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There have been three beautiful recent results on constructing short locally decodable codes or
LDCs [Yek07, Rag07, Efr09], culminating in the construction of LDCs of sub-exponential length.
The initial breakthrough was due to Yekhanin who constructed 3-query LDCs of sub-exponential
length, assuming the existence of infinitely many Mersenne primes [Yek07]. Raghavendra presented
a clean formulation of Yekhanin’s codes in terms of group homomorphisms [Rag07]. Building on
these works, Efremenko recently gave an elegant construction of 3-query LDCs which achieve sub-
exponential length unconditionally [Efr09].

In this note, we observe that Efremenko’s construction can be viewed in the framework of Reed-
Muller codes: the code consists of a linear subspace of polynomials in Fy[ X1, ..., X,], evaluated at
all points in (IF})". We stress that this is not a new construction, but just a different view of [Efr09].
In this view, the decoding algorithm is similar to traditional local decoders for Reed-Muller codes,
where the decoder essentially shoots a line in a random direction and decodes along it (see for
instance [STVO01]). The difference is that the monomials which are used are not of low-degree, they
are chosen according to a suitable set-system. Further, the lines for decoding are multiplicative, a
notion we will define shortly.

A crucial ingredient in these LDCs is a large matching set of vectors over Z,. Such vectors can
be obtained from the set-systems with restricted intersections modulo composites constructed by
Grolmusz [Gro00]. His construction uses the low-degree representations of the OR function modulo
composites [BBR94]. We present a construction of matching vectors directly from OR polynomials
due to Sudan [Sud09], which is very simple and achieves nearly the same parameters.

1 The Code Construction.

Let F, be a finite field with ¢ elements, Iy its multiplicative group, and let m|(¢ — 1). We think
of ¢ and m as constants (say 7 and 6 for concreteness). Given L C Z,, and an integer z, we say
x € L mod m if x mod m € L.

Definition 1. Two families of vectors i = {ul[l],...,u[f]} and V = {v[1],...,v[f]} where u[i], v[j] €
Z7., are said to be matching if there exists L C Z,, \ {0} such that

e For every i € [f], u[i] - v[i] = 0.
e For every i # i € [f], u[i] - v[j] € L mod m.

If m is a prime power, then f can be at most polynomial in n [Gop06]. For composite m with
two or more prime factors, Grolmusz shows that f can be super-polynomial in n [Gro00].
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Lemma 2. If m has t distinct prime factors, then there is an (explicit) matching family U,V of

subsets of vectors in Z", such that ¢ = |L| <2' — 1 and f > exp <%>.

We now describe the code C = C(U, V).

o Message Space: For each vector v[j] € V, define the monomial x;(z) = [iep, J]’“.
Messages correspond to polynomials P(x) = > .- Ajx;(x) where \; € F,.

e Encoding: The encoding is the evaluation of the polynomial P at all points in (IF;)"

It follows that Cr is linear over Fy, it has dimension f and length (¢ — 1)". We will give a local
decoder for it with query complexity £ + 1.

The Local Decoder. Let v be an element of order m in IF;. We define the set B = {y“|c € L} C
;. Note that 1 ¢ B. For a scalar A € F and a vector u € Zg,, let A* = (A",..., \“") and more
generally \"* = (A1 \un) for h € Z. For two vectors x,y € (F3)™ we use x ©y to denote the
vector (T1y1, Z2y2, - - -, Tnyn) € (F)".

With this notation set up, let us define the multiplicative line through x € (IF;)” in the direction

7l as the set of points {z,y"! ® 2,7 & z,...} € (F3)™. The following Lemma which shows
that y; is the unique monomial that stays constant along this line, is the key to decoding.

Lemma 3. For any i,j € [f], h € Z and x € (F})",
/. hali] ) x(@) if i=]
xj(Y*H o z) = o
J {ﬂhxj(:n) forBe B if i#£].

