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Abstract—We first show that SLDAGSTCON which is the st-
connectivity problem for simple layered directed acyclic graphs,
where the vertex s is in the 1°* row and the vertex ¢ is in the last
row of the input graph, is complete for NL under logspace many-
one reductions. Let G = (V, E) be a directed graph given as input
and let s,z € V. Also let p be a positive integer whose unary
representation can be computed by a deterministic O(log |G|)
space bounded Turing machine. Then we can determine if the
number of directed paths from s to ¢ in G is at least (p+ 1) in
FNL. Otherwise if the number of directed paths from s to ¢ in G
is lesser than (p+1) then the FNL machine outputs the number of
directed paths from s to ¢ in G. This in turn shows that verifying
if there are polynomially many accepting computation paths for
a NL machine on a given input is in FNL. Assume that NL = UL.
Let X be the input alphabet, f € L and g € FL such that, for the
given input string x € X%, g(z) is a positive integer £ in the unary
representation. Then we show that the function (f (l)) € L. In
this paper we obtain consequences of this combinatorial property
of L. for the complexity class ModL defined in [AV10, Definition
3.1]. We prove the following characterization of ModL: assuming
NL = UL, we show that for every language L. € ModL, there
exists a function f € L. and a function g € FL such that on any
input x, we have

e g(x) = 0" for some prime p, and,

o if z € L then f(z) = 1(mod p),

o if 2 ¢ L then f(x) = 0(mod p).

As a result, assuming NL = UL, we are able to show that

1) ModL is the logspace analogue of the complexity class ModP
defined by Kaobler and Toda in [KT96, Definition 3.1], and
2) ModL is closed under complement.

Index Terms—computational complexity, space bounded com-
putation, logarithmic space bounded counting classes

I. INTRODUCTION

As the main result of this paper I show in Theorem by
assuming NL = UL that if f € L. and g € FL such that g(x)
is the unary representation of a positive integer k£, where x €
>* is the input, then the number of ways of choosing exactly

= |g(z)| distinct paths from amongst the f(z) accepting
computation paths of the NL machine corresponding to f is
in L. In Theorem [3.I] I have shown that the st-connectivity
problem for simple layered directed acyclic graphs (denoted
by SLDAGSTCON) is complete for NL under logspace many-
one reductions and this result plays the key role for the results
shown in this paper. The algorithm I describe in Theorem

is analogous to the algorithm described in the well known
Immerman-Szelepscényi Theorem [Sip13} Theorem 8.27] and
uses the method of double inductive counting. Regarding our
assumption that NL = UL in Theorem it has been shown
in [RA00, Theorem 2.2] that NL C UL/poly and in [RA0O,
Corollary 2.3] it is shown that NL/poly = UL/poly. Assuming
the existence of a language L € DSPACE(n) such that, to
compute the characteristic function of L we require Boolean
circuits of exponential size, it is possible to construct pseudo-
random generators (see [[ARZ99, Theorem 5.5]) using which
it is possible to derandomize the randomized algorithm in
[RA00] which will imply that NL = UL. In [BD" 92, Lemma
2(ii)] it is shown that if f € L and £ > 0 is a constant then
the function (f(k””)) € fL. Also in [BD192, Lemma 12] the
same property for L. is shown with the assumption that the
FL function g outputs a positive integer that varies with the
input. However they impose a restriction on the NL-machine
that the number of distinct computation paths that end in any
accepting configuration is at most one. Such machines are
called weakly unambiguous Turing machines. Subsequently
[ARZ99, Theorem 4.3] show that if f,g € fL and f(x) is at

most a polynomial in the size of x then (g Eg) € FNL/poly.

