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Abstract. In this paper we investigate the following two questions:

Q1: Do there exist optimal proof systems for a given language L?
Q2: Do there exist complete problems for a given promise class C?

For concrete languages L (such as TAUT or SAT) and concrete promise classes
C (such as NP ∩ coNP, UP, BPP, disjoint NP-pairs etc.), these questions have
been intensively studied during the last years, and a number of characterizations
have been obtained. Here we provide new characterizations for Q1 and Q2 that
apply to almost all promise classes C and languages L, thus creating a unifying
framework for the study of these practically relevant questions.

While questions Q1 and Q2 are left open by our results, we show that they
receive affirmative answers when a small amount of advice is available in the
underlying machine model. This continues a recent line of research on proof
systems with advice started by Cook and Kraj́ıček [7].

1 Introduction

A general proof system in the sense of Cook and Reckhow [8] can be understood
as a nondeterministic guess-and-verify algorithm. The question whether there
exist optimal or p-optimal proof systems essentially asks whether there exists
the best such verification procedure. For practical purposes, such an optimal
proof system would be extremely useful, as both the search for good verification
algorithms as well as the quest for lower bounds to the proof size could concen-
trate on the optimal system. Thus the following question is of great significance:

Q1: Do there exist (p-)optimal proof systems for a given language L?

Posed by Kraj́ıček and Pudlák [17], this question has remained unresolved for
almost twenty years. Sufficient conditions were established by Kraj́ıček and
Pudlák [17] by NE = coNE for the existence of optimal and E = NE for p-optimal
propositional proof systems, and these conditions were subsequently weakened
by Köbler, Messner, and Torán [14]. Necessary conditions for a positive answer
to Q1 are tightly linked to the following analogue of Q1 for promise complexity
classes lacking an easy syntactic machine model:

Q2: Do there exist complete problems for a given promise class C?

★ An extended abstract of this paper appeared in the proceedings of the conference CSR 2009
[5].
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Like the first question also Q2 has a long research record, dating back to the
80’s when Kowalczyk [16] and Hartmanis and Hemachandra [13] considered this
question for NP∩ coNP and UP. This research agenda continues to recent days
where, due to cryptographic and proof-theoretic applications, disjoint NP-pairs
have been intensively studied (cf. [9, 10, 12, 2] and [11] for a survey).

As many computational tasks are formulated as function problems [22], it
is also interesting to extend Q2 to function classes. In this formulation Q1
becomes a special case of Q2 because all proof systems for a given language
can be understood as a promise function class in which complete functions
correspond to p-optimal proof systems. In fact, Köbler, Messner, and Torán [14]
have shown that, with respect to Q2, proof systems provide the most difficult
instances among all promise classes, i.e., a positive answer to Q1 implies a
positive answer for Q2 for many choices of L and C.

In the present paper we continue this line of research. While Köbler, Mess-
ner, and Torán [14] focused on the implication Q1 ⇒ Q2, we provide new
characterizations for both Q1 and Q2. In fact, from these characterizations we
can also easily read off the implication Q1 ⇒ Q2 (under suitable assumptions),
thus in addition, we provide alternative proofs for some results of [14]. Köbler,
Messner, and Torán used the notion of a test set to measure the complexity of
the promise. Here we pursue a different but related approach by representing
the promise in a language L and then using a proof system for L to verify the
promise. On the propositional level, such representations have been successfully
used to express the consistency of propositional proof systems (known as the
reflection principle, cf. [6, 17]) or the disjointness of NP-pairs [18, 2]. We create
a unifying framework which generalizes these methods to arbitrary languages.

We will now describe in more detail our results and the organization of the
paper. After developing the notion of representations in Sects. 2 and 3 we ex-
amine Q1 in Sect. 4 where we prove that a language L has a p-optimal proof
system if and only if all polynomial-time computable subsets of L are recursively
enumerable. A similar characterization also holds for the existence of optimal
proof systems. This widely generalizes previous results from [20] for proposi-
tional proof systems and provides interesting characterizations for a number of
applications like the graph isomorphism and automorphism problems.

In Sect. 5 we proceed with question Q2 where we discuss a characterization
of Q2 in terms of uniform enumerations of promise obeying machines. Section 6
then contains our results on the connections between Q1 and Q2. We show
that, under suitable assumptions, a promise class C has complete problems
if and only if there exists a proof system for some language L in which C is
representable. This also yields a general method to show the equivalence of
reductions of varying strength with respect to Q2. In addition, we obtain that
L has a p-optimal proof system if and only if every promise class expressible in
L has a complete set or function. Different versions of these results hold for both
optimality and p-optimality. We also apply these general theorems to concrete
promise classes like UP, NP ∩ coNP, and disjoint NP-pairs.

Finally, in Sect. 7 we show that the relation between proof systems and
promise classes also holds in the presence of advice. Employing recent advances
of Cook and Kraj́ıček [7] who show that optimal propositional proof systems
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exist which use only one bit of advice, we obtain complete sets for a large
number of promise classes when advice is available.

2 Preliminaries

We assume basic familiarity with complexity classes (cf. [1]). Our basic model
of computation are polynomial-time Turing machines and transducers. Tacitly
we assume these machines to be suitably encoded by strings. We also assume
that they always have a polynomial-time clock attached bounding their running
time such that this running time is easy to detect from the code of the machine.

