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Abstract

We present a generic method for converting any family of unsatisfiable CNF formulas that
require large resolution rank into CNF formulas whose refutation requires large rank for proof
systems that manipulate polynomials or polynomial threshold functions of degree at most k.
(The latter are known as Th(k) proofs.) As special cases, such systems include: Lovász-Schrijver
systems (LS, LS+), high degree analogues of Lovász-Schrijver (LS(k), LS+(k)), Cutting Planes
and high degree versions of Cutting Planes (CP(k)), as well as Sherali-Adams and Lasserre
proofs.

We introduce two very general families of proof systems, denoted by T cc(k) and Rcc(k).
The proof lines of T cc(k) are arbitrary Boolean functions, each of which can be evaluated by
an efficient k-party randomized communication protocol. T cc(k) proofs are very powerful and
include Th(k − 1) proofs as a special case. Rcc(k) proofs generalize T cc(k) proofs and require
only that each inference be checkable (in a certain weak sense) by an efficient k-party randomized
communication protocol.

Our main results are the following:

• For all k ∈ O(log log n), we prove that from any unsatisfiable CNF formula F requiring
resolution rank r, we can obtain a related CNF formula G = Liftk(F ) requiring refutation
rank rΩ(1/k)/ logO(1) n in all Rcc(k) systems. Since resolution rank is at least resolution
width (for which many strong lower bounds are known), this yields strong rank lower
bounds in all of the above proof systems for large classes of natural CNF formulas.

• We prove that there are strict hierarchies for T cc(k) and Rcc(k) systems with respect
to k. Specifically, for any k that is O(log log n), we produce unsatisfiable CNF formulas
whose proofs require large rank in Rcc(k) but which can be refuted via polylogarithmic
rank CP(k) proofs, where CP(k) consists of the natural degree k extension of the Cutting
Planes proof system. Rank separations between CP(k− 1) and CP(k), between Th(k− 1)
and Th(k), and between Rcc(k) and T cc(k + 1) follow immediately.

• When k is O(log log n) we also derive 2nΩ(1/k)
lower bounds on the size of tree-like T cc(k)

refutations for large classes of lifted CNF formulas. Moreover, the rank hierarchies we
prove extend to nearly exponential separations in tree-like proof size.
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1 Introduction

Over the last decade or so there have been a large number of results proving lower bounds on the
rank required to refute (or approximately optimize over) systems of constraints in a wide variety of
semi-algebraic (a.k.a. polynomial threshold) proof systems. These include systems such as Lovász-
Schrijver [31], Cutting Planes [18, 12], Positivstellensatz [21], Sherali-Adams [43], and Lasserre [29]
proofs.

Highlights of this work include recent linear rank lower bounds for Lasserre proofs [39, 45]
for many constraint optimization problems as well as rank lower bounds for semi-algebraic proof
systems of varying degrees for other important optimization problems [10, 37, 25, 17, 41, 40, 16].
In addition to these rank lower bounds a few other papers also have produced superpolynomial
lower bounds on the size of tree-like proofs (in which the pattern of inferences forms a tree) in
specific semi-algebraic proof systems either directly [20, 19, 26] or as a consequence of the rank
lower bounds [42].

Exciting and important as these results are, their proofs rely on delicate constructions of
problem-specific local distributions on inputs that satisfy constraints based on the specific rules
for each proof system. Furthermore, because there is not much in the way of effective reductions
for such proof systems, lower bounds for one problem usually do not translate to other problems.

A very different approach for proving lower bounds for semi-algebraic proofs was developed
in [2], whereby the problems of lower-bounding the rank or tree-like proof size are reduced to a
lower bound problem in communication complexity. This allows the results to be applicable to a
much wider class of proof systems, called Th(k) proofs, which generalizes the semi-algebraic proof
systems discussed above. In these systems, a proof consists of a sequence of lines, each of which is a
multivariate polynomial inequality of degree at most k; the only requirement is that each line either
expresses an input constraint or is a semantic consequence of a constant number (say two or three)
of its predecessors. [2] showed that if an unsatisfiable CNF formula G has a small-rank (or small
tree-like size) Th(k−1) refutation then, over every partition of the variables of G for k parties, there
is an efficient k-party randomized NOF communication protocol that outputs a falsified clause in
G. Thus to lower bound the rank of Th(k−1) proofs it suffices find an unsatisfiable family of CNF
formulas with the property that the k-player NOF communication complexity of this underlying
search problem (outputting a falsified clause) is hard.

However, though this communication complexity approach was de-coupled from the specifics of
the proof system, like the other lower bounds on semi-algebraic proofs, the reduction given in [2] was
very problem-specific and delicate. One source of the difficulty was that the clause search problem
needs to be hard for randomized protocols to solve but is always easy nondeterministically, as the
players can easily guess and verify a violated clause. Much of the delicacy of the argument was in
carefully embedding a specific candidate function (set disjointness), which appeared to have these
characteristics, into the search problem of an unsatisfiable CNF.

Indeed, using a long and involved argument, [2] showed the feasibility of this communication
complexity approach by constructing a particular family of CNF formulas, (k − 1)-fold Tseitin
tautologies over Θ(log n)-degree LPS expander graphs, such that lower bounds on the k-party ran-
domized NOF communication complexity of the k-party set disjointness function yield rank and
tree-like size lower bounds for Th(k − 1) refutations. The recent lower bounds of Lee and Shraib-
man [30] and Chattopadhyay and Ada [11] for the k-party randomized communication complexity
of set disjointness thus yield unconditional rank bounds for Th(k) proofs. Unfortunately, though
the set disjointness bounds apply for k up to (1− o(1)) log log n, the details of the reduction in [2],
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which was claimed for each constant k, only apply for k = O(log log log n). Moreover, the method
only applies to this one particular family of unsatisfiable formulas, and no other lower bounds for
Th(k) proofs have been known by any other method.

In this paper for the first time we provide a simple and general method that produces unsat-
isfiable formulas requiring proofs of large rank and tree-like size in semi-algebraic proof systems.
This applies to a broad range of systems including all of Th(k) for k up to (1− o(1)) log log n. Our
method allows one to take any unsatisfiable formula requiring large rank in a very simple proof
system, resolution, and derive new formulas that require large rank and tree-like proof size in these
very powerful semi-algebraic systems. In particular, this construction applies to all formulas of
large resolution width [5] since resolution width is a lower bound on resolution rank. A simplified
statement of our main result is the following.

Theorem 1.1. Let F be any family of 3-CNF formulas in m variables with resolution rank r. Then
for any ε > 0 and integer k ≥ 1 there is a family of CNF formulas, G = Liftk(F ) of size n = mO(k)

such that if k ≤ (1− ε) log log n then G requires Th(k + 1) refutations of rank rΩ(1)/ logO(1) n and
tree-size exp(rΩ(1)). In particular, if r is mΩ(1) then G requires Th(k+1) rank nΩ(1/k), and tree-size
exp(nΩ(1/k)).

Our lower bounds are much more general than this statement. In particular, our proof shows
that the lifted formula requires large rank in any proof system in which the truth of each line in a
proof can be verified by an efficient k-party randomized communication protocol; the above theorem
follows by the reduction in [2]. Our lower bounds also apply to proof systems in which individual
proof lines may not be efficiently verifiable but in which any falsifying assignment at an inferred
line can be traced to one of its antecedents using an efficient k-party randomized communication
protocol.

Our method is an example of a kind of hardness amplification that we term a “hardness esca-
lation” method, whereby one takes an object, in this case an unsatisfiable 3-CNF formula, that is
hard for a weak complexity measure and produces another object, the lifted formula in this case,
that is hard for a much stronger complexity measure. This is related to but different from typical
hardness amplification methods where one is concerned with producing new problems for which
similar classes of algorithms have much lower probability of success.

Our proof uses intuition and ideas from the pattern matrix method developed by Sherstov [44]
and from a related method developed earlier by Raz and McKenzie [38]. Both of these are hardness
escalation methods for communication complexity. Each method begins with a computational
problem that is hard for a weak complexity measure, either a relation R of large decision tree
complexity ([38]), or a function f of large approximate polynomial degree ([44]), and extends the
problem using a “pattern matrix” to produce a problem of large deterministic ([38]), or large
randomized and quantum ([44]), two-party communication complexity.

Our work uses the k-party generalizations of the pattern matrix method developed in [30, 11,
13, 3]. Starting with f(. . . , ei, . . .) on m variables, and a parameter k, these generalizations lift f to
obtain another function g = Liftk(f) = f(. . . , ψ(· · · ), . . .) on mk bit-strings. The transformation
takes each original variable ei and replaces it by a Boolean selector function on k bit-strings. As long
as f is hard in the weak measure, g is hard in the k-player number-on-forehead (NOF) randomized
communication complexity model (for a particular partition of the new variables).

