
Counting Stars and Other Small Subgraphs in Sublinear Time

Mira Gonen
School of Electrical Engineering

Tel-Aviv University
Ramat Aviv, ISRAEL

gonenmir@post.tau.ac.il

Dana Ron∗

School of Electrical Engineering
Tel-Aviv University
Ramat Aviv, ISRAEL

danar@eng.tau.ac.il

Yuval Shavitt
School of Electrical Engineering

Tel-Aviv University
Ramat Aviv, ISRAEL

shavitt@eng.tau.ac.il

September 24, 2009

Abstract

Detecting and counting the number of copies of certain subgraphs (also known as network motifs or
graphlets), is motivated by applications in a variety of areas ranging from Biology to the study of the
World-Wide-Web. Several polynomial-time algorithms have been suggested for counting or detecting
the number of occurrences of certain network motifs. However, a need for more efficient algorithms
arises when the input graph is very large, as is indeed the case in many applications of motif counting.

In this paper we design sublinear-time algorithms for approximating the number of copies of cer-
tain constant-size subgraphs in a graph G. That is, our algorithms do not read the whole graph, but
rather query parts of the graph. Specifically, we consider algorithms that may query the degree of
any vertex of their choice and may ask for any neighbor of any vertex of their choice. The main focus
of this work is on the basic problem of counting the number of length-2 paths and more generally on
counting the number of stars of a certain size. Specifically, we design an algorithm that, given an ap-
proximation parameter 0 < ε < 1 and query access to a graph G, outputs an estimate ν̂s such that with
high constant probability, (1 − ε)νs(G) ≤ ν̂s ≤ (1 + ε)νs(G), where νs(G) denotes the number of
stars of size s + 1 in the graph. The expected query complexity and running time of the algorithm are

O

(

n

(νs(G))
1

s+1

+ min

{

n1− 1
s , n

s−
1
s

(νs(G))1−
1
s

})

· poly(log n, 1/ε) . We also prove lower bounds showing

that this algorithm is tight up to polylogarithmic factors in n and the dependence on ε.
Our work extends the work of Feige (SIAM Journal on Computing, 2006) and Goldreich and Ron

(Random Structures and Algorithms, 2008 ) on approximating the number of edges (or average degree)
in a graph. Combined with these results, our result can be used to obtain an estimate on the variance of
the degrees in the graph and corresponding higher moments.

In addition, we give some (negative) results on approximating the number of triangles and on ap-
proximating the number of length-3-paths in sublinear time.
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1 Introduction

This work is concerned with approximating the number of copies of certain constant-size subgraphs in
a graph G. Detecting and counting subgraphs (also known as network motifs [MSOI+02] or graphlets
[PCJ04]), is motivated by applications in a variety of areas ranging from Biology to the study of the World-
Wide-Web (see e.g., [MSOI+02, KIMA04, SIKS05, PCJ04, Wer06, SSR06, GK07, DSG+07, HBPS07,
ADH+08, HA08, GS09]), as well as by the basic quest to understand simple structural properties of graphs.
Our work differs from previous works on counting subgraphs (with the exception of counting the number
of edges [Fei06, GR08]) in that we design sublinear algorithms. That is, our algorithms do not read the
whole graph, but rather query parts of the graph (where we shall specify the type of queries we allow when
we state our precise results). The need for such algorithms arises when the input graph is very large (as is
indeed the case in many of the application of motif counting).

The main focus of this work is on the problem of counting the number of length-2 paths and more
generally on counting the number of stars of a certain size. We emphasize that we count non-induced
subgraphs. We shall use the term s-star for a subgraph over s + 1 vertices in which one single vertex (the
star center) is adjacent to all other vertices (and there are no edges between the other vertices). Observe that
a length-2 path is a 2-star. We also give some (negative) results on approximating the number of triangles
and on approximating the number of length-3-paths.

As we show in detail below, we obtain almost matching upper and lower bounds on the query complexity
and running time of approximating the number of s-stars. These bounds are a function of the number, n,
of graph vertices and the actual number of s-stars in the graph, and have a non-trivial form. Our results
extend the works [Fei06] and [GR08] on sublinear-time approximation of the average degree in a graph,
or equivalently, approximating the number of edges (where an edge is the simplest (non-empty) subgraph).
Note that if we have an estimate for the number of length-2 paths and for the average degree, then we can
obtain an estimate for the variance of the degrees in the graph, and the number of larger stars corresponds to
higher moments. Thus, the study of the frequencies of these particular subgraphs in a graph sheds light on
basic structural properties of graphs.

Our Results. We assume graphs are represented by the incidence lists of the vertices (or, more precisely,
incidence arrays), where each list is accompanied by its length. Thus, the algorithm can query the degree,
d(v), of any vertex v of its choice and for any vertex v and index 1 ≤ i ≤ d(v) it can query who is the ith

neighbor of v.
Let νs(G) denote the number of s-stars in a graph G. Our main positive result is an algorithm that, given

an approximation parameter 0 < ε < 1 and query access to a graph G, outputs an estimate ν̂s such that with
high constant probability (over the coin flips of the algorithm), (1 − ε)νs(G) ≤ ν̂s ≤ (1 + ε)νs(G). The
expected query complexity and running time of the algorithm are:

O

(

n

(νs(G))
1

s+1

+ min

{

n1− 1
s ,

ns− 1
s

(νs(G))1−
1
s

})

· poly(log n, 1/ε) . (1)

The dependence on s is exponential, and is not stated explicitly as we assume s is a constant. The complexity
of our algorithm as stated in Equation (1) is best understood by viewing Table 1, in which we see that there
are three regions when considering νs(G) as a function of n, and in each the complexity is governed by a
different term. Observe that in the first range (νs(G) ≤ ns− 1

s ) the complexity of the algorithm (which is at its
maximum when νs(G) is very small) decreases as νs(G) increases; in the second range (ns− 1

s < νs(G) ≤
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νs(G) Query and Time Complexity

