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Abstract

Bogdanov and Viola (FOCS 2007) constructed a pseudorandom generator that fools
degree k polynomials over F2 for an arbitrary constant k. We show that such generators
can also be used to fool branching programs of width 2 and polynomial length that
read k bits of inputs at a time. This model generalizes polynomials of degree k over
F2 and includes some other interesting classes of functions, for instance k-DNF.

The construction of Bogdanov and Viola consists of summing k independent copies
of a generator that ε-fools linear functions (an ε-biased set). Our second result inves-
tigates the limits of such constructions: We show that, in general, such a construction
is not pseudorandom against bounded fan-in circuits of depth O((log(k log 1/ε))2).
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1 Introduction

Bogdanov and Viola [BV07] suggested the following construction for a pseudorandom gen-
erator against degree k polynomials over a finite field:

G′(s1, . . . , sk) = G(s1) + · · ·+ G(sk), (1)

where G is a pseudorandom generator against linear functions [NN90]. Building on their work
and subsequent work by Lovett [Lov08], Viola [Vio08] recently proved that the generator
is pseudorandom against low-degree polynomials: If G is ε-pseudorandom against linear
functions, then G′ is O((εnk)1/2k

)-pseudorandom against degree k polynomials.

By Viola’s analysis, this pseudorandom generator has seed length that is optimal up to con-
stant factor, as long as the degree of the polynomial is constant. However, the seed length
deteriorates exponentially with the degree, and the result becomes trivial when the degree
exceeds log n. It is natural to ask whether the Bogdanov-Viola construction is also pseudo-
random for polynomials of, say, polylogarithmic degree. If the answer was yes, this would
give a new pseudorandom generator against polynomial size constant depth circuits with
modular gates, since such circuits can be approximated by polynomials of polylogarithmic
degree in a very strong sense [Raz87, Smo87].

If this argument was correct, it would give an example where a pseudorandom generator
that was designed for one class of functions (polynomials) would automatically yield a de-
randomization of a different class (small depth circuits). Conversely, if we believe that the
Bogdanov-Viola generator is not pseudorandom against polynomials of polylogarithmic de-
gree, we could try proving this by giving a constant depth circuit against which the generator
is not pseudorandom.

More generally, we can ask: Given a probability distribution with some property (k-wise
independence, small bias against linear functions, a convolution of several such distribu-
tions), is it pseudorandom against some class of functions (small circuits, space bounded
computations)? This type of question has been considered before. For example, Linial and
Nisan [LN90] showed that DNFs on n variables are fooled by O(

√
n log n)-wise independent

distributions and conjectured that the
√

n factor can be removed. Recently, Bazzi [Baz07]
made a breakthrough by proving the Linial-Nisan conjecture for depth 2 circuits.

We believe that this kind of study could reveal insights about the power and limitations
of existing constructions of pseudorandom generators. In this paper, we begin such an
investigation for the Bogdanov-Viola generator and prove two results, one positive and one
negative:

• The Bogdanov-Viola generator can fool branching programs of width 2 and polyno-
mial length that read k bits of inputs at a time (see below for precise definition of
model). This model generalizes polynomials of degree k over F2 and includes some
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other interesting classes of functions, for instance k-DNF.1

• The Bogdanov-Viola generator does not, in general, fool bounded fan-in circuits of
depth O((log(k log 1/ε))2). Here, ε is the bias of the generator G (see (1)).

1.1 Positive result

We say a distribution D on {0, 1}n is ε-pseudorandom against a class C of functions from
{0, 1}n to {0, 1} if for every f ∈ C,

∣∣Prx∼D[f(x) = 1]− Prx∼{0,1}n [f(x) = 1]
∣∣ ≤ ε

(where x ∼ {0, 1}n means that x is uniformly distributed in {0, 1}n). A function G :
{0, 1}m → {0, 1}n is an ε-pseudorandom generator (PRG) against C if the distribution G(s),
s ∼ {0, 1}m, is ε-pseudorandom against C. We call m the seed length of the generator.

Here we are interested in the class (k, t, n)-2BP of width 2 branching programs of length t
that read k bits of input at a time and compute a function from {0, 1}n to {0, 1}. This
device can be described by a layered directed acyclic graph, where there are t layers and
each layer contains two nodes, which we label by 0 and 1. Each layer j is associated with
an arbitrary k-bit substring x|j of the input x. Each node in layer j has 2k outgoing edges
labelled by possible values of the string x|j. On input x, the computation starts in the first
node in the first layer, then follows the edge labelled by x|1 onto the second layer, and so on
until a node in the last layer is reached. The identity of this last node is the outcome of the
computation.