For a language L and a complexity class C, the set of all C-easy subsets of
L consists of all sets A ⊆ L with A ∈ C. A class C of languages has a recursive
P-presentation (resp. NP-presentation) if there exists a recursively enumerable
list N1, N2, . . . of (non-)deterministic polynomial-time clocked Turing machines
such that L(Ni) ∈ C for i ∈ ℕ, and, conversely, for each A ∈ C there exists an
index i with A ⊆ L(Ni). In this definition, it would also be natural to replace
A ⊆ L(Ni) by the stronger requirement A = L(Ni), but the weaker concept
suffices for our purpose.

Proof Systems. Cook and Reckhow [8] defined the notion of a proof system
for a language L quite generally as a polynomial-time computable function f
with range L. A string w with f(w) = x is called an f -proof for x ∈ L. By
f ⊢≤m x we indicate that x has an f -proof of size ≤ m. For a subset A ⊆ L we
write f ⊢∗ A if there is a polynomial p such that f ⊢≤p(∣x∣) x for all x ∈ A.

Proof systems are compared by simulations [8, 17]. If f and g are proof
systems for L, we say that g simulates f (denoted f ≤ g), if there exists a
polynomial p such that for all x ∈ L and f -proofs w of x there is a g-proof w′

of x with ∣w′∣ ≤ p (∣w∣). If such a proof w′ can even be computed from w in
polynomial time, we say that g p-simulates f (denoted f ≤p g). A proof system
for L is called (p-)optimal if it (p-)simulates all proof systems for L.

Promise Classes. Following the approach of Köbler, Messner, and Torán
[14], we define promise classes in a very general way. A promise R is de-
scribed as a binary predicate between nondeterministic polynomial-time Tur-
ing machines N and strings x, i.e., R(N,x) means that N obeys promise
R on input x. A machine N is called an R-machine if N obeys R on any
input x ∈ �∗. Given a promise predicate R, we define the language class
CR = {L(N) ∣ N is an R-machine } and call it the promise class generated
by R. Instead of R-machines we will also speak of CR-machines. Similarly, we
define function promise classes by replacing L(N) by the function computed by
N (cf. [14]). For functions we use the following variant of many-one reductions
(cf. [14]): f ≤ g if there exists a polynomial-time computable function t such
that f(x) = g(t(x)) for all x in the domain of f .

In this general framework it is natural to impose further restrictions on
promise classes. One assumption which we will make throughout the paper is
the presence of universal machines, i.e., we only consider promise conditions R
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such that there exists a universal machine UR which, given an R-machine N ,
input x, and time bound 0m, efficiently simulates N(x) for m steps such that
UR obeys promise R on ⟨N,x, 0m⟩.

Occasionally, we will need that C-machines can perform nondeterministic
polynomial-time computations without violating the promise. We make this
precise via the following notion from [14]: for a complexity class A and a promise
class C defined via promise R, we say that A-assertions are useful for C if for
any language A ∈ A and any nondeterministic polynomial-time Turing machine
N the following holds: if N obeys promise R on any x ∈ A, then there exists a
language C ∈ C such that C ∩ A = L(N) ∩A. A similar definition also applies
for function classes. Namely, A-assertions are useful for a function class C if
for any language A ∈ A and any polynomial-time clocked Turing transducer
N it holds: if N obeys promise R on any input x ∈ A, then there exists a
function f ∈ C such that N(x) = f(x) for any x ∈ A. Throughout this paper
we will only consider promise classes C for which P-assertions are useful. If also
NP-assertions are useful for C, then we say that C can use nondeterminism.

The set of all proof systems for a language L is an example for a promise
function class, where the promise for a given function f is rng(f) = L. We
define a larger class PS (L) where we only concentrate on correctness but not on
completeness of proof systems. This is made precise in the following definition.

Definition 1. For a language L, the promise function class PS (L) contains all
polynomial-time computable functions f with rng(f) ⊆ L.

3 Representations

In order to verify a promise, we need appropriate encodings of promise condi-
tions. In the next definition we explain how a promise condition for a machine
can be expressed in an arbitrary language.

Definition 2. A promise R is expressible in a language L if there exists a
polynomial-time computable function corr : �∗ × �∗ × 0∗ → �∗ such that the
following conditions hold:

1. Correctness: For every Turing machine N , for every x ∈ �∗ and m ∈ ℕ, if
corr (x,N, 0m) ∈ L, then N obeys promise R on input x.

2. Completeness: For every R-machine N with polynomial time bound p, the
set

Correct(N) = {corr (x,N, 0p(∣x∣)) ∣ x ∈ �∗ }

is a subset of L.

3. Local recognizability: For every Turing machine N , the set Correct(N) is
polynomial-time decidable.

We say that the promise class C generated by R is expressible in L if R is
expressible in L. If the elements corr (x,N, 0m) only depend on ∣x∣, N , and m,
but not on x, we say that C is expressible in L by a length-depending promise.
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This definition applies to both language and function promise classes. One
of the most important applications for the above concept of expressibility is
to choose L as the set of propositional tautologies TAUT. Expressing promise
conditions by propositional tautologies is a well known approach with a long
history. For propositional proof systems, leading to the promise function class
PS (TAUT), propositional expressions are constructed via the reflection prin-
ciple of the proof system (cf. [6, 17]). Propositional expressions have also been
used for other promise classes like disjoint NP-pairs and its generalizations [2, 3].
Typically, these expressions are even length depending. We remark that Köbler,
Messner, and Torán [14] have used a related approach, namely the notion of a
test set, to measure the complexity of promise conditions.

As a first example, consider the set of all P-easy subsets of a language L.
The next lemma shows that this promise class is always expressible in L.

Lemma 3. For every language L, the P-easy subsets of L are expressible in L.