νs(G) ≤ ns− 1
s O

(

n

(νs(G))
1

s+1

)

· poly(log n, 1/ε)

ns− 1
s < νs(G) ≤ ns O

(

n1− 1
s

)

· poly(log n, 1/ε)

νs(G) > ns O

(

ns− 1
s

(νs(G))1−
1
s

)

· poly(log n, 1/ε)

Table 1: The query complexity and running time of our algorithm for approximating the number of s-stars.

ns) the complexity does not depend on νs(G); and in the last range (νs(G) > ns) it again decreases as νs(G)
increases (where in the extreme case, when νs(G) = Ω(ns+1) the complexity is just poly(log n, 1/ε)). We
note that if one is willing to allow an additive error, that is, the requirement is that the estimate ν̂s satisfy
(with high probability) νs(G) − α ≤ ν̂s ≤ νs(G) + α for α that is larger than ενs(G) (for 0 < ε < 1), then
this can be obtained by a slight adaptation of our algorithm. The complexity of the resulting algorithm is as
in the expression in Equation (1) where νs(G) is replaced by α (and there is no dependence on 1/ε).

The expression in Equation (1) might seem un-natural and hence merely an artifact of our algorithm.
However, we prove that it is tight up to polylogarithmic factors in n and the dependence on ε. Namely, we
show that:

• Any multiplicative approximation algorithm for the number of s-stars must perform Ω

(

n

(νs(G))
1

s+1

)

queries.
• Any constant-factor approximation algorithm for the number of s-stars must perform Ω(n1− 1

s ) queries
when the number of s-stars is O(ns).

• Any constant-factor approximation algorithm for the number of s-stars must perform Ω

(

ns− 1
s

(νs(G))1−
1
s

)

queries when the number of s-stars is Ω(ns).
We mention that another type of queries, which are natural in the context of dense graphs, are vertex-pair
queries. That is, the algorithm may query about the existence of an edge between any pair of vertices. We
note that our lower bounds imply that allowing such queries cannot reduce the complexity for counting the
number of stars (except possibly by polylogarithmic factors in n).

We also consider other small graphs that extend length-2 paths: triangles, and length-3 paths. We show
that if an algorithm uses a number of queries that is sublinear in the number of edges, then for triangles it
is hard to distinguish between the case that a graph contains Θ(n) triangles and the case that it contains no
triangles, and for length-3 paths it is hard to distinguish between the case that there are Θ(n2) length-3 paths
and the case that there are no such paths. These lower bounds hold when the number of edges is Θ(n).1

Techniques. Our starting point is similar to the one of [GR08]. Consider a partition of the graph vertices
into O(log n/ε) buckets where in each bucket all vertices have the same degree (with respect to the entire
graph) up to a multiplicative factor of (1 ± O(ε)). If we could get a good estimate of the size of each
bucket by sampling, then we would have a good estimate of the number of s-stars (since the vertices in each
bucket are the centers of approximately the same number of stars). The difficulty is that some buckets may

1We mention that we are currently studying these problems in an extended query model that also allows vertex-pair queries. For
length-3 paths, even if we allow such queries then there is a lower bound that is linear in the number of edges when the number of
edges is Θ(n), and for triangles there is a lower bound that is linear in n when the number of edges is Θ(n2).
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be very small and we might not even hit them when sampling vertices. The approach taken in [GR08] to
get a multiplicative estimate of (1 ± ε) is to estimate the number of edges between large buckets and small
buckets, and incorporate this estimate in the final approximation.2

Here we first observe that we need a more refined procedure. In particular, we need a separate estimate
for the number of edges between each large bucket and each small bucket. Note that if we have an estimate
ê on the number of edges incident to vertices in a certain bucket, and all vertices in that bucket have degree
roughly d, then the number of s-stars whose center belongs to this bucket is approximately3 1

s ê ·
(d−1
s−1

)

. As a
first attempt for obtaining such an estimate on the number of edges incident to vertices in a bucket, consider
uniformly sampling edges incident to vertices that belong to large buckets. We can then estimate the number
of edges between the large buckets and each small bucket by querying the degree of the other end point of
each sampled edge. It is possible to show that for a sufficiently large sample of edges we can indeed obtain
a good estimate for the number of s-stars using this procedure. However, the complexity of the resulting
procedure, which is dominated by the number of edges that need to be sampled, is far from optimal. The
reason for this has to do with the variance between the number of edges that different vertices in the same
large bucket have to the various small buckets. To overcome this and get an (almost) optimal algorithm, we
further refine the sampling process.

Specifically, we first define the notion of significant small buckets. Such buckets have a non-negligble
contribution to the total number of s-stars (where each vertex accounts for the number of stars that it is a
center of). Now, for each large bucket Bi and (significant) small bucket Bj we further consider partitioning
the vertices in Bi according to the number of neighbors they have in Bj . The difficulty is that in order to
determine exactly to which sub-bucket a vertex in Bi belongs to, we would need to query all its neighbors,
which may be too costly. Moreover, even if an estimate on this number suffices, if a vertex in Bi has
relatively few neighbors in Bj then we would need a relatively large sample of its neighbors in order to
obtain such an estimate. Fortunately, we encounter a tradeoff between the number of vertices in B i that
need to be sampled in order to get sufficiently many vertices that belong to a particular sub-bucket and the
number of neighbors that should be sampled so as to detect (approximately) to which sub-bucket a vertex
belongs to. We exemplify this by an extreme case: consider the sub-bucket of vertices for which at least half
of their neighbors belong to Bj . This sub-bucket may be relatively small (and still contribute significantly
to the total number of edges between Bi and Bj) but if we sample a vertex from this sub-bucket then we can
easily detect this by taking only constant sample of its neighbors. For more details see Subsection 3.4.

