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Abstract

We construct efficient data structures that are resilient against a constant fraction of adversarial noise.
Our model requires that the decoder answers most queries correctly with high probability and for the re-
maining queries, the decoder with high probability either answers correctly or declares “don’t know.”
Furthermore, if there is no noise on the data structure, it answers all queries correctly with high proba-
bility. Our model is the common generalization of a model proposed recently by de Wolf and the notion
of “relaxed locally decodable codes” developed in the PCP literature.

We measure the efficiency of a data structure in terms of its length, measured by the number of bits
in its representation, and query-answering time, measured by the number of bit-probes to the (possibly
corrupted) representation. We obtain results for the following two data structure problems:

• (Membership) Store a subset S of size at most s from a universe of size n such that membership
queries can be answered efficiently, i.e., decide if a given element from the universe is in S.
We construct an error-correcting data structure for this problem with length nearly linear in s log n
that answers membership queries with O(1) bit-probes. This nearly matches the asymptotically
optimal parameters for the noiseless case: length O(s log n) and one bit-probe, due to Buhrman,
Miltersen, Radhakrishnan, and Venkatesh.

• (Univariate polynomial evaluation) Store a univariate polynomial g of degree deg(g) ≤ s over the
integers modulo n such that evaluation queries can be answered efficiently, i.e., evaluate the output
of g on a given integer modulo n.
We construct an error-correcting data structure for this problem with length nearly linear in s log n
that answers evaluation queries with polylog s · log1+o(1) n bit-probes. This nearly matches the
parameters of the best-known noiseless construction, due to Kedlaya and Umans.
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1 Introduction

The area of data structures is one of the oldest and most fundamental parts of computer science, in theory as
well as in practice. The underlying question is a time-space tradeoff: we are given a piece of data, and we
would like to store it in a short, space-efficient data structure that allows us to quickly answer specific queries
about the stored data. On one extreme, we can store the data by just storing a list of the correct answers to all
possible queries. This is extremely time-efficient (one can immediately look up the correct answer without
doing any computation) but usually takes significantly more space than the information-theoretic minimum.
At the other extreme, we can store a maximally compressed version of the data. This method is extremely
space-efficient but not very time-efficient since one has to undo the whole compression first. A good data
structure sits somewhere in the middle: it does not use much more space than the information-theoretic
minimum, but it also stores the data in a structured way that enables efficient query-answering.

It is reasonable to assume that most practical implementations of data storage are susceptible to noise:
over time some of the information in the data structure may be corrupted or erased by various accidental or
malicious causes. This buildup of errors may cause the data structure to deteriorate so that most queries are
not answered correctly anymore. Accordingly, it is a natural task to design data structures that are not only
efficient in space and time but also resilient against a certain amount of adversarial noise, where the noise
can be placed in positions that make decoding as difficult as possible.

The study of protecting information and computation against noise has been well studied in the theory
of error-correcting codes and in the study of fault-tolerant computation. In the data structure literature,
constructions under often incomparable models have been designed to cope with noise, and we examine a
few of these models. In [2], Aumann and Bender studied pointer-based data structures such as linked lists,
stacks, and binary search trees. In this model, errors (adversarial but detectable) occur whenever all the
pointers from a node are lost. They measure the dependency between the number of errors and the number
of nodes that become irretrievable, and designed a number of efficient data structures where this dependency
is reasonable.

Another model for studying data structures with noise is the faulty-memory RAM model, introduced
by Finocchi and Italiano in [10]. In a faulty-memory RAM, there are O(1) memory cells that cannot be
corrupted by noise. Elsewhere, errors (adversarial and undetectable) may occur at any time, even during the
decoding procedure. Many data structure problems have been examined in this model, such as sorting [8],
searching [9], priority queues [13] and dictionaries [5]. However, the number of errors that can be tolerated
is typically less than a linear portion of the size of the input. Furthermore, correctness can only be guaranteed
for keys that are not affected by noise. For instance, for the problem of comparison-sorting on n keys, the
authors in [8] designed a resilient sorting algorithm that tolerates

√
n log n keys being corrupted and ensures

that the set of uncorrupted keys remains sorted.
Recently, de Wolf [20] considered another model of resilient data structures. The representation of the

data structure is viewed as a bit-string, from which a decoding procedure can read any particular set of bits
to answer any data queries. The representation must be able to tolerate a constant fraction δ of adversarial
noise in the bit-string1 (but not inside the decoding procedure). His model generalizes the usual noise-free
data structures (where δ = 0) as well as the so-called “locally decodable codes” (LDCs) [14]. Informally,
an LDC is an encoding that is tolerant of noise and allows fast decoding so that each message symbol
can be retrieved correctly with high probability. Using LDCs as building blocks, de Wolf constructed data
structures for several problems.

Unfortunately, de Wolf’s model has the drawback that the optimal time-space tradeoffs are much worse
than in the noise-free model. The reason is that all known constructions of LDCs that make O(1) bit-

1We only consider bit-flip-errors here, not erasures. Since erasures are easier to deal with than bit-flips, it suffices to design a
data structure dealing with bit-flip-errors.
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probes [22, 7] have very poor encoding length (super-polynomial in the message length). In fact, the en-
coding length provably must be super-linear in the message length [14, 16, 21]. As his model is a gener-
alization of LDCs, data structures cannot have a succinct representation that has length proportional to the
information-theoretic bound.

We thus ask: what is a clean model of data structures that allows efficient representations and has error-
correcting capabilities? Compared with the pointer-based model and the faulty-memory RAM, de Wolf’s
model imposes a rather stringent requirement on decoding: every query must be answered with high proba-
bility from the possibly corrupted encoding. While this requirement is crucial in the definition of LDCs due
to their connection to complexity theory and cryptography, for data structures it seems somewhat restrictive.

In this paper, we consider a broader, more relaxed notion of error-correcting for data structures. In our
model, for most queries, the decoder has to return the correct answer with high probability. However, for
the few remaining queries, the decoder may claim ignorance, i.e., declare the data item unrecoverable from
the (corrupted) data structure. Still, for every query, the answer is incorrect only with small probability.
In fact, just as de Wolf’s model is a generalization of LDCs, our model in this paper is a generalization
of the “relaxed” locally decodable codes (RLDCs) introduced by Ben-Sasson, Goldreich, Harsha, Sudan,
and Vadhan [4]. They relax the usual definition of an LDC by requiring the decoder to return the correct
answer on most rather than all queries. For the remaining queries it is allowed to claim ignorance, i.e., to
output a special symbol ‘⊥’ interpreted as “don’t know” or “unrecoverable.” As shown in [4], relaxing the
LDC-definition like this allows for constructions of RLDCs with O(1) bit-probes of nearly linear length.

Using RLDCs as building blocks, we construct error-correcting data structures that are very efficient in
terms of the time and space tradeoffs. Before we describe our results, let us define our model formally. First,
a data structure problem is specified by a set D of data items, a set Q of queries, a set A of answers, and
a function f : D × Q → A which specifies the correct answer f(x, q) of query q to data item x. A data
structure for f is specified by four parameters: t the number bit-probes, δ the fraction of noise, ε an upper
bound on the error probability for each query, and λ an upper bound on the fraction of queries in Q that are
not answered correctly with high probability (the ‘λ’ stands for “lost”).

