
On Lower Bounds for Constant Width Arithmetic Circuits

V. Arvind, Pushkar S. Joglekar, Srikanth Srinivasan

Institute of Mathematical Sciences
C.I.T Campus,Chennai 600 113, India

{arvind,pushkar,srikanth}@imsc.res.in

Abstract. The motivation for this paper is to study the complexity of constant-width arithmetic
circuits. Our main results are the following.
1. For every k > 1, we provide an explicit polynomial that can be computed by a linear-sized

monotone circuit of width 2k but has no subexponential-sized monotone circuit of width k.
It follows, from the definition of the polynomial, that the constant-width and the constant-
depth hierarchies of monotone arithmetic circuits are infinite, both in the commutative and
the noncommutative settings.

2. We prove hardness-randomness tradeoffs for identity testing constant-width commutative
circuits analogous to [KI03,DSY08].

1 Introduction

Using a rank argument, Nisan, in a seminal paper [N91], showed exponential size lower bounds
for noncommutative formulas (and noncommutative algebraic branching programs) that com-
pute the noncommutative permanent or determinant polynomials in the ring F〈X〉, where
X = {x1, · · · , xn} are noncommuting variables.

By Ben-Or and Cleve’s result [BC92], we know that bounded-width arithmetic circuits
(both commutative and noncommutative) are at least as powerful as formulas (indeed width
three is sufficient). Can we extend Nisan’s lower bound arguments to prove size lower bounds
for noncommutative bounded-width circuits? Motivated by this question we make some simple
motivating observations in this section. We first recall some basic definitions.

Definition 1. [N91,RS05] An Algebraic Branching Program (ABP) over a field F and vari-
ables x1, x2, · · · , xn is a layered directed acyclic graph with one source vertex of indegree zero
and one sink vertex of outdegree zero. Let the layers be numbered 0, 1, · · · , d. Edges only go
from layer i to i+1 for each i. The source and sink are the unique layer 0 and layer d vertices,
respectively. Each edge in the ABP is labeled with a linear form over F in the input variables.
The size of the ABP is the number of vertices. Each source to sink path in the ABP computes
the product of the linear forms labeling the edges on the path, and the sum of these polynomials
over all source to sink paths is the polynomial computed by the ABP.

The scalars in an ABP can come from any field F. If the input variables X =
{x1, x2, · · · , xn} are noncommuting then the ABP (or circuit) computes a polynomial in the
free noncommutative ring F〈X〉. If the variables are commuting then the polynomial computed
is in the ring F[X].

Definition 2. An arithmetic circuit over F and variables x1, x2, · · · , xn is a directed acyclic
graph with each node of indegree zero labeled by a variable or a scalar constant. Each internal
node g of the DAG is labeled by + or × (i.e. it is a plus or multiply gate) and is of indegree
two. A node of the DAG is designated as the output gate. Each internal gate of the arithmetic

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2009)

circuit computes a polynomial (by adding or multiplying its input polynomials). The polyno-
mial computed at the output gate is the polynomial computed by the circuit. The circuit is
said to be layered if its vertices are partitioned into vertex sets V1 ∪ V2 ∪ . . .∪ Vt such that V1

consists only of leaves, and given any internal node g in Vi for i > 1, the children of g are
either nodes from V1 (consisting of constants or variables) or nodes from the set Vi−1. The
size of a circuit is the number of nodes in it, and the width of a layered circuit is maxi>1 |Vi|.
An arithmetic circuit over the field R is monotone if all the scalars used are nonnegative.
Finally, a layered arithmetic circuit is staggered if, in each layer i with i > 1, every node
except possibly one is a product gate of the form g = u× 1, for some gate u from the previous
layer.

Note that the notion of bounded (i.e, constant) width staggered circuits of width w is
identical to the notion of a straight-line program with w registers. The following lemma shows
that staggered circuits of width w are comparable in power to width w − 1 (not necessarily
staggered) arithmetic circuits. It holds in the commutative and the noncommutative settings.
We postpone the proof of the lemma to the Appendix.

Lemma 1. Given any layered arithmetic circuit C of width w and size s computing a poly-
nomial p, there is a staggered arithmetic circuit C ′ of width at most w + 1 and size O(ws)
computing the same polynomial.

A seminal result in the area of bounded width circuits is due to Ben-Or and Cleve [BC92]
where they show that size s arithmetic formulas computing a polynomial in F[X] (or in F〈X〉
in the noncommutative case) can be evaluated by staggered arithmetic circuits of width three
and size O(s2n). Bounded width circuits have also been studied under various restrictions
in [LMR07,MR08,JR09]. However, they have not considered the question of proving explicit
lower bounds.

What is the power of arithmetic circuits of width 2? It is easy to see that the width-two
circuit model is universal. We state this (folklore) observation.

Proposition 1. Any polynomial of degree d with s monomials in F[x1, x2, · · · , xn] (or in
F〈x1, · · · , xn〉) can be computed by a width two arithmetic circuit of size O(d ·s). Furthermore,
any monotone polynomial (i.e, with non-negative real coefficients) can be computed by a width
two monotone circuit over R of size O(d · s).

Some Observations

To motivate the study of constant-width circuits, we point out that, for the problem of
proving lower bounds for noncommutative bounded width circuits, Nisan’s rank argument is
not useful. For the noncommutative “palindromes” polynomial P (x0, x1) =

∑
w∈{x0,x1}n ww

R,
the communication matrix Mn(P) is of rank 2n and hence any noncommutative ABP for it is
exponentially large [N91]. However, we can give an easy width-2 noncommutative arithmetic
circuit for P (x0, x1) of size O(n). Indeed, we can even ensure that each gate in this circuit is
homogeneous.

Proposition 2. The palindromes polynomial P (x0, x1) has a width-2 noncommutative arith-
metic circuit of size O(n).

2

What then is a good candidate explicit polynomial that is not computable by width-2
circuits of polynomial size? We believe that the polynomial P `k (of Section 2) for suitable
k is the right candidate. A lower bound argument still eludes us. However, if we consider
monotone constant-width circuits then even in the commutative case we can show exponential
size lower bounds for monotone width-k circuits computing P `k . Since P `k is computable by
depth 2k arithmetic circuits (of unbounded fanin), it follows that the constant-width and
the constant-depth hierarchies of monotone arithmetic circuits are infinite. We present these
results in Section 2.