Proof. We will prove the claim when h = 1, the general case is similar. We have
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If i = j, then u[i] - v[j] = 0 mod m, and vl = 1. Whereas if i # j, then u[i] - v[j] € L, hence
~ulilvlil = 3 € B, which completes the proof. O

We need the following claim from [Efr09]:
Claim 4. There ezist cy, . ..,co € Fy such that Ei:o cp =1 and Ei:o cpul =0 for p € B.

The cps are the coefficients of a univariate polynomial that vanishes on B, suitably rescaled.
We now state the decoding algorithm. The algorithm has query access to P and is given i € [f]
as input. The goal is to return \;.

1. Pick x € (IF;)" at random, query the values P(z), Pyl ox),. .., P o).
2. Return (5 _o cn P(Y"1 @ 2)) - (xa(x)) 1.
In step 2, the algorithm needs to compute x;(x) ™!, which is easy given i and z.

Theorem 5. The Decoding Algorithm returns the coefficient X;.



Proof. We have
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where Equation 1 uses Lemma 3, and Equation 2 uses Claim 4. We note that 8 = ’y“m'”m in
Equation 1 depends on the index j, but we suppress this for notational clarity. O
With Grolmusz’s construction, the code Cr gives encoding length (¢ —1)", dimension f = ne)

and query complex1ty 2t Put dlfferently, messages of length k are encoded by codewords of length
exp(exp(O((log k) (loglog k)~ ))), which can be decoded using 2! queries.

2 Sudan’s construction of matching vectors.

We present a simple construction of matching vectors due to Madhu Sudan. The construction
directly uses representations of the OR function.

Definition 6. A polynomial P(X7,..., X}) represents the OR function on {0,1}* modulo m if
there exists L C Z,,\{0} so that P(0*) = 0 mod m and P(x) € L mod m for every = € {0, 1}¥\{0*}.

Barrington et al. [BBR94] proved a surprising upper bound on the degree of such polynomials.

Theorem 7. [BBRY/] If m has t distinct prime divisors, there is a polynomial of degree O(k%)
representing the OR function on {0,1}*. The constant hidden by the O term depends only on m.

We give a construction of a large matching family of vectors from any low-degree OR polynomial
P(Xi,...,X}). The vectors are indexed by y € {0,1}*. Given such a y, define the polynomial
Py(X1,...,Xk) by replacing X; in P with 1 — X; if y; = 1, and leaving X; unchanged if y; = 0.
Thus P, is just P with the origin shifted to y. Given vectors, z,y € {0,1}", we use z @y to denote
the bitwise Xor of the two vectors. The following properties of P, are easy to verify

Lemma 8. P, is multilinear, with deg(P,) = deg(P). For z € {0,1}*, P,(z) = P(z @ y).

Let deg(P) = d. Set
=3 (’“)

i<d

We construct matching families of size f = 2F in n dimensions as follows:

e The family U is indexed by vectors = € {0,1}*. For each such z, the vector u[z] is obtained
by evaluating all multilinear monomials of degree at most d at x, so u[z] has dimension n.

e The family V is indexed by vectors y € {0, 1}*. For each such y, P, is a multilinear polynomial
of degree d. The vector v[y] is the vector of its coefficients (which also has dimension n).



Theorem 9. The families U and V are a matching family of vectors.

Proof. The key observation is that u[z] - v[y] = P,(z), since v]y] gives the cofficients of each
monomial, and u[x] gives the evaluations of these monomials at 2. By Lemma 8, Py(z) = P(z®y).
By Definition 6, P,(y) = P(0F) = 0 mod m, whereas P,(z) = P(x ®y) € L mod m for all z # y €
{0,1}*. O

The BBR construction gives d = O(\/E) Plugging this in yields n = kOWk) = 90(Vklogk)

Summary. A better construction of matching vectors will give LDCs with better parameters.
Known constructions of matching vectors rely on the low-degree polynomials representing the OR
function modulo composites, discovered by Barrington et al. [BBR94]. These polynomials have
now found diverse combinatorial applications; LDCs, set-systems and Ramsey graphs to name a
few, yet there is an exponential gap in the known degree bounds for these polynomials [Gop06].
There is also no strong evidence for what the right bound should be. We pose closing this gap as
a natural open question.
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