
Improved and Derandomized Approximations

for Two-Criteria Metric Traveling Salesman

Christian Glaßer Christian Reitwießner Maximilian Witek

University of Würzburg, Germany

19th August 2009

Abstract

We improve and derandomize the best known approximation algorithm for the two-
criteria metric traveling salesman problem (2-TSP). More precisely, we construct a deter-
ministic 2-approximation which answers an open question by Manthey.

Moreover, we show that 2-TSP is randomized (3/2 + ε, 2)-approximable, and we give
the first randomized approximations for the two-criteria traveling salesman path problems
2-TSPP, 2-TSPPs, and 2-TSPPst. We further provide arguments that indicate the hardness
of improving our randomized approximation algorithms in the sense that such improve-
ments force us to improve the best known approximations for TSP, TSPPs, and TSPPst

(Christofides 1976, Hoogeveen 1991).
A particular interesting situation emerges for 2-TSP: Because of possible trade-offs be-

tween the approximation ratios in the first and in the second component, there could exist
randomized approximation algorithms that are incomparable to our algorithms. For these
we can narrow down the approximation ratios that could be within reach, i.e., that will not
force us to improve the well-studied approximations by Christofides and Hoogeveen. This
leads to the question of whether 2-TSP has an (α, β)-approximation where 5/3 ≤ α, β < 2.

1 Introduction

The traveling salesman problem is one of the oldest combinatorial optimization problems. For
a given set of cities, one has to find a shortest cycle that visits each city exactly once. This
problem was first mentioned in 1831 as a problem of a traveling salesman who wants to cover
as many locations as possible without visiting locations twice [Voi31]. The first reference as
a mathematical optimization problem goes back to Karl Menger, who gave a definition in a
colloquium in Vienna in 1930. In the 1950s and 1960s the traveling salesman problem became
increasingly popular in mathematics and computer science.

The substantial majority of the variants of the traveling salesman problem encountered in
practice (including all geometric versions) has metric distance functions [JP85]. In fact, the
problem becomes metric, if we allow each city to be visited more than once. Therefore, with
a minimum loss of generality, one often assumes a metric distance function and studies the
metric traveling salesman problem (TSP). In our paper we follow this perspective and assume
all distance functions to be metric. A special case of TSP is the Euclidean variant, where each

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 76 (2009)

city is located at some point in the plane, and the distance function of any two cities is given
by their Euclidean distance.

In 1972, a breakthrough was achieved by Karp [Kar72] who proved the difficulty of TSP by
showing its NP-completeness. This shows that the search for a polynomial-time algorithm
for TSP is an extremely challenging endeavor and is as difficult as solving any NP-complete
problem. However, within all NP-complete problems, there are great differences in the difficulty
of computing approximate solutions. So the NP-completeness of TSP raises the question for
good approximation algorithms.

For a long time, the best known approximation algorithm for TSP and Euclidean TSP was
the simple tree-doubling method. Given the facts that there are spanning trees with costs
less than an optimal Hamiltonian cycle (the cycle itself contains spanning trees as subgraphs),
and that minimum spanning trees can be determined in polynomial time, we can use each
edge of a minimum spanning tree twice and obtain a Hamiltonian cycle with approximation
ratio 2. In 1976, Christofides [Chr76] improved these results significantly by showing that a
combination of a minimum spanning tree with a minimum matching yields a Hamiltonian cycle
with approximation ratio 3/2. The latest breakthrough in this line of research was achieved by
Arora [Aro98] who found a polynomial-time approximation scheme (PTAS) for the Euclidean
TSP. However, after 30 years of research, Christofides’ basic algorithm is still the best known
approximation for the general TSP.

Regarding lower bounds, Papadimitriou and Vempala [PV06] showed that TSP cannot be ap-
proximated with a ratio better than 220/219, unless P = NP. Another variant of TSP is studied
by Papadimitriou and Yannakakis [PY93] who construct a 7/6-approximation algorithm for
TSP(1,2), which is the restriction of TSP where all distances are either 1 or 2. Furthermore,
TSP motivates several path problems where for given cities, one has to find a shortest path
that visits each city exactly once and that starts and ends in specified (resp., arbitrary) cities.
To this end, Hoogeveen [Hoo91] introduced the problems TSPP, TSPPs, and TSPPst, which
are the metric traveling salesman path problems with 0, 1, and 2 specified vertices. He showed
3/2-approximations for TSPP and TSPPs, and a 5/3-approximation for TSPPst.

Two-Criteria TSP: In this paper we study the traveling salesman problem in the presence
of two metric cost functions (2-TSP). For instance, consider the distance of the route as the
first and its customs duties as the second cost function. We are interested in finding a tour that
minimizes both, the distance and the customs duties. Since these objectives are conflicting, we
cannot hope for a single optimal solution, but there will be a trade-off between the objectives.
The Pareto curve captures the notion of optimality in settings with multiple objectives. It
consists of all solutions that are optimal in the sense that there is no solution that is better
with respect to all objectives. So for a given situation (i.e., cities with distances and customs
duties), the Pareto curve shows us all optimal decisions (i.e., optimal Hamiltonian tours).

For a general introduction to multi-criteria optimization we refer to the survey by Ehrgott
and Gandibleux [EG00] and the textbook by Ehrgott [Ehr05]. Regarding the approximability
of Pareto curves, Papadimitriou and Yannakakis [PY00] show the following important result:
Every Pareto curve has a (1+ε)-approximation of size polynomial in the instance and 1/ε. This
means that even though a Pareto curve might be an exponentially large object, there always
exists a polynomial-size approximation. This result clears the way for a general investigation of
the approximability of Pareto curves of multi-criteria optimization problems.

The multi-criteria TSP and in particular 2-TSP was first studied by Gupta and Warburton
[GW86]. Angel, Bampis, and Gourvès [ABG04] give a 3/2-approximation for the two-criteria

2

variant of TSP(1,2). Furthermore, Angel et al. [ABGM05] investigate the non-approximability
of this problem. Ehrgott [Ehr00] studies 2-TSP with the normalization approach where a norm is
used to aggregate both cost functions into one. This approach uses a definition of approximation
ratios that differs from the two-component approximation ratios that we consider in our paper.
Manthey and Ram [MR09] give a randomized (2+ε)-approximation algorithm for 2-TSP, which
is the first approximation of the Pareto curve for the general 2-TSP.

Our Results: Manthey [Man09] notes that most approximation algorithms for multi-criteria
TSP use randomness for computing approximate Pareto curves of cycle covers (resp., match-
ings), and he raises the question of whether these algorithms can be improved and derandomized:

Are there algorithms for multi-criteria TSP that are faster,
deterministic, and achieve better approximation ratios?

We give a positive answer to this question in form of a deterministic approximation algorithm for
2-TSP whose approximation ratio is slightly better than the ratio of the currently best known
randomized approximation. More precisely, Manthey and Ram [MR09] showed that 2-TSP is
randomized (2 + ε)-approximable, while in the present paper we improve this to a deterministic
2-approximation. Furthermore, our algorithm is faster than the algorithm by Manthey and
Ram, since the expensive approximation of the Pareto-minimal matchings is replaced by an
easy graph algorithm (cf. the algorithm match at page 9).

This improvement is based on an easy observation: Though deterministic approximations of
Pareto-minimal matchings are not known (and computing these matchings exactly is NP-hard
[PY00]), in the metric case it is easy to compute a matching in a spanning tree such that the
matching has at most the same costs as the tree. Of course, such a matching is by far not
optimal. Nevertheless, it suffices to improve the approximation, since at present, the bottleneck
of approximations for 2-TSP is not the method of finding a good matching, but is the argument
that a good matching exists.

By this observation we can approximate a Pareto-minimal Hamiltonian tour as follows: Start
with a fairly accurate approximation of all Pareto-minimal spanning trees which is possible
using a known FPTAS [PY00]. This approximation contains trees T1 and T2 such that T1’s
costs in the first component (resp., T2’s costs in the second component) are clearly smaller than
the corresponding costs of a Pareto-optimal Hamiltonian tour. Let U be the vertices in T1 with
odd degree. Deterministically extract from T2 a perfect matching for U and combine it with T1.
This results in an Eulerian graph whose Eulerian tour is a 2-approximation for the Hamiltonian
tour we started with.

Although our approximation is faster, deterministic, and has a better approximation ratio, it
seems likely that the approximation by Manthey and Ram [MR09] shows a better performance in
practice. The reason is that the randomized approximation of the Pareto-minimal matchings will
most likely find matchings that are less expensive than the one we construct deterministically.
If a particular application can cope with a performance loss by a factor of at most 2, then one
can run both algorithms (or rather an optimized combination of them) in parallel. This results
in an algorithm that guarantees the approximation ratio 2 and that with high probability yields
a much better ratio (i.e., at least (3/2 + ε, 2) as shown in Theorem 3.5).

Besides the deterministic 2-approximation of 2-TSP we show that this problem is randomized
(3/2 + ε, 2)-approximable and randomized (3/2, 2 + ε)-approximable, which is achieved basically

3

by a more precise analysis of the algorithm by Manthey and Ram [MR09]. Note that the first
component exactly meets the approximation ratio of Christofides’ approximation [Chr76], which
is still the best known approximation for TSP. Further we construct the first approximation al-
gorithms for the two-criteria traveling salesman path problems 2-TSPP, 2-TSPPs, and TSPPst.
Table 1 summarizes the ratios of the approximation algorithms that we provide in this paper.

Problem Deterministic Approximation Randomized Approximation Ref.

2-TSP (2, 2) (3/2 + ε, 2), (3/2, 2 + ε) 3.2, 3.4, 3.5

2-TSPP (2 + ε, 2 + ε) (3/2 + ε, 5/3 + ε) 4.6, 4.1

2-TSPPs (2 + ε, 2 + ε) (3/2 + ε, 2 + ε) 4.6, 4.3

2-TSPPst (2 + ε, 2 + ε) (2 + ε, 2 + ε) 4.5

Table 1: Summary of the approximation ratios obtained in this paper where ε > 0.