A. A logarithmic space bounded modulo counting class

The complexity class ModL was defined by Arvind and
Vijayaraghavan in [AV10, Definition 3.1] to tightly classify
the complexity of solving a system of linear equations modulo
a composite number k, where k is given in terms of its prime
factorization such that every distinct prime power divisor that
occurs in the prime factorization of k is given in the unary
representation. In this paper we study the complexity class
ModL and obtain a characterization of ModL that shows that
a fL. function f and a FL function ¢ that outputs a prime
number in unary representation are sufficient to decide if a
given input z is in a language L € ModL, however under the
assumption that NL = UL. More precisely we are able to show
a characterization of ModL in Theorem [5.2] that if we assume
NL = UL and we have a language L C ¥* with L € ModL
then we can decide whether an input x € ¥* is in L using f €
L and g € FL where g(x) is a prime number p that is output
by g in the unary representation such that if z € L then f(x) =
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1(mod p) and if x ¢ L then f(x) = 0(mod p). The proof of
Theorem is similar to the result that Mod,-P = Mod,P
shown in [BG92, Theorem 7.2] but assumes that NL = UL
since we use Theorem [4.1] as its important ingredient. As an
immediate consequence of Theorem [5.2] assuming NL = UL
we are able to show that ModL is the logspace analogue of the
complexity class ModP defined by Kobler and Toda in [KT96,
Definition 3.1]. As another corollary we show that ModL is
closed under complement assuming NL = UL in Corollary

54

II. DEFINITIONS

Definition 2.1: We define SLDAG = {G|G = (V,E) is
a simple layered directed acyclic graph which does not have
any self-loops on vertices or directed cycles or parallel edges
between vertices. Also vertices in GG are arranged as a square
matrix such that there are n rows and every row has n vertices.
Any edge in this graph is from a vertex in the i*" row to a
vertex in the (i+1)% row, where 1 <7 < (n—1) and n > 2}.

Definition 2.2: Let G = (V,E) € SLDAG and s,t € V
such that s is a vertex in the first row and ¢ is a vertex in
the last row of G. We define SLDAGSTCON = {(G, s,t)|3 a
directed path from s to ¢ in G}.

Definition 2.3: Let X be the input alphabet. We define the
complexity class NL = {L C 3*| there exists a nondetermin-
istic O(log n) space bounded Turing machine M such that
L=L(M)}

Definition 2.4: [AJ93] Let > be the input alphabet. The
complexity class fL is defined to be the class of functions
f : ¥* — Z7% such that there exists a NL machine M for
which we have f(x) = accpr(x) where accpr(x) denotes the
number of accepting computation paths of M on any input
T e X",

Definition 2.5: [BJT91|| Let X be the input alphabet. We
say that L C ¥* is a language in the complexity class UL if
there exists a function f € L such that for any input x € X*
we have f(z) =1ifx € L and f(z) =0if = & L.

Definition 2.6: Let X be the input alphabet and let I' be the
output alphabet. We define FNL to be the complexity class of
all functions f : ¥* — I'* such that for any given input string
x € X* there exists a NL machine M which outputs f(z) at
the end all of its accepting computation paths.

Definition 2.7: Let X be the input alphabet and let I' be the
output alphabet. We define FUL to be the complexity class of
all functions f : ¥* — I'* such that for any given input string
x € X* there exists a NL machine M which has atmost one
accepting computation path and M outputs f(z) at the end of
its unique accepting computation path.

Definition 2.8: [AV10, Definition 2.2] Let X be the input
alphabet. The complexity class GapL is defined to be the class
of functions f : ¥X* — Z such that there exists a NL machine
M for which we have f(x) = accpr(x) — rejy,(x) where
accpr(x) and rejy () denote the number of accepting and
the number of rejecting computation paths of M on any input
x € ¥* respectively. We also denote (accps(x) —rejy () by

gap ().

Definition 2.9: [[V1j08), Definition 1.4.1] [AV10, Definition
3.1] Let ¥ be the input alphabet. A language L C ¥* is in
the complexity class ModL if there is a function f € GapL
and a function g € FL such that on any input z € ¥*,

e g(x) = 17" for some prime p and a positive integer e,

and

e €L & f(r)# 0(mod p°).

III. RESULTS ON DIRECTED ST-CONNECTIVITY

Theorem 3.1: SLDAGSTCON is complete for NL under
logspace many-one reductions.