Remark 1. Regarding the separation of the constant-depth hierarchy of monotone circuits,
we note that a separation has also been proved by Raz and Yehudayoff in [RY09]; their lower
bounds show a superpolynomial separation between the power of depth k multilinear circuits
and depth k+1 monotone circuits for any k (see [RY09] for the definition and results regarding
multilinear circuits). In contrast, our separation works only for monotone circuits, and only
for infinitely many k. Nonetheless, we think that our separation is interesting because the
separation we achieve is stronger. More precisely, the results of [RY09] show a separation of
the order of 2(log s)1+Ω(1/k)

(that is, there is a polynomial that can be computed by circuits
of depth k + 1 and size s but not by depth k circuits of size 2(log s)1+Ω(1/k)

). On the other
hand, our separation is at least as large as 2(log s)c for any c > 0 (see Section 2 for the precise
separation).

A related question is the comparative power of noncommutative ABPs and noncommuta-
tive formulas. Noncommutative formulas have polynomial size noncommutative ABPs. How-
ever, sO(log s) is the best known formula size upper bound for noncommutative ABPs of size s.
An interesting question is whether we can prove a separation result between noncommutative
ABPs and formulas. We note that such a separation in the monotone case follows from an
old result of Snir [S80].

Proposition 3. Consider two noncommuting variables {x0, x1}. Let L denote the set of
all monomials of degree 2n with an equal number of x0 and x1, and consider the polynomial
E ∈ Q〈x0, x1〉, where E =

∑
w∈Lw.

1. There is a monotone homogeneous ABP for E of size O(n2).
2. Any monotone formula computing E is of size nΩ(lgn).

Proof. The first part is directly from a standard O(n2) size DFA that accepts precisely the
set L = {w ∈ {x0, x1}2n | w has an equal number of x0’s and x1’s}. The second part follows
from the fact that such a monotone formula would yield a commutative monotone formula
for the symmetric polynomial of degree n over the variables y1, y2, · · · , y2n: this is obtained
by first observing that the formula must compute homogeneous polynomials at each gate.
Furthermore, we can label each gate (and each leaf) by a triple (i, j, d) where j − i+ 1 = d is
the degree of the homogeneous polynomial computed at this gate such that each monomial
generated at this gate will occupy the positions from i to j in the output monomials containing
it. Hence we have x0’s at the leaf nodes labeled by triples (i, i, 1) for all 2n values of i. We
replace the x0’s labeled (i, i, 1) by yi and each x1 by 1. The resulting formula computes
the symmetric polynomial as claimed. Snir in [S80] has shown a tight nΩ(logn) lower bound
for monotone formulas computing the symmetric polynomial of degree n over the variables
y1, y2, · · · , y2n.

3

To illustrate again the power of constant width circuits, we note that there is, surprisingly,
a width-2 circuit for computing the polynomial E.

Proposition 4. There is a width-2 circuit of size nO(1) for computing E if the field F has at
least cn2 distinct elements for some constant c.

Proof Sketch. This is based on the well-known Ben-Or trick [B80] for computing the symmetric
polynomials in depth 3. We consider the polynomial g(x0, x1, z) = (x0z

2k+1+1 + x1z + 1)2
k+1

,
where 2k−1 < n ≤ 2k. (z will eventually be a scalar from F.) The coefficient of z(2k+1+1)n+n

in g is precisely the polynomial E. Following Ben-Or’s argument, the problem of recovering
the polynomial E can be reduced to solving a system of linear equations with an invertible
coefficient matrix. Hence E can be expressed as a sum E =

∑2n
i=1 βig(x0, x1, zi), where the

zis are all distinct field elements. The terms βig(x0, x1, zi) can be evaluated with one register
using repeated squaring of x0z

2k+1+1
i +x1zi+1. The second register is used as an accumulator

to compute the sum of these terms.

These observations are additional motivation for the study of constant-width arithmetic
circuits. In Section 2 we prove lower bound results for monotone constant-width circuits. In
Section 3 we explore the connection between lower bounds and polynomial identity testing
for constant-width commutative circuits analogous to the work of Dvir et al [DSY08].

2 Monotone constant width circuits

In this section we study monotone constant-width arithmetic circuits. We prove that they
form an infinite hierarchy. As a by-product, the separating polynomials that we construct
yield the consequence that constant-depth monotone arithmetic circuits too form an infinite
hierarchy. All our polynomials will be commutative, unless we explicitly state otherwise.

For positive integers k and ` we define a polynomial P `k on `2k variables as follows:

P `1(x1, x2, . . . , x`2) =
∑`

i=1

∏`
j=1 x(i−1)`+j

P `k+1(x1, x2, . . . , x`2k+2) =
∑`

i=1

∏`
j=1 P

`
k(x(i−1)`2k+1+(j−1)`2k+1, . . . , x(i−1)`2k+1+j`2k)

An easy inductive argument from the definition gives the following.

Lemma 2. The polynomial P `k is homogeneous of degree `k on `2k variables and has `
`k−1
`−1

distinct monomials.

By definition, P `k can be computed by a depth 2k monotone formula of size O(`k). Further-
more, we can argue that the polynomials P `k are the “hardest” polynomials for constant-depth
circuits. We make this more precise in the following observation.

Proposition 5. Given a depth k arithmetic circuit C of size s, there is a projection reduction
from C to the polynomial P `k where ` = O(s2k).

Proof Sketch. We sketch the easy argument. We can transform C into a formula. Furthermore,
we can make it a layered formula with 2k alternating + and × layers such that the output gate
is a plus gate. This formula is of size at most s2k. Clearly, a projection reduction (mapping
variables to variables or constants) will transform P `k to this formula, for ` = O(s2k).

It is easy to see the following from the fact that a monotone depth 2k arithmetic circuit
of size s can be simulated by a monotone width 2k circuit of size O(s).

4

Proposition 6. For any positive integers ` and k there is a monotone circuit of width 2k
and size O(`2k) that computes P `2k.

We now state the main lower bound result. For each k > 0 there is `0 ∈ Z+ such that
for all ` > `0 any width k monotone circuit for P `k is of size Ω(2`). We will prove this result
by induction on k. For the induction argument it is convenient to make a stronger induction
hypothesis.

For a polynomial f ∈ F[X], where X = {x1, x2, · · · , xn} let mon(f) = {m | m is a nonzero
monomial in f}. I.e. mon(f) denotes the set of nonzero monomials in the polynomial f . Also,
let var(f) denote the set of variables occurring in the monomials in mon(f). Similarly, for
an arithmetic circuit C we denote by mon(C) and var(C) respectively the set of nonzero
monomials and variables occurring in the polynomial computed by C.

We call a layered circuit C minimal if there is no smaller circuit C ′ of the same width
s.t mon(C) = mon(C ′). It can be seen that for any monotone circuit C, there is a minimal
circuit C ′ of the same width s.t mon(C ′) = mon(C) and has the following properties.

– The only constants used in C ′ are 0 and 1. Furthermore, no gate is ever multiplied by a
constant.