Related Work. As noted previously, our work extends the works [Fei06, GR08] on approximating the
average degree of a graph in sublinear time. In particular, our work is most closely related to [GR08]
where it is shown how to get an estimate of the average degree of a graph G that is within (1 ± ε) of
the correct value d̄(G). The expected running time and query complexity of the algorithm in [GR08] are
O((n/d̄(G))1/2) · poly(log n, 1/ε).

There are quite a few works that deal with finding subgraphs of a certain kind and of counting their num-
2We note that in the case of the average degree (number of edges), if we ignore the small buckets (for an appropriate definition

of “small”) then we can already get (roughly) a factor-2 approximation in O(
√

n) time [Fei06, GR08]. However, this is not the
case for s-stars (even when s = 2). To verify this consider the case that the graph G is a star. There are two buckets: one containing
only the star center, and another containing all other vertices. If we ignore the (very) small bucket that contains the star center then
we get an estimate of 0 while the graph contains Θ(n2) length-2 paths (2-stars).

3To see why this is true, consider an edge (u, v) that is incident to a vertex u that has degree (roughly) d. Then the number of
stars that include this edge and are centered at u is (roughly)

`

d−1
s−1

´

. If we sum this expression over all ê edges that are incident
to vertices in the bucket of u, then each star (that is centered at a vertex in the bucket) is counted s time, and hence we divide the
expression ê ·

`

d−1
s−1

´

by s.
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ber in polynomial time. One of the most elegant techniques devised is color-coding, introduced in [AYZ95],
and further applied in [AYZ97, AR02, AG07, ADH+08, AG09]. In particular, in [AR02] the authors use
color-coding and a technique from [KL83] to design a randomized algorithm for approximately count-
ing the number of subgraphs in a given graph G which are isomorphic to a bounded treewidth graph
H . The running time of the algorithm is kO(k) · nb+O(1), where n and k are the number of vertices in
G and H , respectively, and b is the treewidth of H . In [AG07] the authors use color-coding and bal-
anced families of perfect hash functions to obtain a deterministic algorithm for counting simple paths or
cycles of size k in time 2O(k log log k)nO(1). In [ADH+08] these results are improved in terms of the de-
pendence on k. We note that sampling is also applied in [KIMA04, Wer06], where the authors are in-
terested in uniformly sampling induced subgraphs of a given size k. Other related work in this category
include [DLR95, GK07, BBCG08, Kou08, Wil09, GS09, BHKK09, AFS09, KW09, VW09].

Another related line of work deals with approximating other graph measures (such as the weight of a
minimum spanning tree) in sublinear time and includes [CRT05, CS04, CEF+05, PR07, NO08].

Organization. For the sake of the exposition we first describe the algorithm and the analysis, as well as
the lower bounds, for the case s = 2, that is, length-2 paths. This is done in Sections 3 and 4, respectively.
In Section 5 we explain how to adapt the algorithm for length-2 paths in order to get an algorithm for s-stars,
and in Section 6 we explain how to adapt the lower bounds. Finally, in Section 7 we shortly discuss triangles
and length-3 paths.

2 Preliminaries

Let G = (V,E) be an undirected graph with |V | = n vertices and |E| = m edges where G is simple so that
it contains no multiple edges. We denote the set of neighbors of a vertex v by Γ(v) and its degree by d(v).
For two (not necessarily disjoint) sets of vertices V1, V2 ⊆ V we let E(V1, V2)

def
= {(v1, v2) ∈ E : v1 ∈

V1, v2 ∈ V2}.
Since we shall use the multiplicative Chernoff bound very extensively, we quote it next. Let χ1, . . . , χm

be m independent 0/1 valued random variables where Pr[χi = 1] = p for every i. Then, for every η ∈ (0, 1],
the following bounds hold:

Pr

[

1

m
·

m
∑

i=1

χi > (1 + η)p

]

< exp
(

−η2pm/3
)

and

Pr

[

1

m
·

m
∑

i=1

χi < (1 − η)p

]

< exp
(

−η2pm/2
)

.

We shall say that an event holds with high constant probability if it holds with probability at least 1 − δ for
a small constant δ.

Let µ be a measure defined over graphs and let G be an unknown graph over n vertices. An algorithm
for estimating µ(G) is given an approximation parameter ε, the number of vertices, n, and query access
to the graph G. Here we consider two types of queries. The first are degree queries. Namely, for any
vertex v, the algorithm may ask for the value of d(v). The second are neighbor queries. Namely, for any
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vertex v and for any 1 ≤ i ≤ d(v), the algorithm may ask for the i’th neighbor of v.4 We do not make
any assumption on the order of the neighbors of a vertex. Based on the queries it performs we ask that the
algorithm output an estimate µ̂ of µ(G) such that with high constant probability (over the random coin flips
of the algorithm), µ̂ = (1 ± ε) · µ(G), where for γ ∈ (0, 1) we use the notation a = (1 ± γ)b to mean that
(1 − γ)b ≤ a ≤ (1 + γ)b.

3 An Algorithm for Approximating the Number of Length-2 Paths

In this section we describe and analyze an algorithm for estimating the number of length-2 paths (2-stars) in
a graph G, where we denote this number by `(G). In all that follows we consider undirected simple graphs.
We denote the set of neighbors of a vertex v by Γ(v) and its degree by d(v). For two (not necessarily
disjoint) sets of vertices V1, V2 ⊆ V we let E(V1, V2)

def
= {(v1, v2) ∈ E : v1 ∈ V1, v2 ∈ V2}. For

γ ∈ (0, 1) we use the notation a = (1 ± γ)b to mean that (1 − γ)b ≤ a ≤ (1 + γ)b. We start by giving the
high-level idea behind the algorithm.