This type of branching program can represent a degree-k polynomial, a “space-bounded”
computation with one bit of memory, as well as a k-DNF formula. We prove the following:

Theorem 1.1. Let G be an ε-PRG against degree k polynomials in n variables over F2. Then
G is an ε′-PRG against the class of functions computed by a (k, t, n)-2BP, with ε′ = t · ε.

1.2 Negative result

Our second result is the following theorem which shows the limitations of the Bogdanov-Viola
construction.

Theorem 1.2. For every n, ε, and k there exists a distribution D such that D is ε-
pseudorandom against linear functions over {0, 1}n, but the sum of k independent copies
of D is not 1/3-pseudorandom against bounded fan-in circuits (with and, or, and not gates)
of depth O((log(k log 1/ε))2).

1In the special case of k-DNF, Trevisan [Tre04] has a better result: He shows that for every constant k
there is an ε = 1/poly(n) such that ε-biased generators against linear functions fool k-DNF over n variables.
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It is known [MRRW77, FT05] that the seed length of an ε-biased generator against linear
functions must be at least Ω(log n + log(1/ε)). Therefore, if we want the generator to be
efficient, we are restricted to using ε = 1/poly(n). For this setting of parameters, Theorem
1.2 tells us that the Bogdanov-Viola generator does not fool bounded fan-in circuits of depth
O((log(k log n))2).

By Barrington’s theorem [Bar89], any circuit of depth d can be simulated by a branching pro-
gram of width 5 and size 4d, so Dk is not pseudorandom against width 5, size 2O((log(k log 1/ε))2)

branching programs. So the Bogdanov-Viola generator fools branching programs of width
2, but not of width 5. We do not know what happens for width 3 or width 4.2

1.3 Proof overview for Theorem 1.1

It has been known for some time that read-once width 2 branching programs that read
one bit at a time can be fooled by linear generators.3 One way to argue this is to think
of the computation of the branching program B as a boolean function over Fn

2 and show
inductively over the layers of B that the sum of the absolute values of the Fourier coefficients
of B is bounded from above by t. It is easy to see that linear generators of bias ε are
εL-pseudorandom against any boolean function whose sum of absolute values of Fourier
coefficients is at most L, and the correctness follows from there.

For branching programs that read more than one bit at a time this argument cannot work, as
there exist width 2 branching programs that read 2 bits at a time and that are not fooled by
some small bias linear generator. One such branching program computes the inner product
function

IP (x1, . . . , xn) = x1x2 + · · ·+ xn−1xn (mod 2) (n even).

Nevertheless, we argue along the same lines. Instead of using the Fourier transform of the
branching program, we resort to “higher-order” representations of functions using low-degree
polynomials. We show that every branching program B with length t and width 2 that reads
k bits at a time admits a “representation of length t” in terms of degree k polynomials. By
“representation of length t” we mean that B can be written as a sum over the reals of the
form

(−1)B(x) =
∑

p:Fn
2→F2

αp · (−1)p(x)

where p ranges over all degree k polynomials over F2, and αp are real coefficients such that∑
p|αp| ≤ t. Unlike the Fourier transform, for degree 2 and larger this representation is not

2A correlation bound of Viola and Wigderson [VW07] shows that, in general, a distribution that is
pseudorandom against degree d polynomials need not be pseudorandom against the “parity modulo 3”
function, which is computable by a width 3 branching program. However, their counterexample is not a
convolution of independent distributions with small bias against linear functions; i.e., it does not have the
form of the Bogdanov-Viola generator.

3We are not aware of a published proof but have heard the result credited to Saks and Zuckerman.
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unique. Once this representation is obtained, we argue that a pseudorandom generator for
degree k polynomials is also pseudorandom for B by linearity of expectation.

While our proof is not technically difficult we find the application of “higher-order” Fourier
type analysis conceptually interesting and potentially relevant for other computer science
applications.

2 Fooling width 2 branching programs

Recall that we use (k, t, n)-2BP to denote width 2 branching programs of length t that read
k bits of input at a time and compute a function from {0, 1}n to {0, 1}. For a function
f : {0, 1}n → {0, 1}, we denote f̂ = (−1)f , a map from {0, 1}n to {1,−1}. Define deg(f) to
be the degree of f when viewed as a multilinear polynomial in F2[x1, . . . , xn].