– By the minimality of C ′ every node g in C ′ has a path to the output node of C ′. Hence,
given any node g in C ′ computing a polynomial p, there is a monomial m such that
mon(m · p) ⊆ mon(C ′). In particular, this implies that if C ′ computes a homogeneous
multilinear polynomial, then p must be a homogeneous multilinear polynomial.

– If C ′ computes a homogeneous multilinear polynomial of degree d, and if a node g in layer
i also computes a polynomial p of degree d, then in layer i + 1, there is a sum gate g′

such that g is one of its children. Thus, the gate g′ computes a homogeneous multilinear
polynomial p′ of degree d such that mon(p) ⊆ mon(p′). In particular, mon(p) ⊆ mon(C ′).

We call a minimal circuit satisfying the above a good minimal circuit. We now show a
useful property of minimal circuits C, which applies to circuits satisfying mon(C) ⊆ P `k , for
all `, k ≥ 1.

Lemma 3. Let f =
∑`

i=1 Pi be a homogeneous monotone polynomial of degree d ≥ 1 with
var(Pi) ∩ var(Pj) = ∅ for all i 6= j. Given any good minimal circuit such that mon(C) ⊆
mon(f), we have the following: if a gate g in C computes a polynomial p of degree less than
d, or a product of two such polynomials, then var(p) ⊆ var(Pi) for a unique i.

Proof. For any polynomial q ∈ F[x1, x2, · · · , xn] we can define a bipartite graph G(q) as
follows: one partition of the vertex set is mon(q) and the other partition var(q). A pair {x,m}
is an undirected edge if the variable x occurs in monomial m. It is clear that the graph G(f)
is just the disjoint union of all the G(Pi).

If the polynomial p computed by gate g is of degree d′ < d, then, since C is good, there
is a monomial m of degree d′ − d such that mon(m · p) ⊆ mon(C) ⊆ mon(f). This implies
that G(m · p) is a subgraph of G(f). On the other hand, G(m · p) is clearly seen to be a
connected graph. This implies that, in fact, G(m · p) is a subgraph of G(Pi) for some i and
hence, var(p) ⊆ var(Pi) for a unique i. This proves the lemma in this case.

Similarly, if p is a product of two polynomials of degree less than d, thenG(p) is a connected
graph, and by the above reasoning, it must be the subgraph of some G(Pi). Hence, the lemma
follows.

5

We now state and prove a stronger lower bound statement. It shows that P `k is even hard
to “approximate” by polynomial size width-k monotone circuits.

Theorem 1. For each k > 0 there is `0 ∈ Z+ such that for all ` > `0 and any width-k
monotone circuit C such that

mon(C) ⊆ mon(P `k) and |mon(C)| ≥
|mon(P `k)|

2
,

the circuit C is of size at least 2`

10 .

Proof. Let us fix some notation: given i ∈ Z+ and j ∈ [w], we denote by gi,j the jth node in
layer i of C and by fi,j the polynomial computed by gi,j . Also, given a set of monomials M ,
we say that a circuit C1 computes M if mon(C1) ⊇M .

Without loss of generality, we assume throughout that C is a good minimal circuit. The
proof is by induction on k. The case k = 1 is distinct and easy to handle. Thus, we consider
as the induction base case the case k = 2. Consider a width two monotone circuit C such that
mon(C) ⊆ mon(P `2) and |mon(C)| ≥ |mon(P `2)|/2 = ``+1/2. Let f denote the polynomial
computed by C. By Lemma 2 both f and P `2 are homogeneous polynomials of degree d = `2.

We write the polynomial P `2 as
∑`

i=1 Pi, where var(Pi) = {x(i−1)`3+1, . . . , xi`3}. Note that
var(Pi) ∩ var(Pj) = ∅ for i 6= j. Let f =

∑`
i=1 P

′
i where mon(P ′i) ⊆ mon(Pi) for each i.

Since C is good and f is homogeneous, each gate of C computes only homogeneous
polynomials. Moreover, since mon(C) ⊆ mon(P `2) and var(Pi)∩var(Pj) = ∅ for i 6= j, Lemma 3
implies that given any node g in C that computes a polynomial p of degree less than d or a
product of such polynomials satisfies var(p) ⊆ var(Pi) for one i. Consider the lowest layer (i0
say) when the circuit C computes a degree d monotone polynomial. W.l.o.g assume that fi0,1
is such a polynomial. We list some crucial properties satisfied by gi0,1 and C.

1. By the minimality of i0, the node gi0,1 is a product gate computing the product of poly-
nomials of degree less than d. Hence, var(fi0,1) ⊆ var(Pi) for exactly one i. W.l.o.g , we
assume i = 1. Since deg(fi0 , 1) = d and C is good, we in fact have mon(fi0,1) ⊆ mon(P1).

2. Since deg(fi0,1) = d and C is good, we know that there is a node gi0+1,ji0+1 that is a
sum gate with gi0,1 as child; gi0+1,ji0+1 computes a homogeneous polynomial of degree d
and mon(fi0+1,ji0+1) ⊇ mon(fi0,1). Iterating this argument, we see that there must be a
sequence of nodes gi,ji , for i > i0 such that for each i, gi,ji is a sum gate with gi−1,ji−1

as child, such that mon(fi0,1) ⊆ mon(fi0+1,ji0+1) ⊆ mon(fi0+2,ji0+2) . . ., and each fi,ji is a
homogeneous polynomial of degree d. We assume, w.l.o.g, that ji = 1 for each i > i0.

By the choice of i0, note that the node gi0,2 either computes a polynomial of degree less
than d or computes a product of polynomials of degree less than d. Hence, var(fi0,2) ⊆ var(Pi)
for some i. If i > 1, we assume w.l.o.g. that var(p) ⊆ var(P2). Let us consider the circuit C
with the variables in var(P1)∪ var(P2) set to 0. The polynomial computed by the new circuit
C ′ is now f ′ = f − P ′1 − P ′2 =

∑`
i=3 P

′
i . Let qi,j denote the new polynomial computed by the

node gi,j . Note that each qi0,j is now a constant polynomial.
Consider the monotone circuit C ′′ obtained from C ′ as follows: we remove all the gates

below layer i0; the gate gi0,2 in layer i0 is replaced by a product gate c × 1, where c is the
constant it computes in C ′; from layer i0 onwards, all nodes of the form gi,1 are removed; in
any edge connecting nodes gi,1 and gi+1,2, the node gi,1 is replaced by the constant 0. Clearly,
C ′′ is a width 1 circuit. For ease of notation, we will refer to the nodes of C ′′ with the same

6

names as the corresponding nodes in C ′. For any node gi,2 in C ′′ (i ≥ i0), let q′i,2 be the
polynomial it now computes. Crucially, we observe the following from the above construction.

Claim 2. For each i ≥ i0, mon(q′i,2) ⊇ mon(qi,2) \mon(qi,1).