3.1 A High-Level Description of the Algorithm

Let β = ε/c where c > 1 is a constant that will be set subsequently, and let t =
⌈

log(1+β) n
⌉

(so that
t = O(log n/ε)). For i = 0, . . . , t, let

Bi
def
= {v : d(v) ∈

(

(1 + β)i−1, (1 + β)i
]

} . (2)

We refer to the Bi’s as (degree) buckets. Note that since degrees are integers, the interval of degrees in
each bucket is actually

(⌊

(1 + β)i−1
⌋

,
⌊

(1 + β)i
⌋]

, and some buckets are empty. For simplicity we do not
use floors unless it has an influence on our analysis, and when we write

(a
b

)

for a that is not necessarily an
integer (e.g.,

((1+β)i

2

)

) then we interpret it as
(bac

b

)

. We also have that
(a

b

)

= 0 for a < b (and in particular
when a ≤ 0 < b).

Suppose that for each bucket Bi we could obtain an estimate, b̂i, such that (1 − β)|Bi| ≤ b̂i ≤
(1 + β)|Bi|. If we let

ˆ̀=

t
∑

i=0

b̂i ·
(

(1 + β)i

2

)

(3)

then
(1 − β) · `(G) ≤ ˆ̀ ≤ (1 + β)4`(G) , (4)

(where we have used the fact that
((1+β)i

2

)

≤ (1 + β)3 ·
((1+β)i−1

2

)

for (1 + β)i−1 ≥ 2). If we set β ≤ ε/8,
then we get an estimate that is within (1 ± ε) of the correct value `(G). The difficulty is that in order to
obtain such an estimate b̂i of |Bi| in sublinear time, that is, by sampling, the size of the sample needs to grow
with n/|Bi|. Our algorithm indeed takes a sample of vertices, but it uses it only to estimate the size of the
“large” buckets, for an appropriate threshold of “largeness”. Using the estimated sizes of the large buckets
it can obtain an estimate on the number of length-2 paths whose mid-point belongs to the large buckets.

As noted in the introduction, it is possible that only a small (or even zero) fraction of the length-2 paths
have a mid-point that belongs to a large bucket. This implies that we must find a way to estimate the number

4Observe that a degree query can be emulated by log n neighbor queries, but for the sake of the exposition we allow degree
queries.
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of length-2 paths whose mid-point is in small buckets (for those small buckets that have a non-negligble
contribution to the total number of length-2 paths).

To this end we do the following. Let Ei,j
def
= E(Bi, Bj). For each large bucket Bi and small bucket Bj

such that the number of length-2 paths whose mid-point is in Bj is non-negligble, we obtain an estimate êi,j

to the number, |Ei,j|, of edges between the two buckets. The estimate is such that if |Ei,j | is above some
threshold, then êi,j = (1 ± β)|Ei,j |, and otherwise, êi,j is small. Our estimate for the number of length-2
paths whose midpoint is in a small bucket is

1

2

∑

i∈L

∑

j /∈L

êi,j ·
(

(1 + β)j − 1
)

, (5)

where L denotes the set of indices of the large buckets. This estimate does not take into account length-2
paths in which all vertices on the path do not belong to L. However, we shall set our threshold of “largeness”
so that the number of such paths is negligble.

One way to estimate êi,j (for i ∈ L and j /∈ L) is to uniformly select random neighbors of vertices
sampled in Bi and check what bucket they belong to. This will indeed give us a good estimate with high
probability for a sufficiently large sample. However, the variance in the number of neighbors in Bj that
different vertices in Bi have implies that the sample size used by this scheme is significantly larger than
necessary. In order to obtain an estimate with a smaller sample, we do the following. For each i ∈ L and
j /∈ L we consider partitioning the vertices in Bi that have neighbors in Bj into sub-buckets. Namely, for
r = 0, . . . , i,

Bi,j,r
def
= {v ∈ Bi : (1 + β)r−1 < |Γ(v) ∩ Bj | ≤ (1 + β)r} . (6)

By the definition of Bi,j,r,
i
∑

r=0

|Bi,j,r| · (1 + β)r = (1 ± β) · |Ei,j| . (7)

Now, if we can obtain good estimates of the sizes of the subsets |Bi,j,r|, then we get a good estimate for
|Ei,j |. The difficulty is that while in order to determine for a vertex v to which bucket Bi it belongs, we
only need to perform a single degree query, in order to determine to which sub-bucket Bi,j,r it belongs we
need to estimate the number of neighbors that it has in Bj . In particular, if v ∈ Bi,j,0, that is, v has a single
neighbor in Bj , we must query all the neighbors of v in order to determine that it belongs to Bi,j,0. What
works in our favor is the following tradeoff. When r is large then |Bi,j,r| may be relatively small (even if
|E(Bi,j,r, Bj)| is non-negligble) so that we need to take a relatively large sample of vertices in order to “hit”
Bi,j,r. However, in order to determine whether a vertex (in Bi) belongs to Bi,j,r for large r, it suffices to take
a small sample of its neighbors. On the other hand, when r is relatively small then Bi,j,r must be relatively
big (if |E(Bi,j,r, Bj)| is non-negligble). Therefore, it suffices to take a relatively small sample so as to “hit”
Bi,j,r and then we can afford performing many neighbor queries from the selected vertices.
We next present our algorithm in detail and then analyze it.

3.2 The Algorithm

In what follows we assume that we have a rough estimate ˜̀such that 1
2`(G) ≤ ˜̀≤ 2`(G). We later remove

this assumption. Recall that for any two buckets Bi and Bj we use the shorthand Ei,j for E(Bi, Bj).
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Algorithm 1 (Estimating the number of length-2 paths for G = (V, E))
Input: ε and ˜̀.

1. Let β
def
= ε

32 , t
def
=
⌈

log(1+β) n
⌉

, and

θ1
def
=

ε2/3 ˜̀1/3

32t4/3
.

