
Characterization of ModL using Prime Modulus

T.C. Vijayaraghavan ∗

{email: vijay@cmi.ac.in}

20th September 2009

Abstract

The complexity class ModL was defined by Arvind and Vijayaraghavan in [AV04]
(more precisely in [Vij08, Definition 1.4.1][AV, Definition 3.1]). In this paper, under
the assumption that NL = UL, we show that for every language L ∈ ModL there exists
a function f ∈ #L and a function g ∈ FL such that on any input string x, we have

• g(x) = 0p for some prime p, and,

• if x ∈ L then f(x) ≡ 1(mod p),

• if x 6∈ L then f(x) ≡ 0(mod p).

As a consequence under the assumption that NL = UL we show that

1. ModL is the logspace analogue of the complexity class ModP defined by Köbler
and Toda in [KT96, Definition 3.1], and that

2. ModL is closed under complement.

We prove the characterization of ModL stated above by showing the following property
of #L. Assuming NL = UL, if f ∈ #L and g ∈ FL such that g(x) is a positive integer

k in unary that depends on the input x then the function
(

f(x)
k

)

∈ #L.

1 Introduction

The complexity class ModL was introduced in [AV04] to tightly classify the complexity of
solving a system of linear equations modulo prime powers. The main assumption of this
problem was that the prime power with respect to which we need to carry out the modulo
operation is given as a part of the input in unary. One of the main results regarding ModL
shown in [AV04][Vij08, Lemma 3.2.2][AV, Lemma 3.2] is that GapL and ModL are equivalent

under logspace Turing reductions. In other words it is shown that LGapL = LModL.

∗This paper was written when I was a Post Doctoral Fellow in the Chennai Mathematical Institute,
Siruseri 603103, India; and the results shown here are based on the results obtained in my Ph.D thesis
[Vij08]. The previous version of this paper was submitted to the FSTTCS 2009 conference.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 82 (2009)

In this paper we continue to study the complexity class ModL by obtaining a charac-
terization that shows that just a #L function f and a FL function g that outputs a prime
number in unary are sufficient to decide if a given input x is in a language L ∈ ModL,
however under the assumption that NL = UL. We prove this characterization in Theorem
3.6.

Very much the same kind of results have already been shown for modulo-based logspace
counting classes. More precisely, Buntrock et.al. in [BDHM92, Theorem 7] show that if
pe is a prime power then ModpeL = ModpL. In fact the proof of this result is exactly the
same as in the polynomial time setting that ModpeP = ModpP shown in [BG92, Theorem
7.2]. Both these proofs are essentially based on choosing a set of k > 0 distinct accepting
computation paths from the computation tree of a NL-machine or a NP-machine on a given
input x. The very same proof works to prove our characterization in Theorem 3.6 but needs
an extension of the above mentioned property of #L to the case when the integer k > 0
depends on the input and is output by a FL function in unary. More precisely we need to
show that if f ∈ #L and g ∈ FL such that g(x) is a positive integer k in unary that depends
on the input x then the function

(

f(x)
k

)

∈ #L. We prove this property in Theorem 3.4 under
the assumption that NL = UL. We now recall some related results which are precursors to
the above stated property of #L and the new approach we have used in our proof.

Buntrock et.al. in [BDHM92, Lemma 2(ii)] show that if f ∈ #L and k > 0 is a constant
then the function

(

f(x)
k

)

∈ #L. They arrive at this result by showing that we can non-
deterministically choose k distinct computation paths of the NL-machine corresponding to
f on a given input and check if all of them end in the accepting configuration. At every
stage we keep track of each of these paths chosen by storing the current configuration in
each of them. Since any configuration is of size O(logn) and k is a constant the space bound
is preserved and we get the result. The above observation has been extended in [AO96,
Theorem 9] to the case when f ∈ GapL and the constant k is computed by a FL function g.

Also Buntrock et.al. in [BDHM92, Lemma 12] show the same property for f ∈ #L with
the assumption that the FL function g outputs a positive integer k in the unary represen-
tation that varies with the input. However they impose a restriction on the NL-machine
corresponding to f that the number of distinct computation paths that end in any accepting
configuration is at most one. Such machines are called weakly unambiguous Turing machines.
This added assumption implies the number of accepting computation paths in such machines
is at most a polynomial in the input size. Subsequently [ARZ99, Theorem 4.3] show that if
f, g ∈ #L and f(x) is at most a polynomial in the size of x then

(

f(x)
g(x)

)

∈ FNL/poly.
Continuing along similar lines, in Theorem 3.4 under the assumption that NL = UL we

show that if f ∈ #L and g ∈ FL such that g(x) is a positive integer k in unary that depends
on the input x then the function

(

f(x)
k

)

∈ #L. However as opposed to the results mentioned
above, rather than considering the computation tree of a NL-machine on a given input we
consider the NL-complete problem stated in Theorem 2.4 and the #L-complete function that
follows from it to prove our result.