Definition 1. Let f : D × Q → A be a data structure problem. Let t be a positive integer, δ ∈ [0, 1],
ε ∈ [0, 1/2], and λ ∈ [0, 1]. We say that f has a (t, δ, ε, λ)-data structure of length N if there exist an
encoder E : D → {0, 1}N and a (randomized) decoder D with the following properties: for every x ∈ D
and every w ∈ {0, 1}N at Hamming distance ∆(w, E(x)) ≤ δN ,

1. D makes at most t bit-probes to w,

2. Pr[Dw(q) ∈ {f(x, q),⊥}] ≥ 1− ε for every q ∈ Q,

3. the set G = {q : Pr[Dw(q) = f(x, q)] ≥ 1− ε} has size at least (1− λ)|Q| (‘G’ stands for “good”),

4. if w = E(x), then G = Q.

We say that a (t, δ, ε, λ)-data structure is error-correcting, or an error-correcting data structure, if δ > 0.
Setting λ = 0 recovers the original notion of error-correction in de Wolf’s model [20]. A (t, δ, ε, λ)-relaxed
locally decodable code (RLDC), defined in [4], is an error-correcting data structure for the membership
function f : {0, 1}n×[n] → {0, 1}, where f(x, i) = xi. A (t, δ, ε)-locally decodable code (LDC), defined
by Katz and Trevisan [14], is an RLDC with λ = 0.

Remark. Note that we do not consider the efficiency of encoding here, and use the number of bit-probes
as a proxy for the actual time needed for query-answering (which is fairly standard). For the data struc-
ture problems considered in this paper, our decoding procedures make only non-adaptive probes, i.e., the
positions of the probes are determined all at once and sent simultaneously to the oracle. For other data
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structure problems it may be natural for decoding procedures to be adaptive. Thus, we do not require D to
be non-adaptive in Condition 1 of Definition 1.

1.1 Our results

We obtain efficient error-correcting data structures for the following two data structure problems.

MEMBERSHIP: Consider a universe [n] = {1, . . . , n} and some nonnegative integer s ≤ n. Given a set
S ⊆ [n] with at most s elements, one would like to store S in a compact representation that can answer
“membership queries” efficiently, i.e., given an index i ∈ [n], determine whether or not i ∈ S. Formally
D = {S : S ⊆ [n], |S| ≤ s}, Q = [n], and A = {0, 1}. The function MEMn,s(S, i) is 1 if i ∈ S and 0
otherwise.

Since there are at least
(
n
s

)
subsets of the universe of size at most s, each subset requiring a different

instantiation of the data structure, the information-theoretic lower bound on the space of any data structure
is at least log

(
n
s

)
≈ s log n bits.2 An easy way to achieve this is to store S in sorted order. If each number

is stored in its own log n-bit “cell,” this data structure takes s cells, which is s log n bits. To answer a
membership query, one can do a binary search on the list to determine whether i ∈ S using about log s
“cell-probes”, or log s · log n bit-probes. The length of this data structure is essentially optimal, but its
number of probes is not. Fredman, Komlós, and Szemerédi [11] developed a famous hashing-based data
structure that has length O(s) cells (which is O(s log n) bits) and only needs a constant number of cell-
probes (which is O(log n) bit-probes). Buhrman, Miltersen, Radhakrishnan, and Venkatesh [6] improved
upon this by designing a data structure of lengthO(s log n) bits that answers queries with only one bit-probe.
This is simultaneously optimal in terms of time (clearly one bit-probe cannot be improved upon) and space
(up to a constant factor).

None of the aforementioned data structures can tolerate a constant fraction of noise. To protect against
noise for this problem, de Wolf [20] constructed an error-correcting data structure with λ = 0 using a lo-
cally decodable code (LDC). That construction answers membership queries in t bit-probes and has length
roughly L(s, t) log n, where L(s, t) is shortest length of an LDC encoding s bits and with bit-probe com-
plexity t. Currently, all known LDCs with t = O(1) have L(s, t) super-polynomial in s [3, 22, 7]. In fact,
L(s, t) must be super-linear for all constant t, see e.g. [14, 16, 21].

Under our present model of error-correction, we can construct much more efficient data structures with
error-correcting capability. First, it is not hard to show that by composing the BMRV data structure [6]
with the error-correcting data structure for MEMn,n (equivalently, an RLDC) [4], one can already obtain an
error-correcting data structure of length O((s log n)1+η), where η is an arbitrarily small constant. However,
following an approach taken in [20], we obtain a data structure of length O(s1+η log n), which is much
shorter than the aforementioned construction when s = o(log n).

Theorem 1. For every ε, η ∈ (0, 1), there exist a positive integer t and τ > 0, such that for all s and n, and
every δ ≤ τ , MEMn,s has a (t, δ, ε, s

2n)-data structure of length O(s1+η log n).

We will prove Theorem 1 in Section 2. Note that the size of the good set G is at least = n − s
2 . Hence

corrupting a δ-fraction of the bits of the data structure may cause a decoding failure for at most half of the
queries in S but not all. One may replace this factor 1

2 easily by another constant (though the parameters t
and τ will then change).

2Our logs are always to base 2.
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POLYNOMIAL EVALUATION: Let Zn denote the set of integers modulo n and s ≤ n be some nonnegative
integer. Given a univariate polynomial g ∈ Zn[X] of degree at most s, we would like to store g in a compact
representation so that for each evaluation query a ∈ Zn, g(a) can be computed efficiently. Formally,
D = {g : g ∈ Zn[X],deg(g) ≤ s}, Q = Zn, and A = Zn, and the function is POLYEVALn,s(g, a) = g(a).

Since there are ns+1 polynomials of degree at most s, with each polynomial requiring a different in-
stantiation of the data structure, the information-theoretic lower bound on the space of any data structure for
this problem must be at least log(ns+1) ≈ s log n bits. Since each evaluation is an element of Zn and must
be represented by blog nc + 1 bits, blog nc + 1 is the information-theoretic lower bound on the bit-probe
complexity.

Consider the following two naive solutions. On one hand, one can simply record the evaluations of g in
a table with n entries, each with blog nc + 1 bits. The length of this data structure is O(n log n) and each
query requires reading only blog nc+1 bits. On the other hand, by interpolation, g can be fully reconstructed
by reading a table that only stores s + 1 evaluations. This gives a data structure of length O(s log n) with
bit-probe complexity O(s log n).

A natural question is whether one can construct a data structure that is optimal both in terms of space and
time, i.e., has length O(s log n) and answers queries with O(log n) bit-probes. No such constructions are
known to exist. However, some lower bounds are known in the weaker cell-probe model, where each cell is
a collection of blog nc+ 1 bits. For instance, as noted in [18], any data structure for polynomial evaluation
that stores O(s2) cells (O(s2 log n) bits) requires reading at least Ω(s) cells (Ω(s log n) bits). Moreover,
by [17], if log n� s log s and the data structure is constrained to store sO(1) cells, then its query complexity
is Ω(s) cells. This implies that the second trivial construction described above is essentially optimal in the
cell-probe model.