In the second part of the paper we give several arguments that indicate the hardness of improv-
ing our approximation algorithms. For this we demonstrate several approximation preserving
reductions that allow us to translate well-studied problems like TSP or TSPPst to the two-
criteria optimization problems 2-TSP, 2-TSPP, and 2-TSPPs. From this we obtain that certain
improvements of our approximation algorithms for 2-TSP, 2-TSPP, and 2-TSPPs force us to im-
prove the best known approximation algorithms for TSP, TSPPs, and TSPPst [Chr76, Hoo91].
Considerable improvements of the latter, well-studied approximations seem very difficult to ob-
tain, not least because Christofides’ approximation for TSP and Hoogeveen’s approximation for
TSPPst are unbeaten for decades. So we can conclude that the improvements of our algorithms
are difficult as well. Table 2 summarizes the arguments that indicate the hardness of improving
our approximation algorithms.

As a consequence of our results, we obtain a particular interesting situation for 2-TSP (cf. Fig-
ure 1): We know that 2-TSP is randomized (3/2, 2+ε)-approximable and randomized (3/2+ε, 2)-
approximable. It is difficult to improve these approximations with respect to any component,
and it is also difficult to obtain a (5/3− ε, 2− ε)-approximation. However, we have no evidence
in favor of or against an (α, β)-approximation where 5/3 ≤ α, β < 2. The search for such an
algorithm remains a challenging open problem.

Figure 1: Approximation ratio results for 2-TSP. An approximation ratio inside A would immediately
improve Christofides’ approximation. We show evidence against an approximation ratio inside B, and
further prove approximation ratio r1 and r2, hence area D is of no further interest. However, evidence
against approximation algorithms within C remains an open question.

The paper is organized as follows. The preliminaries in section 2 give some basics on the
concept of multi-criteria optimization and define the problems studied here. Section 3 contains

4

Problem Randomized ratio An improvement . . . yields . . . for Ref.
proved in this paper to ratio . . . ratio of . . . problem

2-TSP (3/2, 2 + ε) (3/2− ε, α) (3/2− ε) TSP 5.1

(3/2 + ε, 2) (5/3− ε, 2− ε) (5/3− ε) TSPPst 5.7

2-TSPP (3/2 + ε, 5/3 + ε) (3/2− ε, α) (3/2− ε) TSPP 5.8

(3/2− ε, 5/3− ε) (5/3− ε) TSPPst 5.10

(3/2− ε, 2− ε) (3/2− ε) TSPPs 5.12

2-TSPPs (3/2 + ε, 2 + ε) (3/2− ε, α) (3/2− ε) TSPPs 5.13

(3/2 + ε, 2− ε) (3/2 + ε) TSPPst 5.16.1

(3/2− ε, 2− ε) (3/2− ε) TSP 5.16.2

(3/2− ε, 2− ε) (3/2− ε) TSPPst 5.16.2

2-TSPPst (2 + ε, 2 + ε) (5/3− ε, α) (5/3− ε) TSPPst 5.17

Table 2: Arguments that indicate the difficulty of improving the obtained randomized approximations
where ε > 0 and α > 1. The table shows that if the deterministic (resp., randomized) approximation
ratio of a two-criteria problem is improved, then this also improves the deterministic (resp., randomized)
approximation ratio of a well-studied optimization problem. For instance, if 2-TSPPs is randomized
(3/2− ε, 2− ε)-approximable, then TSP is randomized (3/2− ε)-approximable.

the deterministic and randomized approximation algorithms for 2-TSP, while section 4 provides
these algorithms for the traveling salesman path problems 2-TSPP, 2-TSPPs, and 2-TSPPst. In
section 5 we argue that it is difficult to obtain certain improvements regarding the approximation
ratios of our algorithms. Finally, in section 6 we summarize the open questions of this paper.

2 Preliminaries

2.1 Multi-Criteria Optimization

The tuple P = (I,S, sol,m, goal) is a k-objective optimization problem with the set of valid
instances I, the solution space S, a mapping sol : I → 2S such that for every instance x ∈
I, sol(x) denotes the set of valid solutions for x, a measure function m : I × S → Nk with
components mi and an objective vector goal with components goali ∈ {min,max} for 1 ≤ i ≤ k.
To simplify our notation, if x ∈ I is clear from the context, we will write m(y) instead of m(x, y)
for any y ∈ sol(x), and if k = 1, we will identify the vectors with their unique component, hence
m1 = m, goal1 = goal. We will only consider single-criterion and two-criteria minimization
problems, hence, for the remainder of this paper, let goal1 = goal2 = min. For simplicity,
we will define the following concepts only for minimization problems. An extension to general
optimization problems is straightforward.

Let k ∈ N and P = (I,S, sol,m, goal) be a k-objective optimization problem. We consider
k-dimensional vectors u, v ∈ Rk and say u ≤ v if ui ≤ vi for all i ∈ {1, 2, . . . , k}. Let arithmetic
operations on such vectors be defined componentwise. For any problem instance x ∈ I and any
two solutions y1, y2 ∈ sol(x), we say that y1 dominates y2 if m(y1) ≤ m(y2) and m(y1) 6= m(y2).

5

For any α ∈ Rk with αi ≥ 1 for all i, we say that y2 α-approximates y1 if m(y2) ≤ α ·m(y1).
We call a solution Pareto-optimal if it is not dominated by another solution, and call the set
of all Pareto-optimal solutions of an instance its Pareto set or, equivalently, its Pareto curve.
Furthermore, we call a set of solutions S ⊆ sol(x) an α-approximate Pareto set of x if for every
solution y1 ∈ sol(x) there is a solution y2 ∈ S such that y2 α-approximates y1.

Let A be an algorithm and F be a family of algorithms such that, for every ε ∈ Rk with εi > 0
for all i, F contains an algorithm Aε.

We call A an α-approximation algorithm for P if for every x ∈ I, the algorithm A(x) returns an
α-approximate Pareto set of x in time polynomial in |x| (i.e., the length of x). If, however, A(x)
returns an α-approximate Pareto set of x with probability at least 1/2 over all executions of A(x),
we call A a randomized α-approximation algorithm. In all cases, we require A(x) ⊆ sol(x). If
A is an α-approximation algorithm (randomized α-approximation algorithm, resp.) for P, we
call α the approximation ratio of A (randomized approximation ratio of A, resp.).

We say that F is a fully polynomial time approximation scheme (FPTAS) for P if, for every
ε ∈ Rk with εi > 0 for all i, Aε is an (1 + ε)-approximation algorithm for P that runs in time
polynomial in |x|+ 1/ε1 + · · ·+ 1/εk for all x ∈ I. Analogously, if some Aε is randomized, we call
F a fully polynomial time randomized approximation scheme (FPRAS).

If there is some α-approximation algorithm (randomized α-approximation algorithm, resp.) for
P, we say that P is α-approximable (randomized α-approximable, resp.). If P is (α, . . . , α)-
approximable, we will simply say P is α-approximable.

2.2 Relevant Problems

Let V be a finite set (of vertices). A function c : V × V → N is called pseudometric if for all
u, v, w ∈ V : c(u, u) = 0, c(u, v) = c(v, u) and c(u, v) ≤ c(u,w) + c(w, v). c is called metric if
additionally c(u, v) > 0 whenever u 6= v. We extend the (pseudo)metric property to functions
c : V ×V → Nk with k components ci where each component ci itself is (pseudo)metric. We fur-
ther extend a pseudometric function c to sets of edges S ⊆ V ×V by c(S) =

∑
(u,v)∈S c(u, v). A

set of edges P ⊆ V ×V is a Hamiltonian path on a set of vertices V if there is a bijective number-
ing π : {1, 2, . . . ,#V } → V such that P = {(π(1), π(2)), (π(2), π(3)), . . . , (π(#V − 1), π(#V))}
(i.e., a “connected” path that visits each vertex exactly once). We say that P starts at π(1)
and ends at π(#V). A set of edges P ′ ⊆ V × V is a Hamiltonian tour if P ′ = P ∪ {(t, s)} for
some Hamiltonian path P starting at s and ending at t. For an undirected graph G and one of
its vertices v, let degG(v) denote the degree of v in G, i.e., the number of edges incident to v.
Note that this function can be computed in polynomial time.

We now define the main problems of this paper. Note that, since we only consider single-
criterion and two-criteria minimization problems, for each of the following problems, we have
goal1 = goal2 = min. Let us first consider the single-criterion minimization problems.

Traveling Salesman (TSP)

Instance: finite set V (cities), pseudometric function c : V × V → N (distances)

Solution: Hamiltonian tour T ⊆ V × V
Measure: c(T)

6

Traveling Salesman Path (TSPP)

Instance: finite set V (cities), pseudometric function c : V × V → N (distances)

Solution: Hamiltonian path P ⊆ V × V
Measure: c(P)

Traveling Salesman Path with Start Vertex (TSPPs)

Instance: finite set V (cities), pseudometric function c : V × V → N (distances), start point
s ∈ V

Solution: Hamiltonian path P ⊆ V × V starting at s

Measure: c(P)

Traveling Salesman Path with Start and End Vertex (TSPPst)

Instance: finite set V (cities), pseudometric function c : V × V → N (distances), start point
s ∈ V , end point t ∈ V

Solution: Hamiltonian path P ⊆ V × V starting at s and ending at t

Measure: c(P)

Minimum Spanning Tree (MST)

Instance: finite set V (vertices), function c : V × V → N (edge costs)

Solution: a spanning tree T ⊆ V × V of the complete graph (V, V × V)

Measure: c(T)

Minimum Perfect Matching (MM)

Instance: finite set V (vertices), function c : V × V → N (edge costs)

Solution: a perfect matching M ⊆ V × V of the complete graph (V, V × V)

Measure: c(M)

We can now define the following two-criteria minimization problems.

