other has nodes representing the bidders.
The edge between bidder i and partition Sj has weight vi(Sj).

After finding a maximum weighted matching on each such bipartite graph, we can choose the maximum
matching over all partitions. This matching represents the assignment which maximizes the social welfare.
This can be easily seen because every assignment corresponds to a matching in the bipartite graph for some
partition.

4 Conclusions

We have shown that no polynomial-time maximal-in-range auction mechanism can approximate the social
welfare to a ratio better than min(n,m1/2−ε) by a constant factor. This essentially resolves the maximum
social welfare achievable by efficient maximal-in-range auction mechanisms for any class of valuations
including the valuation functions we considered, as a min(n, 2m1/2) ratio is achievable.

There is an asymmetry as to the strength of the n andm1/2−ε bounds, however, as the n bound eliminates
the possibility of a ratio of n/(1 + ε) being achieved, but the m1/2−ε bound leaves open the possibility of
achieving a m1/2−o(1) approximation.

For super-polynomial n, we have demonstrated similar limits under stronger complexity assumptions, up
to n being sub-exponential in m. We also showed that for sufficiently large n, a polynomial-time maximal-
in-range auction mechanism exists.

While this largely resolves the performance of maximal-in-range mechanisms, it leaves open the larger
question of how well truthful mechanisms perform.
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