Once again as in the well known result that NSPACE(f(n)) is closed under complement
due to Immerman and Szelepcsényi, where f(n) ∈ Ω(log n), we also use the method of

2

inductive counting to prove Theorem 3.4. It is well known and also follows from [BDHM92,
Section 5] that by using inductive counting we can count the number of vertices that are
reachable from a specified vertex s in a graph G by paths of length at most i ≥ 0. However
it is not obvious as to how to ensure that we do not count a vertex that is reachable from s
more than once when using this method. This precisely happens to be the bottleneck in our
case of choosing exactly k distinct directed paths from a vertex s to a vertex t when given
an instance G of the directed st-connectivity problem stated in Theorem 2.4 as input. To
keep track of k distinct paths, at different stages of our algorithm in Theorem 3.4 we need
to repeatedly check if a vertex v chosen is in at least one directed path from s to t in G.
However non-deterministically choosing a directed path from s to t and verifying if v lies
in this path increases the number of accepting computation paths of the NL-machine and
so it does not yield the desired result. However if we assume that NL = UL then we get
a NL-machine for which there exists exactly one accepting computation path that verifies
if v lies in a directed path from s to t in G. As a result under this assumption we show
in Theorem 3.4 that the number of ways of choosing exactly k distinct directed paths from
amongst all directed paths from s to t in G is in #L. It is widely believed that NL = UL
and in [RA00, Corollary 2.3] it is shown that NL/poly = UL/poly. Also using well known
derandomization techniques that depend on the existence of functions that require circuits
of exponential size to be computed (for example [ARZ99, AV]) we can show that NL = UL.

Using Theorem 3.4 and closure properties of #L from [BDHM92, Lemma 2(i)] we show
under the assumption that NL = UL, the proof of [BG92, Theorem 7.2] holds for ModL
also and thereby enables us to prove our characterization in Theorem 3.6. As an immediate
consequence assuming NL = UL we are able to show that ModL is the logspace analogue
of the complexity class ModP defined by Köbler and Toda in [KT96, Definition 3.1]. As a
corollary we also show that ModL is closed under complement assuming NL = UL.

2 Preliminaries

We start by defining some logspace counting classes.

Definition 2.1. [AO96] We define #L to be the class of functions f : Σ∗ → Z
+, for which

there is a logspace bounded nondeterministic Turing machine M such that on any input

x ∈ Σ∗, we have f(x) = accM(x), where accM(x) is the number of accepting computation

paths of M on input x.

Definition 2.2. [AO96] We define GapL to be the class of functions f : Σ∗ → Z, for which

there is a logspace bounded nondeterministic Turing machine M such that on any input

x ∈ Σ∗, we have f(x) = accM(x)− rejM(x), where accM(x) and rejM(x) denote the number

of accepting and rejecting computation paths of M on input x respectively.

Definition 2.3. [BDHM92, Definition 4] Let k ≥ 2 be an integer. A language L is in ModkL
if there exists a function f ∈ #L such that on any input x, we have x ∈ L if and only if

f(x) 6≡ 0(mod k).

3

The completeness result stated below follows as a corollary of the reduction from iterated
integer matrix multiplication to computing the determinant of an integer matrix shown in
[Tod91].

Theorem 2.4. [ABO99, HT03] The st-connectivity problem for graphs that are layered di-

rected acyclic (LDAG-st-CON) is complete for NL under logspace many-one reductions. Here

we assume the number of layers in the input graph is n. Also every layer has n vertices and

vertex s is in layer 1 and vertex t is in layer n. Any edge in this graph is from a vertex in

layer i to a vertex in layer (i+ 1), where 1 ≤ i ≤ (n− 1), and the number of edges between

any two vertices is at most 1. As a result any path from s to t is of length (n− 1).
Counting the number of paths from vertex s in layer 1 to vertex t in layer n in the graph

described above is complete for #L under logspace many-one reductions.

Remark 1. Let L ∈ NL and M be a NL machine that accepts L. It is not difficult to see

that in proving Theorem 2.4, we always have a reduction from L to LDAG-st-CON such that

if we are given an input x for M then the graph G that we obtain is such that the number of

accepting computation paths of M on input x equals the number of directed paths from vertex

s to vertex t in G. In other words the reduction is parsimonious.

Definition 2.5. [RA00, Section 1] A language L is in UL if there exists a logspace bounded

non-deterministic Turing machine M such that on any input x, we have if x ∈ L then the

number of accepting computation paths of M on input x is 1. Otherwise if x 6∈ L then the

number of accepting computation paths of M on input x is 0.

The following relation is then immediate from the definitions of these logspace counting
classes: L ⊆ UL ⊆ NL. Also UL ⊆ ModkL for all integers k ≥ 2.

2.1 ModL

Definition 2.6. [AV04] (more precisely in [Vij08, Definition 1.4.1][AV, Definition 3.1]). A

language L is in the complexity class ModL if there is a function f ∈ GapL and a function

g ∈ FL such that on any input string x,

• g(x) = 0pe

for some prime p and a positive integer e, and

• x ∈ L if and only if f(x) 6≡ 0(mod pe).

It follows from the above definition that ModL generalizes the class ModpeL where pe is
a prime power. As a result it follows that ModpeL ⊆ ModL and so UL ⊆ ModL.

A canonical problem that is complete for ModL is ModpeDet = {(A, 0pe

)| det(A) 6≡
0(mod pe), where A ∈ Z

n×n and pe is a prime power}. It is easy to see that ModpeDet ∈
logspace-uniform TC1. This is essentially due to the fact that computing the determinant
of a square integer matrix is in logspace-uniform TC1. Moreover given two integers a and b
each of size n, computing ⌊a/b⌋ is in logspace-uniform TC0 [HAB02, Corollary 6.3][CDL01].
As a result we can check for any input matrix A ∈ Z

n×n, if det(A) 6≡ 0(mod pe). This shows
ModpeDet ∈ logspace-uniform TC1 from which we get ModL ⊆ logspace-uniform TC1.

We also know the following result.