2-TSP, 2-TSPP, 2-TSPPs, 2-TSPPst, 2-MST, 2-MM

Let P be any of the single criterion minimization problems as defined above. We define the
two-criteria minimization problem 2-P by considering two-dimensional functions c : V ×V → N2

with components c1, c2 instead of one-dimensional functions. For 2-TSP, 2-TSPP, 2-TSPPs and
2-TSPPst we require c to be pseudometric.

Our algorithms will use the following known approximation schemes.

Theorem 2.1 ([PY00]) There is an FPTAS for 2-MST and an FPRAS for 2-MM.

We will refer to the FPTAS for 2-MST by 2-MST-Approx, and denote an execution
of 2-MST-Approx on vertex set V with cost function c and approximation factor ε by
2-MST-Approx(V, c, ε). Analogously, let 2-MM-ApproxR refer to the FPRAS for 2-MM, and
let 2-MM-ApproxR(V, c, ε) denote an execution of 2-MM-ApproxR on vertex set V , cost function c
and approximation factor ε. We will repeatedly call 2-MM-ApproxR in our randomized approxi-
mation algorithms. In each algorithm, we assume that 2-MM-ApproxR is amplified in a way such
that the probability that all calls succeed is at least 1/2.

7

3 Approximation of 2-TSP

The best known approximation result for 2-TSP is a randomized (2 + ε)-approximation which
was given by Manthey and Ram [MR09]. In this section we present an algorithm that improves
this result in two ways: First, our algorithm is deterministic and not randomized. Second, the
approximation ratio is slightly improved from 2 + ε to 2.

The second part of this section contains a randomized algorithm that yields both a (3/2 +
ε, 2)-approximation and a (3/2, 2 + ε)-approximation for 2-TSP. So the first component exactly
meets the approximation ratio of Christofides’ approximation, which is still the best known
approximation for TSP.

3.1 Deterministic Approximation for 2-TSP

The deterministic 2-approximation for 2-TSP that is given below uses ideas from Christofides’
approximation for TSP. However, we do not compute the perfect matching for the odd degree
vertices by the known randomized approximation algorithm for two-criteria minimum matching
[PY00]. Instead, we show that a suitable matching can be extracted deterministically and error-
free from an approximate two-criteria minimum spanning tree. More precisely, the algorithm
transforms a spanning tree into a matching of at most the same costs. In this way we avoid
the randomized approximation algorithm for MM and hence avoid the associated randomness
and the ε-error. Of course, the matching we obtain is by far not optimal (indeed computing
Pareto-minimal matchings is NP-hard [PY00]). Nevertheless, this matching suffices to improve
the approximation, since at present, the bottleneck of approximations for 2-TSP is not the
method of finding a good matching, but is the argument that a good matching exists.

Let V be a finite set (of cities), c : V × V 7→ Nk a pseudometric (distance) function, T ⊆ V × V
be a spanning tree of the complete graph (V, V × V), and U ⊆ V be a set of vertices of even
cardinality. By pT (u, v) ⊆ T we denote the unique path from node u to node v in T . Note that
this path can be computed in time polynomial in the size of T .

To extract a matching with costs less or equal to c(T), we take an arbitrary perfect matching
M on U and consider any distinct pair of matching elements (u, u′), (v, v′) ∈ M . Assume that
pT (u, u′) and pT (v, v′) intersect on at least one edge. We can easily remove this intersection
by rearranging u, v, u′, v′ in M (cf. Figure 2). We repeat this process until there are no more
intersections in M . It follows from the triangle inequality that c(M) ≤ c(T).

Figure 2: The paths pT (u, u′) and pT (v, v′) intersect on the dashed edges. Matching u with v and u′

with v′ will remove the intersecting edges and thereby improve the costs of M .

We now give a formal definition of the matching algorithm sketched above. In order to simplify
the proofs, we use an iterative algorithm. We remark that there exists a recursive algorithm
that has the same properties and that additionally runs in linear time.

8

Algorithm: match(U, T)
Input : A tree T and a subset U of its vertices of even cardinality
Output: A perfect matching M on U such that c(M) ≤ c(T) for any pseudometric

function c

match(U, T)1
begin2
find arbitrary perfect matching M ⊆ U × U;3
while there are distinct (u, u′), (v, v′) ∈M with pT (u, u′) ∩ pT (v, v′) 6= ∅ do4

M := M \ {(u, u′), (v, v′)};5
if pT (u, v) ∩ pT (u′, v′) = ∅ then6

M := M ∪ {(u, v), (u′, v′)}7
else8

M := M ∪ {(u, v′), (u′, v)}9
end10

end11
return M12

end13

Lemma 3.1 Let V be a finite set (of vertices), k ≥ 1, c : V × V 7→ Nk be a pseudometric
(distance) function, and T ⊆ E be a spanning tree of the complete graph G = (V,E) on V .
Then, for any U ⊆ V of even cardinality, match(U, T) will find a perfect matching M on U
such that c(M) ≤ c(T) in polynomial time.

Proof Let m denote the number of edges of T , and S(M,T) =
∑

(u,v)∈M #pT (u, v) be the
sum of the number of edges of all paths used in T for some perfect matching M . Clearly,
S(M,T) ≤ m2/2, since there are at most m edges per path and at most m/2 distinct matching
pairs. In every iteration, we switch two matching pairs, which will reduce S(M,T) by at least
two. Hence, the algorithm will terminate after at most m2/4 iterations. Since all operations of
the algorithm (comparison of two unique paths in a tree and set operations) are polynomially
fast, we obtain a polynomial-time algorithm.

After termination of the algorithm, for any two distinct (u, v), (u′, v′) ∈ M , we have distinct
paths in the tree, i.e., pT (u, v)∩ pT (u′, v′) = ∅. By the triangle inequality we can now estimate
the overall costs of M by

c(M) =
∑

(u,v)∈M

c(u, v)

≤
∑

(u,v)∈M

c(pT (u, v))

≤ c(T).

2

We proceed with the following deterministic algorithm that on input of a finite set V and a
pseudometric function c : V ×V → N2 computes a (2, 2)-approximation for 2-TSP. Please recall
the definition of the algorithm 2-MST-Approx (text after Theorem 2.1).

9

Algorithm: 2-TSP-ApproxDet(V, c)
Input : A finite set V (cities) and a pseudometric (distance) function c : V × V 7→ N2

Output: A set S ⊆ {T ⊆ V × V | T is Hamiltonian tour of V }
2-TSP-ApproxDet(V , c)1
begin2
ε := 1

2#V ;3

S := ∅;4
P := 2-MST-Approx(V , c, ε);5
foreach (T1, T2) ∈ P × P do6

U := {v ∈ V | degT1
(v) is odd};7

M := match(U, T2);8
Teuler := Eulerian tour of V using the edges from T1 and M;9
Tapprox := Hamiltonian tour computed from Teuler by skipping previously10
visited vertices;
S := S ∪ {Tapprox}11

end12
return S13

end14

Theorem 3.2 2-TSP is (2, 2)-approximable.

Proof Let V be a finite set, c : V × V → N2 be a pseudometric (distance) function and
R ⊆ V × V be an arbitrary Pareto-minimal Hamiltonian tour of V with respect to c. We show
that 2-TSP-ApproxDet(V, c) contains a Hamiltonian tour Tapprox such that c(Tapprox) ≤ 2c(R).

As in the algorithm 2-TSP-ApproxDet, let m = #V and ε = 1
2m . For any i ∈ {1, 2} let ri be

the edge of R with maximum costs in the i-th criterion. It holds that ci(ri) ≥ 1
mci(R), and, by

removing ri from R, we obtain spanning trees T ′i with the properties

c(T ′1) ≤ ((1− 1
m

)c1(R), c2(R)) and

c(T ′2) ≤ (c1(R), (1− 1
m

)c2(R)).

The FPTAS for the minimum spanning tree, 2-MST-Approx(V, c, ε), provides an ε-
approximation of every (minimum) spanning tree of G. So T ′1 and T ′2 are approximated by
say T1 and T2 such that

c(T1) ≤ (1 +
1

2m
)c(T ′1) and

c(T2) ≤ (1 +
1

2m
)c(T ′2).

The number of vertices of odd degree in an undirected graph is even, so c(M) ≤ c(T2) by
Lemma 3.1. Constructing the Eulerian tour in line 9 is possible since all vertices in the (multi-)
graph with edges from T1 and M have even degree. The Eulerian tour consists of exactly the
edges in T1 and in M (in a specific order) and skipping vertices in line 10 cannot increase the

10

costs by the triangle equality. All in all we obtain

c(Tapprox) ≤ c(Teuler)
= c(T1) + c(M)
≤ c(T1) + c(T2)

≤ (1 +
1

2m
)(c(T ′1) + c(T ′2))

≤ (1 +
1

2m
)((1− 1

m
) + 1)c(R)

= (2− 1
2m2

)c(R)

< 2c(R).

Hence c(Tapprox) ≤ 2c(R).

It remains to show that 2-TSP-ApproxDet runs in polynomial time. The runtime of the FPTAS
2-MST-Approx is polynomially bounded in m + 1

ε = 3m. Thus, the cardinality of P itself is
bounded by a polynomial in m, say p. For each of the p2 combinations of spanning trees, the
steps 7–11 can be done in polynomial time (cf. Lemma 3.1). Hence 2-TSP-ApproxDet is a
polynomial-time algorithm. 2

3.2 Randomized Approximation for 2-TSP

The randomized algorithm that is given below provides both a (3/2 + ε, 2)-approximation and a
(3/2, 2+ε)-approximation for 2-TSP. This algorithm is essentially the randomized approximation
for 2-TSP that was given by Manthey and Ram [MR09]: First, one computes approximations
of the Pareto-minimal spanning trees, considers the vertices that have odd degree in a single
tree, computes approximations of the Pareto-minimal perfect matchings of these vertices, and
finally pairwise combines all trees with all suitable matchings which results in several Eulerian
tours. By a precise analysis of this algorithm, we obtain approximation ratios that are better
than the ones stated in [MR09].