We now finish the proof of the base case. Define a sequence i1 < i2 < . . . < it of layers
as follows: for each j ∈ [t], ij is the least i > ij−1 such that mon(qi,1)) mon(qij−1,1), and
mon(qit,1) = mon(f ′). Clearly, t is at most the size of C. Note that it must be the case
that qij ,1 = qij−1,1 + qij−1,2. Hence, we have mon(qij ,1) = mon(qij−1,1) ∪ mon(qij−1,2) =
mon(qij−1,1) ∪ (mon(qij−1,2) \ mon(qij−1,1)). By the above claim, the set mon(qij−1,2) \
mon(qij−1,1), which we will denote by Sj , can be computed by a width-1 circuit. Thus,
mon(f ′) = mon(qit,1) = mon(qi0,1) ∪

⋃t
j=1 Sj , where each Sj can be computed by a width-1

circuit. Since qi0,1 is the zero polynomial, we have mon(f ′) =
⋃t
j=1 Sj .

Now, consider any width-1 monotone circuit computing a set S ⊆ P `2 . It is easy to see
that the set S computed must have a very restricted form.

Claim 3. The set S is of the form mon(p) where p = (
∑

i∈X1
xi)
∏
j∈X2

xj, and X1∩X2 = ∅.

Clearly, as each set Sj satisfies Sj ⊆ var(P ′i) for some i, it can have at most `3 monomials.
Therefore, if the monotone circuit C is of overall size less than 2` then it can compute a
polynomial of the form P ′1 +P ′2 +f ′, where f ′ has at most 2``3 monomials. Since |mon(P ′i)| ≤
|mon(Pi)| = `` for each i, we have for suitably large `

|mon(C)| ≤ 2`` + 2``3 < 3`` <
``+1

2
=
|mon(P `2)|

2

and the base case follows.

The induction step.
Consider any monotone circuit Ĉ of width k − 1 such that mon(Ĉ) ⊆ mon(P `k−1) and

|mon(Ĉ)| ≥ |mon(P `k−1)|/2. As induction hypothesis we assume that Ĉ must be of size at
least 2`/10.

Let P `k =
∑`

i=1 Pi, with var(Pi) = {x(i−1)`2k+1+1, . . . , xi`2k+1} as in the base case. By
definition, the ` variable sets var(Pi) are mutually disjoint and each Pi has degree d = `k.
It is convenient to also write Pi =

∏`
j=1Qij , where each Qij is of type P `k−1. We have

var(Qij) = {x(i−1)`2k+1+(j−1)`2k+1, . . . , x(i−1)`2k+1+j`2k}.
We start by considering any width k − 1 circuit Ĉ of size less than 2`/10 such that

mon(Ĉ) ⊆ mon(P `k). For any i ∈ [`], by fixing all the variables outside var(Pi) to 0, we obtain
a width k−1 circuit Ĉi of the same size s.t mon(Ĉi) ⊆ mon(Pi). Further, by setting all the vari-
ables outside var(Qij) to 1 for some j ∈ [`], we obtain a circuit Ĉij s.t mon(Ĉij) ⊆ mon(Qij).
By the induction hypothesis, we see that |mon(Ĉij)| ≤ |mon(Qij)|/2. Clearly mon(Ĉi) ⊆
mon(Ĉi1)×mon(Ĉi2)× . . .×mon(Ĉi`). Therefore, |mon(Ĉi)| ≤

∏
j |mon(Ĉij)| ≤ |mon(Pi)|/2`.

Finally, as mon(Ĉ) =
⋃
i mon(Ĉi), |mon(Ĉ)| ≤

∑
i |mon(Ĉi)| ≤ |mon(P `k)|/2`. We have estab-

lished the following claim.

Claim 4. For any width k−1 circuit Ĉ of size less than 2`/10 such that mon(Ĉ) ⊆ mon(P `k),

we have |mon(Ĉ)| ≤ |mon(P `k)|
2`

.

7

For the induction step, consider any monotone width-k circuit C such that mon(C) ⊆
mon(P `k) and of size at most 2`/10. We will show that |mon(C)| < |mon(P `k)|/2. W.l.o.g, we
can assume that C is a good minimal circuit. Let f denote the polynomial computed by C;
we write f =

∑`
i=1 P

′
i , where mon(P ′i) ⊆ mon(Pi) for each i.

As in the base case, let i0 be the first layer where a polynomial of degree d is computed.
W.l.o.g. we can assume that fi0,1 is such a polynomial. By the minimality of i0, the node
gi0,1 must be a product node with children computing polynomials of degree less than d.
This implies, as in the base case, that var(fi0,1) ⊆ var(Pi) for a unique i. W.l.o.g. we assume
that i = 1. As before, we can fix a sequence of nodes gi,ji for each i > i0 such that gi,ji
is a sum gate with gi−1,ji−1 as a child. It is easily seen that mon(fi0,1) ⊆ mon(fi0+1,ji0+1) ⊆
mon(fi0+2,ji0+2) . . ., and each fi,ji computes a homogeneous polynomial of degree d. Renaming
nodes if necessary, we assume ji = 1 for all i.

Now consider fi0,j for j > 1. By the minimality of i0, we see that each fi0,j is either a
polynomial of degree less than d or a product of two such polynomials. Hence, var(fi0,j) ⊆
var(Ps) for some s ∈ [`]. Thus, there is a set S ⊆ [`] s.t |S| = k′ < k such that

⋃
j>1 var(fi0,j) ⊆⋃

s∈S var(Ps). Without loss of generality, we assume that those s ∈ S that are greater than 1
are among {2, 3, . . . , k}.

Consider the circuit C ′ obtained when each of the variables in
⋃
s∈[k] var(Ps) is set to 0.

Let qi,j be the polynomial computed by gi,j in C ′. The polynomial computed by C ′ is just
f ′ = f −

∑
s∈[k] P

′
s. Note that qi0,j is now simply a constant for each j, and that the size of

C ′ is at most the size of C which by assumption is bounded by 2`/10. Using this size bound
we will argue that C ′ cannot compute too many monomials.

We now modify C ′ as follows: we remove all the gates below layer i0; each gate gi0,j with
j > 1 is replaced by a product gate of the form c× 1 where c is the constant gi0,1 computes
in C ′; from layer i0 onwards, all nodes of the form gi,1 are removed; in any edge connecting
nodes gi,1 and gi+1,j for j > 1, the node gi,1 is replaced by the constant 0. Call this new circuit
C ′′. Clearly, C ′′ has size at most the size of C and width at most k− 1. For ease of notation,
we will refer to the nodes of C ′′ with the same names as the corresponding nodes in C ′. For
any node gi,j in C ′′ (i ≥ i0 and j > 1), let q′i,j be the polynomial it now computes. As in the
base case, we observe the following from the above construction.