4

Lemma 2.7. [AV04][Vij08, Lemma 3.2.2][AV, Lemma 3.2] LModL = LGapL.

3 A characterization of ModL

In this section we obtain a characterization of ModL in Theorem 3.6 which is based on the
unproven assumption that NL = UL.

3.1 Choosing polynomially many distinct paths in #L

Under the assumption that NL = UL, we first show in Theorem 3.4 that if f ∈ #L and
g ∈ FL such that the function g outputs an integer k > 0 which varies with the input then
the function

(

f(x)
k

)

∈ #L. We need the following observations.

Lemma 3.1. Given an instance G of LDAG-st-CON as described in Theorem 2.4, if there

exists a path from vertex s to vertex t in G, then in FNL we can obtain the subgraph H of

G such that any vertex or edge of G is in H if and only if the corresponding vertex or edge

is in some path from s to t in G.

As a consequence given a vertex or an edge of G it is possible to decide if the vertex or

edge is in the subgraph H in NL.

Proof. Given an instance G of LDAG-st-CON, a logspace machine can use the NL-complete
problem of directed st-connectivity as an oracle to check for each vertex v in G if there exists
a directed path from s to v and a directed path from v to t in G. If both these are true then
we output the vertex v. As a result we can obtain the subset of vertices that lie in every
directed path from s to t in FNL.

It is also easy to see that a logspace machine with the above procedure as an oracle can
output the subgraph H of G that is induced by the vertices we have obtained in the previous
step. This also shows that the subgraph H can be output by a FNL machine. Having shown
the FNL upper bound for obtaining H it is clear that verifying if some vertex or edge in G
is in H is in NL.

Given this subgraph H as input we now show how we can the check if the number of paths
from s to t in G is at least (p + 1) in UL, where p is bounded by a polynomial in |G|. The
proof of this result uses the deterministic weight assignment scheme from [AHT07, Section 3,
Lemma 3.2] to isolate all the polynomially many paths from s to t in H . This deterministic
weight assignment scheme is used in [AHT07] to solve the polynomially bounded perfect
matching problem in undirected graphs. This deterministic weight assignment scheme has
also been used in [Vij08, Chapter 6] to solve the polynomially bounded linearly representable
matroid intersection problem. Let FUL be the set of functions computable by a UL machine.

Lemma 3.2. Let G be an instance of LDAG-st-CON and let H be the subgraph of G that we

obtain from the FNL procedure described in Lemma 3.1. Then given the graph H as input

we can check if the number of directed paths from vertex s to vertex t in G is at least (p+ 1)

5

in UL, where p is bounded by a polynomial in |G|. Otherwise if the number of paths from s
to t in G is less than (p+ 1) then the FUL procedure outputs the number of paths from s to

t in G.

Proof. It follows from the definition of the subgraph H that there exists a directed path
from vertex s to vertex t in G if and only if the same directed path exists from vertex s to
vertex t in H also. As a result number of paths from vertex s to vertex t in G is equal to the
number of paths from vertex s to vertex t in H . Moreover any two paths from s to t in H
are distinct if and only if there is an edge in one of the paths that is not in the other path.
Since H always contains at least one path from s to t it follows that (p + 1) is bounded by
a polynomial in |H|.

To verify if the number of paths from vertex s to vertex t is at least (p+1), we iteratively
consider subgraphs Hλ of H formed by the vertices in the first λ layers of H where λ ≥ 2.
Any path from s to a vertex in layer λ is of length (λ−1). Also if φ is the maximum number
of paths from s to a vertex in layer (λ−1) and if m is the maximum outdegree of any vertex
in layer (λ − 1) then the number of paths from s to vertices in layer λ is at most φmnλ

where nλ is the number of vertices in layer λ in Hλ. Whenever we consider Hλ we always
ensure that φmnλ is at most (p + 1) or bounded by a polynomial in |H|. This is therefore
computable in O(log |H|) space.

We now use the deterministic weight assignment scheme from [AHT07, Section 3, Lemma
3.2] to assign weights to the edges of Hλ using at most O(log |H|) space. The weight of any
path in Hλ is the sum of the weights of the edges in the path and is therefore bounded
by a polynomial in |H|. Number of paths from s to vertices in layer λ is polynomially
bounded in |H|. Also it follows from [AHT07, Section 3, Lemma 3.2] that every such path
of length (λ − 1) from vertex s in Hλ gets a unique weight. Now given Hλ with a vertex
tλ in layer λ as input verifying if there exists a path from s to tλ having weight w is in UL
(for example refer [RA00, Theorem 2.2]). We can now check if such a path exists for all the
possible polynomially many weights and obtain the number of paths from s to vertices in
layer (λ−1). We repeat these steps for Hλ from λ ≥ 2 until we get the number of paths from
vertex s to be at least (p + 1). If at some stage we get the number of paths to be greater
than p then we output p. Otherwise we would have computed the number of paths from s
to t in H which we output.

We now recall the complexity class UL from Definition 2.5. It has been shown in [RA00,
Theorem 2.2] that NL ⊆ UL/poly. The proof of this result is based on using the isolating
lemma to identify a unique path from vertex s to vertex t on a given instance G of the
directed st-connectivity problem. It is widely believed that NL = UL and under possible
derandomization assumptions we can show that NL = UL.

Corollary 3.3. Assume that NL = UL. Given an instance G of LDAG-st-CON as described

in Theorem 2.4, if there exists a path from vertex s to vertex t in G, then in FUL we can

obtain the subgraph H of G such that any vertex or edge of G is in H if and only if the

corresponding vertex or edge is in some path from s to t in G.