The algorithm below calls the algorithms 2-MST-Approx and 2-MM-ApproxR, which were defined
after Theorem 2.1. The use of the FPTAS for the two-criteria minimum spanning tree problem
is essential, as it allows us to reduce the error far enough such that it is dominated by the costs
of a single edge in an optimal Hamiltonian tour. This makes it possible to remove an ε-error in
one of the two criteria.

11

Algorithm: 2-TSP-ApproxRandε(V , c)

Input : A finite set V (cities) and a pseudometric (distance) function c : V × V 7→ N2

Output: A set S ⊆ {T ⊆ V × V | T is Hamiltonian tour of V }
2-TSP-ApproxRandε(V , c)1
begin2
m := #V ; ε1 := ε

m2; ε2 := ε
2m;3

S := ∅;4
P := 2-MST-Approx(V , c, ε1);5
foreach T ∈ P do6

U := {v ∈ V | degT (v) is odd};7
A := 2-MM-ApproxR((U, U2), c, ε2);8
foreach M ∈ A do9

Teuler := Eulerian tour of V using the edges from T and M;10
Tapprox := Hamiltonian tour computed from Teuler by skipping11
previously visited vertices;
S := S ∪ {Tapprox}12

end13

end14
return S15

end16

Lemma 3.3 For every ε > 0, the algorithm 2-TSP-ApproxRandε runs in polynomial time.

Proof Since 2-MST-Approx is an FPTAS, its running time is polynomial in n + 1
ε1

= n + m2

ε
where n is the size of the input (V, c). So we can obtain P in polynomial time and P contains
only polynomially many elements. This means that the first loop is iterated polynomially often.
2-MM-ApproxR runs in polynomial time in the length of ((U,U2), c) and thus also in n. This in
turn means that A contains only polynomially many matchings so the second loop is iterated
only polynomially often. The operations in lines 10 and 11 can obviously be carried out in
polynomial time and thus the whole algorithm runs in polynomial time. 2

Theorem 3.4 2-TSP is randomized (3/2 + ε, 2)-approximable for every ε > 0.

Proof We show that 2-TSP-ApproxRandε computes a (3/2 + ε, 2)-approximation for 2-TSP. By
Lemma 3.3 the algorithm runs in polynomial time so it remains to show that the approximation
is correct. Let ε > 0 and w.l.o.g. let ε ≤ 1 (otherwise, just call the algorithm with ε =
1). Furthermore, assume that there are at least two cities in the input. We show that the
algorithm 2-TSP-ApproxRandε computes a (3/2 + ε, 2)-approximation for every pseudometric
2-TSP instance (V, c) with probability at least 1/2.

Let V (a finite set) and c : V → N2 (a pseudometric distance function) be the inputs for the
algorithm 2-TSP-ApproxRandε. Furthermore, let R = (r1, . . . , rm) ⊆ V ×V be a Pareto-optimal
Hamiltonian tour in G with respect to c. Choose an r ∈ R with maximal costs in the second
criterion. Hence c2(r) ≥ 1

mc2(R). If we delete r from R, then we obtain a spanning tree T ′ of
G such that

c(T ′) ≤ (c1(R),
m− 1
m

c2(R)).

12

By ε1 = ε
m2 , the algorithm 2-MST-Approx finds a spanning tree T with costs

c(T) ≤ (1 +
ε

m2
)(c1(R),

m− 1
m

c2(R)).

Let U ⊆ V be the vertices of odd degree in T (U has even cardinality). From R we can easily
find two distinct perfect matchings M1 and M2 on U such that c(M1) + c(M2) ≤ c(R): We
simply use every other edge from the sets of edges obtained by connecting every vertex u ∈ U
to the next (with respect to the order of R) vertex in U . Hence, there is some perfect matching
M ′ on U such that c(M ′) ≤ (1

2c1(R), c2(R)). By ε2 = ε
2m , there must be some approximate

minimum matching M in A (with probability at least 1/2) such that

c(M) ≤ (1 +
ε

2m
)c(M ′)

≤ (1 +
ε

2m
)(

1
2
c1(R), c2(R)).

Similarly to the argumentation in the proof of Theorem 3.2, we obtain the following (note that
m ≥ 2 and ε ≤ 1):

c1(Tapprox) ≤ c1(T) + c1(M)

≤ (1 +
ε

m2
)c1(R) + (1 +

ε

2m
)
1
2
c1(R)

= (
3
2

+ ε(
1
m2

+
1

4m
))c1(R)

≤ (
3
2

+ ε)c1(R)

and

c2(Tapprox) ≤ c2(T) + c2(M)

≤ ((1 +
ε

m2
)
m− 1
m

+ (1 +
ε

2m
))c2(R)

≤ ((1 +
1
m2

)
m− 1
m

+ 1 +
1

2m
)c2(R)

= (
m− 1
m

+
m− 1
m3

+ 1 +
1

2m
)c2(R)

= (2− 1
m

+
m− 1
m3

+
1

2m
)c2(R)

= (2 +
−m2 +m− 1 + 1

2m
2

m3
)c2(R)

= (2 +
−1

2m
2 +m− 1
m3

)c2(R)

≤ (2 +
−1

2m
2 + 1

2m
2 − 1

m3
)c2(R)

= (2− 1
m3

)c2(R)

≤ 2c2(R)

2

13

A similar estimation shows that 2-TSP-ApproxRandε guarantees the approximation ratio (3/2, 2+
ε) as well, i.e., the ε is in the second instead of the first component.

Theorem 3.5 2-TSP is randomized (3/2, 2 + ε)-approximable for every ε > 0.

Proof We show that 2-TSP-ApproxRandε computes a (3/2, 2 + ε)-approximation for 2-TSP. By
Lemma 3.3 the algorithm runs in polynomial time so it remains to show that the approximation
is correct. Let ε > 0 and w.l.o.g. let ε ≤ 1 (otherwise, just call the algorithm with ε =
1). Furthermore, assume that there are at least two cities in the input. We show that the
algorithm 2-TSP-ApproxRandε computes a (3/2, 2 + ε)-approximation for every pseudometric
2-TSP instance (V, c) with probability at least 1/2.

Let V (a finite set) and c : V → N2 (a pseudometric distance function) be the inputs for the
algorithm 2-TSP-ApproxRandε. Furthermore, let R = (r1, . . . , rm) ⊆ V ×V be a Pareto-optimal
Hamiltonian tour in G with respect to c.

Choose an r ∈ R with maximal costs in the first criterion. Hence c1(r) ≥ 1
mc1(R). If we delete

r from R we obtain a spanning tree T ′ of G such that

c(T ′) ≤ (
m− 1
m

c1(R), c2(R)).

By ε1 = ε
m2 , the algorithm 2-MST-Approx finds a spanning tree T with costs

c(T) ≤ (1 +
ε

m2
)(
m− 1
m

c1(R), c2(R)).

Let U ⊆ V be the vertices of odd degree in T (U has even cardinality). From R we can easily
find two distinct perfect matchings M1 and M2 on U such that c(M1)+c(M2) ≤ c(R), we simply
use every other edge from the sets of edges obtained by connecting every vertex u ∈ U to the
next (with respect to the order of R) vertex in U . Hence, there is some perfect matching M ′ on
U such that c(M ′) ≤ (1

2c1(R), c2(R)). By ε2 = ε
2m , there must be some approximate minimum

matching M in A (with probability at least 1
2) such that

c(M) ≤ (1 +
ε

2m
)c(M ′)

≤ (1 +
ε

2m
)(

1
2
c1(R), c2(R)).

Similarly to the argumentation in the proof of Theorem 3.2, we obtain the following (note that
m ≥ 2 and ε ≤ 1):

14

c1(Tapprox) ≤ c1(T) + c1(M)

≤ (1 +
ε

m2
)
m− 1
m

c1(R) + (1 +
ε

2m
)
1
2
c1(R)

≤ (1 +
1
m2

)
m− 1
m

c1(R) + (1 +
1

2m
)
1
2
c1(R)

= (
m− 1
m

+
m− 1
m3

+
1
2

+
1

4m
)c1(R)

= (
3
2
− 1
m

+
m− 1
m3

+
1

4m
)c1(R)

= (
3
2

+
−m2 +m− 1 + 1

4m
2

m3
)c1(R)

= (
3
2

+
−1 +m− 3

4m
2

m3
)c1(R)

≤ (
3
2
− 1
m3

)c1(R)

≤ 3
2
c1(R)

and

c2(Tapprox) ≤ c2(T) + c2(M)

≤ (1 +
ε

m2
)c2(R) + (1 +

ε

2m
)c2(R)

≤ (1 +
ε

4
)c2(R) + (1 +

ε

4
)c2(R)

≤ (2 + ε)c2(R).

2

4 Approximation of Traveling Salesman Path Problems

This section provides the following approximation algorithms:

• randomized (3/2 + ε, 5/3 + ε)-approximation for 2-TSPP

• randomized (3/2 + ε, 2 + ε)-approximation for 2-TSPPs

• (2 + ε, 2 + ε)-approximation for 2-TSPPst

The deterministic approximation for 2-TSPPst is easily obtained by a tree-doubling of the ap-
proximated Pareto-minimal spanning trees. The constructions of the randomized approximation
algorithms are similar to each other, but more complicated. Each of them relies on an argument
that assures the existence of a matching with sufficiently low costs. These matchings are con-
structed in separate lemmas using combinatorial arguments. With these lemmas at hand we can
follow a strategy similar to Christofides’ approximation for TSP: We compute approximations
of the Pareto-minimal spanning trees and, for every single tree, we consider the vertices that
have odd degree, compute approximations of the Pareto-minimal matchings of these vertices
and finally pairwise combine these matchings with their corresponding tree.

15

Theorem 4.1 2-TSPP is randomized (3/2 + ε, 5/3 + ε)-approximable for every ε > 0.