Claim 5. For each i ≥ i0 and each j > 1, mon(q′i,j) ⊇ mon(qi,j) \mon(qi,1).

Using this, we show that the circuit C ′ was essentially just using the gates gi,1 to store
the sum of polynomials computed using width k − 1 circuits.

Construct a sequence of layers i1 < i2 < . . . < it in C ′ as follows: for each j ∈ [t], ij is
the least i > ij−1 such that mon(qi,1)) mon(qij−1,1), and mon(qit,1) = mon(f ′). Surely, t is
at most the size of C ′. Now, fix any ij for j ≥ 1. Clearly, it must be the case that qij ,1 =
qij−1,1 + qij−1,s for some s > 1; therefore, we have mon(qij ,1) ⊆ mon(qij−1,1)∪ (mon(qij−1,s) \
mon(qij−1,1)). Denote the set mon(qij−1,s) \mon(qij−1,1) by Sj . Since the above holds for all
j, and mon(qij−1,1) = mon(qij−1,1), we see that mon(f ′) = mon(qit,1) ⊆ mon(qi0,1) ∪

⋃
j Sj =⋃

j Sj , since qi0,1 is the zero polynomial.
We will now analyze |Sj | for each j. By the above claim, there is a width k − 1 circuit

C ′′ of size at most the size of C such that Sj ⊆ mon(C ′′) ⊆ P `k . If the size of C (and hence
that of C ′ and C ′′) is at most 2`/10, it follows from Claim 4 that |Sj | ≤ |mon(P `k)|/2`. Hence,
we see that |mon(f ′)| ≤ t|mon(P `k)|/2`, which is at most |mon(P `k)|/10. But we know that
the polynomial f computed by the circuit C is of the form f ′+

∑
i∈[k] P

′
i , where |mon(P ′i)| ≤

8

|mon(Pi)| = |mon(P `k)|/`. Therefore,

|mon(f)| ≤ k

`
|mon(P `k)|+ |mon(f ′)| ≤ |mon(P `k)|

(
k

`
+

1
10

)
<
|mon(P `k)|

2

for large enough `. This proves the induction step.

For k ∈ Z+ and c > 0 let Depthk,c and Widthk,c denote the set of families {fn}n>0 of
monotone polynomials fn ∈ R[x1, x2, . . . , xn] computed by c · nc-sized monotone circuits of
depth k and width k respectively. For k ∈ Z+, let Depthk =

⋃
c>0 Depthk,c and Widthk =⋃

c>0 Widthk,c. Thus, Depthk and Widthk denote the set of families of monotone polynomials
computed by poly(n)-sized monotone circuits of depth k and width k respectively. Note that,
for each k ∈ Z+ we have Depthk ⊆ Widthk. Moreover, from the definition of P `k , we see

that the family {P bn
1/2kc

k }n ∈ Depth2k. Finally, in Theorem 1 we have shown that the family

{P bn
1/2kc

k }n /∈Widthk, for constant k. Hence, we have the following corollary of Theorem 1.

Corollary 1. For any fixed k ∈ Z+, Widthk (Width2k and Depthk (Depth2k.

Theorem 1 can also be used to give a separation between the power of circuits of width
(respectively, depth) k and k+ 1 for infinitely many k. We now state this separation. For any
k ∈ N and any function f : N→ N, let us denote by fk the k-th iterate of f , i.e the function
f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸

k times

. Given non-decreasing functions f, g : N → N, call f a sub 1/k-th iterate of g

if fk(n) < g(n), for large enough n (closely related notions have been defined in [Sz61] and
[RR97]). It can be verified that sub 1/k-th iterates of exponential functions can grow fairly
quickly: for example, for any ε > 0 and any k, c ∈ N, the function 2(logn)c is a sub 1/k-th
iterate of 2n

ε
.

We now state the precise separation that can be inferred from the above theorem. For any
k, n ∈ N with k ≥ 2 and any polynomial p ∈ R[x1, x2, . . . , xn], let wk(p) (resepctively dk(p))
denote the size of the smallest monotone width k (respectively depth k) circuit that computes
p.

Corollary 2. There is an absolute constant α > 0 such that the following holds. Fix any
k ∈ N where k ≥ 2. Also, fix any non-decreasing function f : N→ N that is a sub 1/k-th iterate
of 2αn

1/2k
. Then, for large enough n, there is a monotone polynomial p ∈ R[x1, x2, . . . , xn] such

that for some k′, k′′ ∈ {k, k + 1, . . . , 2k − 1}, wk′(p) ≥ f(wk′+1(p)) and dk′′(p) ≥ f(dk′′+1(p)).

Proof. Let p denote the monotone polynomial P bn
1/2kc

k ∈ R[x1, x2, . . . , xn]. Theorem 1 tells
us that wk(p) = Ω(2bn

1/2kc). To obtain a lower bound on dk(p), note that any polynomial
computed by a circuit of size s and depth k can be computed by a width k circuit of size
O(sk); this tells us that dk(p) = 2Ω(n1/2k). Hence, there is some constant β > 0 such that
min{wk(p), dk(p)} ≥ 2βn

1/2k
, for large enough n.

By definition, p = P
bn1/2kc
k has a depth 2k circuit of size O(n), i.e d2k(p) = O(n). Propo-

sition 6 tells us that w2k(p) = O(n) also. Hence, for some constant γ > 0 and large enough
n, we have max{w2k(p), d2k(p)} ≤ γn.

The above statements imply that wk(p) ≥ g(w2k(p)) and dk(p) ≥ g(d2k(p)), where g(n) =
2αn

1/2k
for some constant α > 0 and n is large enough. Now, fix any non-decreasing function

9

f : N → N that is a sub 1/k-th iterate of g. We see that wk(p) ≥ g(w2k(p)) > fk(w2k(p))
for large enough n; clearly, this implies that for some k′ ∈ {k, k + 1, . . . , 2k − 1}, we must
have wk′(p) ≥ f(wk′+1(p)). Similarly, there is also a k′′ ∈ {k, k + 1, . . . , 2k − 1} such that
dk′′(p) ≥ f(dk′′+1(p)).

Similar corollaries hold for noncommutative circuits too. We define the polynomial P `k in
exactly the same way in the noncommutative setting. Note that any monotone bounded width
noncommutative circuit computing P `k automatically gives us a monotone commutative circuit
of the same size and width computing the commutative version of P `k . Hence, the lower bound
of Theorem 1 also holds for noncommutative width-k circuits. For k ∈ Z+, let ncDepthk and
ncWidthk denote the set of families of monotone polynomials {fn ∈ R〈x1, x2, . . . , xn〉 | n ∈
Z+} computed by poly(n)-sized monotone (noncommutative) circuits of depth k and width
k respectively. Analogous to the commutative case, we obtain the following.