A key obstacle when trying to apply the pattern matrix method to the proof complexity setting
is that the approach only works with Boolean functions, and not with unsatisfiable CNF formulas.
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To overcome this obstacle, we associate a family of Boolean functions ZF with every unsatisfiable F
and show that if the hardness assumption on F is satisfied then there is some function f ∈ Z that
has large decision tree complexity. Furthermore, if there is an efficient communication protocol that
outputs falsified clauses in Lift(F ), then there is an efficient communication protocol for Lift(f) for
any f ∈ Z. In this way we are able to combine the hardness escalation ideas of [38, 44] to obtain
our results.

We can also prove a converse to our result, thus completely characterizing the Th(k) rank of
our lifted formulas. That is, in addition to deriving lower bounds on the rank of proofs for Liftk(F )
in terms of the resolution rank r of F , we also show that the rank of T cc(2) proofs (and even
resolution) proofs of Liftk(F ) is not much larger than r.

Using the above lower bounds, we are able to prove new rank separation theorems for hierarchies
of polynomial threshold proof systems. By considering Liftk(F ) for certain unsatisfiable CNF
formulas F that require large rank resolution refutations but need only small rank Cutting Planes
refutations, we obtain strong rank separations between the power of T cc(k+1) and Rcc(k), between
Th(k) and Th(k − 1), and between CP(k) and CP(k − 1) refutations where CP(k) is the natural
generalization of Cutting Planes to degree k.

Related Work on Hardness Escalation As mentioned above, the usual form of hardness
amplification in circuit complexity is a method of amplifying the probability of error. That is,
the complexity class C is fixed (or nearly fixed), and the goal is to go from a function that is
weakly hard (e.g., any circuit in C that approximates f has non-negligible probability of error) to a
function that is much harder (e.g., any circuit in a slightly smaller class than C that approximates
f has error exponentially close to 1/2).

A different type of hardness amplification that seems to be more relevant to proof complexity is
what we call hardness escalation. Here, we start with a function f that is hard for some complexity
class (where hard can be either worst case or average case), and we construct a g that is hard
for a larger complexity class. Hardness escalation results have been obtained in models such as
in communication complexity [44], sub-exponential time complexity [22], and circuit depth ([24,
15, 38]). A similar concept called hardness condensing was introduced in [9] and some interesting
results were proven for complexity classes beyond NP (with advice).

Hardness escalation for proof complexity means starting with an unsatisfiable family of formulas
that is hard for some class of proof systems, and constructing a related family that is hard for a
stronger class of proof systems. There have been a few papers in the proof complexity literature
that have implicitly used this idea. It has been observed that if some formula F requires large
resolution width, then the xorification of F , obtained by replacing each variable by an xor of
several variables (and then rewriting as a CNF), is hard with respect to resolution size. This idea
has been used in many papers to obtain separations between various refinements of resolution,
with respect to both size and space (e.g., [46, 8, 4]). More generally, [32, 34] showed how to replace
variables in a somewhat hard unsatisfiable formula by hard functions in order to prove hardness
escalation theorems for tree-like proof systems, with the caveat that the allowable cuts in the proof
are restricted to belong to a weaker class than the hard functions. In particular, this approach fails
to give lower bounds for CNF formulas. However, for certain special families of formulas, one can
do better. Schoenebeck [39] has shown how to obtain rank lower bounds for Lasserre proofs based
on resolution rank lower bounds for particular families of formulas,
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Outline of the Paper Section 2 contains definitions and preliminary results that we will need.
In Section 3, we prove our main result, showing how to start with an unsatisfiable CNF formula
requiring large Resolution rank, and lift it to obtain another formula that is hard with respect
to stronger proof systems. We present two methods of lifting f , one based on the tensor selector
function and the second one based on the parity selector function. In Section 4 we apply our main
theorems in order to prove hierarchy theorems for several proof systems. We conclude in Section 5
with a discussion and open problems.

2 Preliminaries

2.1 Functions, Search Problems and Decision Trees

For a CNF formula F , let clauses(F ) denote the set of clauses of F and let |F | denote |clauses(F )|.
F is a t-CNF formula iff every clause contains at most t literals.

Functional Composition For any function f on m bits and any function h on s bits, we
abuse notation slightly and use f ◦ h to denote the following function on ms bits: f ◦ h :=
f(h(· · · ), · · · , h(· · · )).

Decision Problems and Search Problems A Boolean decision problem over n variables is a
function from {0, 1}n to {0, 1}. Let F be an unsatisfiable CNF formula over variables x1, . . . , xn
consisting of m clauses. The canonical Boolean relation associated with F is the predicate RF (x, y),
where x is a vector of length n, and y is a number, 1 ≤ y ≤ m. RF (α, β) is true if and only if
α is a Boolean assignment and the clause Cβ in F is falsified by α. Associated with a Boolean
relation R(x, y) is a search problem: given x, output a y such that R(x, y) is satisfied. Given a
Boolean relation R(x, y), we call a function g a subfunction of R if R(x, g(x)) is satisfied for every
x. In other words, g is a particular function that solves the search problem associated with R. For
example, for the canonical Boolean relation RF associated with an unsatisfiable CNF formula F ,
the search problem, Fsearch is the problem of finding a violated clause given a Boolean assignment
to the underlying variables of F . A function g is a subfunction of RF if for any truth assignment
α, g(α) returns a clause of F that is falsified by α.

Definition A decision tree on Boolean variables x1, . . . , xn is a binary tree in which every non-leaf
node is labeled with some xi and has two outgoing edges that are labeled with 0 and 1, and every
leaf node is labeled by some value b ∈ {0, 1}. Thus any path from the root to a leaf identifies a
partial assignment to these variables. A decision tree T is said to compute a function f if for every
leaf v in T , its associated partial assignment determines an output for f and is equal to the label
of v. That is, if σ is a partial assignment associated with a path of T labelled by v, then for every
total assignment σ′ extending σ, f(σ′) = v. For a relation R, a decision tree T solves the search
problem associated with R if it computes some subfunction of R. The height of a decision tree is
the maximum length of any path from the root to a leaf. The decision tree complexity of f , denoted
D(f), is the minimum height of all such trees computing f .
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2.2 Hard functions from hard unsatisfiable CNF formulas

Given an unsatisfiable CNF formula F , we will say that F is somewhat hard if the decision tree
complexity of Fsearch, D(Fsearch), is large (superpolylogarithmic in the size of F .) It is well known
that the decision tree complexity of Fsearch is equivalent to the height of any tree-like resolution
refutation of F , or equivalently to the depth of recursion of any DPLL search procedure for F [14].

Now given an unsatisfiable CNF formula F that is somewhat hard, we want to identify a set
Z of Boolean functions associated with F that witnesses the hardness of F . Specifically, we want
Z to have the property that if D(Fsearch) is large then Z contains a function with large decision
tree complexity. This alone would be easy. However, we also want Z to be constructable from
algorithms computing Fsearch.

A natural choice for the collection of functions from Fsearch would be to define fS(α) = 1 for
some S ⊆ clauses(F ) if and only if there is some clause in S that is falsified by α. One might hope
to argue that one such fS would have decision tree complexity close to that of Fsearch. The obvious
way to try to show this would be to reason by reduction; however, it is not clear how to construct
a decision tree for Fsearch from decision trees for such a collection of fS since both fS(α) and fS(α)
may equal 1. Some sort of symmetry-breaking scheme is required and this scheme must satisfy the
property that for S ⊂ T we have fT (α) = 1 whenever fS(α) = 1.

Definition A set Z of Boolean functions over the set of variables of an unsatisfiable CNF formula
F is said to be a consistent system of functions for F iff Z = {fS | S ⊆ clauses(F )} and for any
input assignment α there exists a clause C in F falsified by α such that for any fS ∈ Z we have
that fS(α) = 1 if and only if C ∈ S.

Proposition 2.1. Given an unsatisfiable CNF formula F , any function f∗ that is a subfunction
of RF (that is, it solves the search problem Fsearch) yields a consistent system Zf∗ of functions for
F .

Proof. Use the clause C = f∗(α) and define fS(α) = 1 iff C ∈ S.

The following proposition says that any consistent system of functions for F witnesses the
hardness of F .

Proposition 2.2. For any unsatisfiable CNF formula F and any consistent system Z of functions
for F , there exists a function fS ∈ Z such that D(Fsearch) ≤ D(fS)dlog2 |F |e.

Proof. Build a decision tree for Fsearch using binary search by querying the fS for subsets S ⊆
clauses(F ) to narrow down the search. The requirement of consistency ensures that the path
followed by binary search on input α yields the falsified clause C. To derive the tree for Fsearch

replace each query of fS by the optimal decision tree for fS , yielding the claimed bound.