6

As a consequence given a vertex or an edge of G it is possible to decide if the vertex or

edge is in the subgraph H in UL.

Also given this subgraph H of G as input, we can check if the number of directed paths

from vertex s to vertex t in G is at least (p+ 1) in UL, where p is bounded by a polynomial

in |G|. Otherwise if the number of paths from s to t in G is less than (p+ 1) then the FUL
procedure outputs the number of paths from s to t in G.

Proof. The proof follows directly from our assumption that NL = UL, Lemma 3.1 and
Lemma 3.2.

Note 1. Let H be the subgraph of G that we obtain from Lemma 3.1. It is easy to note that

given an instance G of LDAG-st-CON and vertices s and t the subgraph H is unique. Also

the FNL machine may have more than one accepting computation path in which it outputs

the subgraph H and stops. However in Corollary 3.3 we have shown in that this subgraph

H is output by a FUL machine under the assumption that NL = UL. It therefore follows

that any such FUL machine will output the subgraph H on a unique accepting computation

path and stop. Any other computation path of this FUL machine ends in a rejecting state in

which it may output some vertices or edges which is not the subgraph H and stop. Also the

UL machine that verifies if some vertex or an edge is in H has a unique accepting path, if

any. It is important to note that the number of accepting computation paths of a NL machine

does not change even if it simulates a UL machine during intermediate stages to verify if

some string is in a language L ∈ UL. We need this observation along with the parsimonious

reduction for LDAG-st-CON mentioned in Remark 1.

Theorem 3.4. Assume that NL = UL. Then for any function f ∈ #L and a function

g ∈ FL such that if g(x) is a positive integer k in unary that depends on the input string x
then the function

(

f(x)
k

)

∈ #L.

Proof. Given an input string x we obtain a graph G as an instance of LDAG-st-CON using
a logspace many-one reduction mentioned in Theorem 2.4. Once again we assume vertex
s in layer 1 and vertex t is in layer n. It follows from Remark 1 that f(x) is equal to the
number the directed paths from s to t in G. We start by first checking if there exists a path
from vertex s to vertex t in G using the FUL procedure described in Corollary 3.3. If this
procedure ends in a rejecting state then the NL machine we describe also ends in a rejecting
state and stops.

We now proceed by assuming this UL procedure ends in an accepting state. Firstly we
note that the graph G that we obtain is of size polynomial in |x|. We associate the label
(i, j) to a vertex of G if it is the jth vertex in the ith layer of G. Here j is called its vertex
number. It follows from Theorem 2.4 that 1 ≤ i, j ≤ n. Also any two paths are distinct if
there exists a vertex in one of the paths that is not in the other path.

We now show how to non-deterministically choose a set of k = |g(x)| distinct paths using
at most O(log |x|) space from the set of all paths from s to t in G. As a result we obtain
a NL machine whose number of accepting computation paths is

(

f(x)
k

)

on input x. When

7

f(x) < k the NL machine so constructed has no accepting computation paths. In such cases
we define

(

f(x)
k

)

= 0.
In order to non-deterministically choose k distinct paths from s to t we keep track of the

following variables:

• the layer number we are currently in, denoted by λ,

• number of distinct paths we have chosen so far till layer λ, denoted by ϕ, and

• number of distinct vertices in layer λ that lie in the ϕ distinct paths that we have
chosen so far. We denote this variable by η. Note that there could be a vertex in layer
λ that is in more than one of the ϕ distinct paths that we have chosen so far. However
η does not count such vertices more than once.

We start by assuming the vertex s has the label (1, j). The variables defined above are
initialized to λ = 1, ϕ = 1 and η = 1. Also we assume λ < n. In every step of our algorithm
we do the following operations.

1. we have variables η′ and ϕ′ that are initialized to 0 before we choose any vertex from
layer λ.

2. starting from ω = 1 until ω ≤ n, non-deterministically choose distinct vertices (λ, ω)
in the increasing order from layer λ.

3. if the vertex (λ, ω) is chosen then we use the UL procedure described in Corollary 3.3
to verify if there exists a directed path from s to (λ, ω) and if there exists a directed
path from (λ, ω) to t in G.

4. if this UL procedure ends in a rejecting state then we also reject the input and stop.

5. otherwise if this UL procedure ends in an accepting state then there is a directed path
from s to (λ, ω) and there is a directed path from (λ, ω) to t in G. We now increment
η′ by 1. If we have η′ > η then we reject the input and stop.

6. we now check if the number of directed paths from s to (λ, ω) in G is at least ϕ. For this
we first construct a graph G′

ω that contains the first λ layers of G without the vertices
in layer λ whose vertex numbers are greater than ω. We also add a new directed path
of length (λ− 1) from s to (λ, ω) in G′

ω and a self-loop to the vertex (λ, ω). It is easy
to see that number of paths from s to (λ, ω) in G is one less than the number of paths
from s to (λ, ω) in G′

ω. We then use the logspace many-one reduction mentioned in
Theorem 2.4 to obtain the instance Gω with vertices sω and tω of LDAG-st-CON from
G′

ω. Since there exists a directed path from s to (λ, ω) in G′
ω we know that there exists

a directed path from sω to tω in Gω. Also it follows from Remark 1 that this reduction
from G′

ω to Gω is parsimonious.