For the proof of this theorem we need the following argument which assures the existence of a
matching with sufficiently low costs.

Lemma 4.2 Let V be a finite set of vertices, c : V ×V → N2 a pseudometric distance function,
and let U ⊆ V be a nonempty set of even cardinality. Then, for every Hamiltonian path P on
V there exists a matching m on U that leaves exactly two vertices of N unmatched and that has
costs c(m) ≤ (1

2c1(P), 2
3c2(P)).

For the moment we postpone the proof of this lemma and start to show the approximation
result on 2-TSPP.

Proof of Theorem 4.1 Let ε > 0. The approximation is achieved by the following algorithm
which works on input of a finite set V of vertices and a pseudometric distance function c : V ×
V → N2. Please recall the definition of the algorithms 2-MST-Approx and 2-MM-ApproxR (text
after Theorem 2.1).

Algorithm: 2-TSPP-Approxε(V , c)

Input : A finite set V (cities) and a pseudometric (distance) function c : V × V → N2

Output: A set S ⊆ {P ⊆ V × V | P is Hamiltonian path of V }
2-TSPP-Approxε(V , c)1
begin2
S := ∅;3
P := 2-MST-Approx(V , c, ε

2);4
foreach T ∈ P do5

U := {v ∈ V | degT (v) is odd};6
foreach s, t ∈ U with s 6= t do7

A := 2-MM-ApproxR(N \ {s, t}, c, ε
2);8

foreach M ∈ A do9
Peuler := Eulerian path from s to t using the edges from M and10
T;
Papprox := Hamiltonian tour computed from Peuler by skipping11
previously visited vertices;
S := S ∪ {Papprox}12

end13

end14

end15
return S16

end17

Observe that the set U in line 6 is nonempty and has an even number of elements. Also, note
that in line 10, the Eulerian path exists, since after combining M and T , the vertices s and
t have odd degree, while all remaining vertices have even, nonzero degree. Since line 8 uses
an FPRAS [PY00], our algorithm is randomized. Observe that each line of the algorithm is
computable in polynomial time. Therefore, 2-TSPP-Approxε is a randomized polynomial-time
algorithm.

16

It remains to argue that 2-TSPP-Approxε computes a (3/2 + ε, 5/3 + ε)-approximate Pareto set.
For this, let P ∗ ⊆ V × V denote an arbitrary Pareto-minimal Hamiltonian path. We show that
2-TSPP-Approxε outputs at least one Hamiltonian path Papprox such that

c1(Papprox) ≤ (
3
2

+ ε)c1(P ∗) and c2(Papprox) ≤ (
5
3

+ ε)c2(P ∗).

Fix a spanning tree Tapprox with costs c(Tapprox) ≤ (1 + ε
2)c(P ∗) from the (1 + ε

2)-approximate
Pareto set P computed in line 4. P contains such a tree, because P ∗ is a spanning tree on V ,
and for every spanning tree, the algorithm finds an approximation within ratio (1 + ε

2). From
now on we consider the iteration of the loop in line 5 that uses the tree Tapprox.

By Lemma 4.2, there exists a matching M on U that leaves exactly two vertices s, t ∈ N
unmatched and that has costs c(M) ≤ (1

2c1(P ∗), 2
3c2(P ∗)). Therefore, in line 8, the (1 + ε

2)-
approximate Pareto set A contains a matching Mapprox that leaves some s and t unmatched
such that

c(Mapprox) ≤ (1 +
ε

2
) ·
(1

2
c1(P ∗),

2
3
c2(P ∗)

)
≤

((1
2

+
ε

2

)
c1(P ∗),

(2
3

+
ε

2

)
c2(P ∗)

)
.

We combine Tapprox and Mapprox to obtain an Eulerian tour Peuler from s to t with costs

c(Peuler) = c(Tapprox) + c(Mapprox)

≤ (1 +
ε

2
)c(P ∗) +

((1
2

+
ε

2

)
c1(P ∗),

(2
3

+
ε

2

)
c2(P ∗)

)

≤

((3
2

+ ε
)
c1(P ∗),

(5
3

+ ε
)
c2(P ∗)

)
.

Observe that taking shortcuts in Peuler to obtain a Hamiltonian path Papprox does not increase
costs. Hence P ∗ is (3/2 + ε, 5/3 + ε)-approximated by Papprox. 2

Proof of Lemma 4.2 We show the lemma by contradiction. So assume that Lemma 4.2 does
not hold. Hence for every matching m on the vertices of U that leaves exactly two vertices
unmatched it holds that

c1(m) > 1
2c1(P) or c2(m) > 2

3c2(P). (1)

This also holds for perfect matchings on U , since otherwise, by removing an arbitrary edge, we
obtain a matching that leaves two vertices unmatched and that contradicts (1).

Let S = (v1, . . . , v2l) denote the vertices of U in the order in which they are visited by P . Let
P ′ be the path that visits exactly the vertices of U (taking shortcuts compared with P). Since c
is pseudometric, we have c(P ′) ≤ c(P). For the remaining part of this proof we use two distinct
matchings that partition the edges of P ′ into odd and even edges:

modd = {(v1, v2), (v3, v4), . . . , (v2l−1, v2l)}
meven = {(v2, v3), (v4, v5), . . . , (v2l−2, v2l−1)}

Case 1: c2(modd) ≤ 2
3c2(P) and c2(meven) ≤ 2

3c2(P).

17

From c1(meven) + c1(modd) = c1(P ′) ≤ c1(P) it follows that c1(modd) ≤ 1
2c1(P) or c1(meven) ≤

1
2c1(P). So at least one of the matchings modd and meven contradicts (1).

Case 2: c2(modd) > 2
3c2(P) or c2(meven) > 2

3c2(P).

We assume c2(modd) > 2
3c2(P); the case c2(meven) > 2

3c2(P) is treated analogously. Since
c2(meven) + c2(modd) = c2(P ′) ≤ c2(P), we have c2(meven) ≤ c2(P) − c2(modd) < 1

3c2(P) and
thus

c2(meven) < 1
3c2(P). (2)

For every odd 1 ≤ k < 2l, the part of P ′ that lies left (resp., right) of the edge (vk, vk+1) is
denoted by lk (resp., rk), i.e.,

lk = {(vi, vi+1) | 1 ≤ i < k} and rk = {(vi, vi+1) | k + 1 ≤ i < 2l}.

Consider the largest odd k such that c2(lk ∩modd) ≤ 1
2c2(modd). From (vk, vk+1) ∈ modd and

(vk, vk+1) /∈ lk ∪ rk it follows that c2(rk ∩modd) ≤ 1
2c2(modd).

We now show that either the matching m1 = (lk ∩ modd) ∪ (rk ∩ meven) or the matching
m2 = (lk ∩meven) ∪ (rk ∩modd) is a matching that contradicts (1). Observe that both m1 and
m2 leave exactly two vertices of U unmatched (namely {vk, v2l} or {v1, vk+1}, see Figure 3).

Figure 3: We obtain m1 by merging the left part of modd with the right part of meven, leaving vk and
v2l unmatched. Analogously, we obtain m2 by merging the left part of meven with the right part of modd,
leaving v1 and vk+1 unmatched.

Let us estimate the costs in the second component of m1 and m2:

c2(m1) = c2(lk ∩modd) + c2(rk ∩meven) c2(m2) = c2(lk ∩meven) + c2(rk ∩modd)
≤ 1

2c2(modd) + c2(meven) ≤ c2(meven) + 1
2c2(modd)

By (2) we know that c2(meven) < 1
3c2(P) and thus we obtain

c2(m1), c2(m2) ≤ 1
2c2(modd) + c2(meven)

= 1
2(c2(P ′)− c2(meven)) + c2(meven)

= 1
2(c2(P ′) + c2(meven))

< 1
2(c2(P) + 1

3c2(P))
= 2

3c2(P).

18

Note that m1 and m2 are disjoint. Therefore, c1(m1) + c1(m2) ≤ c1(P) and hence

c1(m1) ≤ 1
2c1(P) or c1(m2) ≤ 1

2c1(P).

So m1 or m2 contradicts (1). This finished the proof of Lemma 4.2. 2

Theorem 4.3 2-TSPPs is randomized (3/2 + ε, 2 + ε)-approximable for every ε > 0.

The following lemma again guarantees the existence of a matching with low costs. Note that,
since we only leave one vertex unmatched, we have less choices than we had in Lemma 4.2, and
therefore can only guarantee a higher bound.

Lemma 4.4 Let V be a finite set of vertices, c : V ×V → N2 a pseudometric distance function,
and let U ⊆ V be a set of odd cardinality. Then, for every Hamiltonian path P on V there
exists a matching m on U that leaves exactly one vertex of U unmatched and that has costs
c(m) ≤ (1

2c1(P), c2(P)).

Proof of Lemma 4.4 Let S = (v1, . . . , v2l+1) denote the vertices of U in the order in which
they are visited by P . Let P ′ be the path that visits exactly the vertices of S (taking shortcuts
compared with P). Since c1 and c2 are pseudometrics, we have c(P ′) ≤ c(P). Define the
following distinct matchings that partition the edges of P ′.

modd = {(v1, v2), (v3, v4), . . . , (v2l−1, v2l)}
meven = {(v2, v3), (v4, v5), . . . , (v2l, v2l+1)}

Note that c2(modd) ≤ c2(P ′) ≤ c2(P) and c2(meven) ≤ c2(P ′) ≤ c2(P). From c1(meven) +
c1(modd) = c1(P ′) ≤ c1(P) it follows that c1(modd) ≤ 1

2c1(P) or c1(meven) ≤ 1
2c1(P). So at

least one of the matchings modd and meven has costs ≤ (1
2c1(P), c2(P)). 2

With Lemma 4.4 at hand we now proceed to show the approximation result on 2-TSPPs.

Proof of Theorem 4.3 The proof is similar to the proof of Theorem 4.1. Therefore, the proof
below concentrates on the details that are different.