Proof. Let N be a deterministic polynomial-time Turing machine with running
time p. We define the function corr (N,x, 0m) as

corr (x,N, 0m) =

{

x if N(x) accepts in ≤ m steps

x0 otherwise

with some fixed element x0 ∕∈ L. ⊓⊔

Using expressibility of a promise class in a language L, we can verify the
promise for a given machine with the help of short proofs in some proof system
for L. This leads to the following concept:

Definition 4. Let C be a promise class which is expressible in a language L.
Let further A be a language from C and P be a proof system for L. We say
that A is representable in P if there exists a C-machine N for A such that
P ⊢∗ Correct (N). If these P -proofs of corr (x,N, 0p(∣x∣)) can even be constructed
from input x in polynomial time, then we say that A is p-representable in P .

Furthermore, if every language A ∈ C is (p-)representable in P , then we say
that C is (p-)representable in P .

Intuitively, representability of A in P means that we have short P -proofs of
the promise condition of A (with respect to some C-machine for A). Given a
proof system P for L and a promise class C which is expressible in L, it makes
sense to consider the subclass of all languages or functions from C which are
representable in P . This leads to the following definition:

Definition 5. For a promise class C expressible in a language L and a proof
system P for L, let C(P ) denote the class of all A ∈ C which are representable
in P .

Note that for each A ∈ C there exists some proof system P for L such that
A ∈ C(P ), but in general C(P ) will be a strict subclass of C which enlarges for
stronger proof systems. It is, of course, interesting to ask whether these sub-
classes C(P ) have sufficiently good properties. In particular, it is desirable that
C(P ) is closed under reductions. Therefore, we make the following definition:
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Definition 6. A promise class C is provably closed under a reduction ≤R in
L if C is expressible in L and for each proof system P for L there exists a proof
system P ′ for L such that P ≤ P ′ and for all A ∈ C and B ∈ C(P ′), A ≤R B
implies A ∈ C(P ′).

We remark that provable closure of C under ≤R is a rather weak notion as it
does not even imply closure of C under ≤R in the ordinary sense (because of the
restriction A ∈ C). Also we do not require each subclass C(P ) to be closed under
≤R, but that for each proof system P this holds for some stronger system P ′.
This is a sensible requirement, because proof systems for L can be defined quite
arbitrarily, and closure of C(P ) typically requires additional assumptions on P
(cf. [2] where provable closure of the class of disjoint NP-pairs under different
reductions is shown). In fact, it is not difficult to construct counterexamples:

Proposition 7. Let C be a promise class which is expressible in a language L
and let ≤R be a reduction for C. Let further P be a proof system for L such
that there exist A,B ∈ C ∖C(P ) with A ≤R B. Then there exists a proof system
P ′ ≥ P such that C(P ′) is not closed under ≤R.

Proof. Under the hypotheses of the proposition, we construct the proof system
P ′ as follows. We choose a C-machine N for B and define

P ′(y) =

⎧



⎨



⎩

x if y = 0x and x ∈ Correct (N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. As P ′ ⊢∗ Correct(N) we have C(P ′) =
C(P ) ∪ {B}. In particular, A is not contained in C(P ′), but B ∈ C(P ′) and
A ≤R B. Therefore C(P ′) is not closed under ≤R. ⊓⊔

4 Optimal Proof Systems and Easy Subsets

In this section we search for characterizations for the existence of optimal or
even p-optimal proof systems for arbitrary languages L (Question Q1) and
apply these results to concrete choices for L. We start with a criterion for the
existence of p-optimal proof systems.

Theorem 8. Let L be a language such that PS (L) is expressible in L. Then
L has a p-optimal proof system if and only if the P-easy subsets of L have a
recursive P-presentation.

Proof. Let f be a p-optimal proof system for L and let A be a polynomial-time
computable subset of L. We can define a proof system fA for L as follows:

fA(x) =

⎧



⎨



⎩

f(y) if x = 0y

a if x = 1a and a ∈ A

b otherwise

where b is a fixed element in L. Because f is p-optimal, fA is p-simulated by f
via some polynomial-time computable function tA.

6



As this can be done for all P-easy subsets A of L, we get a recursive P-
presentation of L as follows. Let (ti)i∈ℕ be an enumeration of all deterministic
polynomial-time clocked Turing transducers. For i ∈ ℕ consider the following
set of algorithms Mi:

1 Input: x
2 IF f(ti(1x)) = x THEN accept ELSE reject

Apparently, these algorithms Mi can be computed by deterministic polynomial-
time Turing machines. Further, each Mi only accepts inputs from L because if
Mi accepts x, then we have an f -proof for x.

Now for each P-easy subset A of L, some machine computing the above
function tA appears in the enumeration ti, and therefore A is accepted by Mi

for the appropriate index i such that ti computes tA. ThereforeMi is a recursive
P-presentation of the class of all P-easy subsets of L.

For the converse direction, let (Mi)i∈ℕ be a recursive P-presentation of the
P-easy subsets of L. We construct a p-optimal proof system Popt for L as follows.
Inputs for Popt are tuples

⟨�, P, 0m, i, 0n⟩ .

On such an input, Popt first checks whether P is the encoding of a Turing
transducer with a polynomial-time bound attached. If this is not the case, then
Popt outputs some fixed element x0 ∈ L. Otherwise, Popt spends n steps to
compute the machine Mi from the enumeration M1,M2 . . . If n steps do not
suffice to construct Mi, we output again x0 ∈ L. Otherwise, Popt computes
corr (�, P, 0m) and checks whether Mi accepts corr (�, P, 0

m) in n steps. Again,
if Mi does not stop in ≤ n steps, then we output x0. If P and � pass the test,
then Popt simulates P on input � and outputs P (�).