2.3 Communication Complexity

Given a function (or relation) f , some number k ≥ 2 of players, and a partition of the input of f
for these players, communication complexity is concerned with the least amount of communication
necessary between the players in order for them to compute an output of f . In the number-on-the-
forehead (NOF) communication model, each player sees all inputs except the block of the partition
that is assigned to him. For formal definitions, the reader is referred to [28]. In this paper, we will
be only concerned with NOF randomized communication complexity.
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Definition Let |P| denote the number of bits communicated in a communication protocol P and
P(x) the output of the protocol on input x. A randomized protocol P is said to compute a function
f with error at most ε if on any input x, with probability at least 1− ε (over the choices of players’
random coins c), P(x, c) = f(x).

If f is a search problem, the standard definition (e.g. [28]) of randomized communication com-
plexity states that P computes f with error at most ε if and only if for at least 1 − ε fraction of
choices of random coins c, on any input x, P(x, c) ∈ f(x). Even for the 1 − ε good choices of c,
the values P(x, c) for different choices of c may be different elements of f(x). However, for our
construction of hard functions from hard unsatisfiable CNF formulas, we will require a stronger
notion.

Definition A randomized protocol P is said to consistently compute a relation f with error at
most ε if there is a function f∗ contained in f – that is, f∗(x) ∈ f(x) for every x, such that P
computes f∗ with error at most ε.

2.4 Proof Systems and the Complexity of Clause Search

A proof system for a language L is a polynomial time algorithm V such that for all F , F ∈ L if
and only if there exists a string P , referred to as a proof, such that V accepts (F, P ). If L is the
set of all unsatisfiable CNFs, or all unsatisfiable sets of inequalities, and F ∈ L, then P is called a
refutation of F .

A wide variety of proof systems exist in the literature. In most of these proof systems, a proof
or refutation can be expressed as a sequence of lines, each of which is either (a translation of) an
input clause or follows from some previous lines via some inference rule. (Inference rules that do not
depend on previous lines are called axioms.) We call such proofs standard proofs. In the case that L
is the set of unsatisfiable CNFs or propositional tautologies, in a standard proof each line represents
a Boolean function on the variables of the formula, and any inference of a line representing function
g from lines representing functions f1, . . . , fs must be sound, in that for any Boolean assignment to
their input variables g must evaluate to true whenever all of f1, . . . , fs do. We call the maximum
s over all derivations in a proof its fan-in. A refutation of an unsatisfiable formula f in a standard
proof system is a sequence of formulas, where the initial formula f is included as an axiom (or set
of axioms), and the final formula in the sequence is the trivially false formula.

Definition We associate a DAG G = (V,E) with every standard proof P , where V is the set of
lines in P and (u, v) ∈ E if line v is derived via some inference rule using line u. The size of P is
the number of bits in P , which is lower-bounded by the number of lines in P . The rank of P is
the length of the longest path in G. We consider G to be a tree if every internal node has fanout
one. (The axioms, which are not internal nodes, can be repeated.) If G is a tree, we say that
P is tree-like. The size complexity and rank complexity of F in a standard proof system are the
minimum size and minimum rank, respectively, of all proofs for F in that system. Similarly, we
define tree-like size complexity as the minimum over all proofs are restricted to be tree-like.

Note that restricting a proof to be tree-like does not increase the rank of a proof because the
same line can be re-derived multiple times without affecting the rank. Tree-like size, however, can
be much larger than general size.
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We first mention some of the most well-studied proof systems. In each of these systems, there is a
set of derivation rules (which can be thought of as inference schemas) of the form F1, F2, . . . , Ft ` G
and each derivation step in a proof must be an instantiation of one of these rules.

A basic system is resolution, which manipulates clauses. Its only rule is the resolution rule: the
clause (A ∨B) is derived from (A ∨ x) and (B ∨ ¬x), where A and B are arbitrary disjunctions of
literals and x is a variable. A resolution refutation of an unsatisfiable CNF formula f is a sequence
of clauses, ending with the empty clause, such that each clause in the sequence is either a clause of
f , or follows from two previously derived clauses via the resolution rule. The well-known connection
showing that DPLL executions and tree-like resolution proofs are equivalent gives us the following
proposition.

Proposition 2.3. For any CNF formula F , the minimum rank of any resolution proof of F is
equal to D(Fsearch).

Another proof system is the Cutting Planes (CP) proof system which manipulates integer linear
inequalities. The two rules in the CP system are:

p1 ≥ 0, . . . , pt ≥ 0 `
t∑
i=1

λipi ≥ 0, (1)

and ∑
i

caixi ≥ b `
∑
i

aixi ≥ db/ce, (2)

where each pi is a linear form, ai, b, c, and λi ≥ 0 are integers, and xi is a variable. In CP, we also
have axioms 0 ≤ xi and xi ≤ 1, and each input clause (`1∨ · · · ∨ `t) is translated as `′1 + · · ·+ `′t ≥ 1
where `′ = x if ` = x and `′ = (1 − x) if ` = ¬x. The trivial unsatisfiable formula is 0 ≥ 1. A
CP refutation is a sequence of inequalities, ending with 0 ≥ 1, such that all other inequalities are
either, axioms, translated input clauses, or follow from two previously derived inequalities via a CP
rule.

We will consider a natural extension of CP, denoted CP(k), in which the above CP proof rules
may also be applied when the pi are allowed to be degree k multivariate polynomials and the xi
are replaced by degree k monomials. Since the input clauses are linear there are two other rules
that allows the creation of higher degree inequalities, namely:

p ≥ 0 ` xip ≥ 0

and
p ≥ 0 ` p ≥ xip

for all polynomials p of degree at most k − 1 and variables xi.
Other important well-studied proof systems are the Lovász-Schrijver proof systems (LS0, LS,

LS+, and LS+,?) which manipulate polynomial inequalities of degree at most 2. These proofs use
various subsets of the inference rules

`11 ≥ 0,`12 ≥ 0, . . . `t1 ≥ 0, `t2 ≥ 0

`
n∑
i=1

ai(x2
i − xi) +

t∑
j=1

λj`j1`j2 +
s∑

j=t+1

λj`
2
j ≥ 0
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where `j , `jb are linear forms and xi are variables, and ai and λj ≥ 0 are integers. the axioms and
translations of clauses are the same as for CP. Thus, all Lovász-Schrijver proof lines are degree 2
polynomial inequalities. On can generalize these proof rules to LSk+,? proofs in which one is allowed
to multiply arbitrary inequalities, use x2

i = xi and add the squares of higher degree terms, provided
that each quantity in the inference is syntactically a polynomial of degree at most k.

Each of the above proof systems has a specific set of inference rule schemas, which allows them
to have polynomial-time verifiers. We also consider more powerful semantic proof systems which
restrict the form of the lines and the fan-in of the inferences but dispense with the requirement of a
polynomial-time verifier and allow any semantically sound inference rule with a given fan-in. (Each
line is a clause or follows via some semantic inference rule.) The fan-in must be restricted because
the semantic rules are so strong. The following strong semantic proof system was introduced in [2].

Definition For integer k ≥ 1, we denote by Th(k) the semantic proof system whose proofs have
fan-in 2, each line is a polynomial inequality of degree at most k, and input clauses and axioms are
represented as linear inequalities as in the definition of CP above.

Without loss of generality via Caratheodory’s Theorem, for formulas in n variables, in the case
of CP the fan-in of inferences is at most n and in the cases of LS0, LS, and LS+, the fan-in of
inferences is at most (n+ 1)2. From this we immediately obtain the following:

Proposition 2.4. 1. Any CP proof of size (tree-like size) S and rank r can be converted to a
Th(1) proof of size (tree-like size) O(S) and rank O(r log n),

2. Any LS0, LS, or LS+ proof of size (tree-like size) S and rank r can be converted to a Th(2)
proof of size (tree-like size) O(S) and rank O(r log n),

Moreover, it is not hard to show that one can extend the above simulations by Th(k) proofs to
CP(k) and LSk+,?.

The Sherali-Adams and Lasserre proof systems introduce new variables for subsets of input
variables of bounded size (which is called the rank of such proofs). Monomials of degree k represent
the intended meaning of these added variables so Th(k) proofs of rank k also efficiently simulate
rank k Sherali-Adams proofs and rank k/2 Lasserre proofs.

In this paper we also consider more general semantic proof systems even than Th(k), namely
those for which the fan-in is bounded and the truth value of each line can be computed by a
multiparty communication protocol.

Definition For any k,C ≥ 1, we denote by T cc(k,C) the semantic proof system of fan-in 2 in
which each proof line is a Boolean function whose value, for every partition of the input variables
into k groups1, can be computed by a C-bit randomized k-party NOF communication protocol of
error at most 1/3. Both k and C may be integer functions of the input size of the formulas. In
keeping with the usual notions of what constitutes efficient communication protocols, we use T cc(k)
to denote the union of all T cc(k,C) over all C in logO(1) n.

1We note that one could alternatively define T cc(k, C) systems based on a fixed partition of the inputs. While this
definition might yield a stronger proof system, it would complicate the notation without changing our results in any
significant way.
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Note that via standard boosting, we can replace the error 1/3 in the above definition by ε at the
cost of increasing C by an O(log 1/ε) factor. Therefore, without loss of generality, in the definition
of T cc(k) we can assume that the error is at most 1/nlogΩ(1) n.