Now giving Gω as input to the FUL procedure in Corollary 3.3 we can verify if the
number of paths from vertex sω to tω in G′

ω is at least (ϕ+1). Or equivalently whether

8

the number of paths from s to (λ, ω) in G is at least ϕ. If this procedure ends in a
rejecting state then we also reject the input and stop.

Otherwise from using the FUL procedure we can determine if the number of paths
from s to (λ, ω) in G is at least ϕ and increment ϕ′ by ϕ. Otherwise if the number of
paths from s to (λ, ω) in G, say φ, is lesser than ϕ, then we increment ϕ′ by φ.

7. if we have λ ≤ (n− 1) then we choose a non-empty set of distinct neighbours of (λ, ω)
from layer (λ+ 1) in the increasing order. We have variables η′′ that is initialized to 0
and ϕ′′ that is initialized to ϕ before we choose any vertex from layer (λ + 1). Once
we have made non-deterministic choices on all vertices in layer λ we would have also
chosen η′′ distinct vertices from layer (λ + 1) to obtain ϕ′′ ≥ ϕ distinct paths from
vertex s to t.

8. if we have (λ+ 1) = n and we non-deterministically choose a neighbour of (λ, ω) that
is not the vertex t from layer n then we reject the input and stop.

Assume that λ < (n− 1) and that we have non-deterministically chosen the neighbour
(λ + 1, ρ) of (λ, ω) in G. We then we use the UL procedure in Corollary 3.3 to check
if there exists a directed path from (λ + 1, ρ) to t in G. If this UL procedure rejects
the input then we also reject the input and stop. Otherwise there exists at least one
directed path from s to t that passes through (λ+ 1, ρ).

9. We say that a vertex (λ, α) is a predecessor of (λ+ 1, ρ) if there is an edge from (λ, α)
to (λ + 1, ρ) in G. Now {if we have (η′ = 1) or (if we have η′′ = 0) or (if there are no
predecessors (λ, α) of (λ + 1, ρ) such that α < ω)} then we increment η′′ by 1 and go
to step 18.

10. otherwise if all these three conditions are false then we use the UL procedure described
in Corollary 3.3 as follows to find out the number of predecessors (λ, α) of (λ + 1, ρ)
that are in at least one path from the vertex s to the vertex t in G such that α < ω.

11. we do this as follows. We have a counter predρ that is initialized to 0 to count the
number of predecessors of (λ+ 1, ρ) in layer λ whose vertex numbers are lesser than ω
and which are in at least one directed path from s to t in G. First note that there is at
least one directed path from s to t that passes through (λ+ 1, ρ). Now let (λ, α) be a
predecessor of (λ+ 1, ρ). As a result there exists a path from (λ, α) to t. Therefore to
check if (λ, α) is reachable from s we follow the construction in step 6 to obtain graphs
G′

α and the instance Gα of LDAG-st-CON with vertices sα and tα. Number of paths
from s to (λ, α) in G is one less than the number of paths from s to (λ, α) in G′

α. Since
there exists at least one path from s to (λ, α) in G′

α we know that there exists at least
one path from sα to tα in Gα. Also it follows from Remark 1 that this reduction from
G′

α to Gα is parsimonious.

Now giving Gα as input to the FUL procedure in Corollary 3.3 we can verify if the
number of paths from vertex s to (λ, α) in G′

α is at least 2. If this FUL procedure ends
in a rejecting state then we also reject the input and stop.

9

12. otherwise we obtain the number of directed paths from s to (λ, α) in G′
α. We check if

this is at least 2. If this is not true then (λ, α) is not reachable from vertex s in G and
so we move to the next predecessor in layer λ, if any, of (λ+1, ρ) in G in the increasing
order of vertex numbers till we reach (λ, ω). If for all predecessors of (λ + 1, ρ) there
does not exist any path from vertex s in G then we increment η′′ by 1 and go to step
18. However if there exists a directed path from s to (λ, α) in G then we increment
the counter predρ by 1.

13. now assume that predρ is at least 1. We have then found at least one predecessor (λ, α)
of (λ+1, ρ) whose vertex number is lesser than ω that is reachable from vertex s in G.
We once again use the UL procedure from Corollary 3.3 and the method used in the
steps 11 and 12 to count the number of distinct neighbours of these predρ predecessors
of (λ + 1, ρ) in layer (λ + 1) that are in at least one path from s to t in G. Let this
counter be succρ. We decrement succρ by 1 to leave out the vertex (λ+ 1, ρ) from this
set.

In the next few steps we do a case analysis on predρ and succρ to determine if the
vertex (λ+ 1, ρ) has already been counted in choosing at most k distinct paths from s
to t.

14. {(if ((η′ − 1) ≥ predρ)) and (if (η′′ > succρ))} then we do not increment η′′. If these
two conditions are satisfied then since predρ ≥ 1 we assume that we have chosen at
least one of the predρ predecessors of (λ + 1, ρ) from layer λ whose vertex numbers
are < ω that are reachable from s and that we have also chosen (λ + 1, ρ) from layer
(λ+ 1) using the edge from one such predecessor. As a result we do not increment η′′

so that we do not count (λ+ 1, ρ) more than once.

15. otherwise {(if ((η′ − 1) ≥ predρ)) and (if (η′′ ≤ succρ))} then increment η′′ by 1. If
these two conditions are satisfied then since predρ ≥ 1 we assume that we have chosen
at least one of the predρ predecessors of (λ+ 1, ρ) from layer λ whose vertex numbers
are < ω that are reachable from s but that we have not chosen (λ + 1, ρ) so far from
layer (λ + 1). However since we have chosen (λ + 1, ρ) using the edge from (λ, ω) we
increment η′′ by 1.