2.1 Width 2 Branching Programs as Sum of Polynomials

The following theorem is the basis for the proof of Theorem 1.1. It shows that width 2
branching programs have a “short representation by polynomials of small degree”.

Theorem 2.1. Let f : {0, 1}n → {0, 1} be computed by a (k, t, n)-2BP. Then there exist
α1, . . . , αs ∈ R and g1, . . . , gs : {0, 1}n → {0, 1} such that

1. f̂(x) =
∑s

i=1 αi · ĝi(x) for all x ∈ {0, 1}n (where the sum is over the reals).

2. For all i ∈ [s], deg(gi) ≤ k.

3.
∑s

i=1 |αi| ≤ t.

We defer the proof of Theorem 2.1 to Section 2.2 and proceed by showing how it implies our
main result.

Proof of Theorem 1.1

Let G : {0, 1}m → {0, 1}n be an ε-pseudorandom generator against degree k polynomials in n
variables over F2. Let f : {0, 1}n → {0, 1} be computed by a (k, t, n)-2BP. By Theorem 2.1,
there exist α1, . . . , αs ∈ R and g1, . . . , gs : {0, 1}n → {0, 1} such that

1. f̂(x) =
∑s

i=1 αi · ĝi(x) for all x ∈ {0, 1}n.

2. For all i ∈ [s], deg(gi) ≤ k.
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3.
∑s

i=1 |αi| ≤ t.

For the rest of the proof x ∼ {0, 1}n and s ∼ {0, 1}m denote two independent random
variables. First, note that for every function f : {0, 1}n → {0, 1},

2 ·
∣∣ Pr[f(G(s)) = 1]− Pr[f(x) = 1]

∣∣ =
∣∣E[f̂(G(s))− f̂(x)]

∣∣.

Thus, using the properties above, and using the linearity of expectation,

2 ·
∣∣Pr[f(G(s)) = 1]− Pr[f(x) = 1]

∣∣ =
∣∣E[

f̂(G(s))− f̂(x)
]∣∣

=
∣∣∣
∑s

i=1
αi · E

[
ĝi(G(s))− ĝi(x)

]∣∣∣
≤

∑s

i=1
|αi| ·

∣∣E[
ĝi(G(s))− ĝi(x)

]∣∣

=
∑s

i=1
|αi| · 2 ·

∣∣ Pr[gi(G(s)) = 1]− Pr[gi(x) = 1]
∣∣

≤ 2 · t · ε,

where the last inequality holds since G is an ε-pesudorandom generator against degree k
polynomials. The theorem now follows.

2.2 Proof of Theorem 2.1

Let f be a boolean function computed by a branching program B of width 2 and length t
that reads k bits of input at a time. We will prove the theorem by induction on t.

Induction base: For the case t = 1, the theorem holds since f(x) is a boolean function in
k variables and so deg(f) ≤ k.

Induction step: Assume that the theorem holds for every function computed by a (k, t−
1, n)-2BP. By the definition of such branching programs, there exists P : {0, 1}k+1 → {0, 1}
such that

f(x) = P (ft−1(x) , x|t−1) ,

where ft−1 is the function computed at the (t − 1)’th layer of B, and x|t−1 is the k-bit
substring of the input x associated with the (t− 1)’th layer.

Let p0 and p1 be two maps from {0, 1}k to {0, 1} defined as

p0(y) = P (0, y) and p1(y) = P (1, y).

Note that since both of p0 and p1 depend on at most k variables, then deg(p0) ≤ k and
deg(p1) ≤ k. In addition, for every z ∈ {0, 1} and y ∈ {0, 1}k,

P̂ (z, y) =
1

2
(p̂0(y)− p̂1(y)) · (−1)z +

1

2
(p̂0(y) + p̂1(y)).
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We can now use the induction hypothesis. By the choice of P , for every x ∈ {0, 1}n,

f̂(x) = P̂ (ft−1(x), x|t−1) =
1

2
(p̂0(x|t−1)− p̂1(x|t−1)) · ˆft−1(x) +

1

2
(p̂0(x|t−1) + p̂1(x|t−1)).

By induction, there exist α1, . . . , αs ∈ R and g1, . . . , gs : {0, 1}n → {0, 1} such that

1. ˆft−1(x) =
∑s

i=1 αi · ĝi(x) for all x ∈ {0, 1}n.