Note also that a semantic proof of rank r that satisfies the same conditions as a T cc(k,C) proof
except that it has rules of fan-in at most t ≥ 2 can be simulated by a T cc(k, 2Ct log2 t) proof of
rank r log2 t by replacing each inference by a binary tree of height log2 t in which lines of internal
nodes are conjunctions of their predecessors.

For polylogarithmic k, the following lemma shows that Th(k) is a subclass of T cc(k + 1).

Lemma 2.5. For some constant c > 0, every Th(k) refutation of a CNF formula on n variables
is a T cc(k + 1, ck3 log2 n) proof.

Proof. By the well-known result of Muroga [33], linear threshold functions on n Boolean values only
require coefficients of O(n log n) bits. Since a degree k threshold polynomial is a linear function
on at most nk monomials, it is equivalent to a degree k threshold polynomial with coefficients of
O(knk log n) bits. As shown in [2], over any input partition there is a randomized (k + 1)-party
communication protocol of cost O(k log2 s) and error ≤ 1/sΩ(1) to verify a degree k polynomial
inequality with s-bit coefficients.

We also define another class of proofs based on k-party communication complexity that we will
see is even more general than T cc(k,C).

Definition For any integer functions k,C ≥ 1, we denote by Rcc(k,C) the semantic proof system
of arbitrary fan-in in which each proof line is a Boolean function such that the proof satisfies the
following property: for every partition of the input variables into k groups, and every inference of
B from A1, . . . , As in the proof, there is a C-bit randomized k-party NOF communication protocol
of error at most 1/3 that computes a (partial) function fA1,...,As`B from the inputs to the set [s]
such that on every input α, if B evaluates to false on input α then AfA1,...,As`B(α) evaluates to false
on input α.

We write Rcc(k) to denote the union of all Rcc(k,C) over all C in logO(1) n.

The following is immediate:

Lemma 2.6. Every T cc(k,C) proof is an Rcc(k,C) proof.

Proof. The inferences in the T cc(k,C) are all of fan-in at most 2 and hence derive each line B from
some lines A1 and A2. To compute the function fA1,A2`B the players evaluate A1 on input α using
the protocol given by the T cc(k,C) proof. If that evaluates to false then they output 1; otherwise,
they output 2.

We can sharpen this relationship further. The following is a standard method for strengthening
a proof system S by adding resolution rules over the lines of S [27].

Definition Given a proof system S, we define related proof system R(S) as follows: Lines of
R(S) are unordered disjunctions of lines of S and their negations. For every inference rule in S,
A1, . . . , At ` B, there is the corresponding rule (G ∨ A1), . . . , (G ∨ At) ` (G ∨ B) where G is an
arbitrary disjunction of lines of S and their negations. In addition there are extended resolution
rules that allow the introduction of new disjuncts, G ` (G ∨ A1 ∨ ... ∨ At), or cuts on lines of S,
namely (G∨A), (H ∨¬A) ` (G∨H), where A is a line of S and G and H are arbitrary disjunctions
of lines of S and their negations.
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Lemma 2.7. Every R(T cc(k,C)) proof is an Rcc(k,C) proof.

Proof. For rules that correspond to rules of T cc(k,C) we apply the simple argument from Lemma 2.6
on the lines that are not common to all formulas. For the resolution rules, observe that the players
only need to evaluate the line A to determine whether to select (G ∨A) or (H ∨ ¬A).

In particular, this shows via Lemma 2.5 that Rcc(k+1, ck3 log2 n) proofs include the proof system
R(Th(k)) (suggested by Hirsch). It is not clear whether one can efficiently simulate R(Th(k)) using
T cc(k) proofs.

The following lemma, which is implicit in [2], gives the key relationships between T cc(k) and
Rcc(k) proofs and randomized communication protocols that consistently compute Fsearch.

Lemma 2.8. Let F be a CNF formula in n variables and ε > 0.

(i) If F has an Rcc(k,C) refutation of rank r then, over every partition of the variables, there is
an ε-error randomized k-party communication protocol P consistently computing Fsearch such
that |P| is O(Cr log(r/ε)).

(ii) If F has a tree-like T cc(k,C) refutation of size S. then, over every partition of the vari-
ables, there is an ε-error randomized k-party communication protocol P consistently comput-
ing Fsearch such that |P| is O(C logS log(logS/ε)).

Proof. First assume that we have a rank r refutation in T cc(k,C). On input α, the k players
backtrack from the last derived inequality in the proof (0 ≥ 1) to find some clause that is falsified
by α. When they are at a line B that follows from lines A1, . . . , As in the proof, they run the
protocol for fA1,...,As`B, implied by the Rcc(k,C) definition for the inference at B, O(log(r/ε))
times and take the majority answer to reduce its error below ε/r. Then the players move to the
line indicated by that answer. The probability that this protocol makes an error is at most the sum
of all error probabilities on any path in the proof. Since the last line evaluates to false on input α,
in the case that there is no error the players will return a fixed clause in the proof that is falsified
by α, which implies that they consistently compute Fsearch.

For the second case of a size S tree-like refutation, there is some line in the refutation that is
derived from between S/3 and 2S/3 of the lines of the refutation tree. The players first evaluate
that line with error at most ε/(2 log2 S) by repeating the protocol O(log(logS/ε)) times. If the line
evaluates to false then they continue within that subtree; otherwise, they remove the nodes of that
subtree. This is done recursively until a falsified clause is found. The depth of recursion is at most
2 log2 S. The rest is similar to the first case.

3 Hardness Escalation for CNF formulas

This section proves our results on hardness escalation. The high level idea is as follows. Recall that
an unsatisfiable t-CNF formula F is somewhat hard if Fsearch requires a large height decision tree.
Starting with a somewhat hard unsatisfiable t-CNF formula F over variables e1, . . . , em, we build
a new CNF formula G = Lift(F ) of size mO(t) by lifting F based on some function ψ that encodes
ei using a larger collection of input bits. This lifting over CNF is adapted from previous work for
Boolean functions, which we review next.
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3.1 Lifting Decision Tree Complexity to k-Party Communication Complexity

In this section, we show how to lift a Boolean function f to obtain another function g := f ◦ ψk
for some Boolean function ψk, where ψk can be thought of as a simple encoding of a variable of f
using some number of new variables.

Definition Given k, s > 0 and a domain A, a function ψk : {0, 1}s × Ak 7→ {0, 1} is called a
selector if there is some h : Ak 7→ [s] such that ψk(x, y1, . . . , yk) = xh(y1,...,yk) for every x ∈ {0, 1}s
and yi ∈ A. Informally, ψk outputs a bit in x that is selected by the values of y1, . . . , yk.

There are two specific selector encodings ψk that we are interested in: the tensor selector ψT
k,`

and the parity selector ψ⊕k,a. In the tensor selector ψT
k,`(x, y), we have s = `k and A = [`], and we

think of x ∈ {0, 1}s as indexed by Ak and hence h(·) is just the identity function on Ak. In the
parity selector ψ⊕k,a(x, y), we have s = 2a, A = {0, 1}a, and we think of x as indexed by a-bit arrays
and h(y1, . . . , yk) = y1 ⊕ · · · ⊕ yk.

Given our initial function f over variables x, we define g, the (k + 1)-lifted version of f , to be
the function f ◦ ψk.

It is not hard to see that if the decision tree complexity of f is d, then for any k ≥ 2, and over
any partition of the variables into k groups, there is a k-party communication protocol computing
g of cost approximately d · c, where c is the cost of computing ψk. The k players just simulate
the decision tree for f and the cost of computing any single variable in f encoded by ψk is c bits.
If ψk is simple enough, and therefore c is negligible, then this cost is approximately equal to d.
Ideally, we would like to argue that this is the best that the players can do. Intuitively, since we
have encoded each input bit in f indirectly, the players need to communicate Ω(1) bits in order to
be able to “learn” any single bit. If the decision tree complexity of f is large, we would hope that
g has large communication complexity. Recent results in communication complexity show that we
cannot do much better than the above trivial protocol, subject to some constraints on ψk.

We need the following approximation notion to bridge decision tree complexity and communi-
cation complexity; this notion of approximating a real-valued function is polynomially related to
decision tree complexity.

Definition Given any 0 ≤ ε < 1, the ε-approximate degree of a real-valued function f , degε(f), is
the smallest d for which there exists a multivariate real-valued polynomial p of degree d such that
||f − p||∞ = maxx |f(x)− p(x)| ≤ ε.

Proposition 3.1 ([35, 1]). For every Boolean function f , deg5/6(f) ≤ D(f) ≤ (4 deg5/6(f))6.