Corollary 3. For any fixed k ∈ Z+, ncWidthk (ncWidth2k and ncDepthk (ncDepth2k.

And finally, we observe that the separations between width and depth k and k + 1 that
hold in the commutative monotone case also hold in the noncommutative monotone case.
Define, for any k, n ∈ N with k ≥ 2 and any polynomial p ∈ R〈x1, x2, . . . , xn〉, let ncwk(p)
(resepctively ncdk(p)) denote the size of the smallest monotone width k (respectively depth
k) circuit that computes p. We have the following.

Corollary 4. There is an absolute constant α > 0 such that the following holds. Fix any
k ∈ N where k ≥ 2. Also, fix any non-decreasing function f : N→ N that is a sub 1/k-th iterate
of 2αn

1/2k
. Then, for large enough n, there is a monotone polynomial p ∈ R〈x1, x2, . . . , xn〉

such that for some k′, k′′ ∈ {k, k + 1, . . . , 2k − 1}, ncwk′(p) ≥ f(ncwk′+1(p)) and ncdk′′(p) ≥
f(ncdk′′+1(p)).

3 Identity testing for constant width circuits

In this section we study polynomial identity testing for constant-width commutative circuits.
Impagliazzo and Kabanets [KI03] showed that derandomizing polynomial identity testing is
equivalent to proving arithmetic circuit lower bounds. Specifically, assuming that there are
explicit polynomials that require superpolynomial size arithmetic circuits, they use these
polynomials in a Nisan-Wigderson type “arithmetic” pseudorandom generator that can be
used to derandomized polynomial identity testing. This idea was refined by Dvir et al [DSY08]
to show that if there are explicit polynomials that require superpolynomial size constant-depth
arithmetic circuits then polynomial identity testing for constant-depth arithmetic circuits can
be derandomized (the precise statement involves the depth parameter explicitly [DSY08]).

In this section we prove a similar result showing that hardness for constant-width arith-
metic circuits yields a derandomization of polynomial identity testing for constant-width cir-
cuits. We say that a family of multilinear polynomials {Pn}n>0 where Pn(x) ∈ F[x1, · · · , xn]
is explicit if the coefficient of each monomial m of the polynomial Pn can be computed in
time 2n

O(1)
.

Recall the notion of a staggered arithmetic circuit (Definition 2).

Lemma 4. Let f ∈ F[x1, x2, · · · , xn] of degree m be computed by a staggered arithmetic circuit
of size s and width w. Then Hi(f) (the ith homogeneous component of f) can be computed by

10

a staggered circuit of size poly(s,m) and width w +O(1), provided F has at least deg(f) + 1
many elements.

Proof. Define a new polynomial g(x, z) ∈ F[x1, x2, · · · , xn, z] as g(x, z) = f(x1z, x2z, · · · , xnz).
We can write f(x1z, x2z, · · · , xnz) =

∑m
i=0Hi(f)zi where m = deg(f) and Hi(f) is the

ith homogeneous part of f . Let {z0, z1, · · · , zm} be m+ 1 distinct field elements. Consider the
matrix M defined as

M =


1 z0 z2

0 · · · zm0
1 z1 z2

1 · · · zm1
· · · · · · · · · · · ·
1 zm z2

m · · · zmm

 .

We have the system of equations

M(H0(f), H1(f), · · · , Hm(f))T = (g(x, z0), g(x, z1), · · · , g(x, zm))T .

Since M is invertible, it follows that there are scalars aij ∈ F such that Hi(f) =∑m
j=0 aijg(x, zj).
Since f(x) has a width w circuit of size s, g(x, z) clearly has a (staggered) circuit of width

w + O(1) of size O(s). It follows easily from the above equation for Hi(f) that each Hi(f)
has a circuit of width w +O(1) and size O(ms).

Lemma 5. Let P (x1, x2, · · · , xn, y) be a polynomial, over a sufficiently large field F, computed
by a width w staggered circuit of size s. Suppose the maximum degree of y in P is r. Then for
each j the jth partial derivative ∂jP

∂yj
can be computed by a staggered circuit of width w+O(1)

and size (rs)O(1).

Proof. Let P (x, y) =
∑r

i=0Ci(x)yi. As in Lemma 4 each Ci(x) can be computed by a width
w+O(1) staggered circuit of size O(rs). Clearly, for each j the polynomial ∂

jP
∂yj

can be written
as

∂jP

∂yj
=

r∑
i=j

aijCi(x)yi−j ,

for aij ∈ F, where aij are field elements that depend only upon j. Therefore, we can easily
give a staggered circuit of size O(r2s) and width w +O(1) for each polynomial ∂jP

∂yj
.

The following lemma is proved in [DSY08]. For any polynomial g ∈ F[x1, x2, · · · , xn] let
H≤k(g) =

∑k
i=0Hi(g).

Lemma 6. [DSY08, Lemma 3.2] Let P ∈ F[x1, x2, · · · , xn, y] and degy(P) = r. Suppose
f ∈ F[x1, x2, · · · , xn] such that P (x, f(x)) = 0 and ∂P

∂y (0, f(0)) is equal to ξ 6= 0. Let P (x, y) =∑r
i=1Ci(x)yi. Then for each k ≥ 0 there is a polynomial Qk ∈ F[y0, y1, · · · , yr] such that

H≤k(f) = H≤k(Qk(C0, C1, · · · , Cr)).

Using the above lemmata we prove our first theorem.

Theorem 6. Let P ∈ F[x1, x2, · · · , xn, y] and degy(P) = r ≥ 1 such that P has a stag-
gered circuit of size s and width w. Suppose that P (x, f(x)) = 0 for some polynomial
f ∈ F[x1, x2, · · · , xn] with deg(f) = m. Then f has a staggered circuit of size poly(s, (m+r)r)
and width w +O(1) if char(F) > r and F is sufficiently large.

11

Proof. First we argue that we can assume w.l.o.g., as in Dvir et al [DSY08], that ∂P
∂y (0, f(0)) =

ξ 6= 0. If ∂P
∂y (x, f(x)) ≡ 0 we can replace P by ∂P

∂y . Since char(F) > r it is easy to see that

there exists j : 1 ≤ j ≤ r such that ∂jP
∂yj

(x, f(x)) 6≡ 0. Hence, we can assume ∂P
∂y (x, f(x)) 6≡ 0.

Therefore, there is an a ∈ Fn such that ∂P
∂y P (a, f(a)) 6= 0. We can assume that a = 0 by

appropriately shifting P as in [DSY08]. Let

P (x, y) =
r∑
i=1

Ci(x)yi.

By Lemma 6 there is a polynomial Qk ∈ F[y0, · · · , yr] such that H≤k(f) =
H≤k(Qk(C0, C1, · · · , Cr)) for each 0 ≤ k ≤ m. Putting k = m and letting Qm = Q we
have f(x) = H≤m(Q(C0, C1, · · · , Cr)).