Recently, Kedlaya and Umans [15] obtained a data structure of length s1+η log1+o(1) n (where η is an
arbitrarily small constant) and answers evaluation queries with O(polylog s · log1+o(1) n) bit-probes. These
parameters exhibit the best tradeoff between s and n so far. When s = nη for some 0 < η < 1, the data
structure of Kedlaya and Umans [15] is much superior to the trivial solution: its length is nearly optimal,
and the query complexity drops from poly n to only polylog n bit-probes.

We are interested in constructing a data structure for the polynomial evaluation problem that works
even in the presence of adversarial noise. In this paper we construct an error-correcting data structure for
this problem that has length nearly linear in s log n and bit-probe complexity O(polylog s · log1+o(1) n).
Formally we prove:

Theorem 2. For every ε, λ, η ∈ (0, 1), there exists τ ∈ (0, 1) such that for all positive integers s ≤ n, for
all δ ≤ τ , the data structure problem POLYEVALn,s has a (O(polylog s · log1+o(1) n), δ, ε, λ)-data structure
of length O((s log n)1+η).

Remark. We note that Theorem 2 easily holds when s = (log n)o(1). As we discussed previously, one can
store s evaluations of g and apply interpolation to answer any query. To make it error-correcting, encode
the entire table by a standard error-correcting code. This has length and bit-probe complexity O(s log n) =
O(log1+o(1) n).

1.2 Our techniques

At a high level, for both data structure problems we build our constructions by composing a relaxed locally
decodable code with an appropriate noiseless data structure. If the underlying probe-accessing scheme in a
noiseless data structure is “pseudorandom,” then the noiseless data structure can be made error-correcting by
appropriate compositions with other data structures. By pseudorandom, we mean that if a query is chosen
uniformly at random from Q, then the positions of the probes selected also “behave” as if they are chosen
uniformly at random. Such property allows us to analyze the error-tolerance of our constructions.
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More specifically, for the membership problem we build upon the noiseless data structure of [6]. While
de Wolf [20] combined this with LDCs to get a rather long data structure with λ = 0, we will combine it
here with RLDCs in to get nearly optimal length with small (but non-zero) λ. In order to bound λ in our new
construction, we make use of the fact that the [6]-construction is a bipartite expander graph, as explained
below after Theorem 4. This property wasn’t needed in [20]. The left side of the expander represents the
set of queries, and a neighborhood of a query (a left node) represents the set of possible bit-probes that can
be chosen to answer this query. The expansion property of the graph essentially implies that for a random
query, the distribution of a bit-probe chosen to answer this query is close to uniform.3 This property allows
us to construct an efficient, error-correcting data structure for this problem.

For the polynomial evaluation problem, we rely upon the noiseless data structure of Kedlaya and
Umans [15], which has a decoding procedure that uses the reconstructive algorithm from the Chinese Re-
mainder Theorem. The property that we need is the simple fact that if a is chosen uniformly at random from
Zn, then for any m ≤ n, a modulo m is uniformly distributed in Zm. This implies that for a random evalu-
ation point a, the distribution of certain tuples of cell-probes used to answer this evaluation point is close to
uniform. This observation allows us to construct an efficient, error-correcting data structure for polynomial
evaluation. Our construction follows the non-error-correcting one of [15] fairly closely; the main new ingre-
dient is to add redundancy to their Chinese Remainder-based reconstruction by using more primes, which
gives us the error-correcting features we need. We also lose something compared to [15]

2 The MEMBERSHIP problem

In this section we construct a data structure for the membership problem MEMn,s. First we describe some
of the building blocks that we need to prove Theorem 1. Our first basic building block is the relaxed locally
decodable code of Ben-Sasson et al. [4] with nearly linear length. Using our terminology, we can restate
their result as follows:

Theorem 3 (BGHSV [4]). For every ε ∈ (0, 1/2) and η > 0, there exist a positive integer t and positive
constants c and τ , such that for every n and every δ ≤ τ , the membership problem MEMn,n has a (t, δ, ε, cδ)-
data structure for MEMn,n of length O(n1+η).

Note that by picking the error-rate δ a sufficiently small constant, one can set λ = cδ (the fraction of
unrecoverable queries) to be very close to 0.

The other building block that we need is the following one-probe data structure of Buhrman et al. [6].

Theorem 4 (BMRV [6]). For every ε ∈ (0, 1/2) and for every positive integers s ≤ n, there is an (1, 0, ε, 0)-
data structure for MEMn,s of length m = 100

ε2
s log n bits.

Properties of the BMRV encoding: The encoding can be represented as a bipartite graph G = (L,R,E)
with |L| = n left vertices and |R| = m right vertices, and regular left degree d = logn

ε . G is an expander
graph: for each set S ⊆ L with |S| ≤ 2s, its neighborhood Γ(S) satisfies |Γ(S)| ≥

(
1− ε

2

)
|S|d. For each

assignment of bits to the left vertices with at most s ones, the encoding specifies an assignment of bits to the
right vertices. In other words, each x ∈ {0, 1}n of weight |x| ≤ s corresponds to an assignment to the left
vertices, and the m-bit encoding of x corresponds to an assignment to the right vertices.

For each i ∈ [n] we write Γi := Γ({i}) to denote the set of neighbors of i. A crucial property of the
encoding function Ebmrv is that for every x of weight |x| ≤ s, for each i ∈ [n], if y = Ebmrv(x) ∈ {0, 1}m
then Prj∈Γi [xi = yj ] ≥ 1 − ε. Hence the decoder for this data structure can just probe a random index

3We remark that this is different from the notion of smooth decoding in the LDC literature, which requires that for every fixed
query, each bit-probe is chosen with probability close to uniform.
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j ∈ Γi and return the resulting bit yj . Note that this construction is not error-correcting at all, since |Γi|
errors in the data structure suffice to erase all information about the i-th bit of the encoded x.

As we mentioned in the Section 1.1, by combining the BMRV encoding with the data structure for
MEMn,n from Theorem 3, one easily obtains an (O(1), δ, ε, O(δ))-data structure for MEMn,s of length
O((s log n)1+η). However, we can give an even more efficient, error-correcting data structure of length
O(s1+η log n). Our improvement follows an approach taken in de Wolf [20], which we now describe. For
a vector x ∈ {0, 1}n with |x| ≤ s, consider a BMRV structure encoding 20n bits into m bits. Now, from
Section 2.3 in [20], the following “balls and bins estimate” is known:

Proposition 5 (From [20]). For every positive integers s ≤ n, the BMRV bipartite graph G = ([20n], [m], E)
for MEM20n,s with error parameter 1

10 has the following property: there exists a partition of [m] into
b = 10 log(20n) disjoint sets B1, . . . , Bb of 103s vertices each, such that for each i ∈ [n], there are at least
b
4 sets Bk satisfying |Γi ∩Bk| = 1.