Finally we state the communication lower bounds for g = f ◦ψk. The following input partition
is always assumed when the communication complexity of g is discussed: there are k + 1 players
and for each input (x, y1, . . . , yk) to each ψk, player 0 is assigned x, and each player i, for 1 ≤ i ≤ k,
is assigned yi. Intuitively, the inputs y1, . . . , yk given to players 1 through k determine which bits
of x (player 0’s input) are given to f . The next two results say that, when ψk is either ψT

k,` or
ψ⊕k,a, and the encoding ψk is over a large enough number of new variables, then the communication
complexity of g is polynomial related to D(f) (up to a factor depending only on k).

Theorem 3.2 ([11]). Let f : {0, 1}m 7→ {0, 1} with 5/6-approximate degree d > 2. If ` > 22k+1
kem
d

then any (k + 1)-party communication protocol P computing g = f ◦ ψT
k,` with error 1/3 must have

|P| = Ω( d
2k ).
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Theorem 3.3 ([3]). Let f : {0, 1}m 7→ {0, 1} with 5/6-approximate degree d > 2. If 2a > 22k+1+2kem
d

then any (k+ 1)-party communication protocol P computing g = f ◦ψ⊕k,a with error 1/3 must have
|P| = Ω( d

2k ).

The first theorem uses the tensor selector while the second uses the parity selector. We will
use both of them to prove lower bounds for T cc(k) and Rcc(k) proof systems. The parity selector
has an advantage that it needs fewer bits to encode each variable. Thus, it will give stronger proof
complexity lower bounds as a function of the number of variables of the formula (though it is no
more efficient with respect to formula size). In contrast, the advantage of the tensor selector is
that a CNF formula that is lifted based on the tensor selector is easier to refute by small degree
threshold proof systems so we will be able to use this selector to prove rank separations for the
hierarchies of T cc(k) and Rcc(k) proof systems.

Overview of the Hardness Escalation Argument

Before giving the formal construction and proofs for the two selectors, we present a brief overview
of our argument. Let F be any t-CNF over the variables e1, . . . , em. We want to describe how to
lift F to obtain another unsatisfiable formula G, where now G is harder than F . Every variable
ei of F will be replaced by a set of variables Vi. The Vi variables be comprised of k + 1 sets of
variables: x, and y1, . . . , yk. As in the previous section, there will be a selector function ψk which
will use the y variables to select one x variable to represent ei. The clauses in G will state that the
Vi variables represent a valid ψ-encoding, and that with respect to this encoding, F is true. We
want to show that G is even harder than F , i.e., that G requires large T cc(k) rank. By Lemma
2.8, we know that if G has low T cc(k) rank, then there is an efficient k-party protocol for solving
the search problem associated with G, Gsearch. Thus to prove a T cc(k) rank lower bound for G, it
suffices to prove that Gsearch is hard in the k-party NOF model.

Now any function associated with G is also a lifting of the corresponding function associated
with F . In particular, Gsearch = Fsearch ◦ ψk. The intuition for why it should be hard is similar
to that of the lifting of Boolean functions: here Gsearch is a lifting of Fsearch, and the decision tree
complexity of Fsearch is large. To prove this, assume for sake of contradiction that Gsearch is easy
for k-party communication. Then the k players can efficiently compute Gsearch over the variables
Vi. This in turn means that given the variables Vi, they can efficiently compute Fsearch(e1, . . . , em),
where each ei = ψk(Vi). It follows that there exists a consistent system Z of functions for F such
that for any function fS ∈ Z, the players can easily compute fS ◦ψk. In other words, the lifting of
any fS ∈ Z is easy for k-party communication. It then follows that for appropriate choices of ψk,
any function in Z has low decision tree complexity. Then by Proposition 2.2, we can conclude that
the decision tree complexity of Fsearch is small, contradicting our assumption. We now proceed to
the formal arguments for each of the selector functions.

3.2 Hardness Escalation Based on the Tensor Selector

Let F be any t-CNF over the variables e1, . . . , em. Parametrized by k, ` ≥ 2, G = LiftT
k,`(F ) is a

CNF formula defined over m sets of variables V1, . . . , Vm, where each Vi is further partitioned into
two sets Xi of size `k and Yi of size k`. Intuitively, every Vi is an encoding of ei based on ψT

k,`. Each
Xi represents a k-dimensional tensor of size `k each of whose cells c is associated with a variable
xi,c ∈ Xi. Yi, which is indexed as {yi,p,a : 1 ≤ p ≤ k, 1 ≤ a ≤ `}, selects a unique cell c in this
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tensor as follows: For each p ∈ [k], exactly one of the variables yi,p,a for a ∈ [`] is true, and the
value ap such that yi,p,ap is true is the p-th coordinate of c. Every clause in F is then transformed
into a set of clauses over these Vi. Formally, the clauses in G consist of:

• For 1 ≤ i ≤ m, 1 ≤ j ≤ k, exactly one of yi,p,1, . . . , yi,p,` is 1:

(I) yi,p,1 ∨ · · · ∨ yi,p,`
(II) (1 ≤ a < a′ ≤ `): ¬yi,p,a ∨ ¬yi,p,a′

• For every clause, say ¬ei1 ∨ ei,2 ∨ · · · ∨ eit , in F and for every t-tuple of cells (c1, . . . , ct),
if Yi1 selects c1, Yi2 selects c2, etc., then ¬xi1,c1 ∨ xi2,c2 · · · ∨ xit,ct must be satisfied: this is
translated into one clause of tk + t literals. For example, if the coordinates of c1, . . . , ct are
(a1

1, . . . , a
1
k), . . . , (a

t
1, . . . , a

t
k), respectively, then the clause would be:

(III) ¬yi1,1,a1
1
∨ · · · ∨ ¬yi1,k,a1

k
∨ · · · ∨ ¬yit,1,at

1
∨ · · · ∨ ¬yit,k,at

k
∨ ¬xi1,c1 ∨ xi2,c2 ∨ · · · ∨ xit,ct

The next proposition shows that as long as the clauses of F are not too large, then G is also
not too large, and that G is unsatisfiable as long as F is.

Proposition 3.4. If F is a t-CNF over m variables, then G = LiftT
k,`(F ) is a CNF formula of

|F |`tk+O(mk`2) clauses of size at most max{tk+t, `} over n = m(`k+k`) variables. Furthermore,
if F is unsatisfiable, then so is G.

We say that an assignment to X1, Y1, . . . , Xm, Ym of G is a valid encoding of an assignment to
variables e1, . . . , em of F if all clauses (I) and (II) are satisfied and for every i, xi,c = ei where c is
selected by Yi.

We fix the following input partition to k + 1 players when discussing the communication com-
plexity of Gsearch: player 0 is assigned all of the Xi’s, and each player p, for 1 ≤ p ≤ k, is assigned
{yi,p,a : 1 ≤ i ≤ m, 1 ≤ a ≤ `}.

The following lemma says that if Gsearch is easy in communication complexity, then there exists
a consistent system Z = {fS : S ⊆ clauses(F )} for F such that for every fS ∈ Z, computing
fS ◦ ψT

k,` is also easy in communication complexity.

Lemma 3.5. Given any unsatisfiable t-CNF formula F and G = LiftT
k,`(F ). Suppose that there

is a (k + 1)-party communication protocol P consistently computing Gsearch with error ε such that
|P| ≤ C. Then there exists a consistent system Z = {fS : S ⊆ clauses(F )} of functions for F
such that for every S, there is a (k + 1)-party communication protocol PS consistently computing
fS ◦ ψT

k,` with error ε such that |PS | ≤ C.

Proof. For every input assignment α to F , we fix any input assignment αT to G that is a valid
encoding of α. Let g∗ be the subfunction of Gsearch that is computed by P.

We first observe that on any input assignment α and αT, g∗(αT) always outputs a type (III)-
clause. This is because αT is a valid encoding. This clause corresponds to a unique clause in F
that is falsified by α. Thus g∗ uniquely determines a subfunction f∗ of Fsearch.

Given f∗, we define the consistent system Z = Zf∗ for F using the construction in Proposi-
tion 2.1. For every fS ∈ Z, the protocol PS for fS ◦ ψT

k,` is adapted from P in the straightforward
way.

14



The next theorem is our main result on the proof complexity of G which glues all the parts
together.

Theorem 3.6. There are absolute constants c, c′ > 0 such that the following holds. Let F be
any t-CNF formula on m variables having resolution rank at least r and let G = LiftT

k,`(F ) for

` ≥ c22k+1
km

(r/ log |F |)1/6 . Then for any C and M = c′(r/ log2 |F |)1/6/(C2k),

• any Rcc(k + 1, C) refutation of G of rank R must have R log2R ≥M , and

• any tree-like T cc(k + 1, C) refutation of G of size S must have logS log logS ≥M .