Proof. Tt is a well known result of W. Savitch that
the st-connectivity problem for directed graphs is complete
for NL under logspace many-one reductions (refer [Sipl3}
Theorem 8.25]). Therefore the st-connectivity problem for
directed graphs that do not have any self-loops on vertices
or parallel edges between vertices is also complete for NL
under logspace many-one reductions. In other words the st-
connectivity problem for simple directed graphs is complete
for NL under logspace many-one reductions. Let G = (V, E)
be a simple directed graph and s,t € V. Also let n = |V|.
Given G, we obtain the directed graph G’ = (V', E’), where
V=V and Ef = E U (t,t). We now reduce G’ to
G" = (V',E"”) € SLDAG. In G”, the vertex set V" has
n? vertices arranged as a n X n matrix obtained by creating
n copies of V', Let the vertex s in the first row be denoted
by (1, s) and the vertex ¢ in the last row be denoted by (n,t).
A (i,7) vertex in G” is the j*" vertex in the i*" row of G”,
where 1 < 4,7 < n.Here E” = {((:,71), (:+1, j2))|(41, J2) €
E', where 1 <i<n—1and 1 < ji,j» <n}. Now itis easy
to note that there exists a directed path from s to ¢ in G if and
only if there exists a directed path from (1, s) to (n,t) in G”.
Since we can obtain G” from G using a logspace many-one
reduction the result follows. ]

Corollary 3.2: Let (G,s,t) be an input instance of
SLDAGSTCON. Then counting the number of directed paths
from s to ¢t in G is complete for §L. under logspace many-one
reductions.

Corollary 3.3: Let X be the input alphabet and f € L using
a NL machine M such that f(x) = accp(x) on any input
x € ¥*. Then for an input string z € ¥*, g(z) = (G, s,1),
where g is the canonical logspace many-one reduction used
to show that SLDAGSTCON is NL-complete and (G, s,t) is
an input instance of SLDAGSTCON, and f(z) is equal to the
number of directed paths from s to ¢ in G.

Lemma 3.4: [[Vij08, Lemma 6.3.1] Let X = {1,...,n} be
a set and let 7 C 2% such that |F| < p(n) for a polynomial
p(n). Let r > (n+1)?p?(n) be a prime number and for each
1<i<randje€ X define the weight function w; : [n] —
Z, as w;(j) = (imod r). Further for each subset Y C X
define

wi(Y) = Yjeyw;(j)(mod r).

Then there exists a weight function w,, such that w,,(Y") #
Wy, (Y")(mod r) for any two distinct Y)Y’ € F.



Proof. For any 1 < m < r and Y € F, we can interpret
wm(Y) as the value of the polynomial gy (z) = Sjey 2/ at
the point z = m over the field Z,.. For Y # Y, notice that the
polynomials ¢y (z) and gy/(z) are distinct and their degrees
are at most n. Hence, ¢y (z) and gy/(z) can be equal for at
most n values of z in the field Z,. Equivalently, if Y # Y’
then w;(Y) = w;(Y’) for at most n weight functions w;.
Since there are (‘gl) pairs of distinct sets in F, it follows that
there are at most (lg‘) -n < n - p*(n) weight functions w;
for which w;(Y") = w;(Y") for some pair of sets YY"’ € F.
Since 7 > n - p?(n), there is a weight function as claimed by
the lemma. ]

Theorem 3.5: Let (G,s,t) be an input instance of
SLDAGSTCON and let the number of directed paths from
sto t in G be at most p(n) for some polynomial p(n), where
G = (V,E) € SLDAG and n = |E|. Also let E = {1,...,n}
and let 7 > (n + 1)?p?(n) be a prime number and for
each 1 < ¢ < r and j € FE define the weight function
w; : B — Z, as w;(j) = (i’mod r). Further for each subset
Y C FE define

w;(Y) = jeyw;(j)(mod r).

Now let F C 2¥X such that if X € F then edges in X form a
directed path from s to ¢ in G. It is then possible to determine
a weight function w,, such that w,,(X) # w,,(X’)(mod r)
for any two distinct X, X’ € F and the number of directed
paths from s to ¢ in G in FNL.