Proposition 5 suggests the following encoding and decoding procedures. To encode x, we rearrange the
m bits of Ebmrv(x) into Θ(log n) disjoint blocks of Θ(s) bits each, according to the partition guaranteed
by Proposition 5. Then for each block, encode these bits with the error-correcting data structure (RLDC)
from Theorem 3. Given a received word w, to decode i ∈ [n], pick a block Bk at random. With probability
at least 1

4 , Γi ∩ Bk = {j} for some j. Run the RLDC decoder to decode the j-th bit of the k-th block of
w. Since most blocks don’t have much higher error-rate than the average (which is at most δ), with high
probability we recover Ebmrv(x)j , which equals xi with high probability. Finally, we will argue that most
queries do not receive a blank symbol ⊥ as an answer, using the expansion property of the BMRV encoding
structure. We now proceed with a formal proof of Theorem 1.

Proof of Theorem 1. We only construct an error-correcting data structure with error probability 0.49. By
a standard amplification technique we can reduce the error probability to any other positive constant (i.e.,
repeat the decoder O(log(1/ε)) times).

By Theorem 4, there exists an encoder Ebmrv for an (1, 0, 1
10 , 0)-data structure for the membership

problem MEM20n,s of length m = 104s log(20n). Let s′ = 103s. By Theorem 3, for every η > 0,
for some t = O(1), and sufficiently small δ, MEMs′,s′ has an (t, 105δ, 1

100 , O(δ))-data structure of length
s′′ = O(s′1+η). Let Ebghsv and Dbghsv be its encoder and decoder, respectively.

Encoding. Let B1, . . . , Bb be a partition of [m] as guaranteed by Proposition 5. For a string w ∈ {0, 1}m,
we abuse notation and write w = wB1 · · ·wBb

to denote the string obtained from w by applying the permu-
tation on [m] according to the partition B1, . . . , Bb. In other words, wBk

is the concatenation of wi where
i ∈ Bk. We now describe the encoding process.

Encoder E : on input x ∈ {0, 1}n, |x| ≤ s,

1. Let y = Ebmrv
(
x019n

)
and write y = yB1 . . . yBb

.

2. Output the concatenation E(x) = Ebghsv (yB1) . . . Ebghsv (yBb
).

The length of E(x) is N = b ·O(s′1+η) = O(s1+η log n).

Decoding. Given a string w ∈ {0, 1}N , we write w = w(1) . . . w(b), where for k ∈ [b], w(k) denotes the
s′′-bit string ws′′·(k−1)+1 . . . ws′′·k.

Decoder D: on input i and with oracle access to a string w ∈ {0, 1}N ,

1. Pick a random k ∈ [b].
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2. If |Γi ∩Bk| 6= 1, then output a random bit.
Else, let Γi ∩ Bk = {j}. Run and output the answer given by the decoder Dbghsv(j), with oracle
access to the s′′-bit string w(k).

Analysis. Fix x ∈ D and w ∈ {0, 1}N such that ∆(w, E(x)) ≤ δN , where δ is less than some small
constant τ to be specified later. We now verify the four conditions of Definition 1. For Condition 1, note
that the number of probes the decoder D makes is the number of probes the decoder Dbghsv makes, which
is at most t, a fixed integer.

We now examine Condition 2. Fix i ∈ [n]. By Markov’s inequality, for a random k ∈ [b], the probability
that the relative Hamming distance between E (yBk

) and w(k) is greater than 105δ is at most 10−5. If k is
chosen such that the fraction of errors in w(k) is at most 105δ and Γi ∩ Bk = {j}, then with probability at
least 0.99, Dbghsv outputs yj or ⊥. Let β ≥ 1

4 be the fraction of k ∈ [b] such that |Γi ∩Bk| = 1. Then

Pr[D(i) ∈ {xi,⊥}] ≥ (1− β)
1
2

+ β
99
100
− 1

105
> 0.624. (1)

To prove Condition 3, we need the expansion property of the BMRV structure, as explained after The-
orem 4. For k ∈ [b], define Gk ⊆ Bk so that j ∈ Gk if Pr

[
Dw(k)

bghsv(j) = yj

]
≥ 0.99. In other words, Gk

consists of indices in block Bk that are answered correctly by Dbghsv with high probability. By Theorem 3,
if the fraction of errors in w(k) is at most 105δ, such that |Gk| ≥ (1− cδ)|Bk| for some fixed constant c. Set
A = ∪k∈[b]Bk\Gk, Since we showed above that for a (1− 10−5)-fraction of k ∈ [b], the fractional number
of errors in w(k) is at most 105δ, we have |A| ≤ cδm+ 10−5m.

Recall that the BMRV expander has left degree d = 10 log(20n). Take δ small enough that |A| < 1
40sd;

this determines the value of τ of the theorem. We need to show that for any such small set A, most queries
i ∈ [n] are answered correctly with probability at least 0.51. It suffices to show that for most i, most of the
set Γi falls outside of A. To this end, let B(A) = {i ∈ [n] : |Γi ∩A| ≥ d

10}. We show that if A is small then
B(A) is small.

Claim 6. For every A ⊆ [m] with |A| < sd
40 , it is the case that |B(A)| < s

2 .

Proof. Suppose, by way of contradiction, that B(A) contains a set W of size s/2. W is a set of left vertices
in the underlying expander graph G, and since |W | < 2s, we must have

|Γ(W )| ≥
(

1− 1
20

)
d|W |.

By construction, each vertex in W has at most 9
10d neighbors outside A. Thus, we can bound the size of

Γ(W ) from above as follows

|Γ(W )| ≤ |A|+ 9
10
d|W |

<
1
40
ds+

9
10
d|W |

=
1
20
d|W |+ 9

10
d|W |

=
(

1− 1
20

)
d|W |.

This is a contradiction. Hence no such W exists and |B(A)| < s
2 .
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Define G = [n]\B(A) and notice that |G| > n − s
2 . It remains to show that each query i ∈ G is

answered correctly with probability > 0.51. To this end, we have

Pr[D(i) =⊥] ≤ Pr[D probes a block with noise-rate > 105δ] +
Pr[D probes a j ∈ A] + Pr[D(i) =⊥: D probes a j 6∈ A]

≤ 1
105

+
1
10

+
1

100
< 0.111.

Combining with Eq. (1), for all i ∈ G we have

Pr[D(i) = xi] = Pr[D(i) ∈ {xi,⊥}]− Pr[D(i) =⊥] ≥ 0.51.

Finally, Condition 4 follows from the corresponding condition of the data structure for MEMn,n.

3 The POLYNOMIAL EVALUATION problem

In this section we prove Theorem 2. Given a polynomial g of degree s over Zn, our goal is to write down
a data structure of length roughly linear in s log n so that for each a ∈ Zn, g(a) can be computed with ap-
proximately polylog s · log n bit-probes. Our data structure is built on the work of Kedlaya and Umans [15].
Since we cannot quite use their construction as a black-box, we first give a high-level overview of our proof,
motivating each of the proof ingredients that we need.

Encoding based on reduced polynomials: The most naive construction, by recording g(a) for each a ∈
Zn, has length n log n and answers an evaluation query with log n bit-probes. As explained in [15], one can
reduce the length by using the Chinese Remainder Theorem (CRT): If P1 is a collection of distinct primes,
then a nonnegative integerm <

∏
p∈P1

p is uniquely specified by (and can be reconstructed efficiently from)
the values [m]p for each p ∈ P1, where [m]p denotes m mod p.

