A note on Efremenko's Locally Decodable Codes

Parikshit Gopalan
MSR-Silicon Valley
parik@microsoft.com

There have been three beautiful recent results on constructing short locally decodable codes or LDCs [Yek07, Rag07, Efr09], culminating in the construction of LDCs of sub-exponential length. The initial breakthrough was due to Yekhanin who constructed 3-query LDCs of sub-exponential length, assuming the existence of infinitely many Mersenne primes [Yek07]. Raghavendra presented a clean formulation of Yekhanin's codes in terms of group homomorphisms [Rag07]. Building on these works, Efremenko recently gave an elegant construction of 3-query LDCs which achieve subexponential length unconditionally [Efr09].

In this note, we observe that Efremenko's construction can be viewed in the framework of ReedMuller codes: the code consists of a linear subspace of polynomials in $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$, evaluated at all points in $\left(\mathbb{F}_{q}^{\star}\right)^{n}$. We stress that this is not a new construction, but just a different view of [Efr09]. In this view, the decoding algorithm is similar to traditional local decoders for Reed-Muller codes, where the decoder essentially shoots a line in a random direction and decodes along it (see for instance [STV01]). The difference is that the monomials which are used are not of low-degree, they are chosen according to a suitable set-system. Further, the lines for decoding are multiplicative, a notion we will define shortly.

A crucial ingredient in these LDCs is a large matching set of vectors over \mathbb{Z}_{m}^{n}. Such vectors can be obtained from the set-systems with restricted intersections modulo composites constructed by Grolmusz [Gro00]. His construction uses the low-degree representations of the OR function modulo composites [BBR94]. We present a construction of matching vectors directly from OR polynomials due to Sudan [Sud09], which is very simple and achieves nearly the same parameters.

1 The Code Construction.

Let \mathbb{F}_{q} be a finite field with q elements, \mathbb{F}_{q}^{\star} its multiplicative group, and let $m \mid(q-1)$. We think of q and m as constants (say 7 and 6 for concreteness). Given $L \subset \mathbb{Z}_{m}$ and an integer x, we say $x \in L \bmod m$ if $x \bmod m \in L$.

Definition 1. Two families of vectors $\mathcal{U}=\{u[1], \ldots, u[f]\}$ and $\mathcal{V}=\{v[1], \ldots, v[f]\}$ where $u[i], v[j] \in$ \mathbb{Z}_{m}^{n} are said to be matching if there exists $L \subseteq \mathbb{Z}_{m} \backslash\{0\}$ such that

- For every $i \in[f], u[i] \cdot v[i]=0$.
- For every $i \neq i \in[f], u[i] \cdot v[j] \in L \bmod m$.

If m is a prime power, then f can be at most polynomial in n [Gop06]. For composite m with two or more prime factors, Grolmusz shows that f can be super-polynomial in n [Gro00].

Lemma 2. If m has t distinct prime factors, then there is an (explicit) matching family U, V of subsets of vectors in \mathbb{Z}_{m}^{n} such that $\ell=|L| \leq 2^{t}-1$ and $f \geq \exp \left(\frac{(\log n)^{t}}{(\log \log n)^{t-1}}\right)$.

We now describe the code $\mathcal{C}=\mathcal{C}(\mathcal{U}, \mathcal{V})$.

- Message Space: For each vector $v[j] \in \mathcal{V}$, define the monomial $\chi_{j}(x)=\prod_{k \in[n]} x_{k}^{v[j]_{k}}$. Messages correspond to polynomials $P(x)=\sum_{j \leq f} \lambda_{j} \chi_{j}(x)$ where $\lambda_{i} \in \mathbb{F}_{q}$.
- Encoding: The encoding is the evaluation of the polynomial P at all points in $\left(\mathbb{F}_{q}^{\star}\right)^{n}$.

It follows that $\mathcal{C}_{\mathcal{F}}$ is linear over \mathbb{F}_{q}, it has dimension f and length $(q-1)^{n}$. We will give a local decoder for it with query complexity $\ell+1$.

The Local Decoder. Let γ be an element of order m in \mathbb{F}_{q}^{\star}. We define the set $B=\left\{\gamma^{c} \mid c \in L\right\} \subset$ \mathbb{F}_{q}^{\star}. Note that $1 \notin B$. For a scalar $\lambda \in \mathbb{F}_{q}^{\star}$ and a vector $u \in \mathbb{Z}_{m}^{n}$, let $\lambda^{u}=\left(\lambda^{u_{1}}, \ldots, \lambda^{u_{n}}\right)$ and more generally $\lambda^{h u}=\left(\lambda^{h u_{1}}, \ldots, \lambda^{h u_{n}}\right)$ for $h \in \mathbb{Z}$. For two vectors $x, y \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$ we use $x \odot y$ to denote the vector $\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right) \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$.