Proof. We iteratively start with the first weight function and
first replace each edge in G with weight w by a directed path
of length w. Let the resulting directed graph obtained be G”. It
is easy to note that the number of directed paths from s to ¢ in
G is equal to the number of directed paths from s to ¢ in G’.
Since it is shown in Theorem [3.1] that SLDAGSTCON is NL-
complete under logspace many-one reductions it is possible to
obtain an input instance (G, s”,t") of SLDAGSTCON when
we are given (G',s,t) as input. Upon following the proof
of Theorem we infer that the number of directed paths
from s to ¢t in H' is equal to the number of directed paths
from s” to t” in G”. Let us initialize a counter ¢ to 0. We
consider the simple layered directed acyclic graph structure of
G" and vertices which are copies of ¢ in all the polynomially
many layers of G''. We query the NL oracle if there exists
a directed path in G” from s” to the copy of the vertex ¢
in each of the layers of G”. If the oracle returns “yes” then
we increment the counter ¢ by 1. For a given weight function
we can compute ¢ in O(log |G|) space. Using Lemma
it follows that there exists a weight function w,, such that
Wi (X) # W (X')(mod r) for any two distinct X, X’ € F,
where 1 < m < r. Clearly any such weight function will
result in the maximum value for the counter c. As a result by
storing ¢ for successive weight functions and updating it by
comparison we can find the weight function w,, also. Note
that the maximum value of ¢ is the number of directed paths
from s to t in G itself. Since |G”| is a polynomial in |G| it

follows that we can find the weight function w,, in FLNL
which is FNL. [ ]

Theorem 3.6: Let G = (V, E) be a directed graph given as
input and let s,¢ € V. Also let p be a positive integer whose
unary representation can be computed by a deterministic
O(log |G|) space bounded Turing machine. Then we can
determine if the number of directed paths from s to ¢ in G is
at least (p + 1) in FNL. Otherwise if the number of directed
paths from s to ¢ in G is lesser than (p + 1) then the FNL
machine outputs the number of directed paths from s to ¢ in
G.

Proof. Due to Theorem [3.1] we know that SLDAGSTCON
is NL-complete under logspace many-one reductions. We
therefore follow Theorem [3.1] and obtain H € SLDAG and
vertices s',¢' € V(H) from G. Upon following the proof of
Theorem [3.1] we infer that the number of directed paths from
s to t in G is equal to the number of directed paths from
s’ to t' in H. Let us consider the subgraph of H induced
by vertices that are in at least one directed path from s’ to
t’ in H. Let this subgraph be H'. We use induction on the
number of layers A > 2 in H' and consider subgraphs of H’
formed by vertices in the first A layers of H' such that the
number of directed paths from s’ to vertices in layer A of H’
is at most (p+ 1) or a polynomial in |G|. Note that it is easy
to compute this upperbound on the number of directed paths
using O(log |G]) space. We now once again use Theorem
and Theorem [3.5] to compute the number of directed paths
from s’ to all the vertices in layer A in H’. If the number
of directed paths is greater than or equal to (p + 1) then we
move to the accepting configuration, output (p 4 1) and stop.
Otherwise finally we would have computed the number of
directed paths from s’ to ¢’ in H which is lesser than (p+1).
We then move to the accepting configuration, output this value
and stop. In all the stages of this proof throughout, we use a
deterministic O(log |G|) space bounded Turing machine with
access to the FNL oracle. The deterministic O(log |G|) space
bounded Turing machine submits queries deterministically to
the FNL oracle. In the intermediary stages, the reductions are
done by submitting queries deterministically to the FNL oracle
and after reading the reply given by the oracle on the oracle
tape. As a result given the input G it is possible to determine
if the number of directed paths from s to ¢ is at least (p+ 1)
is in FLENE which is FNL. m

Corollary 3.7: Verifying if there are polynomially many
accepting computation paths for a NL machine on a given
input is in FNL.