Consider the value g(a) over Z, which can be bounded above by ns+2, for a ∈ Zn. Let P1 consist of the
first log(ns+2) primes. For each p ∈ P1, compute the reduced polynomial gp := g mod p and write down
gp(b) for each b ∈ Zp. Consider the data structure that simply concatenates the evaluation table of every
reduced polynomial. This data structure has length |P1|(maxp∈P1 p)

1+o(1), which is s2+o(1) log2+o(1) n by
the Prime Number Theorem (see Fact 12 in Appendix B). Note that g(a) <

∏
p∈P1

p. So to compute [g(a)]n,
it suffices to apply CRT to reconstruct g(a) over Z from the values [g(a)]p = gp([a]p) for each p ∈ P1. The
number of bit-probes is |P1| log(maxp∈P1 p), which is s1+o(1) log1+o(1) n.

Error-correction with reduced polynomials: The above CRT-based construction has terrible parameters,
but it serves as an important building block from which we can obtain a data structure with better parameters.
For now, we explain how the above CRT-based encoding can be made error-correcting. One can protect the
bits of the evaluation tables of each reduced polynomial by an RLDC as provided by Theorem 3. However,
the evaluation tables can have non-binary alphabets, and a bit-flip in just one “entry” of an evaluation table
can destroy the decoding process. To remedy this, one can first encode each entry by a standard error-
correcting code and then encode the concatenation of all the tables by an RLDC. This is encapsulated in
Lemma 7, which can be viewed as a version of Theorem 3 over non-binary alphabet. We prove this in
Appendix A.

Lemma 7. Let f : D × Q → {0, 1}` be a data structure problem. For every ε, η, λ ∈ (0, 1), there exists
τ ∈ (0, 1) such that for every δ ≤ τ , f has an (O(1), δ, ε, λ)-data structure of length O((`|Q|)1+η).
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To apply Lemma 7, let D be the set of degree-s polynomials over Zn, Q be the set of all evaluation
points of all the reduced polynomials of g (each specified by a pair (a, p)), and the data structure problem f
outputs evaluations of some reduced polynomial of g.

By itself, Lemma 7 cannot guarantee resiliency against noise. In order to apply the CRT to reconstruct
g(a), all the values {[g(a)]p : p ∈ P1}must be correct, which is not guaranteed by Lemma 7. To fix this, we
add redundancy, taking a larger set of primes than necessary so that the reconstruction via CRT can be made
error-correcting. Specifically, we apply a Chinese Remainder Code, or CRT code for short, to the encoding
process.

Definition 2 (CRT code). Let p1 < p2 < . . . < pN be distinct primes, K < N , and T =
K∏
i=1

pi. The

Chinese Remainder Code (CRT code) with basis p1, . . . , pN and rate K
N over message space ZT encodes

m ∈ ZT as 〈[m]p1 , [m]p2 , . . . , [m]pN 〉.

Remark. By CRT, for distinct m1,m2 ∈ ZT , their encodings agree on at most K − 1 coordinates. Hence
the Chinese Remainder Code with basis p1 < . . . < pN and rate K

N has distance N −K + 1.

It is known that good families of CRT code exist and that unique decoding algorithms for CRT codes
(see e.g., [12]) can correct up to almost half of the distance of the code. The following statement can be
easily derived from known facts, and we include a proof in Appendix B.

Theorem 8. For every positive integer T , there exists a set P consisting of distinct primes, with (1) |P | =
O(log T ), and (2) ∀p ∈ P, log T < p < 500 log T , such that a CRT code with basis P and message space
ZT has rate 1

2 , relative distance 1
2 , and can correct up to a (1

4 −O( 1
log log T ))-fraction of errors.

We apply Theorem 8 to a message space of size ns+2 to obtain a set of primes P1 with the properties
described above. Note that these primes are all within a constant factor of one another, and in particular,
the evaluation table of each reduced polynomial has the same length, up to a constant factor. This fact and
Lemma 7 will ensure that our CRT-based encoding is error-correcting.

Reducing the bit-probe complexity: We now explain how to reduce the bit-probe complexity of the
CRT-based encoding, using an idea from [15]. Write s = dm, where d = logC s, m = log s

C log log s , and
C > 1 is a sufficiently large constant. Consider the following multilinear extension map ψd,m : Zn[X] →
Zn[X0, . . . , Xm−1] that sends a univariate polynomial of degree at most s to an m-variate polynomial of
degree at most d in each variable. For every i ∈ [s], write i =

∑m−1
j=0 ijd

j in base d. Define ψd,m which

sends Xi to Xi0
1 · · ·X

im−1
m and extends multilinearly to Zn[X].

To simplify our notation, we write g̃ to denote the multivariate polynomial ψd,m(g). For every a ∈ Zn,
define ã ∈ Zmn to be ([a]n, [ad]n, [ad

2
]n, . . . , [ad

m−1
]n). Note that for every a ∈ Zn, g(a) = g̃(ã) (mod n).

Now the trick is to observe that the total degree of the multilinear polynomial g̃ is less than the degree of the
univariate polynomial g, and hence its maximal value over the integers is much reduced. In particular, for
every a ∈ Zmn , the value ψd,m(g)(a) over the integers is bounded above by dmndm+1.

We now work with the reduced polynomials of g̃ for our encoding. Let P1 be the collection of primes
guaranteed by Theorem 8 when T1 = dmndm+1. For p ∈ P1, let g̃p denote g̃ mod p and ãp denote the
point ([a]p, [ad]p, . . . , [ad

m−1
]p). Consider the data structure that concatenates the evaluation table of g̃p for

each p ∈ P1. For each a ∈ Zn, to compute g(a), it suffices to compute g̃(ã) over Z, which by Theorem 8
can be reconstructed (even with noise) from the set {g̃p(ãp) : p ∈ P1}.

Since the maximum value of g̃ is at most T1 = dmndm+1 (whereas the maximum value of g is at
most dmnd

m+1), the number of primes we now use is significantly less. This effectively reduces the
bit-probe complexity. In particular, each evaluation query can be answered with |P1| · maxp∈P1 log p =
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(dm log n)1+o(1) bit-probes, which by our choice of d and m is equal to polylog s · log1+o(1) n. However,
the length of this encoding is still far from the information-theoretically optimal s log n bits. We shall ex-
plain how to reduce the length, but since encoding with multilinear reduced polynomials introduces potential
complications in error-correction, we first explain how to circumvent these complications.

Error-correction with reduced multivariate polynomials: There are two complications that arise from
encoding with reduced multivariate polynomials. The first is that not all the points in the evaluation tables
are used in the reconstructive CRT algorithm. Lemma 7 only guarantees that most of the entries of the table
can be decoded, not all of them. So if the entries that are used in the reconstruction via CRT are not decoded
by Lemma 7, then the whole decoding procedure fails.

More specifically, to reconstruct g̃(ã) over Zn, it suffices to query the point ãp in the evaluation table
of g̃p for each p ∈ P1. Typically the set {ãp : a ∈ Zn} will be much smaller than Zmp , so not all the
points in Zmp are used. To circumvent this issue, we only store the query points that are used in the CRT
reconstruction. Let Bp = {ãp : a ∈ Zn}. For each p ∈ P1, the encoding only stores the evaluation of g̃p at
the points Bp instead of the entire domain Zmp . The disadvantage of computing the evaluation at the points
in Bp is that the encoding stage takes time proportional to n. We thus give up on encoding efficiency (which
was one of the main goals of Kedlaya and Umans) in order to guarantee error-correction.