16. otherwise {(if ((η′ − 1) < predρ)) and (if (η′′ > succρ))} then we do not increment
η′′. If these two conditions are satisfied then it follows that we have not chosen all of
the predecessors of (λ + 1, ρ) that are reachable from s. However since predρ ≥ 1 we
assume that we have chosen at least one predecessor of (λ + 1, ρ) from layer λ whose
vertex numbers are < ω that is reachable from s and we have also chosen (λ + 1, ρ)
from layer (λ + 1) using the edge from one such predecessor. As a result we do not
count (λ+ 1, ρ) more than once and so we do not increment η′′.

17. otherwise {(if ((η′ − 1) < predρ)) and (if (η′′ ≤ succρ))} then increment η′′ by 1. If
these two conditions are satisfied then since predρ ≥ 1 we assume that we have chosen
at least one but not all of the predecessors of (λ+ 1, ρ) whose vertex numbers are < ω

10

that is reachable from s. Also we assume that we have not chosen all of the neighbours
of these predρ predecessors in layer (λ+1). Therefore we can assume that we have not
chosen (λ+ 1, ρ) so far and since we have chosen (λ+ 1, ρ) using the edge from (λ, ω)
we increment η′′ by 1.

18. we have the variable ϕ′′ that is initialized to ϕ before we choose any vertex from layer
(λ + 1). Having non-deterministically chosen (λ, ω) from layer λ, it follows from step
6 that there are at least φ′ (which is ≤ ϕ) paths from s to (λ, ω) in G. Assume
that we have nondeterministically chosen m neighbours of (λ, ω) from layer (λ + 1).
If m = 0 then we reject the input and stop. Otherwise if φ′ ≤ (m − 1) then we
nondeterministically choose an integer ψ from (m − φ′) to φ′m and increment ϕ′′ by
ψ. However if φ′ ≥ m then we nondeterministically choose an integer ψ from 0 to φ′m
and increment ϕ′′ by ψ.

19. if we have ϕ′′ > k then we reject the input and stop.

20. {(if we have (λ + 1) < n) and (if we have not made non-deterministic choices on all
the n vertices in layer λ)} then go to step 2.

21. otherwise {(if we have (λ+ 1) < n) and (if we have made non-deterministic choices on
all the n vertices in layer λ) and {(if we have ϕ′ is not greater than or equal to ϕ) or
(if we have η′ is not equal to η)}} then we reject the input and stop.

22. otherwise {(if we have (λ+ 1) < n) and (if we have made non-deterministic choices on
all the n vertices in layer λ) and (if we have ϕ′ ≥ ϕ) and (if we have η′ = η)} then we
increment λ by 1, re-initialize ϕ ← ϕ′′, η ← η′′ and continue the algorithm from step
2.

23. otherwise if we have (λ + 1) = n then {{(if not all the vertices chosen in layer n is t,
that is η′′ is not equal to 1) or (if we have ϕ′′ is not equal to k)} then we reject the
input and stop. Otherwise if both these conditions are true then we accept the input
and stop.}

We have mentioned in Note 1 that the number of accepting computation paths of a NL
machine does not change even if it simulates a UL machine in its intermediary stages to
verify if some input is in a language L ∈ UL. It is also easy to observe that the same is true
for the FUL function that verifies if the number of paths from s to t is at least ϕ.

Also it follows from Theorem 2.4 that at any stage of the algorithm we can construct
graphs G′

ω and Gω using O(log |x|) space. We keep track of only a constant number of
variables all of which take non-negative integer values. Also the values of these variables are
upper bounded by a polynomial in the size of the graph G, which is once again polynomial
in the input size |x|. As a result we get a NL machine that executes the above algorithm and
ends in an accepting state on an input x if and only if it chooses k distinct directed paths
from s to t in G. As mentioned in Remark 1 since f(x) is equal to the number of directed
paths from s to t in G it follows that

(

f(x)
|g(x)|

)

∈ #L.

11

3.2 #L functions are sufficient for ModL

Functions in GapL can take negative integer values on a given input and many interesting
results related to the sign of a GapL function are known. The most obvious is that the class
of functions in #L is properly contained in GapL. Some other results are also shown in
[AO96, Proposition 19] and [HT05, Theorem 4.5].

Buntrock et.al. in [BDHM92, Proposition 9] show that deciding if a square integer matrix
has its determinant not congruent to zero modulo k, where k ≥ 2 is a positive integer, is
logspace many-one complete for ModkL. As a result we can replace the #L function by the
determinant in defining ModkL. For ModL we obtain a similar result that shows that we
can replace the GapL function by a #L function for deciding membership of any input in a
language L ∈ ModL.

Lemma 3.5. Let L ∈ ModL. Then there exists a function f ∈ #L and a function g ∈ FL
such that on any input string x,

• g(x) = 0pe

for some prime p and a positive integer e, and

• x ∈ L if and only if f(x) 6≡ 0(mod pe).

Proof. Let L ∈ ModL be witnessed by functions f ′ ∈ GapL and g ∈ FL as in Definition
2.6. We know that GapL is the closure of #L under subtraction [AO96, Proposition 2].
In other words, given f ′ ∈ GapL there exists f1, f2 ∈ #L such that on any input string
x we have f ′(x) = f1(x) − f2(x). Consider f(x) = f1(x) + (pe − 1)f2(x). Since #L is
closed under multiplication by a FL function that outputs a positive integer and under
addition [BDHM92, Lemma 2(i)], we have f(x) ∈ #L. Moreover on a given input x, we
have f ′(x) 6≡ 0(mod pe) if and only if f ′(x) = f1(x) − f2(x) 6≡ 0(mod pe) if and only if
f(x) = f1(x) + (pe − 1)f2(x) 6≡ 0(mod pe). As a result we can replace the GapL function f ′

by the #L function f to decide if any given input string x is in L.