Proof. Let M be a NL machine and let g be the canonical
logspace many-one reduction from L(M) to SLDAGSTCON
obtained by using the seminal result of W. Savitch that the st-
connectivity problem for directed graphs is complete for NL
under logspace many-one reductions [Sipl3, Theorem 8.25]
and Theorem [3.1] We note that if = is the input string then
g(x) = (G,s,t) and the number of accepting computation
paths of M on z is equal to the number of directed paths



from s to t in G. We now use Theorem [3.6] to complete the
proof. ]

Corollary 3.8: Assume that NL = UL. Let G = (V, E) be a
directed graph given as input and let s,¢ € V. Also let p be a
positive integer whose unary representation can be computed
by a deterministic O(log |G|) space bounded Turing machine.
Then we can determine if the number of directed paths from
stotin G is at least (p+1) in FUL. Otherwise if the number
of directed paths from s to ¢ in G is lesser than (p + 1) then
the FUL machine outputs the number of directed paths from
stotin G.

Note 1: The number of accepting computation paths of a
NL machine is not altered if it simulates a NL machine of a
language L € UL during intermediate stages to verify if some
input string is in L.

IV. A CONDITIONAL COMBINATORIAL PROPERTY OF L.

Theorem 4.1: Assume that NL = UL. Let X be the input
alphabet, f € L. and g € FL such that, for the given input
string © € X*, g(x) is a positive integer k in the unary
representation. Then the function (f (]f)) € tL.

Proof. Let x € ¥* be the input string. Given x, we obtain
the number k& = |g(x)| in FL. It is easy to note that k is
upper bounded by a polynomial in |z|. It follows from our
assumption that NL = UL and Definition [2.5] that there exists
a NL machine M’ to which if we give a directed graph G’
along with two vertices s’ and ¢’ in G’ as input then M’ outputs
“yes” at the end of the unique accepting computation path and
“no” at the end of all the other computation paths if there exists
a directed path from s’ to ¢’ in G’. Otherwise if there does not
exist any directed path from s’ to ¢’ in G’ then M’ outputs
“no” at the end of all of its computation paths. Now given
the input x, we obtain an instance of SLDAGSTCON, say
(G, s,t), using a logspace many-one reduction from Theorem
[3.1] It is easy to note that the graph G that we obtain is of
size polynomial in |z|. Once again we assume that s is in
row 1 and ¢ is in row n. Also any two paths are distinct if
there exists a vertex in one of the paths that is not in the other
path. It follows from Corollary that f(z) is equal to the
number the directed paths from s to ¢ in G. We associate the
label (4,7) to a vertex of G if it is the j! vertex in the *?
row of G, where 1 < ¢,j < n. In the following algorithm
the row number is denoted by A and a vertex in row A is
denoted by (\,w), where 1 < A\ w < n. The number of
distinct paths we have chosen till row A is denoted by ¢ and
1 denotes the number of vertices in row A\ that are in the ¢
distinct paths. We use nondeterminism to compute ¢ and 7.
Let us consider the SHARPLCFL algorithm described below
which is based on the algorithm described in the well known
Immerman-Szelepscényi Theorem [Sip13, Theorem 8.27] and
uses the method of double inductive counting. Input to the
SHARPLCFL algorithm is (0%, (G, s,t)) where (G, 5,t) is an
input instance of SLDAGSTCON. If using SHARPLCFL we
are able to nondeterministically choose exactly k = |g(z)]

distinct directed paths from s to ¢ in G then the computa-
tion path ends in the accepting configuration. Otherwise the
computation path ends in the rejecting configuration.

Algorithm 1 SHARPLCFL(0%, (G, 5, 1))
A1 o1, ne1
2: while A < (n—1) do
3 @ 0,00, ¢" 0,70, w+l
4 while (w < n) do
5: Nondeterministically either choose (A, w) or skip (A, w)
6 if (A, w) is chosen nondeterministically then
7 if (M'(G,s, (A w)) returns“yes”) and (M'(G, (A, w),t) returns “yes”)

then

8: n+n+1

9: if ' > n then

10: reject the input

11: else

12: o+ 0,1« 0

13: while 3 a neighbour (A+1, p) of (A,w) that is yet to be visited do
14: Nondeterministically either choose (A +1,p) or skip (A4 1, p)
15: if (A+1,p) is chosen nondeterministically then
16: o—o+1