Let y∗ = (C0(0), · · · , Cr(0)) and deg(Q) = M . Define IM = {(α0, α1, · · · , αr) |
αi ∈ N,

∑
αi ≤ M}. By expanding the polynomial Q at the point y∗ we get Q(y) =∑

α∈IM Qα
∏r
i=0(yi − y∗i)αi .

Thus, we can write

f(x) = H≤m[
∑
α∈IM

Qα

r∏
i=0

(Ci(x)− Ci(0))αi].

As the constant term of Ci(x)− Ci(0) is zero, if we consider
∏r
i=1(Ci(x)− Ci(0))αi for some

α with
∑

i αi > m then we will get monomials of degree more than m whose net contribution
to f(x) must be zero. Hence we can write f(x) as

f(x) = H≤m[
∑
α∈Im

Qα

r∏
i=0

(Ci(x)− Ci(0))αi],

where Im = {(α0, α1, · · · , αr) | αi ∈ N,
∑
αi ≤ m}. Clearly, |Im| ≤ (m + r)r. Now,

the polynomial
∏r
i=0(yi − y∗i)

αi has a simple O(1)-width circuit C ′. We can compute∏r
i=0(Ci(x) − Ci(0))αi by plugging in the staggered width w + O(1) circuit for Ci(x) (as

obtained in Lemma 5) where yi is input to C ′. Thus, we obtain a circuit of width w+O(1) for∑
α∈Im Qα

∏r
i=0(Ci(x) − Ci(0))αi that is of size polynomial in s and (m + r)r. By Lemma 4

we can compute its homogeneous components and their partial sums with constant increase
in width. Putting it together, it follows that f(x) can be computed in width w+O(1) of size
polynomial in s and (m+ r)r.

We apply Theorem 6 to prove the main result of this section.

Theorem 7. There is a constant c1 > 0 so that the following holds. Suppose there is an
explicit sequence of multilinear polynomials {Pm}m>0 where Pm(x) ∈ F[x1, · · · , xm] and Pm
cannot be computed by arithmetic circuits of width w + c1 and size 2m

ε
, for constants w ∈

Z+ and ε > 0. Then, for any constant c2 > 0, there is a deterministic 2(logn)O(1) · bO(1)

time algorithm that, when given as input a circuit C of size nO(1) and width w computing a
polynomial f(x1, x2, . . . , xn) of maximum coefficient size b, with each variable of individual
degree at most (log n)c2, checks if the polynomial computed by C is identically zero, assuming
that the field F is sufficiently large and char(F) > (log n)c2.

12

Proof Sketch. The overall construction is based on the Nisan-Wigderson construction as
applied in Impagliazzo-Kabanets [KI03] and Dvir et al [DSY08]. Hence it suffices to sketch
the argument.

1. Let m = (log n)c
′(ε,c2) and ` = (log n)c

′′(ε,c2) where c′′ is suitably larger than c′.
2. Construct the Nisan-Wigderson design S1, · · · , Sn ⊂ [`] such that |Si| = m for each i and
|Si ∩ Sj | ≤ log n.

3. Consider the polynomial F (y1, y2, · · · , y`) = C(Pm(y|S1), Pm(y|S2), · · · , Pm(y|Sn)). For
any input y ∈ F` we can evaluate F by evaluating Pm(y|Si) for each i and then evaluating
C on the resulting values. Since the Pm are explicit polynomials and |Si| has polylog(n)
size we can evaluate Pm in time 2(logn)O(1)

.
4. We test if F (y) ≡ 0 using a brute-force algorithm based on the Schwartz-Zippel lemma.

Consider a finite set S ⊆ F, such that |S| is more than deg(F). Check if F (a) ≡ 0 for all
a ∈ S` in time nO(`). If all the tests returned zero then return C ≡ 0 otherwise C 6≡ 0.

The proof of correctness is exactly as in [KI03,DSY08]. Assuming the algorithm fails, after
hybridization and fixing variables in C, we get a nonzero polynomial F2 of the form

F2(y|Si+1, xi+1) = F1(Pm(y|S1 ∩ Si+1), Pm(y|S2 ∩ Si+1), · · · , Pm(y|Si ∩ Si+1), xi+1).

where F1(x1, x2, . . . , xi+1) can be computed by a width w circuit of size poly(n) and
F2(y|Si+1, Pm(y|Si+1)) ≡ 0. Note that the multilinear polynomials Pm(y|Sj ∩ Si+1) depend
only on log n variables and hence, they can be computed using brute force width-2 stag-
gered circuits of size O(n log n). Also, by Lemma 1, we know that F1 can be computed by
a staggered circuit of size poly(n) and width at most w + 1. Putting the above circuits to-
gether, it is easy to see that F2 can be computed by a staggered circuit C ′ of size at most
poly(n).n log n = poly(n) and width w +O(1). Now, by applying Theorem 6 to C ′, we get a
circuit of width w +O(1) to compute Pm contradicting the hardness assumption.

Finally, we observe that the following analogue of [KI03, Theorem 4.1] holds for bounded
width circuits. The proof is in the appendix.

Proposition 7. One of the following three statements is false.

1. NEXP ⊆ P/poly.
2. The Permanent polynomial is computable by polynomial size width w arithmetic circuit

over Q, where w is a constant.
3. The identity testing problem for bounded width arithmetic circuits over Q is in NSUBEXP.

Acknowledgements

We would like to thank Amir Yehudayoff for pointing out the separation in [RY09] and for
many valuable comments.

References

[B80] Michael Ben-Or. Unpublished notes.
[BC92] Michael Ben-Or, Richard Cleve. Computing Algebraic Formulas Using a Constant Number of

Registers. SIAM J. Comput. 21(1): 54-58 (1992).

13

[DSY08] Zeev Dvir, Amir Shpilka, Amir Yehudayoff. Hardness-randomness tradeoffs for bounded depth
arithmetic circuits. Proc. Symp. on Theory of Computing, 2008: 741-748.

[JR09] Maurice Jansen and B.V.Raghavendra Rao. Simulation of arithmetical circuits by branching
programs preserving constant width and syntactic multilinearity. In CSR, 2009. To Appear.

[KI03] V. Kabanets and R. Impagliazzo. Derandomization of polynomial identity tests means proving
circuit lower bounds. In Proc. of the thirty-fifth annual ACM Sym. on Theory of computing., pages 355-364,
2003.

[LMR07] Nutan Limaye, Meena Mahajan, and B. V. Raghavendra Rao. Arithmetizing classes around
NC1 and L. Technical Report 087, Electronic Colloquium on Computational Complexity (ECCC), 2007.
Preliminary version in STACS 2007, LNCS vol. 4393 pp. 477488.