Apparently, Popt can be computed in polynomial time. For each Turing
transducer N with running time p and each input x with N(x) ∈ L, the element
corr (x,N, 0p(∣x∣)) is contained in some polynomial-time computable subset of
L. Therefore, Popt is a proof system for L, because by the correctness and
completeness conditions from Definition 2, the range of Popt is exactly L.

To prove the p-optimality of Popt , let P be a proof system for L. Because by
assumption PS (P ) is expressible in L, the set Correct(P ) is a P-easy subset of
L (by the local recognizability condition from Definition 2). Hence there exists
an index i such that Mi decides Correct (P ). Let c be a constant such that Mi

can be computed from i in time c and let p and q be polynomial time bounds
for P and Mi, respectively. Then P is easily seen to be p-simulated by

� 7→ ⟨�, P, 0p(∣�∣), i, 0q(∣corr (�,P,0
p(∣�∣))∣)+c⟩

which completes the proof. ⊓⊔

By a similar argument we can provide two characterizations for the existence
of optimal proof systems.

Theorem 9. Let L be a language such that PS (L) is expressible in L. Then
the following conditions are equivalent:

7



1. There exists an optimal proof system for L.

2. The NP-easy subsets of L have a recursive NP-presentation.

3. The P-easy subsets of L have a recursive NP-presentation.

Given these general results, it is interesting to ask for which languages L
the set PS (L) of all proof systems for L is expressible in L. Our next lemma
provides sufficient conditions:

Lemma 10. Let L be a language fulfilling the following two conditions:

1. Natural numbers can be encoded by elements of L, i.e., there exists an in-
jective function Num : ℕ → L which is both computable and invertible in
polynomial time.

2. L possesses an AND-function, i.e., there exists a function AND : �∗×�∗ →
�∗ which is both polynomial-time computable and polynomial-time invertible
such that for all x, y ∈ �∗, AND(x, y) ∈ L if and only if x ∈ L and y ∈ L.

Then PS (L) is expressible in L.

Proof. We have to define the function corr according to Definition 2. Given a
string x, an encoding of a polynomial-time computable Turing transducer N ,
and a number m ∈ ℕ, we first simulate N(x) for ≤ m steps. Let y be the output
of N(x), if the simulation succeeded. Otherwise, we choose a fixed string y ∕∈ L.

Next we interpret the binary encoding of N as a natural number (which we
again denote by N) and compute Num(N). We then define the function corr
as

corr (x,N, 0m) = AND(y,AND(Num(N),Num(m))) .

Clearly, corr is polynomial-time computable. To verify the conditions of
Definition 2 for corr , we observe that correctness and completeness of corr
follow because the string w := AND(Num(N),Num(m)) is contained in L for
all N,m ∈ ℕ, and therefore AND(y,w) ∈ L if and only if y ∈ L.

Local recognizability for corr follows as AND and Num are invertible in
polynomial time and therefore for each polynomial-time Turing transducer N ,
the set Correct (N) is in P. ⊓⊔

Using this lemma we can show L-expressibility of PS (L) for many interesting
choices of L:

Proposition 11. For any of the following languages L, the set PS (L) is ex-
pressible in L:

– SATi for i ∈ ℕ (the satisfiability problem for quantified propositional for-
mulas with i quantifier alternations, starting with existential quantifiers),

– TAUTi for i ∈ ℕ (quantified propositional tautologies with i quantifier al-
ternations, starting with universal quantifiers),

– QBF (quantified propositional tautologies),

– the graph isomorphism problem GI, its complement GI, and the complement
GA of the graph automorphism problem.
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Proof. We have to check the conditions from the previous lemma. For languages
consisting of formulas like SATi, TAUTi, or QBF, the AND-function is provided
by the Boolean connective ∧. The function Num can be defined for example by

n 7→ (p ∨ ¬p) ∧ ⋅ ⋅ ⋅ ∧ (p ∨ ¬p) (n times) ,

where p is a fixed propositional variable.

For GI, Num(n) can be implemented by a pair (Kn,Kn) of cliques of size
n. For GI we take (Kn,Kn+1), and for GA we take an easy rigid graph with
n vertices. It is well known that GI has an AND-function (cf. [15]). For the
AND-functions of GI and GA we can take the OR-functions of GI and GA (cf.
[15]). ⊓⊔

For GI, which like any problem in NP has an optimal proof system, we obtain
the following characterization on the existence of a p-optimal proof system.

Corollary 12. GI has a p-optimal proof system if and only if there exists a
recursive P-presentation of all polynomial-time computable subsets of GI.

Let us remark that in Lemma 10, instead of an AND-function we could
also use a padding function for L. In this way we obtain a similar result as
Corollary 12 for GA (which is not known to possess an AND-function).

5 Complete Sets and Enumerations

In this section we consider the question Q2, asking whether language or func-
tion promise classes have complete sets or functions. There is a long history of
equating complete sets and recursive enumerations of machines. The following
result essentially stems from [14], but particular cases of the theorem have been
been previously obtained, namely for NP ∩ coNP by Kowalczyk [16], for UP by
Hartmanis and Hemachandra [13], and, more recently, for disjoint NP-pairs by
Glaßer, Selman, and Sengupta [9]. We just formulate the theorem for language
classes, but a similar result also holds for promise function classes. The theorem
is already included in [14], but for the benefit of the reader we include a full
proof (our argument is more direct than the proof given in [14]).