17: if M'(G,(A+1,p),t) returns “no” then

18: reject the input

19: else if (p =k or ¢ = k) and o > 2 then

20: reject the input

21: if (0 =0 or o > k) then

22: reject the input

23: if #(directed paths from s to (A\,w)) > ¢ — ¢’ then
24: o+ max(1l,¢ — ')

25: else

26: P < #(directed paths from s to (A\,w))

27: Nondeterministically choose a number « from 1 to ¢
28: @ ¢ +a

29: Nondeterministically choose a number 5 from 0 to o
30: @ —afB+ "

31: 0 —n'+8

32: if (" =0)or ((p=kor¢” >k)andn” >n) then
33: reject the input

34: if ¢” > k then

35: " —k

36: else

37 reject the input

38: w+w+1

39: if A+1<nand (n #nor¢ <) then
40: reject the input
41: else if A+ 1=nand (f #nor ¢" # k) then
42: reject the input
43: A d+1, o, nen”

44: accept the input

We note the following points about the SHARPLCFL algo-
rithm.

Always 1 < A <nand 1 < w < n. In the SHARPLCFL
algorithm, if we choose a vertex nondeterministically we

verify if it is in a directed path from s to ¢ in lines 7 and
17.

The variable 7’ is the number of vertices we are choosing
nondeterministically in row A and it must be equal to 7 after
we have made nondeterministic choices on all the vertices in
row A failing which we reject the input in lines 39-42. ¢’ is
used to verify if the number of distinct directed paths from s
to ¢ that pass through 7’ vertices chosen nondeterministically
in row A is atleast ¢ failing which we reject the input in lines
39-40.

The variable o computed in line 16 inside the while loop
from line 13 to 20 is the number of vertices chosen nonde-
terministically as the neighbours of (\,w) in row A + 1 such



that these vertices are in at least one directed path from s to
tin G. Here 1 <o < n.

We compute 7 in lines 24 and 26 in FUL by Corollary
without altering the number of accepting computation paths.
Note that ¢ > 1 since (A\,w) is in at least one directed path
from s to ¢ in G. After lines 24 and 26, 1 is either max(1, p—
¢') or #(directed paths from s to (A, w)). Therefore 1 < ¢ < ¢
always. From lines 1, 32-33 and 43 it follows that 1 < ¢ < k
always and so in line 30 we always have ¢” < kn + ¢" <
2kn?. 1 < a < ¢ and so 0 < ¢ < 2kn always. Also 0 <
¢ < k in line 4 at the begining of the while loop. Therefore
0 < " < 2kn? always.

Always 0 < 3 < 0,0 <75 < n, 0 <7’ < n?and
1 <n < n? If n > n then we reject the input due to the
condition in lines 39 and 41. Variables ¢, n’ and n” are
updated in the while loop from line 4 to 38 and these values
do not decrease inside this loop.

Using nondeterminism to increment n’ in lines 29 and 31 by
[ is to nondeterministically avoid the possibility of counting
vertices in row A + 1 that are common neighbours of two
distinct vertices in row A more than once.

In lines 27 and 29, assume that we are always nondetermin-
istically choosing the correct value of a and 3 respectively
in the algorithm. Then our algorithm proceeds correctly and
ends in an accepting configuration if and only if we have
nondeterministically chosen exactly k distinct directed paths
from s to ¢ in G. On the contrary if ¢" is updated with an
incorrect value of « or if " is incremented by an incorrect
value of 3, then in those iterations of the while loop from line
4 to 38, the algorithm proceeds by assuming that an alternate
set of nondeterministic choices have been made on vertices in
row A + 1 which agree with " and ¢”.

Any two directed paths formed by nondeterministically
choosing two different vertices in row A in lines 5-6 are
distinct irrespective of their neighbours nondeterministically
chosen in the row A + 1 in lines 14-15. As a result if the
number of directed paths from s to ¢ in G is lesser than k
then the value of ¢” computed in line 30 is always lesser
than £ and these inputs are rejected in lines 41-42.