3.3 Prime modulus is sufficient for ModL

We now prove our characterization of ModL. The proof of this result is the same as that
used to prove ModpeP = ModpP in [BG92, Theorem 7.2]. It should be noted that if f ∈ #P
and g ∈ FP such that g(x) is a positive integer in unary that depends on the input string x
then the function

(

f(x)
|g(x)|

)

∈ #P [FFK94]. Also [BG92, Property 2.7] show the same property

to be true when g(x) is a positive integer that is polynomially bounded in |x| and g ∈ UPF.
In Theorem 3.4 we also showed the same property to be true in the logspace setting but it
required the unproven assumption that NL = UL. As a consequence we also need to assume
that NL = UL to prove our characterization of ModL.

Theorem 3.6. Assume that NL = UL and let L ∈ ModL. Then there exists a function

f ∈ #L and a function g ∈ FL such that on any input string x,

• g(x) = 0p for some prime p, and,

12

• if x ∈ L then f(x) ≡ 1(mod p),

• if x 6∈ L then f(x) ≡ 0(mod p).

Proof. Let L ∈ ModL. It follows from Lemma 3.5 that there exists f ′ ∈ #L and g′ ∈ FL
such that on any input string x we have g′(x) = 0pe

for some prime p and a positive integer
e, and x ∈ L if and only if f ′(x) 6≡ 0(mod pe).

Let g be a FL function that outputs the prime p in unary when given the input x. Now
assume that there exists f ′′ ∈ #L such that f ′(x) 6≡ 0(mod pe) if and only if f ′′(x) 6≡
0(mod p). Then x ∈ L if and only if f ′′(x) 6≡ 0(mod p). Define f(x) = (f ′′(x))(p−1). Using
Fermat’s Little Theorem [BG92] we have, if x ∈ L then f(x) ≡ 1(mod p). Otherwise if x 6∈ L
then f(x) ≡ 0(mod p). We therefore prove the theorem statement if we define the function
f ′′ such that f ′(x) 6≡ 0(mod pe) if and only if f ′′(x) 6≡ 0(mod p).

It is easy to see that we can compute the largest power of p that divides pe = |g′(x)| in
FL. If e = 1 then we define f ′′ = f ′ where f ′ is the #L function in Lemma 3.5. It is clear
that on an input string x we have g(x) = g′(x) = 0p for some prime p and x ∈ L if and only
if f ′(x) 6≡ 0(mod pe) which is true if and only if f ′′(x) 6≡ 0(mod p).

Otherwise e ≥ 2. Here we have g′(x) = 0pe

and g(x) = 0p. We follow the proof of
[BG92, Theorem 7.2] and use induction on (e − 1) to define f ′′. Inductively assume that
for 1 ≤ i ≤ (e − 1) we have functions fi ∈ #L such that f ′(x) 6≡ 0(mod pi) if and only if
fi(x) 6≡ 0(mod p). For the case when (e − 1) = 1 we can have fe−1 = f ′. Then it is clear
that given an input string x, we have f ′(x) is divisible by pe if and only if

1. f ′(x) is divisible by pe−1, and

2. the coefficient of pe−1 in the base-p expansion of f ′(x) is zero.

Here Condition 2 stated above is equivalent to
(

f ′(x)
pe−1

)

≡ 0(mod p) by [BG92, Corollary 20].

Therefore f ′(x) 6≡ 0(mod pe) if and only if {f ′(x) 6≡ 0(mod pe−1) or
(

f ′(x)
pe−1

)

6≡ 0(mod p)}

which is true if and only if {fe−1(x) 6≡ 0(mod p) or
(

f ′(x)
pe−1

)

6≡ 0(mod p)}.

Now define fe(x) = fe−1(x) +
(

f ′(x)
pe−1

)

. Using Theorem 3.4 and [BDHM92, Lemma 2(i)] it

follows that fe ∈ #L. Moreover on an input string x we have f ′(x) 6≡ 0(mod pe) if and only
if fe(x) 6≡ 0(mod p). As a result defining f ′′ = fe we complete the proof.

Corollary 3.7. Assume that NL = UL. Then ModL is closed under complement.

Proof. Let L ∈ ModL. Then by Theorem 3.6 there exists f ∈ #L and g ∈ FL such that
on any input x, we have g(x) = 0p for some prime p and if x ∈ L then f(x) ≡ 1(mod p).
Otherwise if x 6∈ L then f(x) ≡ 0(mod p).

Let h(x) = (f(x)+(p−1))(p−1). It follows from [BDHM92, Lemma 2(i)] that h(x) ∈ #L.
Using Fermat’s Little Theorem [BG92] we have, if x ∈ L then h(x) ≡ 0(mod p) and if
x 6∈ L then h(x) ≡ 1(mod p). Clearly this shows L ∈ ModL or that ModL is closed under
complement.