Let ε > 0. The approximation is achieved by the following algorithm which works on input of a
finite set V of vertices, a pseudometric distance function c : V × V → N2 and a starting vertex
s ∈ V .

19

Algorithm: 2-TSPPs-Approxε(V , c, s)

Input : A finite set V (cities), a pseudometric (distance) function c : V × V → N2 and
some s ∈ V (starting city)

Output: A set S ⊆ {P ⊆ V × V | P is Hamiltonian path of V starting at s}
2-TSPPs-Approxε(V , c, s)1
begin2
S := ∅;3
P := 2-MST-Approx(V , c, ε

2);4
foreach T ∈ P do5

U := {v ∈ V | degT (v) is odd if and only if v 6= s};6
foreach t ∈ U do7

A := 2-MM-ApproxR(U \ {t}, c, ε
2);8

foreach M ∈ A do9
Peuler := Eulerian path from s to t using the edges from M and10
T;
Papprox := Hamiltonian tour computed from Peuler by skipping11
previously visited vertices;
S := S ∪ {Papprox}12

end13

end14

end15
return S16

end17

Observe that the set U in line 6 has an odd number of elements. Also, note that in line 10, the
Eulerian path exists, since after combining M and T , the vertices s, t have odd degree, while
all remaining vertices have even degree. We obtain that 2-TSPPs-Approxε is a randomized
polynomial-time algorithm.

It remains to argue that 2-TSPPs-Approxε computes a (3/2 + ε, 2 + ε)-approximate Pareto set.
For this, let P ∗ ⊆ V × V denote a Pareto-minimal Hamiltonian path that starts in s. We show
that 2-TSPPs-Approxε contains at least one Hamiltonian path Papprox that starts in s such that

c1(Papprox) ≤ (
3
2

+ ε)c1(P ∗) and c2(Papprox) ≤ (2 + ε)c2(P ∗).

Fix a spanning tree Tapprox with costs c(Tapprox) ≤ (1 + ε
2)c(P ∗) from the (1 + ε

2)-approximate
Pareto set P computed in line 4. From now on we consider the iteration of the loop in line 5
that uses the tree Tapprox.

By Lemma 4.4, there exists a matching M on U that leaves exactly one vertex t ∈ U unmatched
and that has costs c(M) ≤ (1

2c1(P ∗), c2(P ∗)). Therefore, in line 8 the approximate Pareto set
A contains a matching Mapprox that leaves some t unmatched such that

c(Mapprox) ≤ (1 +
ε

2
) ·
(1

2
c1(P ∗), c2(P ∗)

)
≤

((1
2

+
ε

2

)
c1(P ∗),

(
1 +

ε

2

)
c2(P ∗)

)
.

20

We combine Tapprox and Mapprox to obtain an Eulerian tour Peuler from s to t with costs

c(Peuler) = c(Tapprox) + c(Mapprox)

≤ (1 +
ε

2
)c(P ∗) +

((1
2

+
ε

2

)
c1(P ∗),

(
1 +

ε

2

)
c2(P ∗)

)

≤

((3
2

+ ε
)
c1(P ∗),

(
2 + ε

)
c2(P ∗)

)
.

Hence P ∗ is (3/2 + ε, 2 + ε)-approximated by Papprox. 2

Theorem 4.5 2-TSPPst is (2 + ε, 2 + ε)-approximable for every ε > 0.

Proof We argue that the tree doubling method will deterministically find a (2 + ε, 2 + ε)-
approximate Pareto set for 2-TSPPst.

For a finite set V of vertices, s, t ∈ V with s 6= t and ε > 0, let A = 2-MST-Approx(V, c, ε
2). For

each tree T ∈ A we do the following: We double each edge in T and then delete the unique path
from s to t once. Clearly, we obtain a connected multigraph whose vertices have even degree
except for s and t. Therefore we can easily find a Hamiltonian path P ⊆ V × V from s to t,
having costs c(P) ≤ 2c(T).

Fix any arbitrary Pareto-minimal Hamiltonian path P ∗ ⊆ V × V from s to t. Since P ∗ is a
spanning tree, there is a spanning tree T ∈ A such that c(T) ≤ (1+ ε

2)c(P ∗). By the tree doubling
method we get a Hamiltonian path P ⊆ V × V from s to t with c(P) ≤ 2c(T) ≤ (2 + ε)c(P ∗).

2

Corollary 4.6 2-TSPP and 2-TSPPs are (2 + ε, 2 + ε)-approximable for every ε > 0.

5 Lower Bound Arguments

In this section we provide several arguments that indicate the hardness of improving the two-
criteria approximation algorithms given in sections 3 and 4. In summary, our randomized
approximations for 2-TSP, 2-TSPP, and 2-TSPPs cannot be improved, unless at the same time
one improves the best known approximations for TSP, TSPPs, and TSPPst. Considerable
improvements of the latter, well-studied approximations seem very difficult to obtain, not least
because they are unbeaten for decades. So we can conclude that the improvements of our
algorithms are difficult as well. Table 2 summarizes the lower bound arguments obtained in
this section.

5.1 Lower Bound Arguments for 2-TSP

Below we construct an approximation preserving reduction from TSPPst to 2-TSP. This gives
evidence for the difficulty of improving the randomized approximations for 2-TSP that are given
in Theorems 3.4 and 3.5.

21

If for any of these approximations one could improve the second component, then this would
result in a considerable improvement of the currently best known approximation algorithm for
TSPPst. More precisely, the 5/3-approximation that is known by Hoogeveen [Hoo91] could then
be replaced by a randomized (3/2 + ε)-approximation. Such an improvement, if possible at all,
seems hard to obtain. Moreover, if for any of the approximations one could improve the first
component by an ε, then this would improve Christofides’ approximation for TSP [Chr76].

So the situation is as follows: We know that 2-TSP is randomized (3/2, 2 + ε)-approximable
and (3/2 + ε, 2)-approximable. It is difficult to improve these approximations with respect to
any component. Moreover, by Corollary 5.7 below, it is difficult to obtain a (5/3 − ε, 2 − ε)-
approximation. However, we have no evidence in favor of or against an (α, β)-approximation
where 5/3 ≤ α, β < 2. The question for such an algorithm remains open.

The first lower bound argument is the easy observation that each approximation algorithm for
2-TSP can be used as an approximation algorithm for TSP.

Proposition 5.1 Let α > 1 and ε > 0. The following holds for deterministic/randomized
approximations: If 2-TSP is (3/2− ε, α)-approximable, then TSP is (3/2− ε)-approximable.

Theorem 5.2 Let ε > 0. The following holds for deterministic/randomized approximations: If
2-TSP is (α, 2− ε)-approximable, then TSPPst is α-approximable.

Proof Let A be an algorithm that on input of a finite set V and a pseudometric (distance)
function c : V × V → N2 returns an (α, 2 − ε)-approximation for 2-TSP for some α ≥ 1 and
some ε > 0. Let (V, c′, s, t) be an arbitrary TSPPst-instance where V = {s, t, v1, . . . , vk}. We
will construct an instance I of 2-TSP for A that depends on some natural number r > 1/ε
(cf. Figure 4). We start by creating a copy V ′ = {s′, t′, v′1, . . . , v′k} of V and denote by v′ ∈ V ′
the copy of v ∈ V . Furthermore, we create “bridges” from s to s′ and from t to t′ using
r − 1 additional vertices each, which will be called Bs = {s = bs0, b

s
1, . . . , b

s
r−1, s

′ = bsr} and
Bt = {t = bt0, b

t
1, . . . , b

t
r−1, t = btr}. So the vertices of our 2-TSP instance are V ∪ V ′ ∪Bs ∪Bt.

The pseudometric distance function will be defined as follows. First, we define it directly for
some of the edges:

• for e ∈ (V × V) ∪ (V ′ × V ′), we set c(e) = (c′(e), 0)

• for e = (bsi , b
s
i+1) or e = (bti, b

t
i+1), we set c(e) = (0, 1/r)

For all other vertex pairs and for each component, we indirectly define the distance as the length
of the shortest path between these vertices using only edges from the above two categories.

In order to show that the functions c1 and c2 are pseudometric, we have to show that the directly
defined distance between any two vertices is not longer than any path between them that uses
edges with directly defined distances. For c2, this is obviously the case.

We now argue for c1. Let u, v ∈ V and consider a path between u and v. If the path does not use
the bridges and V ′, then it cannot be shorter than c′(u, v) = c1(u, v), since c′ is pseudometric
on V . So let us assume that the path uses the bridges and V ′; w.l.o.g. the s-bridge is used first.
So the length of the path is at least

c1(u, s) + c1(s, s′) + c1(s′, t′) + c1(t′, t) + c1(t, v) = c′(u, s) + 0 + c′(s, t) + 0 + c′(t, v)
≥ c′(u, v) = c1(u, v).

22

The case where u, v ∈ V ′ is of course symmetric and this property obviously holds for bridge
edges, since they have distance 0. Hence c1 is pseudometric.

Figure 4: Creating an instance of 2-TSP from an instance (V, c′, s, t) of TSPPst. We first make a copy
V ′ of V and, for each u, v ∈ V , we set c(u, v) = (c′(u, v), 0) and c(u′, v′) = (c′(u, v), 0). We further
connect s with s′ and t with t′ by r−1 bridge vertices bsi , b

t
i for 1 ≤ i ≤ r−1, and distribute the distance

of c(s, s′) = c(t, t′) = (0, r) equally among the bridge edges.

Let P be the c′-shortest Hamiltonian path between s and t in V and P ′ its (reversed) copy in
V ′. P ∪ {(t, bt1), . . . , (btr−1, t

′)} ∪ P ′ ∪ {(s′, bsr−1), . . . , (bs1, s)} is obviously a Hamiltonian cycle in
the new graph with costs (2c′(P), 2). Since it is a valid solution, A must return an (α, 2 − ε)-
approximation of it. So A must return a solution S such that c2(S) ≤ 4−2ε. We will now show
that from S we can extract a Hamiltonian s-t-Path (in V) with length of at most α · c′(P).