2. Uniformly and independently select Θ
(

n
θ1

· log t
ε2

)

vertices from V , and let S denote the multiset of

selected vertices (that is, we allow repetitions).

3. For i = 0, . . . , t determine Si = S ∩ Bi by performing a degree query on every vertex in S.

4. Let L =
{

i : |Si|
|S| ≥ 2 θ1

n

}

.

If maxi∈L

{

((1+β)i−1

2

)

· θ1

}

> 4˜̀ then terminate.

5. For each i ∈ L run Algorithm 2 to get estimates {êi,j}j /∈L for {|Ei,j |}j /∈L.

6. Output

ˆ̀=
∑

i∈L

n · |Si|
|S| ·

(

(1 + β)i

2

)

+
∑

j /∈L

1

2

∑

i∈L

êi,j ·
(

(1 + β)j − 1
)

.

Algorithm 2 (Estimating {|Ei,j|} for a given i ∈ L and all j /∈ L)
Input: L, i ∈ L, ε and ˜̀.

1. For each 0 ≤ p ≤ i let θ2(p)
def
= ε3/2 ˜̀1/2

c2t5/2(1+β)p/2 , where c2 is a constant that will be set in the

analysis, (and where t =
⌈

log(1+β) n
⌉

for β = ε/32). Let p0 be the smallest value of p satisfying
1
4θ2(p + 1) ≤ n.

2. For p = i down to p0 initialize Ŝ
(p)
i,j,p = ∅.

3. For p = i down to p0 do:

(a) Let s(p) = Θ

(

n
θ2(p) ·

(

t
β

)2
log t

)

, and let g(p) = Θ
(

(1+β)i−p log(tn)
β2

)

.

(b) Uniformly, independently at random select s(p) vertices from S(p+1) (where S(i+1) = V ) and
let S(p) be the multiset of vertices selected.

(c) Determine S
(p)
i = S(p) ∩ Bi by performing a degree query on every vertex in S (p). If |S(p)

i | <
s(p)

n · 1
4(1+β)θ2(p), then go to Step 4. Else, if |S(p)

i | > s(p)

n · 4˜̀

((1+β)i−1

2 )
then terminate.

(d) For each v ∈ S
(p)
i select (uniformly, independently at random) g(p) neighbors of v, and for each

j /∈ L let γ
(p)
j (v) be the number of these neighbors that belong to Bj . (If g(p) ≥ d(v) then

consider all neighbors of v.)
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˜̀ Query and Time Complexity
˜̀≤ n3/2 O(n/˜̀1/3) · poly(log n, 1/ε)

n3/2 < ˜̀≤ n2 O(n1/2) · poly(log n, 1/ε)
˜̀> n2 O(n3/2/˜̀1/2) · poly(log n, 1/ε)

Table 2: The query and time complexity of Algorithm 1.

(e) For each j /∈ L and for each v ∈ S
(p)
i \⋃p′>p Ŝ

(p′)
i,j,p′ , if

(1 + β)p−1

d(v)
<

γ
(p)
j (v)

g(p)(v)
≤ (1 + β)p

d(v)

then add v to Ŝ
(p)
i,j,p.

4. For each j /∈ L let êi,j =
∑i

p=p0

n
s(p) · |Ŝ(p)

i,j,p| · (1 + β)p.

5. Return {êi,j}j /∈L.

Theorem 1 If 1
2`(G) ≤ ˜̀ ≤ 2`(G) then with probability at least 2/3, the output, ˆ̀, of Algo-

rithm 1 satisfies ˆ̀ = (1 ± ε) · `(G). The query complexity and running time of the algorithm are

O
(

n
˜̀1/3

+ min
{

n1/2, n3/2

˜̀1/2

})

· poly(log n, 1/ε).

Table 2 gives the dominant term in the complexity of the algorithm in three different regions of the value of
`(G) as a function of n.

We first prove the second part of Theorem 1, concerning the complexity of the algorithm and then turn
to proving the first part, concerning the quality of the output of the algorithm. We later show how to remove
the assumption that the algorithm has an estimate ˜̀ for `(G).

3.3 Proof of the second part of Theorem 1

The running time of Algorithm 1 is linear in its query complexity, and hence it suffices to bound the latter.
The query complexity of Algorithm 1 is the sum of Θ

(

n
θ1

· log t
ε2

)

= O
(

n
˜̀1/3

· log2 n
ε4 log(1/ε)

)

(the size of
the sample selected in Step 2 of the algorithm) and the number of queries performed in the executions of
Algorithm 2. In order to bound the latter we first observe that if Algorithm 1 did not terminate in Step 4,
then

∀ i ∈ L : (1 + β)i = O

(

˜̀1/3 · t1/2

ε1/3

)

. (8)

Similarly, if Algorithm 2 did not terminate in any of its executions in Step 3c, then

∀ i ∈ L and p0 ≤ p ≤ i : |S(p)
i | = O

(

s(p)

n
·

˜̀

(1 + β)2i

)

. (9)

In addition, it trivially always holds that |S (p)
i | ≤ s(p). Recall that p runs from i down to p0 where p0 is the

smallest value of p satisfying 1
4θ2(p+1) ≤ n where θ2(p)

def
= ε3/2 ˜̀1/2

c2t5/2(1+β)p/2 . That is, p0 =
⌊

log1+β
ε3 ˜̀

c′2·t5n2

⌋

8



for a certain constant c′2. This implies that if if ˜̀≤ c′2·t5
ε3

· n2, then p0 = 0, and otherwise it may be larger.
Therefore, the total number of queries performed in the executions of Algorithm 2 is upper bounded by:

∑

i∈L

i
∑

p=p0

(

s(p) + min

{

s(p),
s(p)

n
· 4˜̀
((1+β)i−1

2

)

}

· g(p)

)