13

4 Discussion

In an earlier submission to the STACS 2009 conference related to the complexity class ModL
I had given a proof of Theorem 3.6, but without the assumption that NL = UL. Moreover
the result had f ∈ GapL and in the proof, the FL function g was defined to output a prime
in the unary representation that is greater than pe = |g′(x)| instead of the prime p itself
as shown in this paper. However referees of the STACS 2009 conference pointed out many
errors in the proof that I had given. In this paper I have managed to partially correct this
statement under the assumption that NL = UL and since #L ⊂ GapL. However as in the
proof of ModpeP = ModpP [BG92] and ModpeL = ModpL [BDHM92], the FL function g that
we define in Theorem 3.6 only outputs the prime p that divides pe = |g′(x)|.

4.1 Open problems

The most obvious open problem that we obtain from the results shown above is to prove NL =
UL so that we obtain the characterization of ModL shown in Theorem 3.6 unconditionally.
Using this characterization we have also shown that ModL is closed under complement.
However note that even under the assumption that NL = UL we do not know any other
closure properties of ModL or its relation to logspace counting classes such as C=L and
ModkL where k > 2 is a composite number having more than one prime divisor.

The most interesting result regarding ModL that does not depend on any unproven as-

sumption is LModL = LGapL [AV04][Vij08, Lemma 3.2.2][AV, Lemma 3.2]. We do not
know if ModL is closed under logspace Turing reductions. However note that irrespective of
whether we assume NL = UL, proving that ModL is closed under logspace Turing reductions
would show that if f ∈ GapL then the language Lf = {(x, i, b)|f(x) = y1y2 · · · yp(|x|) and yi =
b, where p(|x|) is a polynomial, 1 ≤ i ≤ p(|x|) and b ∈ {0, 1}} is in ModL. In other words
the closure of ModL under logspace Turing reductions will show that ModL captures formu-
lation of GapL as a language. We find these questions interesting and leave them open.

Acknowledgments

I am grateful to Johannes Köbler for valuable discussions. I am also grateful to the anony-
mous referees of the STACS 2009 conference for pointing out many errors in the proofs of
the results on the complexity class ModL in an earlier submission.

References

[AO96] Eric Allender and Mitsunori Ogihara. Relationships among PL, #L and the De-
terminant. RAIRO - Theoretical Informatics and Applications, 30: 1-21, 1996.

14

[ABO99] Eric Allender, Robert Beals and Mitsunori Ogihara. The complexity of matrix
rank and feasible systems of linear equations. Computational Complexity, 8(2):
99-126, 1999.

[ARZ99] Eric Allender, Klaus Reinhardt and Shiyu Zhou. Isolation, Matching and Count-
ing: Uniform and Nonuniform Upper Bounds. Journal of Computer and System

Sciences, 59(2): 164-181, 1999.

[AV04] V. Arvind and T.C. Vijayaraghavan. Abelian Permutation Group Problems and
Logspace Counting Classes. CCC ’04: Proceedings of the 19th IEEE Annual Con-

ference on Computational Complexity, pages 204-214, 2004.

[AHT07] Manindra Agrawal, Thanh Minh Hoang and Thomas Thierauf. The Polynomially
Bounded Perfect Matching Problem Is in NC2. In STACS ’07: Proceedings of

the 24th Annual Symposium on Theoretical Aspects of Computer Science, pages
489-499, 2007. Also available as ECCC Report TR 06-129.

[AV] V. Arvind and T.C. Vijayaraghavan. Classifying Problems on Linear Congruences
and Abelian Permutation Groups using Logspace Counting Classes. Accepted in
the journal Computational Complexity (to appear).

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf and Christoph Meinel.
Structure and Importance of Logspace-MOD Classes. Mathematical Systems The-

ory, 25(3): 223-237, 1992.

[BG92] Richard Beigel and John Gill. Counting Classes: Thresholds, Parity, Mods and
Fewness. Theoretical Computer Science, 103(1): 3-23, 1992.

[CDL01] Andrew Chiu, George Davida and Bruce Litow. Division in logspace-uniform NC1.
RAIRO - Theoretical Informatics and Applications, 35(3): 259-276, 2001.

[FFK94] Stephen Fenner, Lance Fortnow and Stuart Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48(1): 116-148, 1994.

[HAB02] William Hesse, Eric Allender and David A. Mix Barrington. Uniform Constant-
Depth Threshold Circuits for Division and Iterated Multiplication. Journal of

Computer and System Sciences, 65(4): 695-716, 2002.

[HT03] Thanh Minh Hoang and Thomas Thierauf. The Complexity of the Characteristic
and the Minimal Polynomial. Theoretical Computer Science, 295(1-3): 205-222,
2003.

[HT05] Thanh Minh Hoang and Thomas Thierauf. The Complexity of the Inertia and
some Closure Properties of GapL. In CCC ’05: Proceedings of the 20th Annual

IEEE Conference on Computational Complexity, pages 28-37, 2005.

15

[KT96] Johannes Köbler and Seinosuke Toda. On the Power of Generalized MOD-Classes.
Mathematical Systems Theory, 29(1): 33-46, 1996.

[RA00] Klaus Reinhardt and Eric Allender. Making Nondeterminism Unambiguous. SIAM

Journal on Computing, 29(4): 1118-1131, 2000.

[Tod91] Seinosuke Toda. Counting problems computationally equivalent to computing the

determinant. Technical Report CSIM 91-07, Department of Computer Science,
University of Electro-Communications, Tokyo, Japan, May 1991.

[Vij08] T.C. Vijayaraghavan. Classifying certain Algebraic Problems using Logspace

Counting Classes. Ph.D Thesis, The Institute of Mathematical Sciences, Homi
Bhabha National Institute, India, December 2008.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