Theorem 13 (Köbler, Messner, Torán [14]). Let C be a promise class
which is closed under many-one reductions. Then C has a many-one com-
plete problem if and only if there exists a recursive enumeration (Ni)i≥0 of
C-machines such that C = {L(Ni) ∣ i ≥ 0}.

Proof. For the proof of the forward implication, let AC be a many-one com-
plete problem for C and let M be a C-machine for AC. We fix an enumeration
N1, N2, . . . of all polynomial-time Turing transducers. By assumption, the class
C is closed under many-one reductions, and hence M ∘ Ni is a recursive enu-
meration of C.

For the converse implication, let f be a recursive function computing an
enumeration (Ni)i∈ℕ of C-machines such that C = {L(Ni) ∣ i ≥ 0}. We construct
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a many-one complete problem AC for C as follows: elements of AC are of the
form

⟨x, i, 0m⟩ .

On such an input, AC first simulates f on input i for at most m steps. If this
simulation does not terminate, then we reject. Otherwise, f(i) is guaranteed to
output a C-machine Ni. Now we simulate this machine Ni on input x for at
most m steps. Again, if the simulation does not stop, we reject. Otherwise, AC

answers according to the answer obtained in the simulation of Ni(x).

By our general assumption on promise classes we have a universal C-machine,
and therefore AC ∈ C. To prove the hardness of AC for C, let A ∈ C. Then there
exists a C-machine Ni in the enumeration computed by f such that Ni accepts
A. Let p be a polynomial bounding the running time of Ni and let c be the
time that f(i) spends to compute Ni. Then the polynomial-time computable
function

x 7→ ⟨x, i, 0p(∣x∣)+c⟩

many-one reduces A to AC. ⊓⊔

Let us note that in the proof of the forward implication of Theorem 13, the
hypothesis that C is closed under many-one reductions seems indeed crucial.
Namely, if C consists of all P-easy subsets of TAUT, then C trivially contains
a many-one complete set. On the other hand, a recursive enumeration of C-
machines as in Theorem 13 is rather unlikely to exist, as this would imply
the existence of a p-optimal propositional proof system by Theorem 8. But of
course, the P-easy subsets of TAUT are not closed under many-one reductions.

6 Optimal Proof Systems and Complete Sets

Now we are ready to analyse the relations between our central questions Q1
and Q2 on the existence of optimal proof systems for languages L and the
existence of complete sets for promise classes C. While Köbler, Messner, and
Torán [14] have shown that for many natural choices of L and C, a positive
answer to Q1 implies a positive answer to Q2, we will provide here a number of
characterizations involving both questions. In particular, these characterizations
will also yield the above mentioned relation between Q1 and Q2 for concrete
applications.

Our first result characterizes the existence of complete sets for a promise
class C by the representability of C in a proof system.

Theorem 14. Let C be a promise language (or function) class which can use
nondeterminism and let L be a language such that C is provably closed under
many-one reductions in L. Then C has a many-one complete language (or func-
tion) if and only if there exists a proof system for L in which C is representable.

Proof. For the proof of the forward implication, let C be a promise complexity
class with a many-one complete language A. Let L be a language such that C
is provably closed under reductions in L. Let P be an arbitrary proof system
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for L and let N be a C-machine for A. We construct a proof system P ′ with
A ∈ C(P ′) as follows:

P ′(y) =

⎧



⎨



⎩

x if y = 0x and x ∈ Correct (N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. Because C is provably closed under re-
ductions in L, there exists a proof system P ′′ for L such that C(P ′′) is closed
under many-one reductions. As A ∈ C(P ′′) and A is many-one complete for C,
it follows that C(P ′′) = C.

For the proof of the converse implication, let P be a proof system for L in
which every language A ∈ C is representable. We construct a complete set AC

for C by specifying a C-machine MA accepting AC. Elements of AC are of the
form

⟨x,N, 0m, 0n⟩ .

On such inputs MA performs the following operations. MA guesses a string
� ∈ �≤n and checks whether P (�) = corr (x,N, 0m). At this point we need
that C can use nondeterminism. If this test fails, then MA rejects the input.
Otherwise, MA simulates the machine N on input x for m steps and answers
according to the answer obtained in this simulation. If the simulation does not
terminate in m steps, MA rejects the input.

Because C can use nondeterminism and has a universal machine, MA is a
C-machine and hence AC ∈ C. To verify the hardness of AC for C, let A be a
language from C. Because A is representable in P , there exists a C-machine N
accepting A such that P ⊢∗ Correct (N). Let p and q be polynomials bounding
the running time of N and the proof size of Correct(N) in P , respectively. Then
the polynomial-time computable function

x 7→ ⟨x,N, 0p(∣x∣), 0q(∣corr(x,N,0p(∣x∣))∣)⟩

many-one reduces A to AC. ⊓⊔

For promise classes not using nondeterminism we obtain the following result:

Theorem 15. Let C be a promise language (or function) class which is closed
under many-one reductions and let L be a language such that C is expressible
in L. Then C has a many-one complete language (or function) if and only if L
has a proof system in which C is p-representable.

Proof. For the forward direction, assume that C has a many-one complete lan-
guage (or function). It follows from Theorem 13 that C has a uniform enumer-
ation (Ni)i∈ℕ of C-machines with polynomial running times pNi

. Let G be a
Turing machine generating the codes of the machines N1, N2, . . .

We say that a string v ∈ �∗ is in good form if

v = ⟨wG , x, 0pNi
(∣x∣)⟩

11



where x ∈ �∗ and wG is a computation of the machine G eventually producing
the code of the C-machine Ni. Apparently, we can check in polynomial time
whether a given string is in good form.