At the end of the while loop in line 38, ¢’ is the number
of directed paths from s to ¢ computed nondeterministically,
that we need for subsequent stages of our algorithm. Also 1
is the number of distinct vertices that are in row A + 1 in ¢
distinct directed paths from s to ¢ in G which is also computed
nondeterministically.

Now assume that the number of directed paths from s to
t in G is at least k. The cases where we reject the input
since the nondeterministic choices made on the neighbours of
(A, w) in row A+ 1 results in increasing the number of distinct
directed paths nondeterministically chosen to be greater than
k is in lines 19, 20, 32 and 33. Lines 19 and 20 are pertaining
to the case when we are in vertex (A\,w) in row A and we
are visiting the neighbours of (A,w) in row A + 1. In this
case we have already nondeterministically chosen k distinct
directed paths from s to ¢t and we have also chosen vertices in
row A\ + 1 in excess that results in increasing the number of

distinct directed paths chosen nondeterministically from s to
t to be greater than k. Similarly in lines 32 and 33 we have
the case when we have chosen a (A, w) in row A and we have
visited all the neighbours of (A, w) in row A+ 1. If (p = k
or ¢ > k) and n” > n then it implies that we have chosen
more than k distinct directed paths from s to ¢ in G that most
recently includes directed paths that pass through (A, w) and
7’ distinct neighbours of (A, w) in row A + 1 and so in lines
32 and 33 we reject the input.

The case when we reject the input since we have not chosen
7 vertices in row A < n—1 or at least  distinct directed paths
till row A < n — 1 is in lines 39 and 40. The case when we
reject the input since we have not chosen exactly k distinct
directed paths from s to ¢ but we have moved till row n — 1
is in lines 41 and 42.

In the SHARPLCFL algorithm, since we keep track of only
a constant number of variables all of which take non-negative
integer values and the values of these variables are upper
bounded by a polynomial in the size of the graph G, which
is once again polynomial in the input size |z| we get a NL
machine that executes the SHARPLCFL algorithm. Since we
have assumed that NL = UL and we use M’ to verify if there
exists a directed path from a vertex s’ to a vertex ¢’ in lines 13
and 23, it follows that the number of accepting computation
paths of the NL machine described by our SHARPLCFL
algorithm does not get altered upon simulating M’ (also see
Note [I). As a result it follows that the NL machine described
by the SHARPLCFL algorithm stops in an accepting state if
and only if we start from vertex s in row 1 and reach vertex ¢ in
row n via exactly k distinct directed paths. Now as mentioned
in Coro]lary since f(x) is equal to the number of directed
paths from s to ¢ in G and since we have assumed NL = UL,
it follows that the number of accepting computation paths of
this NL machine is (f (kw)) When f(z) < k this NL machine
has no accepting computation paths and so we get (f (k”)) =0.
This shows that (/(*)) € 4L. n

V. CHARACTERIZATION OF ModL

Lemma 5.1: Let L € ModL. Then there exists a function
f € L and a function g € FL such that on any input string
xz,

e g(x) = 0P for some prime p and a positive integer e,

and

e x € L if and only if f(x) Z 0(mod p®).

Proof. Let L € ModL be witnessed by functions f’ € GapL
and g € FL as in Definition Now given f’ € GapL there
exists f1, fo € L such that on any input string x we have
F'(2) = fu(@)— fa(w). Consider f(x) = fi(x)+(p"—1) fola).
Since 4L is closed under multiplication by a FL function that
outputs a positive integer and also under addition [BD792,
Lemma 2(i)], we have f(z) € L. Moreover on a given input
x, we have f'(z) # 0(mod p°) if and only if f'(z) = f1(z)—
fa(z) # 0(mod p°) if and only if f(z) = fi(z) + (p® —
1) f2(x) # 0(mod p¢). As a result we can replace the GapL



function f’ by the #L function f to decide if any given input
string x is in L. [ |

Theorem 5.2: Assume that NL = UL and let L € ModL.
Then there exists a function f € L and a function ¢ € FL
such that on any input string z,

e g(z) = 0P for some prime p > 0, and,

e if z € L then f(z) = 1(mod p),

o if 2 & L then f(x) = 0(mod p).