The second complication is that the sizes of the evaluation tables may no longer be within a constant
factor of each other. (This is true even if the evaluation points come from all of Zmp .) If one of the tables
has length significantly longer than the others, then a constant fraction of noise may completely corrupt the
entries of all the other small tables, rendering decoding via CRT impossible. This potential problem is easy
to fix; we apply a repetition code to each evaluation table so that all the tables have equal length.

Reducing the length: Now we explain how to reduce the length of the data structure to nearly s log n,
along the lines of Kedlaya and Umans [15]. To reduce the length, we need to reduce the magnitude of
the primes used by the CRT reconstruction. We can effectively achieve that by applying the CRT twice.
Instead of storing the evaluation table of g̃p, we apply CRT again and store evaluation tables of the reduced
polynomials of g̃p instead. Whenever an entry of g̃p is needed, we can apply the CRT reconstruction to the
reduced polynomials of g̃p.

Note that for p1 ∈ P1, the maximum value of g̃p1 (over the integers rather than mod n) is at most
T2 = dmpdm+1

1 . Now apply Theorem 8 with T2 the size of the message space to obtain a collection of primes
P2. Recall that each p1 ∈ P1 is at most O(dm log n). So each p2 ∈ P2 is at most O((dm)1+o(1) log logn),
which also bounds the cardinality of P2 from above.

For each query, the number of bit-probes made is at most |P1||P2|maxp2∈P2 log p2, which is at most
(dm)2+o(1) log1+o(1) n. Recall that by our choice of d and m, dm = logC+1 s

C log log s . Thus, the bit-probe

complexity is polylog s · log1+o(1) n. Now, by Lemma 7, the length of the encoding is nearly linear
in |P1||P2|maxp2∈P2 p

m
2 log p2, which is at most polylog s · log1+o(1) n · maxp2∈P2 p

m
2 . So it suffices

to bound maxp2∈P2 p
m
2 from above. To this end, recall that by the remark following Theorem 2, we

may assume without loss of generality that s = Ω(logζ n) for some 0 < ζ < 1. This implies that
log log log n ≤ log log s− log ζ. Then for each p2 ∈ P2,

pm2 ≤
(
O
(

(dm)1+o(1) log log n
))m

≤ (dm)(1+o(1))m · s
1
C

+o(1).

It is easy to see that (dm)(1+o(1))m can be bounded above by s(1+o(1))(1+ 1
C
−o(1)). Thus, pm2 = s1+ 2

C
+o(1).

Putting everything together, the length of the encoding is nearly linear in s log n. We now proceed with a
formal proof.
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Proof of Theorem 2. We only construct an error-correcting data structure with error probability ε = 1
4 . By

a standard amplification technique (i.e., O(log(1/ε)) repetitions) we can reduce the error probability to any
other positive constant. We now give a formal description of the encoding and decoding algorithms.

Encoding: Apply Theorem 8 with T = dmndm+1 to obtain a collection of primes P1. Apply Theorem 8
with T = dm(maxp∈P1 p)

dm+1 to obtain a collection of primes P2. Set pmax = maxp2∈P2 p2.
Now, for each p1 ∈ P1, p2 ∈ P2, define a collection of evaluation points Bp1,p2 = {ãp1,p2 : a ∈ Zn}.

Fix a univariate polynomial g ∈ Zn[x] of degree at most s. For every p1 ∈ P1, p2 ∈ P2, view each
evaluation of the reduced multivariate polynomial g̃p1,p2 as a bit-string of length exactly dlog pmaxe. Let

L = maxp1∈P1,p2∈P2 |Bp1,p2 | and for each p1 ∈ P1, p2 ∈ P2, set rp1,p2 =
⌈

L
|Bp1,p2 |

⌉
. Define fp1,p2 to be

the concatenation of rp1,p2 copies of the string 〈g̃(q)〉q∈Bp1,p2 . Define the string f = 〈fp1,p2〉p1∈P1,p2∈P2 .
We want to apply Lemma 7 to protect the string f , which we can since f may be viewed as a data

structure problem, as follows. The set of data-items is the set of polynomials g as above. The set of queries
Q is

⋃
p1∈P1,p2∈P2

Bp1,p2 × [rp1,p2 ]. And given a query (qp1,p2 , ip1,p2), its answer is the ip1,p2-th copy of

g̃p1,p2(qp1,p2).
Fix λ ∈ (0, 1). By Lemma 7, for every η > 0, there exists τ0 ∈ (0, 1) such that for every δ ≤ τ0, the

data structure problem corresponding to f has a (O(log pmax), δ, 2−10, λ32−36)-data structure. Let E0,D0

be its encoder and decoder, respectively. Finally, the encoding of the polynomial g is simply

E(g) = E0(f).

Note that the length of E(g) is at most (|P1||P2|maxp2∈P2 p
m
2 log p2)1+η, which as we computed earlier

is bounded above by O((s log n)1+ζ) for some arbitrarily small constant ζ.

Decoding: We may assume, without loss of generality, that the CRT decoderDcrt from Theorem 7 outputs
⊥ when more than a 1

16 -fraction of its input are erasures (i.e., ⊥ symbols).
The decoder D, with input a ∈ Zn and oracle access to w, does the following:

1. Compute ã = (a, ad, . . . , ad
m−1

) ∈ Zmn , and for every p1 ∈ P1, p2 ∈ P2, compute the reduced
evaluation points ãp1,p2 .

2. For every p1 ∈ P1, p2 ∈ P2, pick j ∈ [rp1,p2 ] uniformly at random and run the decoderD0 with oracle
access to w to obtain the answers v(a)

p1,p2 = D0(ãp1,p2 , j).

3. For every p1 ∈ P1 obtain v(a)
p1 = Dcrt

((
v(a)
p1,p2

)
p2∈P2

)
.

4. Output v(a) = Dcrt
((

v
(a)
p1

)
p1∈P1

)
.

Analysis: Fix a polynomial g with degree at most s. Fix a bit-string w at relative Hamming distance at
most δ from E(g), where δ is at most τ0. We proceed to verify that the above encoding and decoding satisfy
the conditions of Definition 1.

Conditions 1 and 4 are easily verified. For Condition 1, observe that for each p1 ∈ P1, p2 ∈ P2, D0

makes at most O(log pmax) bit-probes. So D makes at most O(|P1||P2| log pmax) bit-probes, which as we
calculated earlier is at most polylog s · log1+o(1) n.
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For Condition 4, note that since D0 decodes correctly when no noise is present, v(a)
p1,p2 is equal to

g̃p1,p2(ãp1,p2). By our choice of P1 and P2, after two applications of the Chinese Remainder Theorem,
it is easy to see that D outputs v = g̃(ã), which equals g(a).