≤
∑

i∈L

i · s(i) +
∑

i∈L

i
∑

p=p0

min

{

s(p),
s(p)

n
· 4˜̀
(

(1+β)i−1

2

)

}

· g(p) . (10)

For the first summand we apply Equation (8) and get:
∑

i∈L

i · s(i) ≤
∑

i∈L

t · O
(

n · t9/2 log t · (1 + β)i/2

ε7/2 ˜̀1/2

)

= O







n · t13/2 log t ·
(

˜̀1/3·t1/2

ε1/3

)1/2

ε7/2 ˜̀1/2







= O

(

n
˜̀1/3

· t7 log t

ε4

)

. (11)

Turning to the second summand,
∑

i∈L

i
∑

p=p0

min

{

s(p),
s(p)

n
· 4˜̀
(

(1+β)i−1

2

)

}

· g(p)

=
∑

i∈L

i
∑

p=p0

O

(

min

{

n · (1 + β)p/2

˜̀1/2
· t13/2 log t

ε7/2
,

˜̀1/2

(1 + β)2i−p/2
· t13/2 log t

ε7/2

}

· (1 + β)i−p log(tn)

β2

)

=
∑

i∈L

O

(

min

{

n · (1 + β)i

˜̀1/2
,

˜̀1/2

(1 + β)i

}

· t13/2 log t log(tn)

ε11/2

)

· (1 + β)−p0/2 ·
i−p0
∑

k=0

(1 + β)−k/2 .(12)

In order to bound the expression in Equation (12) we first note that if (1 + β)i ≤ ˜̀1/2

n1/2 then n·(1+β)i

˜̀1/2
≤ n1/2,

while if (1 + β)i ≥ ˜̀1/2

n1/2 , then ˜̀1/2

(1+β)i ≤ n1/2 as well. Therefore, if p0 = 0 then (since (1 + β)−p0/2 = 1

and
∑i−p0

k=0 (1 + β)−k/2 = O(1/β)), the right-hand-side of Equation (12) is upper bounded by

O

(

n1/2 · t15/2 log t log(tn)

ε13/2

)

. (13)

If p0 > 0 then the bound in Equation (13) should be multiplied by (1 + β)−p0/2. By definition of p0 we
have that (1 + β)−p0/2 = O

(

t5/2n
ε3/2 ˜̀1/2

)

, and so we get the (tighter) bound:

O

(

n1/2 · t15/2 log t log(tn)

ε13/2

)

· (1 + β)−p0/2 = O

(

n3/2

˜̀1/2
· t10 log t log(tn)

ε10

)

. (14)

The total number of queries performed in the executions of Algorithm 2 is hence upper bounded by

O

(

n
˜̀1/3

+ min

{

n1/2,
n3/2

˜̀1/2

})

· poly(log n, 1/ε) . (15)
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3.4 Proof of the first part of Theorem 1

In what follows we claim that certain events occur with high constant probability, and in some cases we
claim that they hold with larger probability (e.g., 1− 1

poly(t) ). In all cases the statement holds for sufficiently
large constants in the Θ(·) notations for the sample sizes used by the algorithm. The next lemma follows by
applying the multiplicative Chernoff bound and the union bound and recalling that the size of the sample S

is Θ
(

n
θ1

· log t
ε2

)

, where θ1 is as defined in Step 1 of Algorithm 1.

Lemma 1 With high constant probability, for every i such that |Bi| ≥ θ1 it holds that |Si|
|S| =

(

1 ± ε
8

) |Bi|
n ,

and for every i such that |Bi| < θ1 it holds that |Si|
|S| < 2 θ1

n .

As a direct corollary of the Lemma 1 and the definition of L in Algorithm 1 we get:

Corollary 2 With high constant probability, for every i ∈ L we have that |Si|
|S| =

(

1 ± ε
8

) |Bi|
n , and for every

i /∈ L we have that |Bi| < 4θ1.

The first part of Corollary 2 implies that (with high constant probability) the estimate
∑

i∈L n · |Si|
|S| ·

((1+β)i

2

)

is close to the actual number of length-2 paths whose mid-point belongs to a bucket Bi such that i ∈ L. It
also implies that Algorithm 1 does not terminate in Step 4 (with high constant probability). To verify this,
first observe that since ˜̀≥ 1

2`(G), for every 1 ≤ i ≤ t we have that |Bi| ·
(

(1+β)i−1

2

)

≤ `(G) ≤ 2˜̀. By the
definition of L, for every i ∈ L we have that |Si|

|S| ≥ 2θ1
n . If the termination condition holds, that is, there

exist an index i ∈ L for which 2θ1 ·
(

(1+β)i−1

2

)

> 4˜̀, then n · |Si|
|S| ·

(

(1+β)i−1

2

)

> 4˜̀ for that index i. But by
Corollary 2, with high constant probability, for every i ∈ L we have that |Si|

|S| =
(

1 ± ε
8

) |Bi|
n , which implies

that |Bi| ·
((1+β)i−1

2

)

> 2˜̀≥ `(G), and we reach a contradiction.
The remainder of the analysis deals with the quality of the estimate for the number of length-2 paths in

G whose mid-point is not in L.
We introduce the following notations. For j /∈ L and σ ∈ {1, 2, 3}, let `

(σ)
j (G,L) denote the number

of length-2 paths in G whose mid-point belongs to Bj and such that the number of vertices on the path that
belong to Bk for k /∈ L (including j) is σ. For σ ∈ {1, 2, 3} let `(σ)(G,L) =

∑

j /∈L `
(σ)
j (G,L) and for

every j /∈ L let `j(G,L) =
∑3

σ=1 `
(σ)
j (G,L). We first observe that with high constant probability both

`(3)(G,L) and `(2)(G,L) are relatively small.