With this notation set up, let us define the multiplicative line through $x \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$ in the direction $\gamma^{u[i]}$ as the set of points $\left\{x, \gamma^{u[i]} \odot x, \gamma^{2 u[i]} \odot x, \ldots\right\} \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$. The following Lemma which shows that χ_{i} is the unique monomial that stays constant along this line, is the key to decoding.

Lemma 3. For any $i, j \in[f], h \in \mathbb{Z}$ and $x \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$,

$$
\chi_{j}\left(\gamma^{h u[i]} \odot x\right)= \begin{cases}\chi_{j}(x) & \text { if } i=j \\ \beta^{h} \chi_{j}(x) \text { for } \beta \in B & \text { if } i \neq j .\end{cases}
$$

Proof. We will prove the claim when $h=1$, the general case is similar. We have

$$
\chi_{j}\left(\gamma^{u[i]} \odot x\right)=\prod_{k \in[n]}\left(\gamma^{u[i]_{k}} x_{k}\right)^{v[j]_{k}}=\gamma^{\sum_{k} u[i]_{k} v[j]_{k}} \prod_{k \in[n]} x_{k}^{v[j]_{k}}=\gamma^{u[i] \cdot v[j]} \chi_{j}(x) .
$$

If $i=j$, then $u[i] \cdot v[j] \equiv 0 \bmod m$, and $\gamma^{u[i] \cdot v[j]}=1$. Whereas if $i \neq j$, then $u[i] \cdot v[j] \in L$, hence $\gamma^{u[i] \cdot v[j]}=\beta \in B$, which completes the proof.

We need the following claim from [Efr09]:
Claim 4. There exist $c_{0}, \ldots, c_{\ell} \in \mathbb{F}_{q}$ such that $\sum_{h=0}^{\ell} c_{h}=1$ and $\sum_{h=0}^{\ell} c_{h} \mu^{h}=0$ for $\mu \in B$.
The $c_{h} \mathrm{~s}$ are the coefficients of a univariate polynomial that vanishes on B, suitably rescaled.
We now state the decoding algorithm. The algorithm has query access to P and is given $i \in[f]$ as input. The goal is to return λ_{i}.

1. Pick $x \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$ at random, query the values $P(x), P\left(\gamma^{u[i]} \odot x\right), \ldots, P\left(\gamma^{\ell u[i]} \odot x\right)$.
2. Return $\left(\sum_{h=0}^{\ell} c_{h} P\left(\gamma^{h u[i]} \odot x\right)\right) \cdot\left(\chi_{i}(x)\right)^{-1}$.

In step 2, the algorithm needs to compute $\chi_{i}(x)^{-1}$, which is easy given i and x.
Theorem 5. The Decoding Algorithm returns the coefficient λ_{i}.

Proof. We have

$$
\begin{align*}
\sum_{h=0}^{\ell} c_{h} P\left(\gamma^{h u[i]} \odot x\right) & =\sum_{h=0}^{\ell} c_{h} \sum_{j \in[f]} \lambda_{j} \chi_{j}\left(\gamma^{h u[i]} \odot x\right)=\sum_{j \in[f]} \lambda_{j} \sum_{h=0}^{\ell} c_{h} \chi_{j}\left(\gamma^{h u[i]} \odot x\right) \\
& =\sum_{j \neq i \in[f]} \lambda_{j} \sum_{h=0}^{\ell} c_{h} \beta^{h} \chi_{j}(x)+\lambda_{i} \sum_{h=0}^{\ell} c_{h} \chi_{j}(x) \tag{1}\\
& =\lambda_{i} \chi_{i}(x) \tag{2}
\end{align*}
$$

where Equation 1 uses Lemma 3, and Equation 2 uses Claim 4. We note that $\beta=\gamma^{u[i] \cdot v[j]}$ in Equation 1 depends on the index j, but we suppress this for notational clarity.

With Grolmusz's construction, the code $\mathcal{C}_{\mathcal{F}}$ gives encoding length $(q-1)^{n}$, dimension $f=n^{\omega(1)}$ and query complexity 2^{t}. Put differently, messages of length k are encoded by codewords of length $\exp \left(\exp \left(O\left((\log k)^{\frac{1}{t}}(\log \log k)^{1-\frac{1}{t}}\right)\right)\right)$, which can be decoded using 2^{t} queries.

2 Sudan's construction of matching vectors.

We present a simple construction of matching vectors due to Madhu Sudan. The construction directly uses representations of the OR function.