Proof. Let L € ModL. It follows from Lemma [5.1] that there
exists f' € L and ¢’ € FL such that on any input string z we
have ¢'(x) = 0P" for some prime p and a positive integer e,
and z € L if and only if f/(z) # 0(mod p®). Let g be a FL
function that outputs the prime p in unary when given the input
x. Now assume that there exists a f” € L such that f'(x) #
0(mod p°®) if and only if f”(x) # O(mod p). Then z € L if
and only if f(x) # 0(mod p). Define f(x) = (f”(x))P~1).
Using Fermat’s Little Theorem [BG92, Theorem 5.1] we have,
if z € L then f(x) = 1(mod p). Otherwise if ¢ L then
f(x) = 0(mod p). We therefore prove the theorem statement
if we define the function f” such that f’(x) # 0(mod p°) if
and only if f”(z) # 0(mod p).

It is easy to see that we can compute the largest power of
p that divides p® = |¢/(x)| in FL. If e = 1 then we define
f"” = f' where f’is the fL function in Lemma[5.1} It is clear
that on an input string x we have g(z) = ¢'(x) = 0P for some
prime p and = € L if and only if f'(x) # 0(mod p°) which
is true if and only if f”(z) #Z 0(mod p). Otherwise e > 2.
Here we have ¢'(z) = 07" and g(z) = 0. We follow the
proof of [BG92, Theorem 7.2] and use induction on (e — 1)
to define f”. Inductively assume that for 1 <i < (e — 1) we
have functions f; € fL such that f'(x) # 0(mod p) if and
only if f;(z) # 0(mod p). For the case when (e —1) =1 we
can have f._1 = f’. Then it is clear that given an input string
x, we have f'(z) is divisible by p® if and only if

1) f'(z) is divisible by p°~*, and

2) the coefficient of p¢~! in the base-p expansion of f’(z)

is zero.

Here Condition |§| stated above is equivalent to ({) ;(j”l))
0(mod p) by [BG92, Corollary 5.5]. Therefore f’(x)
O(mod p¢) if and only if {f'(x) # O(mod p¢~1)
(f) ;(‘rl)) # O(mod p)} which is true if and only i
{four(z) 2 O(mod ) or (7.0 2 0(mod p)}. Let fl(x ) =
(Fea @) () 4 (e =1 ()
(fe—1(x))P™ ((p z)) + (p — 1)). Now define f.(z) =
(f!(x))P~1. Using Theorem [4.1| and [BDT92, Lemma 2(i)] it
follows that f. € #L. Moreover on an input z, if f'(z) =
0(mod p©) then f.(z) = O(mod p). On the other hand if
f'(z) £ 0(mod p°) then we consider the following cases.
Case 1: f'(x) = O(modp B): Then f._1(x) = 0(mod p)
and we also have (pt 1) # 0(mod p). As a result from the
definition of f.(x) we get f.(x) = 1(mod p).

Case 2: f'(z) £ O(mod p°~1): Then f. 1 (x ) # 0(mod p) and
we can have either (f (I)) # 0(mod p) or ( (z)) = 0(mod p).

S W
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But in both of these cases we get f.(x) = 1(mod p). As a
result defining f” = f, we complete the proof. [ |

Corollary 5.3: Assume that NL = UL. Then ModL is the
logspace analogue of ModP.

Corollary 5.4: Assume that NL = UL. Then ModL is closed
under complement.

Proof. Let L € ModL. Then by Theorem [5.2] there exists
f € fL and g € FL such that on any input x, we have g(z) =
07 for some prime p and if € L then f(x) = 1(mod p).
Otherwise if x ¢ L then f(x) = 0(mod p).

Let h(x) = (f(z)+(p—1))®~1. It follows from [BD92,
Lemma 2(i)] that h(x) € L. Using Fermat’s Little Theorem
[BG92, Theorem 5.1] we have, if © € L then h(z) =
0(mod p) and if ¢ L then h(z) = 1(mod p). Clearly this
shows L € ModL or that ModL is closed under complement.

|
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