Lemma 3 With high constant probability, `(3)(G,L) ≤ ε
4`(G) and `(2)(G,L) ≤ ε

4`(G).

Proof: First observe that by the second part of Corollary 2 and the definition of θ1 we have that with high
constant probability,

∑

j /∈L

|Bj| <
1

8t1/3
ε2/3 ˜̀1/3 . (16)

By our assumption that ˜̀≤ 2`(G),

`(3)(G,L) ≤
(∑

j /∈L |Bj |
3

)

≤
(

ε2/3 ˜̀1/3/(8t1/3)

3

)

<
ε

8
˜̀ ≤ ε

4
`(G) . (17)

10



In order to bound `(2)(G,L) we observe that since the total number of length-2 paths is `(G), for every
bucket Bj we have that

(

(1+β)j−1+1
2

)

≤ `(G)/|Bj |, and so

(1 + β)j ≤ 2
`1/2(G)

|Bj |1/2
. (18)

Therefore,

`(2)(G,L) ≤
∑

j /∈L

|Bj | · (1 + β)j ·
∑

k/∈L

|Bk|

≤ ε2/3 ˜̀1/3

4t1/3
·
∑

j /∈L

(

`1/2(G) · |Bj |1/2
)

≤ ε2/3 ˜̀1/3

4t1/3
· `1/2(G) · t · ε1/3 ˜̀1/6

2
√

2t2/3

<
ε

4
`(G) , (19)

and the proof is completed.
Lemma 3 implies that in order to obtain a good estimate on the number of length-2 paths whose mid-

point belongs to small buckets it suffices to get a good estimate on the number of such paths that have at least
one end-point in a large bucket.5 We next define the notion of significant buckets for buckets Bj such that
j /∈ L. Roughly speaking, non-significant small buckets are buckets that we can ignore, or, more precisely,
we can undercount the number of edges between vertices in them and vertices in large buckets.

Definition 1 (Significant small buckets) For every j /∈ L we say that j is significant if

|Bj | ·
(

(1 + β)j

2

)

≥ ε

c3t
˜̀ ,

where c3 is a constant that will be set in the analysis. We denote the set of indices of significant buckets Bj

(where j /∈ L) by SIG.

Note that by the definition of SIG,
∑

j /∈L,j /∈SIG

`j(G,L) <
ε

c3

˜̀ ≤ 2ε

c3
`(G) . (20)

Let

Ej
def
=

t
⋃

k=0

Ej,k , (21)

and recall that θ2(r)
def
= ε3/2 ˜̀1/2

c2t5/2(1+β)r/2 . We have the following lemma concerning significant buckets.

Lemma 4 If j ∈ SIG, then for every r such that |Bi,j,r| > 0 for some i we have that

|Ej | ≥
(c2/c

1/2
3 )t2

ε
θ2(r) · (1 + β)r .

5The assertion follows from the first part of Lemma 3, which bounds `(3)(G, L). The reason we also need a bound on `(2)(G, L)
will be made clear subsequently.
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The implication of Lemma 4 is roughly the following. Consider any j ∈ SIG and a non-empty sub-bucket
Bi,j,r. Recall that by the definition of Bi,j,r the number of edges between Bi,j,r and Bj is approximately
|Bi,j,r|·(1+β)r . Suppose that Bi,j,r is small, and in particular, that it is smaller than θ2(r). Then the number
of edges between Bi,j,r and Bj as a fraction of all the edges incident to Bj , that is, Ej , is O(ε/t2), which
is negligble. This means that we may underestimate the size of such small sub-buckets without incurring a
large error. Proof: Since j is significant,

(1 + β)j >

√

2ε˜̀

c3t|Bj|
. (22)

Since the graph contains no multiple edges, |Bj | ≥ (1 + β)r for every non-empty Bi,j,r. Therefore,

|Ej | ≥ |Bj | · (1 + β)j−1

≥ 1

1 + β

√

2ε˜̀

c3t|Bj|
(23)

≥ 1

c
1/2
3 t1/2

· ε1/2 ˜̀1/2(1 + β)r/2 (24)

≥ (c2/c
1/2
3 )t2

ε
θ2(r) · (1 + β)r , (25)

and the proof is completed.
Armed with Lemmas 3 and 4 we now turn to analyzing Algorithm 2. We start with a high-level discussion
and then turn to the precise details.

The high level structure of the analysis of Algorithm 2. Recall that the algorithm works iteratively as
follows. It first takes (uniformly, independently, at random) a sample S i from V , and in further iterations
0 ≤ p < i the sample S(p) is selected (uniformly, independently, at random) from S (p+1). Since the same
vertex may be selected more than once, the S (p)’s may actually be multi-sets. For each p the algorithm tries
to estimate |Bi,j,p| by deciding for each vertex v ∈ S(p) ∩ Bi whether it belongs to Bi,j,p. This is done by
sampling from the neighbors of the vertex and checking what fraction of its neighbors belong to Bj . If the
fraction is within some interval, then the vertex is assumed to belong to Bi,j,p and is put in a corresponding
subset Ŝ

(p)
i,j,p.

The difficulty is that this estimate of the fraction of neighbors in Bj may deviate somewhat from its
expected value. As a result, vertices that belong to Bi,j,p may not be deemed so because the number of
neighbors they have in Bj is close to the lower bound of (1 + β)p−1 or the upper bound (1 +β)p, and in the
sample they fall outside of the required interval. Similarly, vertices that do not belong to Bi,j,p (but have a
number of neighbors in Bj that is close to (1+β)p−1 or (1+β)p, that is, that belong to Bi,j,p−1 or Bi,j,p+1)
may fall inside the required interval and are then added to Ŝ

(p)
i,j,p.