[MR08] Meena Mahajan and B. V. Raghavendra Rao. Arithmetic circuits, syntactic multilinearity, and
the limitations of skew formulae. In MFCS, pages 455 466, 2008.

[N91] N. Nisan. Lower bounds for non-commutative computation. In Proc. of the 23rd annual ACM Sym. on
Theory of computing., pages 410-418, 1991.

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative models.
Computational Complexity., 14(1):1-19, 2005.

[RY09] Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear
Circuits. Computational Complexity 18(2): 171-207, 2009.

[RR97] Alexander A. Razborov, Steven Rudich. Natural Proofs. J. Comput. Syst. Sci. 55(1): 24-35,
1997.

[S80] Marc Snir. On the Size Complexity of Monotone Formulas. Proc. 7th Intl. Colloquium on Algorithms
Languages and Programming, 1980: 621-631.

[Sz61] G. Szekeres. Fractional iteration of exponentially growing functions. J. Austral. Math. Soc. 2
(1961/62), 301-320.

14

Appendix

Proof Sketch of Lemma 1
The circuit C ′ is constructed by showing how to compute, for i ≥ 1, the polynomials

computed in layer i + 1 of C from the polynomials computed in the ith layer in C in a
staggered fashion, using at most w layers of width at most w+ 1. Equivalently, it amounts to
designing a straight-line program with w + 1 registers such that: initially, w of the registers
contain the polynomials computed in the w nodes of the ith layer. In the end, w of the w+ 1
registers will contain the polynomials computed at the i + 1st layer of C. Note that this is
trivial for i = 2 since all nodes in layer 2 have only leaves as children. For some i > 1, let the
U denote the nodes of C in layer i and V the nodes of C in layer i+ 1.

We define an undirected multigraph G corresponding to layers i and i + 1 as follows: its
vertex set V (G) is U . For each gate v ∈ V in circuit C that takes inputs u1, u2 ∈ U we include
the edge {u1, u2} in E(G). Notice that if u1 = u2 we add a self-loop to E(G). Furthermore,
if v ∈ V takes one input as a u ∈ U and the other inputs is a constant or a variable, then
too we add a self-loop at vertex u. Finally, if both inputs to v are constants and/or variables,
there is no edge in G corresponding to v. We note some properties of this graph G.

1. We have |V (G)| ≤ w and |E(G)|+ |V ′| ≤ w, where V ′ is the set of those nodes in V that
take only constants and/or variables as input.

2. Each vertex u ∈ V (G) corresponds to a polynomial pu computed at u in the ith layer.
Each edge e ∈ E(G) is defined by some v ∈ V and it corresponds to the polynomial
qe computed at v. In order to compute the polynomial corresponding to e we need the
polynomials corresponding to its end points.

We have w + 1 registers, w of which contain the polynomials pu, u ∈ U . Our goal is to
compute the polynomials qe, e ∈ E(G) using these registers. Using the graph structure of G,
we will give an ordering of the edges E(G). If we compute the polynomials qe in that order
then for every qe computed we will have a free register to store qe (when we do not need a
polynomial pu for further computation, we can free the register containing pu).

Thus, what we want to do is compute an ordering of the edges E(G)1 from the vertex set
V (G).

We pick edges from E(G) one by one. When e ∈ E(G) is picked, we delete e from the
graph and store qe in a free register. Crucially, note that when a vertex u ∈ V (G) becomes
isolated in this process the polynomial pu is not required for further computation and the
register containing pu is freed. Thus, at any point of time in this edge-deletion procedure, the
number of registers required is equal to the sum of the number of edges removed from G and
the number of non-isolated vertices left in G.

The edge picking procedure works as follows. We break G into its connected components
G1 ∪G2 ∪ . . .∪Gs ∪Gs+1 ∪ . . .∪Gs+t, where G1, G2, . . . , Gs are the acyclic components and
Gs+1, . . . , Gs+t have cycles. We first compute the edges of G1, and then those of G2, and so
on. At the end, we compute the polynomials corresponding to the nodes in V ′.

Each connected component Gi is processed as follows: if there is an edge e in Gi that is
not a cut edge, we pick the edge e and delete it from the graph; otherwise, since every edge of
Gi is a cut edge, Gi must be a tree, and in this case, we remove any edge e that is incident to
a degree-1 vertex. Proceeding thus, we maintain the invariant that at all points, all but one
1 We can blur the distinction between vertices and edges and the polynomials they represent.

15

of the components of Gi are isolated vertices. We can use this to show that the number of
registers required at any point in the computation of qe for e ∈ E(Gi) is at most |E(Gi)|+ 1
(in particular, if Gi is acyclic this is at most |V (Gi)|).

Putting it all together, we can also show that the maximum number of nodes used in
computing the edges of G is bounded by max{|V (G)|, |E(G)| + 1, |E(G)| + |V ′|} ≤ w + 1.
Moreover, since at each step the polynomial of some node v ∈ V is computed, the total
number of steps in the straight-line program is at most w. This proves the lemma.

Proof of Proposition 7
The proof follows the same lines as that of [KI03, Theorem 4.1]. A similar result for

bounded-depth circuits is noted in [DSY08, Section 5]. We give a brief proof sketch. Assume to
the contrary that all three statements hold. Following the proof in [KI03], NEXP will collapse
to NPPerm. Hence, it suffices to show PPerm ⊆ NSUBEXP to derive a contradiction (to the
nondeterministic time hierarchy theorem). The language Perm consists of all tuples (M, v),
where M is an integer matrix and v is the binary encoding of Perm(M). The NSUBEXP
machine will guess a polynomial size, width-w circuit C for the n× n Permanent polynomial
over variables {xij |1 ≤ i, j ≤ n}. Next, we want to check whether C indeed computes the
Permanent polynomial. We can easily obtain a width-w polynomial-sized circuit Ck that
computes the permanent of k × k matrix over variables {xij |1 ≤ i, j ≤ k} from circuit C.
Next we check whether B1 = C1(x) − x ≡ 0. For n ≥ k > 1 check that Bk = Ck(X(k)) −∑k

i=1 x1,iCk−1(X(k)
i) ≡ 0, where X(k) = (xi,j)i,k∈[k] is the k × k matrix and X

(k)
i is a minor

obtained by deleting first row and ith column of X(k). It follows that if all the Bi’s are
identically zero polynomials then C computes the Permanent polynomial. Since Ck has a
width-w polynomial size circuit it follows that Bk can be computed by a polynomial-size width
w + O(1) circuit. We can now use the assumed deterministic subexponential time algorithm
for identity testing of bounded width circuits to check whether each Bk is identically zero.
Putting it together, we have PPerm ⊆ NSUBEXP.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