We define g : �∗ → L in the following way. If v = ⟨wG , x, 0
pNi

(∣x∣)⟩ is in
good form, then g(v) = corr (x,Ni, 0

pNi
(∣x∣)) (where Ni is the machine produced

by G during the computation wG), otherwise g(v) = x0, where x0 is a certain
fixed string from L.

This polynomial-time computable function can be extended to a proof sys-
tem P for L in which C is p-representable. Let P ′ be any proof system for L (L
is recursively enumerable). We define the proof system P as follows:

P (y) =

{

g(v) if y = 0v

P ′(v) if y = 1v.

Let A be any language from C. There exists a machine Ni from the uniform
enumeration of the class C such that L(Ni) = A, and pNi

is its polynomial-time
bound. Let wG be the computation of G producing the code of the machine
Ni. The function �(x) = 0⟨wG , x, 0pNi

(∣x∣)⟩ produces P -proofs of Correct(Ni) in
polynomial-time in ∣x∣.

For the converse direction, assume that there exists a proof system P for
L such that C is p-representable in it. Let R be the promise condition for C.
Consider the language

AC = {⟨x,N, 0pN (∣x∣),w⟩ ∣ x ∈ L(N), P (w) = corr(x,N, 0pN (∣x∣))}

where N is a nondeterministic machine with polynomial time bound pN and w
is a P -proof of corr(x,N, 0pN (∣x∣)). We claim that AC is the desired C-complete
language.

Let us first argue that AC ∈ C. We say that a string v is in good form if and
only if v = ⟨x,N, 0pN (∣x∣),w⟩ and P (w) = corr(x,N, 0pN (∣x∣)), where x, N , pN ,
and w mean the same as above. Let us notice that if v is in good form, then
corr (x,N, 0pN (∣x∣)) ∈ L. From the correctness condition it follows that N obeys
promise R on input x.

There exists a polynomial-time Turing machine V which verifies whether
a given input string v is in good form. By our general assumption on promise
classes we have also a universal machine U with respect to the promise R. Using
the machines V and U we can construct an R-machine K accepting AC. The
machine K, first runs V on input v, checking if v is in good form. If this test
fails, then K rejects v, otherwise K runs U on input ⟨N,x, 0pN (∣x∣)⟩. Since U is
a universal machine for C, the machine K is an R-machine.

To prove hardness of AC for C, let A be any language in C. Since A is
p-representable in P , there exists a C-machine N such that L(N) = A, and
the P -proofs of Correct(N) can be constructed in polynomial time in ∣x∣. The
function f : �∗ → �∗ defined by

f(x) = ⟨x,N, 0pN (∣x∣),w⟩

performs a polynomial-time many-one reduction from A to AC. The string w
from the definition of f is the P -proof of corr (x,N, 0pN (∣x∣)). ⊓⊔
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Let us mention some applications of this result. The promise class DisjNP of
disjoint NP-pairs and the class UP are expressible in TAUT, and the class NP∩
coNP is expressible in QBF (cf. [2, 14, 19, 21]). Hence we obtain the following
corollary exemplifying our theorem.

Corollary 16.

1. Complete disjoint NP-pairs exist if and only if TAUT has a proof system in
which DisjNP is p-representable (if and only if TAUT has a proof system in
which DisjNP is representable).

2. UP has a complete language if and only if TAUT has a proof system in
which UP is p-representable.

3. NP ∩ coNP has a complete language if and only if QBF has a proof system
in which NP ∩ coNP is p-representable.

Theorem 14 also allows to derive results which show that the question of
the existence of complete problems for C does not depend on the strength of
the underlying reduction. This can be done as in the following corollary:

Corollary 17. Let ≤ and ≤′ be two reductions which are refined by many-one
reductions. Assume further that C can use nondeterminism and is both provably
closed under ≤ and ≤′ in some language L. Then C has a ≤-complete problem
if and only if C has a ≤′-complete problem.

Proof. It suffices to show that C contains a many-one complete problem if and
only if C contains a ≤-complete problem. The forward implication is clear as ≤
is refined by many-one reductions.

Conversely, if C has a ≤-complete problem and C is provably closed in L
under ≤, then we obtain a proof system P for L with C(P ) = C as in the
proof of the forward implication of Theorem 14. Now the converse implication
of Theorem 14 together with the assumption that C can use nondeterminism
gives us a many-one complete problem for C. ⊓⊔

In this way it can be shown, for example, that the question of the existence
of complete disjoint NP-pairs is equivalent for reductions ranging from strong
many-one reductions to smart Turing reductions (cf. [9, 2]).

Our next result shows that question Q1 on the existence of p-optimal proof
systems for a language L can be characterized by a “universally quantified”
version of the condition from Theorem 15. Further, Q1 is even equivalent to the
existence of complete sets for all promise classes representable in L:

Theorem 18. Let L be a language such that PS (L) is expressible in L. Then
the following conditions are equivalent:

1. There exists a p-optimal proof system for L.
2. There exists a proof system for L in which any promise class which is ex-

pressible in L is p-representable.
3. There exists a proof system for L in which the class of all P-easy subsets of

L is p-representable.
4. Every promise language and function class which is expressible in L has a

many-one complete language or function.
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Proof. The proof is structured into the implications 1 ⇒ 2 ⇒ 3 ⇒ 1 and
2 ⇒ 4 ⇒ 1.