Now we verify Condition 2. Fix a ∈ Zn. We want to show that with oracle access to w, with probability
at least 3

4 , the decoder D on input a outputs either g(a) or ⊥. For π ∈ P1 ∪ (P1 × P2), we say that a point

v
(a)
π is incorrect if v(a)

π /∈ {g̃π(ãπ),⊥}.
By Lemma 7, for each p1 ∈ P1 and p2 ∈ P2, v(a)

p1,p2 is incorrect with probability at most 2−10. Now fix
p1 ∈ P1. On expectation (over the decoder’s randomness), at most a 2−10-fraction of the points in the set
{v(a)
p1,p2 : p2 ∈ P2} are incorrect. By Markov’s inequality, with probability at least 1 − 2−6, the fraction of

points in the set {v(a)
p1,p2 : p2 ∈ P2} that are incorrect is at most 1

16 . If the fraction of blank symbols in the

set {v(a)
p1,p2}p2∈P2 is at least 1

16 , then Dcrt outputs ⊥, which is acceptable. Otherwise, the fraction of errors

and erasures (i.e., ⊥ symbols) in the set {v(a)
p1,p2 : p2 ∈ P2} is at most 1

8 . By Theorem 8, the decoder Dcrt
will output an incorrect v(a)

p1 with probability at most 2−6. Thus, on expectation, at most a 2−6-fraction of
the points in {v(a)

p1 : p1 ∈ P1} are incorrect. By Markov’s inequality again, with probability at least 3
4 , at

most a 1
16 -fraction of the points in {v(a)

p1 : p1 ∈ P1} are incorrect, which by Theorem 8 implies that Dwa is
either ⊥ or g(a). This establishes Condition 2.

We now proceed to prove Condition 3. We show the existence of a setG ⊆ Zn such that |G| ≥ (1−λ)n
and for each a ∈ G, we have Pr[D(a) = g(a)] ≥ 3

4 . Our proof relies on the following observation: for any
p1 ∈ P1 and p2 ∈ P2, if a ∈ Zn is chosen uniformly at random, then the evaluation point ãp1,p2 is like a
uniformly chosen element from q ∈ Bp1,p2 . This observation implies that if a few entries in the evaluation
tables of the multivariate reduced polynomials are corrupted, then for most a ∈ Zn, the output of the decoder
D on input a remains unaffected. We now formalize this observation.

Claim 9. Fix p1 ∈ P1, p2 ∈ P2, and a point q ∈ Bp1,p2 . Then

Pr
a∈Zn

[ãp1,p2 ≡ q] ≤
4
p2
.

Proof. For any pair of positive integers m ≤ n, the number of integers in [n] congruent to a fixed integer
mod m is at most

⌊
n
m

⌋
+ 1 and at least

⌊
n
m

⌋
− 1. Note that if a, b ∈ Zn with a ≡ b mod m, then for any

integer i, ai ≡ bi mod m. Thus, ãm ≡ b̃m.
It is not hard to see that for a fixed q1 ∈ Bp1 , the number of integers a ∈ Zn such that ãp1 ≡ q1 is at

most
⌊
n
p1

⌋
+ 1. Furthermore, for a fixed q2 ∈ Bp1,p2 , the number of points in Bp1 that are congruent to q2

mod p2 is at most
⌊
p1
p2

⌋
+1. Thus, for a fixed q ∈ Bp1,p2 , the number of integers a ∈ Zn such that ãp1,p2 ≡ q

is at most
(⌊

n
p1

⌋
+ 1
)(⌊

p1
p2

⌋
+ 1
)

, which is at most 4 n
p2

since n ≥ p1 ≥ p2.

Now, for every p1 ∈ P1 and p2 ∈ P2, we say that a query (q, j) ∈ Bp1,p2 × [rp1,p2 ] is bad if the
probability that Dw0 (q, j) 6= g̃(p1,p2)(q) is greater than 2−10. By Lemma 7, the fraction of bad queries in
∪p1,p2Bp1,p2 × [rp1,p2 ] is at most λ0 := λ32−36. We say that a tuple of primes (p1, p2) ∈ P1 × P2 is bad if
more than a 211λ0λ

−1-fraction of queries in Bp1,p2 × [rp1,p2 ] are bad (below, good always denotes not bad.)
By averaging, the fraction of bad tuples (p1, p2) is at most 2−11λ.

For a fixed good tuple (p1, p2), we say that an index ip1,p2 is bad if more than a 2−11λ-fraction of queries
in the copy Bp1,p2 × {ip1,p2} are bad. Since (p1, p2) is good, by averaging, at most a 222λ0λ

−2-fraction
of [rp1,p2 ] are bad. Recall that in Step 2 of the decoder D, the indices {jp1,p2 : p1 ∈ P1, p2 ∈ P2} are
chosen uniformly at random. So on expectation, the set of indices {jp1,p2 : (p1, p2) is good} has at most a
222λ0λ

−2-fraction of bad indices. By Markov’s inequality, with probability at least 7
8 , the fraction of bad
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indices in the set {jp1,p2 : (p1, p2) is good} is at most 225λ0λ
−2. We condition on this event occurring and

fix the indices jp1,p2 for each p1 ∈ P1, p2 ∈ P2.
Fix a good tuple (p1, p2) and a good index jp1,p2 . By Claim 9, for a uniformly random a ∈ Zn,

the query (ãp1,p2 , j
p1,p2) is bad with probability at most 2−9λ. By linearity of expectation, for a random

a ∈ Zn, the expected fraction of bad queries in the set Sa = {(ãp1,p2 , jp1,p2) : p1 ∈ P1, p2 ∈ P2} is at most
2−11λ+ 225λ0λ

−2 + 2−9λ, which is at most 2−8λ by definition of λ0. Thus, by Markov’s inequality, for a
random a ∈ Zn, with probability at least 1− λ, the fraction of bad queries in the set Sa is at most 2−8. By
linearity of expectation, there exists some subset G ⊆ Zn with |G| ≥ (1 − λ)n such that for every a ∈ G,
the fraction of bad queries in Sa is at most 2−8.

Now fix a ∈ G. By definition, the fraction of bad queries in Sa is at most 2−8, and furthermore, each of
the good queries in Sa is incorrect with probability at most 2−10. So on expectation, the fraction of errors
and erasures in Sa is at most 2−8 + 2−10. By Markov’s inequality, with probability at least 7

8 , the fraction

of errors and erasures in the set {v(a)
p1,p2 : p1 ∈ P1, p2 ∈ P2} is at most 2−5 + 2−7, which is at most 1

25 . We
condition on this event occurring. By averaging, for more than a 4

5 -fraction of the primes p1 ∈ P1, the set

{v(a)
p1,p2 : p2 ∈ P2} has at most 1

5 -fraction of errors and erasures, which can be corrected by the CRT decoder

Dcrt. Thus, after Step 3 of the decoder D, the set {v(a)
p1 } has at most a 1

5 -fraction of errors and erasures,
which again will be corrected by the CRT decoder Dcrt. Hence, by the union bound, the two events that we
conditioned on earlier occur simultaneously with probability at least 3

4 , and D(a) will output g(a).

4 Conclusion and future work

We presented a relaxation of the notion of error-correcting data structures recently proposed in [20]. While
the earlier definition does not allow data structures that are both error-correcting and efficient in time and
space (unless an unexpected breakthrough for constant-probe LDCs happens), our new definition allows
us to construct efficient, error-correcting data structures for both the MEMBERSHIP and the POLYNOMIAL

EVALUATION problems. This opens up many directions: what other data structures can be made error-
correcting?