Proof. We will prove only the first part, with the second part follows similarly.
Let P be a Rcc(k + 1, C) refutation of G of rank R. Lemma 2.8, there exists a (k + 1)-party

protocol P consistently computing Gsearch of error 1/3 such that |P| is O(CR logR).
Now on the one hand, by Lemma 3.5, there exists a consistent system Z = {fS : S ⊆ clauses(F )}

of functions for F such that for every S, there exists a (k+1)-party protocol PS computing fS ◦ψT
k,`

of error 1/3 such that |PS | is O(CR logR).
On the other hand, by Proposition 2.3, the assumption on the resolution rank of F implies that

D(Fsearch) ≥ r. By Proposition 2.2, there exists a function fS ∈ Z such that

D(fS) ≥ D(Fsearch)
dlog2 |F |e

=
r

dlog2 |F |e
.

By Proposition 3.1, we have d = deg5/6(fS) ≥ (D(fS))1/6/4 ≥ ( r
log2 |F |

)1/6/4.

Finally, by Theorem 3.2, we must have CR logR that is Ω(d/2k) which is Ω((r/ log2 |F |)1/6/2k).

We note that we have a somewhat matching upper bound on the rank complexity of G.

Lemma 3.7. Let F be a t-CNF formula on m variables having resolution rank r. There is some
absolute constant c > 0 such that for any ` ≥ 1, there is an T cc(2, log2(rk`)) proof of G = LiftT

k,`(F )
of rank at most crk log2 `.

Proof. The main idea is to first build a decision tree for Gsearch using the decision tree for Fsearch.
The key idea in the search is that for every ei there is precisely one variable xi,(a1,...,ak) for
a1, . . . , ak ∈ [`] whose value will replace that of ei in evaluating G. This selection is determined by
the one tuple for which all of yi,1,a1 , . . . , yi,k,ak

evaluate to 1.
Whenever the decision tree for Fsearch queries a variable ei, the decision tree over linear in-

equalities for Gsearch does k binary searches where the p-th one queries inequalities of the form∑
a∈[j,j′] yi,p,a ≥ 1 to find the unique ap such that yi,p,ap = 1. At the leaf of this search correspond-

ing to the tuple (a1, . . . , ak), the query of ei is replaced by a query to xi,(a1,...,ak).
It remains to convert this decision tree to an T cc(2) refutation. We follow the standard con-

version of decision trees to proofs implicit in the equivalence in Proposition 2.3. Each node of the
decision tree for Gsearch will be a line in the new proof. Each such node v′ is associated with a node
v of the derivation for Fsearch which also corresponds to a line in the resolution refutation of F that
is some clause Cv on the ei variables. The line labelling v′ in the proof of G will consist of a disjunc-
tion of several literals and one polynomial inequality associated with the current binary search. In
particular, for each literal ebi in Cv, if the branch on which v′ lies has determined that xi,(a1,...,ak) is
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the selected literal to replace ei then the disjunction will include ¬yi,1,a1∨ . . .∨¬yi,k,ak
¬∨xbi,(a1,...,ak)

whose negation indicates the selection and the value substituted for ei. However, at node v′, only
part of the next level of search may be completed. Suppose that p − 1 < k binary searches are
completed at v′ for the current branch variable ei′ . In this case we add ¬yi′,1,a1 ∨ . . .∨¬yi′,p−1,ap−1

to the disjunction at v′. Finally, if the current binary search has been restricted to a range [j, j′]
then we add one more disjunct: the linear inequality

∑
a∈[j,j′] yi′,p,a ≤ 0. (If j = j′ this is equivalent

to ¬yi′,p,j .) (Note that in moving down the proof tree, as we start a binary search we have no such
linear inequality disjunct but we can add

∑
a∈[`] yi′,p,a ≤ 0 via the axiom on the selector.)

It is clear that the proof tree is binary and each line can be viewed as a disjunction of two
linear inequalities on at most rk` binary values which can be evaluated efficiently by a 2-party
randomized protocol.

Corollary 3.8. Let t be some constant. Suppose that a family of polynomial-size t-CNF formulas
F on m variables has resolution rank complexity r = r(m) that is mΩ(1). Then, for every constant
ε > 0 and k ≥ 1, there is a family of CNF formulas G = LiftT

k (F ) on n variables of size nO(t) such
that if k ≤ (1− ε) log log n then

• G requires Rcc(k + 1) refutation rank complexity Ω(r1/7) = nΩ(1/k);

• there is a T cc(2) refutation of G of rank O(r log n);

• G requires T cc(k + 1) tree-size exp(nΩ(1/k)).

Proof. Apply Theorem 3.6 with ` being the least integer satisfying the constraint; that is, ` =
c′′22k+1

km
(r/ logm)1/6 for some constant c′′ > 0 since |F | is polynomial in m.

By Proposition 3.4, the resulting formula G = LiftT
k (F ) has n = m(`k + k`) variables. Now for

k ≤ (1− ε) log log n and since r is mΩ(1), for sufficiently large n we have `k + k` < 22k+1k(c′′m)k ≤
n1−δ(c′′m)k for some constant δ > 0. It follows that n ≤ n1−δm(c′′m)k and hence m is nΩ(1/k).
Also by Proposition 3.4, |G| is O(|F |`tk +mk`2), which is nO(t).

Suppose that there is a T cc(k + 1) refutation P of G of rank R. Hence by definition, there is
some constant β > 0 such that P is a T cc(k + 1, logβ n, 1/3) refutation. By Theorem 3.6, we have
that R logR is Ω((r/ logm)1/6/(2k logβ n)). Thus for sufficiently large n, R is Ω(r1/7) = nΩ(1/k)

since r is mΩ(1).
The rank upper bound follows easily from Lemma 3.7 and the proof for the tree-like size lower

bound is similar.

In particular, by Proposition 2.5, Corollary 3.8 applies to all Th(k) proof systems.

3.3 Hardness Escalation Based on the Parity Selector

Let F be any t-CNF over the variables e1, . . . , em. Parametrized by k, a ≥ 2, Lift⊕k,a(F ) is a CNF
defined over m sets of variables V1, . . . , Vm, where each Vi is further partitioned into two sets Xi and
Yi. The difference here with Lift⊕k,a(F ) is that every Vi is an encoding of ei based on ψ⊕k,a. That is,
each Xi has 2a variables that are indexed by a-bit vectors, each Yi = {yi,p,b : 1 ≤ p ≤ k, 1 ≤ b ≤ a}
has ka variables, and each Yi selects a unique a-bit vector c with cb = ⊕kp=1yi,p,b, for 1 ≤ b ≤ a.
The clauses in Lift⊕k,a(F ) consist of:
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(*) For every clause, say ei1 ∨· · ·∨eit , in F and for every t-tuple of a-bit vectors (c1, . . . , ct), if Yi1
selects c1, Yi2 selects c2, etc., then xi1,c1 ∨ · · · ∨ xit,ct must be satisfied. For every clause and
t-tuple, this is translated into ≤ 2tka clauses of size tka+ t in the straightforward way. That
is, there are ≤ 2ka assignments to the bits in Yi1 that make them select c1, and similarly for
Yi2 , etc. There is one clause, similar to the clauses of type (III) in the tensor selector case,
corresponding to each such assignment.

Proposition 3.9. If F is a t-CNF over m variables, then G = Lift⊕k,a(F ) is a CNF formula of at
most |F |2tka+ta clauses of size at most ka+ t over n = m(2a + ka) variables. Furthermore, if F is
unsatisfiable, then so is G.

The rest of the proofs for this section are very similar to those in the last section. The first
difference is that since ψ⊕k,a gives a more efficient encoding than ψT

k,`, the blow-up in the number
of variables of G is significantly reduced. The second difference is that, here, G has a small rank
resolution refutation, as opposed to a CC(2) refutation in the last section when the lifting was
done using tensor-encoding. There, small rank resolution refutation was impossible because the
final clauses were too large.

The proof of the following theorem, which lower bounds the proof complexity of Lift⊕k,a(F ) in
terms of that of F , is identical to that of Theorem 3.6 except that Theorem 3.3 for ψ⊕k,a is used in
place of Theorem 3.2.

Theorem 3.10. There are absolute constants c, c′ > 0 such that the following holds. Let F be
any t-CNF formula on m variables having resolution rank at least r and let G = Lift⊕k,a(F ) for

2a > c22k+1+2km
(r/ log |F |)1/6 . Then for any C and M = c′(r/ log2 |F |)1/6/(C2k),

• any T cc(k + 1, C) refutation of G of rank R must have R log2R ≥M , and

• any tree-like T cc(k + 1, C) refutation of G of size S must have logS log logS ≥M .

On the other hand, one can upper bound the rank complexity of Lift⊕k,a(F ) in terms of that of
F , even in resolution.

Lemma 3.11. Let F be a t-CNF formula on m variables having resolution rank r. There is some
absolute constant c > 0 such that for any a ≥ 1, there is a resolution refutation of G = Lift⊕k,a(F )
of rank at most crka.