For the proof of the direction 1 ⇒ 2, let P be a p-optimal proof system
for L and let A be a language from C. We choose a C-machine N accepting A.
Because C is expressible in L, the set Correct(N) is a polynomial-time decidable
subset of L. Therefore we can devise a proof system PA with polynomial-size
proofs of Correct(N) as follows:

PA(y) =

⎧



⎨



⎩

x if y = 0x and x ∈ Correct(N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. Apparently, PA is a proof system for L
such that PA-proofs of Correct (N) can be constructed in polynomial time, i.e.,
A is p-representable in PA. By the p-optimality of P we infer PA ≤p P . Thus
PA-proofs of Correct(N) can be efficiently translated into P -proofs of these
formulas and therefore A is also p-representable in P .

Implication 2 ⇒ 3 holds because by Lemma 3, the P-easy subsets of L are
expressible in L.

For the proof of 3 ⇒ 1 we show that item 3 yields a recursive P-presentation
of all P-easy subsets of L. As both Theorem 8 and Theorem 18 use the assump-
tion of expressibility of PS (L) in L, we obtain a p-optimal proof system for L
by Theorem 8.

For this let P be a proof system for L in which all P-easy subsets of L are
p-representable. Let (ti)i∈ℕ be an enumeration of all deterministic polynomial-
time clocked Turing transducers and let (Ni, qi)i∈ℕ be an enumeration of all
deterministic polynomial-time clocked Turing machines with their respective
running times. The machines Ni will be candidates for machines accepting P-
easy subsets of L where the promise condition Reasy for Ni is L(Ni) ⊆ L. Fi-
nally, let ⟨⋅, ⋅⟩ be a polynomial-time computable and polynomial-time invertible
bijective pairing function on ℕ.

Now, for i ∈ ℕ, consider the following set of algorithms Mi:

1 Input: x
2 compute numbers j and k with i = ⟨j, k⟩
3 compute Nj, qj, and tk
4 IF P (tk(x)) ∕= corr (x,Nj , 0

qj(∣x∣)) THEN reject

5 ELSE

6 IF Nj(x) accepts in ≤ qj(∣x∣) steps THEN accept

7 ELSE reject

Apparently, these algorithms Mi can be computed in deterministic polynomial
time. Further, each Mi only accepts inputs from L because if Mi accepts x, then
we have an f -proof for corr (x,Nj , 0

qj(∣x∣)), confirming that Nj obeys promise
Reasy on x, i.e., x ∈ L.

On the other hand, each P-easy subset A ⊆ L is p-representable in P with
respect to some machine Nj and some transducer tk computing the P -proofs
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of corr (x,Nj , 0
qj(∣x∣)) from input x. For i = ⟨j, k⟩ we then have L(Mi) = A.

Thence Mi is a recursive P-presentation of all P-easy subsets of L.

For the direction 2 ⇒ 4, let C be a promise class which is expressible in L.
By item 2 we have a proof system P for L in which every language A ∈ C is
p-representable. We will construct a complete set AC for C as follows. If C is a
language class, then AC will be a many-one complete language for C, and if C
is a function promise class, then AC will be a many-one complete function for
C. Elements of AC are of the form

⟨x,N, 0m,M, 0n⟩ .

On such inputs the C-machine MA for AC performs the following operations.
MA computes in polynomial time the string corr (x,N, 0m). It then simulates
the Turing transducer M on input x for at most n steps. If the simulation does
not terminate, then MA rejects (in case of a language class C) or outputs a fixed
element (for a function class C).

Otherwise, let � be the output of the simulation M(x). Next MA checks
whether P (�) = corr (x,N, 0m). If this test fails, then again MA rejects the
input (or outputs some fixed element). Otherwise, MA simulates the machine
N on input x for m steps and answers according to the answer obtained in this
simulation.

By our general assumption, C has a universal machine and can perform
polynomial-time computations. Therefore MA is a C-machine and thus AC ∈ C.
To verify the hardness of AC for C, let A be a language (or function) from C.
Because A is p-representable in P , there exists a C-machine N accepting A such
that P -proofs of Correct (N) can be efficiently constructed. Let p be the running
time of N and let M be a Turing transducer with polynomial running time q
that computes P -proofs of Correct(N) from input x. Then the polynomial-time
computable function

x 7→ ⟨x,N, 0p(∣x∣),M, 0q(∣x∣)⟩

many-one reduces A to AC.

For the final implication 4 ⇒ 1 we need the assumption of the expressibility
of PS (L) in L. Because PS (L) is a promise function class, item 4 together with
this assumption guarantees the existence of a many-one complete function for
PS (L), which coincides with the notion of a p-optimal proof system for L. ⊓⊔

The next theorem contains a similar statement for optimal proof systems.

Theorem 19. Let L be a language such that PS (L) is expressible in L. Then
the following conditions are equivalent:

1. There exists an optimal proof system for L.

2. L has a proof system P such that every promise class which is expressible
in L is representable in the system P .

3. L has a proof system in which all P-easy subsets of L are representable.

Proof. The proof of the direction 1 ⇒ 2 proceeds similarly as the proof of 1 ⇒ 2
in Theorem 18. Let P be an optimal proof system for L and let A be a language

15



from C. We choose a C-machine N accepting A. Because C is expressible in L,
the set Correct(N) is a polynomial-time subset of L. We construct a proof
system PA with polynomial-size proofs of Correct (N) as follows:

PA(y) =

⎧



⎨



⎩

x if y = 0x and x ∈ Correct(N)

P (x) if y = 1x

x0 otherwise

where x0 is a fixed element from L. Apparently, PA is a proof system for L
with PA ⊢∗ Correct(N). By the optimality of P we infer PA ≤ P . Thus also
P ⊢∗ Correct (N) holds, i.e., A is representable in P .