The problem of computing rank within a sparse ordered set is a good target. Suppose we are given a
universe [n], some nonnegative integer s ≤ n, and a subset S ⊆ [n] of size at most s. The rank problem is
to store S compactly so that on input i ∈ [n], the value |{j ∈ S : j ≤ i}| can be computed efficiently. For
easy information-theoretic reasons, any data structure for this problem needs length at least Ω(s log n) and
makes Ω(log s) bit-probes for each query. If s = O(log n), one can trivially obtain an error-correcting data
structure of optimal length O(s log n) with O(log2 n) bit-probes, which is only quadratically worse than
optimal: write down S as a string of s log n bits, encode it with a good error-correcting code, and read the
entire encoding when an index is queried. However, it may be possible to do something smarter and more
involved. We leave the construction of near-optimal error-correcting data structures for rank with small s
(as well as for related problems such as predecessor) as challenging open problems.
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A Non-binary answer set

We prove Lemma 7, a version of Theorem 3 when the answer set A is non-binary. We first encode the
`|Q|-bit string 〈f(x, q)〉q∈Q by an RLDC, and use the decoder of the RLDC to recover each of the ` bits
of f(x, q). Now it is possible that for each q ∈ Q, the decoder outputs some blank symbols ⊥ for some
of the bits of f(x, q), and no query could be answered correctly. To circumvent this, we first encode each
`-bit string f(x, q) with a good error-correcting code, then encode the entire string by the RLDC. Now if
the decoder does not output too many errors or blank symbols among the bits of the error-correcting code
for f(x, q), we can recover it. We need a family of error-correcting codes with the following property, see
e.g. page 668 in [19].

Fact 10. For every δ ∈ (0, 1/2) there exists R ∈ (0, 1) such that for all n, there exists a binary linear
code of block length n, information length Rn, Hamming distance δn, such that the code can correct from
e errors and s erasures, as long as 2e+ s < δn.

Proof of Lemma 7. We only construct an error-correcting data structure with error probability ε = 1
4 . By a

standard amplification technique (i.e., O(log(1/ε)) repetitions) we can reduce the error probability to any
other positive constant. Let Eecc : {0, 1}` → {0, 1}`

′
be an asymptotically good binary error-correcting

code (from Fact 10), with `′ = O(`) and relative distance 3
8 , and decoder Decc. By Theorem 3, there exist

c0, τ0 > 0 such that for every δ ≤ τ0, there is a (O(1), δ, 1
32 , c0δ)-relaxed locally decodable code (RLDC).

Let E0 and D0 denote its encoder and decoder, respectively.

Encoding. We construct a data structure for f as follows. Define the encoder E : D → {0, 1}N , where
N = O((`′ · |Q|)1+η), as

E(x) = E0

(
〈 Eecc(f(x, q)) 〉q∈Q

)
.

Decoding. Without loss of generality, we may impose an ordering on the set Q and identify each q ∈ Q
with an integer in [Q].

The decoder D, with input q ∈ Q and oracle access to w ∈ {0, 1}N , does the following:

1. For each j ∈ [`′], let rj = Dw0 ((q − 1)`′ + j) and set r = r1 . . . r`′ ∈ {0, 1,⊥}`
′
.

2. If the number of blank symbols ⊥ in r is at least `
′

8 , then output ⊥. Else, output Decc(r).
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Analysis. Fix x ∈ D and w ∈ {0, 1}N such that ∆(w, E(x)) ≤ δN , and δ ≤ τ , where τ is the minimum
of τ0 and λ2−6c−1

0 . We need to argue that the above encoding and decoding satisfies the four conditions
of Definition 1. For Condition 1, since D0 makes O(1) bit-probes and D runs this `′ times, D makes
O(`′) = O(`) bit-probes into w.

We now show D satisfies Condition 2. Fix q ∈ Q. We want to show Pr[Dw(q) ∈ {f(x, q),⊥}] ≥ 3
4 .

By Theorem 3, for each j ∈ [`′], with probability at most 1
32 , rj = f(x, q)j ⊕ 1. So on expectation, for at

most 1
32 -fraction of the indices j, rj = f(x, q)j ⊕ 1. By Markov’s inequality, with probability at least 3

4 , the
number of indices j such that rj = f(x, q)j ⊕ 1 is at most `

′

8 . If the number of ⊥ symbols in r is at least `
′

8

then D outputs ⊥, so assume the number of ⊥ symbols is less than `′

8 . Those ⊥’s are viewed as erasures in
the codeword Eecc(f(x, q)). Since Eecc has relative distance 3

8 , by Fact 10, Decc will correct these errors and
erasures and output f(x, q).

For Condition 3, we show there exists a large subset G of q’s satisfying Pr[Dw(q) = f(x, q)] ≥ 3
4 . Let

y = 〈 Eecc(f(x, q)) 〉q∈Q, which is a `′|Q|-bit string. Call an index i in y bad if Pr[Dw0 (i) = yi] < 3
4 . By

Theorem 3, at most a c0δ-fraction of the indices in y are bad. We say that a query q ∈ Q is bad if more than
a 1

64 -fraction of the bits in Eecc(f(x, q)) are bad. By averaging, the fraction of bad queries in Q is at most
64c0δ, which is at most λ by our choice of τ . We define G to be the set of q ∈ Q that are not bad. Clearly
|G| ≥ (1− λ)|Q|.

Fix q ∈ G. On expectation, the fraction of indices in r such that rj 6= f(x, q)j is at most 1
64 + 1

32 . Hence
by Markov’s inequality, with probability at least 3

4 , the fraction of indices in r such that rj 6= f(x, q)j is at
most 3

16 . Thus, by Fact 10, Decc(r) will recover from these errors and erasures and output f(x, q).
Finally, Condition 4 follows since the pair (E0,D0) satisfies Condition 4, finishing the proof.

B CRT codes

In this section we explain how Theorem 8 follows from known facts. In [12], Goldreich, Ron, and Sudan
designed a unique decoding algorithm for CRT code.

Theorem 11 (from [12]). Given a CRT Code with basis p1 < . . . < pN and rate K/N , there exists a
polynomial-time algorithm that can correct up to log p1

log p1+log pN
(N −K) errors.

By choosing the primes appropriately, we can establish Theorem 8. In particular, the following well-
known estimate, essentially a consequence of the Prime Number Theorem, is useful. See for instance
Theorem 4.7 in [1] for more details.

Fact 12. For a positive integer `, the `th prime, denoted q`, satisfies 1
6` log ` < q` < 13` log `.

Proof of Theorem 8. LetK = b 12 log T
log log T c and q` denote the `-th prime. By Fact 12, qK > 1

6K logK > log T

and q3K−1 < 39K log 3K < 500 log T . Also, notice that
∏2K−1
i=K qi > qKK > (log T )

log T
log log T = T. Thus,

the CRT code with basis qK , . . . , q3K−1 has message space ZT , rate 1
2 , and relative distance 1

2 . Lastly, by
Theorem 11, the code can correct a fraction 1

4 −O( 1
log log T ) of errors.
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