Let EBt := {(bti−1, b
t
i) | 1 ≤ i ≤ r} ∪ {(bti, bti−1) | 1 ≤ i ≤ r} be the “simple” edges of the

t-bridge and EBs be the analogously defined “simple” edges of the s-bridge. We can modify
S such that edges crossing the set boundaries of V , V ′, Bt and Bs are replaced by a detour
via the corresponding “portal” s, t, s′, or t′, possibly using a bridge. In other words, we
only allow edges from the set (V × V) ∪ (V ′ × V ′) ∪ EBs ∪ EBt . This modification does not
raise any costs, as the costs for edges crossing these boundaries are in fact defined by taking
detours via the portals. Hence, from now on we may assume that S satisfies the condition
S ⊆ (V × V) ∪ (V ′ × V ′) ∪ EBs ∪ EBt .

We will now argue that S uses each bridge exactly once. We denote by u(x, y) the number of
times the (undirected) edge (x, y) is used in S and by d(v) the degree of a vertex v in S considered
as a multi-graph. Furthermore, d(V) = u(s, bs1) + u(t, bt1) and d(V ′) = u(bsr−1, s

′) + u(btr−1, t
′)

are the “degrees” of the subgraphs V and V ′.

Claim 5.3 The degrees d(v) for every vertex v and d(V) and d(V ′) are all even.

Proof This holds because S is a Hamiltonian circuit. 2

Claim 5.4 The parity of u(e) is the same for all edges e ∈ EBs ∪ EBt.

Proof We first show that for x ∈ {s, t} the parity of u(e) is the same for all edges e ∈ EBx .

Assume that the parity is not the same for all edges on one bridge. Then there is a vertex bxi
with adjacent edges e1 and e2 such that u(e1) is odd and u(e2) is even. In this case, d(bxi) must
be odd which contradicts Claim 5.3.

23

Assume now that the parity is the same for each edge of the same bridge but different on the
two bridges. Then d(V) must be odd, which contradicts Claim 5.3. 2

Claim 5.5 There can be at most one edge e ∈ EBs ∪ EBt such that u(e) = 0.

Proof If there were two such edges, S would consist of (at least) two unconnected cycles. 2

Claim 5.6 All bridge edges e ∈ EBs ∪EBt have odd usage count u(e) and for each bridge there
exists at least one edge with usage count 1.

Proof Assume that all bridge edges e ∈ EBs ∪ EBt have even usage count u(e). This means
that u(e) ≥ 2 for all edges with at most one exception (Claim 5.5) and thus

c2(S) =
∑

e∈EBs∪EBt

1
r
u(e) ≥ (2r − 1) · 1

r
· 2 + 0 = 4− 2

1
r
> 4− 2ε (since r >

1
ε

)

which contradicts the approximation ratio of A.

Let us now assume that all bridge edges e ∈ EBs ∪ EBt have odd usage count u(e) and for at
most one bridge there exist edges with usage count 1. So the edges of one bridge have usage
count of at least 1 and the edges of the other bridge have usage count of at least 3. Similarly
to the case above, we obtain c2(S) ≥ r · 1r · 1 + r · 1r · 3 = 4 which contradicts the approximation
ratio of A. 2

We will now modify the solution S such that the usage count is 1 for all bridge edges. Let e, e′

be two neighboring bridge edges such that u(e) = 1 and u(e′) ≥ 3. Since e is oriented in S, the
oriented cycle must “turn back” on e′, so we can remove these two turn-back-edges. Repeat
this until all bridge edges have usage count 1.

So we may assume S to be of the form such that every bridge edge is used exactly once. This
means that S starts at s, visits every vertex in V , goes to t, uses the bridge to t′, visits every
vertex in V ′, goes to s′ and uses the bridge back to s. So S ∩V ×V is a Hamiltonian path from
s to t and another one can be obtained from S ∩ V ′ × V ′. We can thus extract a Hamiltonian
path with length at most 1

2c1(S) ≤ 1
2 · 2 · c

′(P) · α = c′(P) · α. This is an α-approximation for
the TSPPst-instance (V, c′, s, t). 2

Corollary 5.7 Let ε > 0. The following holds for deterministic/randomized approximations:
If 2-TSP is (5/3− ε, 2− ε)-approximable, then TSPPst is (5/3− ε)-approximable.

24

5.2 Lower Bound Arguments for 2-TSPP

This section provides two approximation preserving reductions, one from TSPPst to 2-TSPP,
and another one from TSPPs to 2-TSPP. Both reductions give evidence that the randomized
approximation for 2-TSPP that is given in Theorem 4.1 is difficult to improve.

More precisely, an ε-improvement in the first component (i.e., (3/2+ε, 5/3+ε)→ (3/2−ε, 5/3+ε))
would result in a randomized approximation that improves the 3/2-approximations for TSPP and
TSPPs which are known by Hoogeveen [Hoo91]. An ε-improvement in both components (i.e.,
(3/2+ε, 5/3+ε)→ (3/2−ε, 5/3−ε)) would result in a randomized approximation that improves the
5/3-approximation for TSPPst [Hoo91]. Both results give evidence for the difficulty of improving
Theorem 4.1.

Again we start with the observation that an approximation algorithm for a two-criteria problem
also approximates the underlying single-criterion problem.

Proposition 5.8 Let α > 1 and ε > 0. The following holds for deterministic/randomized
approximations: If 2-TSPP is (3/2− ε, α)-approximable, then TSPP is (3/2− ε)-approximable.

Theorem 5.9 Let α > 1 and ε > 0. The following holds for deterministic/randomized approx-
imations: If 2-TSPP is (α, 3/2− ε)-approximable, then TSPPst is α-approximable.

Proof We proceed analogously to the proof of Theorem 5.2 and reduce TSPPst to 2-TSPP. Let
thereforeA be an algorithm that on input of a finite set V and a pseudometric (distance) function
c : V × V → N2 returns an (α, 3/2 − ε)-approximation for 2-TSPP for some α > 1 and some
ε > 0, and let furthermore I = (V, c′, s, t) be a TSPPst-instance where V = {s, t, v1, . . . , vk}.

For each e ∈ V × V , let c1(e) = c′(e). We define c2 : V × V 7→ N as follows:

c2(u, v) = 0 for u, v ∈ V \ {s, t}
c2(s, u) = 1 for u ∈ V \ {s, t}
c2(t, u) = 1 for u ∈ V \ {s, t}
c2(s, t) = 2

Both c1 and c2 are pseudometric functions on V . Let c = (c1, c2) and define a 2-TSPP instance
as I ′ = (V, c).

Figure 5: Structure of distance function c2. For any u ∈ V \ {s, t}, we have c2(s, u) = c2(t, u) = 1.
Inside V \ {s, t}, we have zero c2 distances, hence c2(u, v) = 0 for all u, v ∈ V \ {s, t}.

Figure 5 shows the structure of the distance function c2. Obviously, all Hamiltonian paths
y ⊆ V × V between s and t have length c2(y) = 2, whereas all other Hamiltonian paths
y′ ⊆ V × V must have length c2(y′) ≥ 3.

25

Let y∗ be an optimal Hamiltonian path between s and t with respect to c′ = c1. Since y∗

is a Hamiltonian path between s and t we have c2(y∗) = 2. The approximate Pareto set
provided by A(I ′) contains an approximate solution y′ of the Hamiltonian path y∗ such that
c2(y′) ≤ (3

2 − ε)c2(y∗) and c1(y′) ≤ αc1(y∗). Hence 3 > c2(y′) = 2 and therefore, y′ is in fact a
Hamiltonian path between s and t. This means that y′ is an α-approximation of the optimal
Hamiltonian path y∗ between s and t with respect to c′ = c1. 2

Corollary 5.10 Let ε > 0. The following holds for deterministic/randomized approximations:
If 2-TSPP is (3/2− ε, 5/3− ε)-approximable, then TSPPst is (5/3− ε)-approximable.

Theorem 5.11 Let α > 1 and ε > 0. The following holds for deterministic/randomized ap-
proximations: If 2-TSPP is (α, 2− ε)-approximable, then TSPPs is α-approximable.

Proof As in the other cases, we reduce TSPPs to 2-TSPP. Let again A be an algorithm that
on input of a finite set V and a pseudometric (distance) function c : V × V → N2 returns an
(α, 2 − ε)-approximation for 2-TSPP for some α > 1 and some ε > 0, and let x = (V, c′, s) be
the TSPPs-instance, where V = {s, v1, . . . , vk}.

For each e ∈ V × V , let c1(e) = c′(e). We define c2 : V × V 7→ N as follows:

c2(u, v) = 0 for u, v ∈ V \ {s}
c2(s, u) = 1 for u ∈ V \ {s}

Again, c1 and c2 are pseudometric functions on V ×V . We let c = (c1, c2) and define a 2-TSPP
instance as x′ = (V, c).

Figure 6: Structure of distance function c2 of x′. For all u ∈ V \ {s}, we set c2(s, u) = 1. All c2
distances inside V \ {s} are zero: c2(u, v) = 0 for all u, v ∈ V \ {s}.

Figure 6 shows the structure of the distance function c2. This time, all Hamiltonian paths
y ⊆ V × V with endpoint s have length c2(y) = 1, whereas all other Hamiltonian paths
y′ ⊆ V × V must have length of c2(y′) = 2.

Let y∗ be an optimal Hamiltonian path of x. Since y∗ has endpoint s, we have c2(y∗) = 1.
Then, the approximate Pareto set provided by A(x′) contains an approximate solution y′ of y∗

such that c2(y′) ≤ (2− ε)c2(y∗) and c1(y′) ≤ αc1(y∗). Hence 2 > c2(y′) = 1 and therefore, y′ is
a Hamiltonian path with endpoint s. This means that y′ is an α-approximation of the optimal
Hamiltonian path of x with endpoint s. 2

Corollary 5.12 Let ε > 0. The following holds for deterministic/randomized approximations:
If 2-TSPP is (3/2− ε, 2− ε)-approximable, then TSPPs is (3/2− ε)-approximable.