Proof. It is straightforward to construct a decision tree for Gsearch given one for Fsearch. Whenever
a variable ei in F is queried, the decision tree for Gsearch makes ka queries to the ka variables in Yi
to find the selected xi,c whose value replaces ei in evaluating G. Thus the depth is multiplied by
O(ka).

Corollary 3.12. Let t be some constant. Suppose that a family of polynomial size t-CNF formulas
F on m variables has resolution rank complexity r = r(m) that is mΩ(1). Then, for every ε > 0
and k ≥ 1, there is a family of CNF formulas G = Lift⊕k (F ) on n variables of size nO(tk) such that
if k ≤ (1− ε) log log n then

• G has Rcc(k + 1) refutation rank complexity Ω(r1/7) = nΩ(1);

• there is a resolution refutation of G of rank O(rk log n);
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• G requires T cc(k + 1) tree-size exp(nΩ(1)).

Proof. We apply Theorem 3.10 with a being the least integer satisfying the constraint; that is, 2a

is c′′22k+1+2km
(r/ logm)1/6 for some constant c′′ > 0 since |F | is polynomial in m.

By Proposition 3.9, n = m(2a + ka). Now for k ≤ (1 − ε) log log n and since r is mΩ(1), for
sufficiently large n we have 2a+ka < c′′22k+2

m ≤ c′′n1−δm for some constant δ > 0. It follows that
n = m(2a+ka) ≤ c′′n1−δm2 and hence m is nΩ(1). Also by Proposition 3.9, |G| is |F |2tka+ta(ka+t),
which is nO(tk).

Suppose that there is a T cc(k + 1) refutation P of G of rank R. Hence by definition, there is
some constant β > 0 such that P is a T cc(k+ 1, logβ n, 1/3) refutation. By Theorem 3.10, we have
R logR = Ω((r/ logm)1/6/(2k logβ n)). Thus for sufficiently large n, R = Ω(r1/7) = nΩ(1) since r is
mΩ(1).

The rank upper bound follows easily from Lemma 3.11 and the proof for the tree-like size lower
bound is similar.

In particular, by Proposition 2.5, Corollary 3.12 applies to all Th(k) proof systems.

4 Rank and Tree-like Size Separations of the Proof System Hier-
archy

In this section we separate Rcc(k) and CP(k) in terms of rank and tree-like size, thereby separating
Rcc(k+ 1) from Rcc(k) and T cc(k+ 1) from T cc(k). The main idea is that if an unsatisfiable t-CNF
formula F has a small rank CP proof, then we will show that G = LiftT

k−1,`(F ) has a small rank
CP(k) proof (that can be made small and tree-like). Moreover, if F requires large resolution rank,
then with the right parameters, G has no small rank (or small tree-like) T cc(k) proof. Thus G is a
separating instance.

The pigeonhole principle is known to be hard for resolution but admits a small rank CP proof.
Since we need the clauses of the input formula to be of constant size for the size of the formula
LiftT

k,`(F ) to be polynomial, we use the following generalization of the pigeonhole principle [5].
Let G = (U ∪ V,E) be any bipartite graph, where U represents the pigeons and V the holes

and associate a variable 0 ≤ e(u,v) ≤ 1 with each edge (u, v) ∈ E. G−PHP consists of the following
clauses, which have been translated to inequalities:

(P) for all u ∈ U :
∑

(u,v)∈E e(u,v) ≥ 1

(H) for all u 6= u′ ∈ U, v ∈ V s.t. (u, v), (u′, v) ∈ E: e(u,v) + e(u′,v) ≤ 1

Proposition 4.1 ([5]). For every n, there is a bipartite graph G = (U∪V,E), where |U | = |V |+1 =
n and the degree of every vertex in U is ≤ 5, such that G−PHP is a polynomial size 5-CNF on
m = 5n variables and requires resolution rank Ω(m).

From this we immediately obtain a rank lower bound for a lifting of G−PHP.

Lemma 4.2. There is a family of bipartite graphs G and a family of polynomial-size CNF formulas
LiftT

k−1(G−PHP) on n variables that requires refutation rank nΩ(1/k) and tree-like refutation size
exp(nΩ(1/k)) in any Rcc(k) systems for any k ≤ (1 − ε) log log n where ε > 0 is some absolute
constant.

18



Proof. Let G be as given by Proposition 4.1. Then G−PHP has linear resolution rank. The lemma
follows from Corollary 3.8.

Our upper bound for the lifted versions of G−PHP will be derived from the following CP rank
upper bound for G−PHP itself.

Proposition 4.3 ([7]). For any G = (U ∪ V,E) with |U | = |V | + 1, G−PHP has a CP refutation
of rank O(log |U |).

Before considering the lifted versions of G−PHP directly, we first give a generic method for easily
deriving some convenient CP(k) consequences for lifted formulas. Suppose that F has variables
e1, . . . , em and let G = LiftT

k−1(F ). The variables in G are xi,c (recall that each cell c is indexed by
a tuple in [`]k−1) and yi,p,a, where 1 ≤ i ≤ m, 1 ≤ p ≤ k − 1, and 1 ≤ a ≤ `.

For each variable ei of F define a degree k polynomial ei as

ei :=
∑

c=(a1,...,ak)∈[`]k−1

xi,cyi,c,

where
yi,c := yi,1,a1 · yi,2,a2 · · · yi,k−1,ak−1

.

We show how to convert the original axiom clauses (I), (II), and (III) in G into the following
forms that are easier to manipulate in CP(k) systems:

(I’) for all 1 ≤ i ≤ m:
∑

c∈[`]k−1 yi,c ≥ 1

(II’) for all 1 ≤ i ≤ m and c 6= c′ ∈ [`]k−1: yi,c + yi,c′ ≤ 1

(III’) for all clauses in F , say ¬ei1 ∨ ei2 ∨ · · · ∨ eit , and for every t-tuple of cells (c1, . . . , ct),

yi1,c1xi1,c1 + yi2,c2(1− xi2,c2) + · · ·+ yit,ct(1− xit,ct) ≤ t− 1

Lemma 4.4. For any CNF formulas F and G = LiftT
k−1,`(F ) for any k, ` ≥ 2, there are CP(k)

derivations of rank k of all (I’), (II’), and (III’) inequalities as well as 0 ≤ yi,c ≤ 1 and 0 ≤ ei ≤ 1
given the families of clauses (I), (II), and (III) in G.

Proof. Note that the CP(k) rule that (q ≥ 0) ` (xiq ≥ 0) for all polynomials q of degree at most
k − 1 and variables xi implies that if we have inequalities q1 ≥ b1 and q2 ≥ b2 such that the sum
of the degrees of q1 and q2 is at most k then q1q2 ≥ b1b2 is derivable in CP(k) in rank at most the
minimum of the degrees of q1 and q2.

The facts that 0 ≤ ei and 0 ≤ yi,c then follow immediately in rank k − 1 from 0 ≤ yi,p,a and
0 ≤ ei.

The (I) axioms in G of the form ∨a∈[`]yi,p,a translate to
∑

a∈[`] yi,p,a ≥ 1. Applying this product
rule of CP(k) for p ∈ [k−1] we multiply all of the inequalities together in total rank k−2 to obtain
inequality (I’) above. By the product rule and xi,c ≤ 1, in rank k − 1 we obtain xi,cyi,c ≤ yi,c for
all i, c and combining with (I’) we obtain that ei ≤ 1 for all i.

To obtain an inequality of type (II’), consider some index j such that cp 6= c′p. We have the
translation of the (II) axiom of G (¬yi,p,cp ∨¬yi,p,c′p) which yields yi,p,cp + yi,p,c′p ≤ 1. Since we also
have y ≤ 1 for every variable y, by applying the product rule k− 2 times we have yi,c ≤ yi,p,cp and
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yi,c′ ≤ yi,p,c′p and thus (II’) follows immediately. (The weaker constraint that yi,c ≤ 1 is also an
immediate implication.)

To obtain an inequality of type (III’), we use the translation of the (III) clauses of G of the
form ∨tj=1(∨k−1

p=1¬yij ,p,cjp ∨ xij ,cj ) which is
∑t

j=1(
∑k−1

p=1(1 − y
ij ,p,c

j
p
) + xij ,cj ) ≥ 1. Observe that in

rank k by the product rule and 0 ≤ xij ,cj ≤ 1 we can derive

k−1∑
p=1

y
ij ,p,c

j
p

+ (1− xij ,cj ) ≥ k(1− xij ,cj )
k−1∏
p=1

y
ij ,p,c

j
p

= k(1− xij ,cj )yij,cj .

Therefore we have
k−1∑
p=1

(1− y
ij ,p,c

j
p
) + xij ,cj ≤ k − k(1− xij ,cj )yij,cj .