2. For all i ∈ [s], deg(gi) ≤ k.

3.
∑s

i=1 |αi| ≤ t− 1.

Thus, for all x ∈ {0, 1}n

f̂(x) =
1

2
(p̂0(x|t−1)− p̂1(x|t−1)) ·

∑s

i=1
αi · ĝi(x) +

1

2
(p̂0(x|t−1) + p̂1(x|t−1)).

We complete the proof by renaming the polynomials and the coefficients in the above sum.
For j = 1, . . . , s, set

βj =
αj

2
and hj(x) = p0(x|t−1)⊕ gj(x)

and for j = s + 1, . . . , 2s, set

βj = −αj−s

2
and hj(x) = p1(x|t−1)⊕ gj(x)

(where ⊕ denotes summation in F2). Set β2s+1 = β2s+2 = 1/2, set h2s+1(x) = p0(x|t−1), and
set h2s+2(x) = p1(x|t−1). Finally, set s′ = 2s + 2. Thus,

f̂(x) =
∑s′

j=1
βj · ĥj(x)

for all x ∈ {0, 1}n. In addition, every hj is of degree at most k (since addition in F2 does
not increase the degree), and

∑s′

j=1
|βj| ≤ 1 + 2 ·

∑s

i=1

|αi|
2
≤ 1 + (t− 1) = t.

3 Limitations of the Bogdanov-Viola construction

In this section we show that a sum of several copies of pseudorandom generators for linear
functions fails to fool small depth bounded fan-in circuits (Theorem 1.2).
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3.1 Proof of Theorem 1.2

Set m = k log(1/ε) + 1 and partition the input x ∈ Fn
2 into n/m consecutive blocks

x|1, . . . , x|n/m ∈ Fm
2 . Consider the following distribution D.

1. Choose a random linear subspace S of Fm
2 of dimension (m− 1)/k.

2. For 1 ≤ i ≤ n, choose each block x|i independently and uniformly from S.

To prove Theorem 1.2, we show the following two claims.

Claim 3.1. The distribution D is ε-pseudorandom against linear functions.

Claim 3.2. The sum Dk of k independent samples from D is not 1/3-pseudorandom against
bounded fanin circuits of depth O((log m)2).

The theorem follows from these two claims.

Proof of Claim 3.1. Let a(x) = 〈a, x〉 be an arbitrary nonzero linear function over Fn
2 . We

split a as a sum of linear functions ai over the blocks of x as

a(x) =
∑n/m

i=1
ai(x|i).

Without loss of generality, let’s assume a1 is nonzero. Conditioned on the choice of S, the
values of the functions ai(x|i) are independent:

Ex∼D[(−1)a(x)] = ES

[∏m/n

i=1
Ex|i∼S[(−1)ai(x|i)]

]
.

Now for any fixed choice of S, the value Ex|i∼S[(−1)ai(x|i)] is one if ai ∈ S⊥ and zero otherwise.
Here

S⊥ = {y : 〈y, x〉 = 0 for all x ∈ S}.
Therefore

|Ex∼D[(−1)a(x)]| = Pr[for all i, ai ∈ S⊥] ≤ Pr[a1 ∈ S⊥] = 2−(m−1)/k = ε

and so |Ex∼D[a(x)]− 1/2| ≤ ε/2 < ε.

Proof of Claim 3.2. Let X1, . . . , Xk be independent samples from the distribution D and
X = X1 + · · · + Xk. Let Si denote the subspace of Fm

2 associated to the sample Xi. Since
each block of Xi belongs to the subspace Si, each block of X will belong to the sum of
subspaces S = S1 + · · ·+ Sk. The subspace S has dimension at most m− 1.

This suggests the following test for X: Arrange the first 2m blocks of X as rows in an m×2m
matrix M and compute the rank of M over F2. (By our choice of parameters, 2m2 ≤ n so
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this is always possible.) If the matrix has full rank output one, otherwise output zero. If X
is chosen from Dk, then all the rows of M are chosen from the same subspace of dimension
m− 1 so M will never have full rank. If X is chosen from the uniform distribution, then M
is a random m× 2m matrix and, by a union bound, the probability it doesn’t have full rank
is at most 2−m < 1/3.

It remains to observe that the above test, which is essentially a rank computation, can be
implemented by a circuit of depth O((log m)2) via Cook’s theorem [Coo85].
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