26

5.3 Lower Bound Arguments for 2-TSPPs

Below we construct an approximation preserving reduction from TSPPst to 2-TSPPs, and a
similar reduction from TSP to 2-TSPPs. This gives evidence for the difficulty of improving the
randomized approximability of 2-TSPPs that is given in Theorem 4.3.

More precisely, an ε-improvement in the first component (i.e., (3/2 + ε, 2 + ε)→ (3/2− ε, 2 + ε))
gives a randomized approximation that improves the 3/2-approximation for TSPPs which is
known by Hoogeveen [Hoo91]. An ε-improvement in the second component (i.e., (3/2 + ε, 2 +
ε) → (3/2 + ε, 2 − ε)) gives a randomized approximation that considerably improves the 5/3-
approximation for TSPPst [Hoo91]. An ε-improvement in both components (i.e., (3/2+ε, 2+ε)→
(3/2 − ε, 2 − ε)) additionally yields a randomized approximation that even improves the 3

2 -
approximation for TSP which is known by Christofides [Chr76]. These results give evidence for
the difficulty of improving Theorem 4.3.

Again we start with the observation that an approximation algorithm for a two-criteria problem
also approximates the underlying single-criterion problem.

Proposition 5.13 Let α > 1 and ε > 0. The following holds for deterministic/randomized
approximations: If 2-TSPPs is (3/2− ε, α)-approximable, then TSPPs is (3/2− ε)-approximable.

Theorem 5.14 Let α > 1 and ε > 0. The following holds for deterministic/randomized ap-
proximations: If 2-TSPPs is (α, 2− ε)-approximable, then TSPPst is α-approximable.

Proof We show both assertions at the same time by reducing TSPPst to 2-TSPPs. Let A be a
(randomized) algorithm that (α, 2− ε)-approximates 2-TSPPs for some α > 1 and some ε > 0.
Let (V, c, s, t) be an arbitrary TSPPst-instance where V = {s, t, v1, . . . , vk}. We construct a
2-TSPPs instance I for A by adding a second distance function that places t “far away” from
all other vertices and thus enforces that the path computed by A ends in t (cf. Figure 7). More
precisely, I = (V, c′, s) where c′ = (c, c2) and c2(x, y) = 0 for all x, y 6= t and c2(x, t) = 1 for all
x ∈ {s, v1, . . . , vk}.

Figure 7: Structure of distance function c2 of I. For all u ∈ V \{t}, we set c2(t, u) = 1. All c2 distances
inside V \ {t} are zero: c2(u, v) = 0 for all u, v ∈ V \ {t}.

We argue that A(I) computes an α-approximation for the TSPPst-instance (V, c, s, t). Let
P ⊆ V × V be an optimal s-t-path with respect to c. Then P is also a valid solution of the
TSPPs-instance I. This means that A(I) must return an (α, 2−ε)-approximation A of P . Since
c2(P) = 1, we must have c2(A) ≤ (2− ε)c2(P) = 2− ε < 2 and thus only one edge incident to
t can be used by A, because all edges to t have length 1. So t must be the end point of A and
s must be the starting point (or vice-versa) and we have c(A) = c1(A) ≤ αc(P). This means
that A is an α-approximation of P . 2

27

Proposition 5.15 Let α > 1. The following holds for deterministic/randomized approxima-
tions: If TSPPst is α-approximable, then TSP is α-approximable.

Proof Assume that TSPPst is (randomized) α-approximable. The following (randomized)
algorithm α-approximates TSP.

Let I = (V, c) be a given TSP-instance where V = {v1, . . . , vm}. For all t ∈ V \{v1}, approximate
an optimal Hamiltonian path between v1 and t, and add the edge (t, v1) to this tour. Finally,
under all tours obtained in this way, choose the shortest one.

Observe that a suitable choice of t (e.g., t = successor of v1 in an optimal Hamiltonian tour)
yields an α-approximation of an optimal tour. 2

Corollary 5.16 Let ε > 0. The following holds for deterministic/randomized approximations:

1. If 2-TSPPs is (3/2 + ε, 2− ε)-approximable, then TSPPst is (3/2 + ε)-approximable.

2. If 2-TSPPs is (3/2 − ε, 2 − ε)-approximable, then TSPPst and TSP are (3/2 − ε)-
approximable.

Proof Follows from Theorem 5.14 and Proposition 5.15. 2

5.4 Lower Bound Arguments for 2-TSPPst

Regarding lower bounds for 2-TSPPst we only have the weak argument that an approxima-
tion algorithm for the two-criteria problem also approximates the underlying single-criterion
problem.

Proposition 5.17 Let α > 1 and ε > 0. The following holds for deterministic/randomized
approximations: If 2-TSPPst is (5/3−ε, α)-approximable, then TSPPst is (5/3−ε)-approximable.

6 Open Questions

The results in the previous sections raise the following questions:

1. By Theorem 3.4 and 3.5, 2-TSP is randomized (3/2, 2 + ε)-approximable and (3/2 + ε, 2)-
approximable. By Proposition 5.1 and Corollary 5.7, it is difficult to improve these approx-
imations with respect to any component. It is even difficult to obtain a (5/3 − ε, 2 − ε)-
approximation. However, so far there is no evidence in favor of or against an (α, β)-
approximation where 5/3 ≤ α, β < 2. Can one find such an approximation for 2-TSP? Or
can one find evidence for the difficulty of such an improvement?

28

2. By Theorem 4.1, 2-TSPP is randomized (3/2 + ε, 5/3 + ε)-approximable, and by Corol-
lary 5.12, it is difficult to obtain an ε-improvement in the first component. However, up
to now we have no evidence for the difficulty of improving the second component. So from
this point of view, there is no argument against a randomized (3/2 + ε, α)-approximation
for 2-TSPP where 3/2 ≤ α ≤ 5/3. Can one find such an approximation for 2-TSPP? Or
can one find evidence for the difficulty of such an improvement?

Similarly, by Theorem 4.5, 2-TSPPst is (2+ε, 2+ε)-approximable, and by Proposition 5.17,
it is difficult to obtain a randomized (5/3 − ε, 2 + ε)-approximation. Can one find a
randomized (α, 2 + ε)-approximation for 2-TSPP where 5/3 ≤ α ≤ 2? Or can one find
evidence for the difficulty of such an improvement?

3. In section 5, we gave the following reductions that were used to translate approxima-
tions from one to another optimization problem: TSPPst ≤ 2-TSP, TSPPst ≤ 2-TSPP,
TSPPs ≤ 2-TSPP, TSPPst ≤ 2-TSPPs, and TSP ≤ TSPPst. Can one find nontrivial
reductions between the single-criterion problems TSP, TSPP, TSPPs, and TSPPst? For
instance, does the existence of a (5/3 − ε)-approximation for TSPPst imply a (3/2 − ε)-
approximation for TSP? Conversely, does the existence of a (3/2 − ε)-approximation for
TSP imply a (5/3−ε)-approximation for TSPPst? Such translations of the approximability
between the single-criterion problems would give a better understanding of the difficulty
of these problems.

Acknowledgements. The authors thank Heinz Schmitz for valuable discussions on multi-
criteria optimization and in particular on multi-criteria traveling salesman problems.

References

[ABG04] E. Angel, E. Bampis, and L. Gourvès. Approximating the Pareto curve with local
search for the bicriteria TSP(1, 2) problem. Theoretical Computer Science, 310(1-
3):135–146, 2004.

[ABGM05] E. Angel, E. Bampis, L. Gourvès, and J. Monnot. (Non-)approximability for the
multi-criteria TSP(1,2). In Fundamentals of Computation Theory, volume 3623 of
Lecture Notes in Computer Science, pages 329–340. Springer Berlin / Heidelberg,
2005.

[Aro98] S. Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753–782, 1998.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1976.

[EG00] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiob-
jective combinatorial optimization. OR Spectrum, 22(4):425–460, 2000.

[Ehr00] M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization
problems. International Transactions in Operational Research, 7:5–31, 2000.

[Ehr05] M. Ehrgott. Multicriteria Optimization. Springer Verlag, 2005.

29

[GW86] A. Gupta and A. Warburton. Approximation methods for multiple criteria traveling
salesman problems, towards interactive and intelligent decision support systems. In
Proceedings of 7th International Conference on Multiple Criteria Decision Making,
pages 211–217. Springer, 1986.

[Hoo91] J. A. Hoogeveen. Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Operations Research Letters, 10:291–295, 1991.

[JP85] D. S. Johnson and C. H. Papadimitriou. Performance guarantees for heuristics. In
E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors,
The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization,
chapter 5, pages 145–180. Wiley, 1985.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[Man09] B. Manthey. On approximating multi-criteria tsp. In Proceedings of 26th An-
nual Symposium on Theoretical Aspects of Computer Science, volume 09001 of
Dagstuhl Seminar Proceedings, pages 637–648. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2009.

[MR09] B. Manthey and L. S. Ram. Approximation algorithms for multi-criteria traveling
salesman problems. Algorithmica, 53(1):69–88, 2009.

[PV06] C. Papadimitriou and S. Vempala. On the approximability of the traveling salesman
problem. Combinatorica, 26(1):101–120, 2006.

[PY93] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with dis-
tances one and two. Mathematics of Operations Research, 18(1):1–11, 1993.

[PY00] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In FOCS ’00: Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, pages 86–95, Washington, DC,
USA, 2000. IEEE Computer Society.

[Voi31] Der Handlungsreisende, wie er sein soll, und was er zu thun hat, um Aufträge zu
erhalten und eines glüklichen Erfolgs in seinen Geschäften gewiß zu sein. Von einem
alten Commis Voyageur. Bernhard Friedrich Voigt, Ilmenau, 1831.

30

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

