A note on the Raz-McKenzie method and the pattern matrix method

Alexander A. Sherstov

Abstract

This short note relates and contrasts two methods in communication complexity, a method due to Raz and McKenzie [RM] and the pattern matrix method [S1, S2].

A method due to Raz and McKenzie [RM] and the pattern matrix method [S1, S2] are two techniques for proving communication lower bounds. What relates them is the kind of communication problem they apply to:

- In [RM], one fixes a DNF formula Φ that is identically true; Alice receives an n-element subset $S \subset\{1,2, \ldots, N\}$; Bob receives a string $x \in\{0,1\}^{N}$; and the goal of the communication problem is to output a term of Φ satisfied by $\left.x\right|_{S}$.
- In [S1, S2], one fixes a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$; Alice receives an n-element subset $S \subset\{1,2, \ldots, N\}$; Bob receives a string $x \in\{0,1\}^{N}$; and the goal of the communication problem is to compute $f\left(\left.x\right|_{S}\right)$.
(The two definitions above leave out inessential detail.) The two works differ fundamentally as to the techniques used and results achieved. In particular:
- The Raz-McKenzie method is not known to generalize beyond the two-party deterministic model, whereas the pattern matrix method applies to randomized [S2], quantum [S2], weakly unbounded [S1, S2], and multiparty [C, LS, CA, DP, DPV, BH] communication complexity. On the other hand, neither method implies the other because the communication games are different; in particular, the Raz-McKenzie method optimally tackles problems in two-party deterministic complexity to which the pattern matrix method does not even apply.
- The techniques of the two works are unrelated: the method of [RM] is combinatorial, whereas the pattern matrix method $[\mathrm{S} 1, \mathrm{~S} 2]$ is analytic (based on linear programming duality).
- Accordingly, the communication lower bounds in [RM] are in terms of a combinatorial complexity measure (deterministic query complexity of Φ as a search problem), and those in [S1, S2] are in terms of analytic complexity measures (uniform approximation and sign-representation of f as a real function by polynomials).

The communication problems in [RM] and [S1, S2]-both based on the idea of creating a hard problem by applying the same function f to various subsets of the variables-have well-known earlier analogues in other computational models, including the Nisan-Wigderson generator [NW] and circuit lower bounds due to Krause and Pudlák [KP].

Acknowledgments

The author is thankful to Ran Raz for his time and feedback in the preparation of this note, as well as to the authors of [BHP] for a fruitful discussion shortly after the publication of [BHP] on ECCC and for pointing out [RM] in the first place.

References

[BH] P. Beame and D.-T. Huynh-Ngoc. Multiparty communication complexity and threshold circuit complexity of AC^{0}. In Proc. of the 50th Symposium on Foundations of Computer Science (FOCS), 2009. To appear.
[BHP] P. Beame, T. Huynh, and T. Pitassi. Hardness amplification in proof complexity. In Electronic Colloquium on Computational Complexity (ECCC), 2009. Report TR09-072.
[C] A. Chattopadhyay. Discrepancy and the power of bottom fan-in in depth-three circuits. In Proc. of the 48th Symposium on Foundations of Computer Science (FOCS), pages 449-458, 2007.
[CA] A. Chattopadhyay and A. Ada. Multiparty communication complexity of disjointness. In Electronic Colloquium on Computational Complexity (ECCC), January 2008. Report TR08002.
[DP] M. David and T. Pitassi. Separating NOF communication complexity classes RP and NP. In Electronic Colloquium on Computational Complexity (ECCC), February 2008. Report TR08014.
[DPV] M. David, T. Pitassi, and E. Viola. Improved separations between nondeterministic and randomized multiparty communication. In Proc. of the 12th Intl. Workshop on Randomization and Computation (RANDOM), pages 371-384, 2008.
[KP] M. Krause and P. Pudlák. On the computational power of depth-2 circuits with threshold and modulo gates. Theor. Comput. Sci., 174(1-2):137-156, 1997.
[LS] T. Lee and A. Shraibman. Disjointness is hard in the multi-party number-on-the-forehead model. In Proc. of the 23rd Conf. on Computational Complexity (CCC), pages 81-91, 2008.
[NW] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-167, 1994.
[RM] R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. Combinatorica, 19(3):403-435, 1999.
[S1] A. A. Sherstov. Separating AC ${ }^{0}$ from depth-2 majority circuits. SIAM J. Comput., 38(6):21132129, 2009. Preliminary version in 39th STOC, 2007.
[S2] A. A. Sherstov. The pattern matrix method for lower bounds on quantum communication. In Proc. of the 40th Symposium on Theory of Computing (STOC), pages 85-94, 2008.