Plugging this into the original inequality we obtain that
∑t

j=1(k− k(1−xij ,cj )yij,cj) ≥ 1. Dividing
everything by k and rounding up yields

∑t
j=1(1 − (1 − xij ,cj )yij,cj) ≥ 1. Rewriting, we derive∑t

j=1(1− xij ,cj )yij,cj ≤ t− 1 which is the corresponding inequality (III’).
Thus in rank k we can derive all the inequalities (I’), (II’), and (III’).

We now have the tools to derive an upper bound on the CP(k) rank of lifted G−PHP formulas
and complete the rank separation.

Lemma 4.5. For any G = (U ∪ V,E) with |U | = |V |+ 1 and the degree of every vertex in U is at
most t, G = LiftT

k−1,`(G−PHP) has a CP(k) refutation of rank O(log |U |+tk log `), for any k, ` ≥ 2.

Proof. For ease of notation, we denote the variables in F = G−PHP as e1, . . . , em where m = |E|.
The idea is that we will simulate the CP-refutation for F in Proposition 4.3 by replacing each
variable ei in the proof with the degree k polynomial ei (together with the associated degree k− 1
polynomials yi,c) using the inequalities (I’), (II’), (III’) and 0 ≤ ei ≤ 1 from Lemma 4.4. The rank
of the new refutation given these degree k inequalities will be the same as that of the CP-refutation
of F .

By Lemma 4.4 there are rank-k derivations of all the axiom inequalities in F (consisting of
0 ≤ ei ≤ 1 and (P) and (H) inequalities) with ei replaced with ei, given the original axiom clauses
(I), (II), and (III) in G (as defined in Section 3.2) so there will be a CP(k)-refutation of G of rank
k + r, where r is the rank of the CP-refutation of F .

Claim 4.6. Given inequalities (I’),(II’), and (III’), for all (P)-type axioms ei1 + . . .+ eit ≥ 1, for
some t > 0, in F = G−PHP, the inequality ei1 + . . .+eit ≥ 1 is rank-O(tk log `) derivable in CP(k).

Proof. Denoting zi,c := xi,cyi,c, our goal is to derive∑
c∈[`]k−1

zi1,c + · · ·+
∑

c∈[`]k−1

zit,c ≥ 1,

given that, from type (III’) inequalities, for every t-tuple of cells (c1, . . . , ct),

yi1,c1 + . . .+ yit,ct ≤ t− 1 + zi1,c1 + . . .+ zit,ct ,
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and, from type (I’) axioms, for each i ∈ {i1, . . . , it},∑
c∈[`]k−1

yi,c ≥ 1.

We will proceed in t steps, where at step j, we will derive, for every t−j-tuple of cells (cj+1, . . . , ct),

(Sj :) yij+1,cj+1 + . . .+yit,ct ≤ t− j−1+(
∑

c∈[`]k−1

zi1,c + · · ·+
∑

c∈[`]k−1

zij,c)+(zij+1,cj+1 + . . .+zit,ct).

Thus we will be done at the end of step t. Now, to proceed by induction, assuming we have finished
step j and now at step j + 1. First, for every t− j − 1-tuple of cells (cj+2, . . . , ct), we add together
all Sj-inequalities for all cells cj+1 ∈ [`]k−1 and replace

∑
c∈[`]k−1 yij+1,c ≥ 1 to get

1 + `k−1(yij+2,cj+2 + . . .+ yit,ct) ≤ `k−1(t− j − 1) +
∑

c∈[`]k−1

zij+1,c

+ `k−1(
∑

c∈[`]k−1

zi1,c + · · ·+
∑

c∈[`]k−1

zij,c) + `k−1(zij+2,cj+2 + . . .+ zit,ct).

Next we add `k−1 − 1 copies of
∑

c∈[`]k−1 zij+1,c to the right side and divide by `k−1 to get an Sj+1

inequalities. Each step requires rank O(k log `) with fan-in 2. The claim follows.

Claim 4.7. For all (H) axioms ei1 + ei2 ≤ 1 in F , ei1 + ei2 ≤ 1 is rank-O(k log `) derivable in
CP(k).

Proof. For i be either i1 or i2 and for any c 6= c′ ∈ [`]k−1, in one step we can derive yi,cxi,c +
yi,c′xi,c′ ≤ 1 from the (II’) inequality yi,c + yi,c′ ≤ 1.

For every pair of cells (c1, c2), we are also given the type (III’) inequality yi1,c1xi1,c1+yi2,c2xi2,c2 ≤
1.

We need to derive
∑

c∈[`]k−1 xi1,cyi1,c +
∑

c∈[`]k−1 xi2,cyi2,c ≤ 1. Thus we want that the sum of
a set of O(`k−1) variables to be at most 1, given that the sum of any pair of them is at most 1. By
a result of ([7], Theorem 6.1), this can be done in rank O(k log `).

Lemma 4.5 follows from Claims 4.6 and 4.7

Putting Lemmas 4.2 and 4.5 together we obtain the following separations of our proof system
hierarchy.

Theorem 4.8. For any ε > 0 there is a family of unsatisfiable CNF formulas G on n variables
that requires nearly polynomial refutation rank nΩ(1/ log logn) and nearly exponential tree-like size
exp(nΩ(1/ log logn)) in all T cc(k) systems but has logarithmic refutation rank and polynomial tree-like
refutation size in CP(k) systems for any k ≤ (1− ε) log log n.

Proof. The bounds for rank and the lower bounds for tree-like size follow immediately from Lem-
mas 4.2 and 4.5. The upper bound for tree-like size follows by expanding the logarithmic rank
CP(k) proof into a tree.
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5 Discussion

In this paper we showed how to take an arbitrary 3-CNF formula F , and convert it into another
CNF formula G so that the resolution rank of F becomes polynomial in the T cc(k + 1) rank of
G, for k ∈ O(log log n). As applications, we obtained polynomial rank lower bounds for many
commonly studied matrix cut proof systems, including Cutting Planes and the full complement
of Lovász-Schrijver variants, as well as non-constant rank lower bounds for Sherali-Adams and
Lasserre proofs. We also use our approach to obtain new hierarchy theorems for the systems CP(k)
and LSk+,∗.

While we focused on semi-algebraic systems in this paper, we would like to point out that our
theorems can also be used to obtain non-constant rank lower bounds for many commonly studied
algebraic systems, including Hilbert’s Nullstellensatz and the Polynomial Calculus. While stronger
lower bounds for these latter systems were already known prior to our work, our method achieves
these lower bounds for a large class of new CNF formulas and, the technique is simple and generic.
It should also be possible to obtain degree-based hierarchy theorems using our approach.

There are several interesting open problems directly related to our work. First, our theorems
as stated work for k up to (1 − o(1)) log logn. We conjecture that it should be possible to derive
hardness escalation results that work for k up to Ω(log n). A key problem with our approach is
the tensor selector method, which when applied for larger k, introduces superpolynomially many
variables. A similar problem arose when proving lower bounds set disjointness and related functions
in the NOF communication model. The initial results ([30, 11]) used the tensor selector and worked
for k = (1 − o(1)) log logn; subsequent papers introduced new selector methods in order to prove
lower bounds for k = Ω(log n) ([13, 3].) On the other hand, proving hardness escalation results
for k = ω(log n) appears to require very new ideas and would solve a major open problem in
communication complexity and circuit complexity.

Secondly, we would like to strengthen our results in order to obtain integrality gaps. For
example, we would like to take a Resolution rank-based integrality gap for MaxSAT and lift it to
obtain a CP(k) rank-based integrality gap for MaxSAT. Suppose that we started with a random
unsatisfiable 3-CNF formula F with m clauses, say a random formula. Such formulas are known
to require linear rank resolution refutations and have integrality gaps close to the optimal 7/8. A
random assignment would satisfy all but m/8 of the clauses of F . When we lift F to obtain G
via the selector functions discussed in this paper, now G contains many more clauses than m, thus
greatly decreasing the ratio between the number of unsatisfied clauses (which is still m/8) and the
total number of clauses. It would be very interesting to find a better way to lift F to G that would
approximately preserve the original integrality gap.

Thirdly, an important open problem is to strengthen our method to obtain not only tree-size
lower bounds, but general (dag-like) size lower bounds. We note that this has already happened
for k = 2, where initially Cutting Planes tree-size lower bounds were proven based on two-player
communication complexity lower bounds [23] and the results were later generalized to obtain un-
restricted Cutting Planes size lower bounds [6, 36]. Such a result, even for k = 3, would give
unrestricted size lower bounds for Lovász-Schrijver proofs, thus solving an important open prob-
lem.

Finally, there are many very interesting questions related to hardness escalation. What re-
lationships are there between these various forms of hardness amplification, hardness escalation,
hardness condensing, and hardness amplification? Are there other examples of hardness escalation,
even under reasonable assumptions? In particular it would be very interesting to obtain a hardness
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escalation result that lifts lower bounds for a circuit class where cryptography is not possible to
a circuit class were cryptography is possible (e.g., lifting from DNF lower bounds to TC0 lower
bounds) as such a result would cross the ”natural proof” barrier.
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