Definition 6. A polynomial $P\left(X_{1}, \ldots, X_{k}\right)$ represents the OR function on $\{0,1\}^{k}$ modulo m if there exists $L \subseteq \mathbb{Z}_{m} \backslash\{0\}$ so that $P\left(0^{k}\right) \equiv 0 \bmod m$ and $P(x) \in L \bmod m$ for every $x \in\{0,1\}^{k} \backslash\left\{0^{k}\right\}$.

Barrington et al. [BBR94] proved a surprising upper bound on the degree of such polynomials.
Theorem 7. [BBR94] If m has t distinct prime divisors, there is a polynomial of degree $O\left(k^{\frac{1}{t}}\right)$ representing the $O R$ function on $\{0,1\}^{k}$. The constant hidden by the O term depends only on m.

We give a construction of a large matching family of vectors from any low-degree OR polynomial $P\left(X_{1}, \ldots, X_{k}\right)$. The vectors are indexed by $y \in\{0,1\}^{k}$. Given such a y, define the polynomial $P_{y}\left(X_{1}, \ldots, X_{k}\right)$ by replacing X_{i} in P with $1-X_{i}$ if $y_{i}=1$, and leaving X_{i} unchanged if $y_{i}=0$. Thus P_{y} is just P with the origin shifted to y. Given vectors, $x, y \in\{0,1\}^{n}$, we use $x \oplus y$ to denote the bitwise Xor of the two vectors. The following properties of P_{y} are easy to verify

Lemma 8. P_{y} is multilinear, with $\operatorname{deg}\left(P_{y}\right)=\operatorname{deg}(P)$. For $x \in\{0,1\}^{k}, P_{y}(x)=P(x \oplus y)$.
Let $\operatorname{deg}(P)=d$. Set

$$
n=\sum_{i \leq d}\binom{k}{i}
$$

We construct matching families of size $f=2^{k}$ in n dimensions as follows:

- The family \mathcal{U} is indexed by vectors $x \in\{0,1\}^{k}$. For each such x, the vector $u[x]$ is obtained by evaluating all multilinear monomials of degree at most d at x, so $u[x]$ has dimension n.
- The family \mathcal{V} is indexed by vectors $y \in\{0,1\}^{k}$. For each such y, P_{y} is a multilinear polynomial of degree d. The vector $v[y]$ is the vector of its coefficients (which also has dimension n).

Theorem 9. The families \mathcal{U} and \mathcal{V} are a matching family of vectors.
Proof. The key observation is that $u[x] \cdot v[y]=P_{y}(x)$, since $v[y]$ gives the cofficients of each monomial, and $u[x]$ gives the evaluations of these monomials at x. By Lemma $8, P_{y}(x)=P(x \oplus y)$. By Definition 6, $P_{y}(y)=P\left(0^{k}\right) \equiv 0 \bmod m$, whereas $P_{y}(x)=P(x \oplus y) \in L \bmod m$ for all $x \neq y \in$ $\{0,1\}^{k}$.

The BBR construction gives $d=O(\sqrt{k})$. Plugging this in yields $n=k^{O(\sqrt{k})}=2^{O(\sqrt{k} \log k)}$.
Summary. A better construction of matching vectors will give LDCs with better parameters. Known constructions of matching vectors rely on the low-degree polynomials representing the OR function modulo composites, discovered by Barrington et al. [BBR94]. These polynomials have now found diverse combinatorial applications; LDCs, set-systems and Ramsey graphs to name a few, yet there is an exponential gap in the known degree bounds for these polynomials [Gop06]. There is also no strong evidence for what the right bound should be. We pose closing this gap as a natural open question.

Acknowledgments. I thank Madhu Sudan for allowing me to include his construction of matching vectors in this writeup. I thank Venkatesan Guruswami, Prasad Raghavendra, Sergey Yekhanin and Klim Efremenko for useful discussions, and Sergey again for encouraging me to write this note.

References

[BBR94] David A. Barrington, Richard Beigel, and Steven Rudich. Representing Boolean functions as polynomials modulo composite numbers. Computational Complexity, 4:367-382, 1994. 1, 3, 4
[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In Proceedings of the $41^{\text {st }}$ Annual ACM Symposium on Theory of Computing (STOC'09), pages 39-44, 2009. 1, 2
[Gop06] Parikshit Gopalan. Computing with Polynomials over Composites. PhD thesis, Georgia Institute of Technology, 2006. 1, 4
[Gro00] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica, 20(1):71-86, 2000. 1
[Rag07] Prasad Raghavendra. A note on Yekhanin's locally decodable codes. Electronic Colloqium on Computational Complexity (ECCC), TR07-016, 2007. 1
[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci., 62(2):236-266, 2001. 1
[Sud09] Madhu Sudan. Personal Communication, 2009. 1
[Yek07] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. Journal of ACM, pages 1-16, 2007. 1