As in the previous proof, implication 2 ⇒ 3 holds because the P-easy subsets
of L are expressible in L by Lemma 3. The remaining implication 3 ⇒ 1 follows
by an analogous argument as in the proof of 3 ⇒ 1 in Theorem 18. ⊓⊔

Combining Theorems 14 and 19 we obtain the following corollary which is
essentially contained in [14].

Corollary 20. Let L be a language. If L has an optimal proof system, then
any promise language or function class C which is expressible in L and which
can use nondeterminism has a complete language or function.

As the proof of the backward implication of Theorem 14 does not use prov-
able closure of C under reductions in L, we can formulate Corollary 20 without
this assumption.

Comparing Theorem 18 and Corollary 20, it is apparent that while we could
prove the equivalence of the existence of p-optimal proof systems for L and
complete problems for all promise classes expressible in L (Theorem 18), we did
not obtain this equivalence for optimal proof systems (cf. Corollary 20). The
reason is that PS (L), considered as a promise function class, does not seem to
have the property to use nondeterminism, because otherwise, the existence of
an optimal proof system for L would already imply the existence of a p-optimal
proof system for L. We can even obtain a slightly stronger result:

Proposition 21. If PS (SAT) can use nondeterminism, then every language
with an optimal proof system also has a p-optimal proof system.

Proof. Assume that PS (SAT) can use nondeterminism. By Proposition 11, the
class PS (SAT) is expressible in SAT. As SAT has an optimal proof system,
Corollary 20 now yields a complete function for PS (SAT) which coincides with
the notion of a p-optimal proof system for SAT. From this we conclude that
every language with an optimal proof system also has a p-optimal proof system
by a result from [3]. ⊓⊔

7 Complete Problems under Advice

Whether or not there exist optimal proof systems or complete sets for promise
classes remains unanswered by our results above. Hence, our central questions
Q1 and Q2 remain open. As these problems have been open for more than
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twenty years by now, many researchers tend to believe in a negative answer
(of course, this is arguable, but in the algorithmic world negative results are
usually harder to obtain than positive ones).

Recently, Cook and Kraj́ıček [7] have introduced the concept of propositional
proof systems with advice which seems to yield a strictly more powerful model
than the classical Cook-Reckhow setting. Surprisingly, Cook and Kraj́ıček [7]
have shown that in the presence of advice, optimal propositional proof systems
exist (cf. also [4] for a generalization to arbitrary languages). Our next result
shows that the relation between optimal proof systems and complete sets for
promise classes can be transferred to the advice setting. Thus we derive from
Cook and Kraj́ıček’s results the following strong information on complete prob-
lems in the presence of advice.

Theorem 22. Let C be a promise complexity class and let L be a language such
that C is expressible in L by a length-depending promise. Then C/1 contains a
problem (or function) using one bit of advice which is many-one hard for C.

Proof. We choose a polynomial-time computable tupling function ⟨⋅, . . . , ⋅⟩ which
is length injective, i.e., for all strings x1, . . . , xn, y1, . . . , yn, if ∣⟨x1, . . . , xn⟩∣ =
∣⟨y1, . . . , yn⟩∣, then ∣xi∣ = ∣yi∣ for i = 1, . . . , n. We now define the problem (or
function) AC with one advice bit which will be many-one hard for C. Inputs are
of the form

⟨x, 0N , 0m⟩

where x is the input, 0N is the unary encoding of a Turing machine N , and
0m is the time bound for N . On such an input, AC first computes the string
corr (x,N, 0m). ThenAC uses its advice bit to verify whether or not corr (x,N, 0m)
is in L (for this step we could have also used the optimal proof system for L with
one bit of advice, cf. [7, 4]). If corr (x,N, 0m) ∈ L, then AC simulates N on input
x for at most m steps and produces the corresponding output (in case the simu-
lation does not terminate it rejects or outputs some fixed element). As ⟨⋅, . . . , ⋅⟩
is length injective and corr is length depending, the element corr (x,N, 0m) is
uniquely determined by ∣⟨x, 0N , 0m⟩∣ and therefore the advice bit of AC can in
fact refer to corr (x,N, 0m).

If A is a problem (or function) from C and N is a C-machine for A with poly-
nomial running time p, then A many-one reduces to AC via x 7→ ⟨x, 0N , 0p(∣x∣)⟩.
Hence AC is many-one hard for C. ⊓⊔

Let us state a concrete application of this general result. As disjoint NP-pairs
are expressible in TAUT by a length-depending promise [2], we obtain:

Corollary 23. There exist a disjoint pair (A,B) and a sequence (an)n∈ℕ with
the following properties:

1. A and B are computable in nondeterministic polynomial time with advice
an for inputs of length n.

2. The set {⟨an, 0
n⟩ ∣ n ∈ ℕ } is computable in coNP.

3. Every disjoint NP-pair is polynomial-time many-one reducible to (A,B).
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4. O. Beyersdorff, J. Köbler, and S. Müller. Nondeterministic instance complexity and proof
systems with advice. In Proc. 3rd International Conference on Language and Automata

Theory and Applications, volume 5457 of Lecture Notes in Computer Science, pages 164
– 175. Springer-Verlag, Berlin Heidelberg, 2009.

5. O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and
complete sets for promise classes. In Proc. 4th International Computer Science Symposium

in Russia, volume 5675 of Lecture Notes in Computer Science, pages 47 – 58. Springer-
Verlag, Berlin Heidelberg, 2009.

6. S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Proc. 7th

Annual ACM Symposium on Theory of Computing, pages 83–97, 1975.
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