If the size of the sample S(p) was the same for all p then the above wouldn’t really be a difficulty: we
could take a single sample S = S i and work iteratively from p = i down to p = 0. For each p we would
consider only those vertices v that were not yet added to Ŝ

(p′)
i,j,p′ for p′ > p and decide whether to add v

to Ŝ
(p)
i,j,p. By the above discussion, for every r and every v ∈ Bi,j,r the vertex v would be put either in

Ŝ
(r+1)
i,j,r+1 or in Ŝ

(r)
i,j,r or in Ŝ

(r−1)
i,j,r−1. The algorithm would then output, as an estimate for |Ei,j |, the sum over

12



all 0 ≤ p ≤ i, of n
|S| · |Ŝ

(p)
i,j,p|(1 + β)r . If S ∩ Bi,j,r is close to its expected size for each r then the deviation

of the final estimate from |Ei,j| can be easily bounded.
However, as p decreases from i to 0 we need to use a smaller sample S (p). Recall that a smaller sample

suffices since θ2(p) increases when p decreases, and it is necessary to use a smaller sample because the cost
of estimating the number of neighbors in Bj increases as p decreases. Thus, in each iteration p, the new,
smaller sample, S(p), is selected from the sample S(p+1) of the previous iteration. What we would like to
ensure is that: (1) The size of each subset S

(p)
i,j,r

def
= S(p) ∩ Bi,j,r is close to its expectation; (2) If some

fraction of S
(p+1)
i,j,r was added to Ŝ

(p+1)
i,j,p+1 for r = p + 1 or r = p, then in the new sample S(p), the size of

S(p) ∩ (S
(p+1)
i,j,r \ Ŝ

(p+1)
i,j,p+1) is close to its expectation. Here, when we say “close to its expectation” we mean

up to a multiplicative factor of (1±O(ε)). This should be the case unless the expected value is below some
threshold (which is determined by θ2(r)). If the expected value is below the threshold then it suffices that
we don’t get a significant overestimate. To get the idea for why this suffices, see the discussion following
Lemma 4. Further details follow.

Recall that s(p) denotes the size of the sample S(p), where s(p) = Θ

(

n
θ2(p) ·

(

t
β

)2
log t

)

. The next

lemma established that by our choice of s(p), if a fixed subset of S(p+1) is sufficiently large, then the number
of its vertices that are selected in S(p) is close to the expected value, and if it is small then few of its vertices
will appear in S(p). Lemma 5 follows directly be applying a multiplicative Chernoff bound (and will be
applied to various subsets of the samples S (p)).

Lemma 5 For any fixed choice of S̃(p+1) ⊆ S(p+1), if |S̃(p+1)|
s(p+1) ≥ θ2(p)

8n then, with probability at least

1 − 1
32t4 ,

1

1 + β
2(i+1)

· |S̃
(p+1)|

s(p+1)
≤ |S(p) ∩ S̃(p+1)|

s(p+1)
≤
(

1 +
β

2(i + 1)

)

· |S̃
(p+1)|

s(p+1)
,

and if |S̃(p+1)|
s(p+1) < θ2(p)

8n then with probability at least 1 − 1
32t4

,

|S(p) ∩ S̃(p+1)|
s(p)

<

(

1 +
β

2(i + 1)

)

· θ2(p)

8n
.

Let S
(p)
i

def
= S(p) ∩ Bi and let S

(p)
i,j,r

def
= S(p) ∩ Bi,j,r. (Note that Si+1

i = Bi and Si+1
i,j,r = Bi,j,r). Since

θ2(p) is monotonically decreasing with p (so that s(p) is monotonically increasing with r), and because
(1 + β

2(i+1) )
i+1 ≤ 1 + β, Lemma 5 implies the next corollary.

Corollary 6 With high constant probability, for every i ∈ L and j /∈ L, and for every r such that |Bi,j,r| ≥
1
4θ2(r), we have that for every r − 1 ≤ p ≤ i,

(

1

1 + β
2(i+1)

)i−p+1

· |Bi,j,r|
n

≤
|S(p)

i,j,r|
s(p)

≤
(

1 +
β

2(i + 1)

)i−p+1

· |Bi,j,r|
n

.

On the other hand, if |Bi,j,r| < 1
4θ2(r) then

|S(p)
i,j,r|

s(p)
< (1 + β) · θ2(r)

4n

for every p.
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Lemma 5 also implies that with high constant probability, Algorithm 2 does not terminate in Step 3c. Recall
that the algorithms terminates in Step 3c if n · |S(p)

i |
s(p) ≥ 1

4(1+β)θ2(p) and n · |S(p)
i |

s(p) ·
((1+β)i−1

2

)

> 4˜̀. By

Lemma 5, with probability at least 1− 1
32t2 , for every i and p, if |Bi| < 1

6θ2(p), then n· |S
(p)
i |

s(p) ≤ (1+β) 1
6θ2(p),

and if |Bi| ≥ 1
6θ2(p), then n · |S(p)

i |
s(p) ≤ (1 + β)|Bi|. Assuming this is in fact the case, if |Bi| < 1

6θ2(p) then

n · |S(p)
i |

s(p) < 1
4(1+β)θ2(p), so that the algorithm will not terminate. On the other hand, if |Bi| ≥ 1

6θ2(p), then

n · |S
(p)
i |

s(p)
·
(

(1 + β)i−1

2

)

≤ (1 + β)|Bi| ·
(

(1 + β)i−1

2

)

≤ (1 + β)`(G) < 4˜̀ , (26)

so that the algorithm will not terminate in this case as well.
The next Lemma deals with the estimates we get for the number of neighbors that a vertex in Bi has in

Bj , and it too follows from the multiplicative Chernoff bound. In the lemma and what follows we shall use
the notations Γj(v)

def
= Γ(v) ∩ Bj and dj(v)

def
= |Γj(v)|.

Lemma 7 Let i ∈ L, j /∈ L and for each 0 ≤ p ≤ i, let g(p) = Θ
(

(1+β)i−p·log(t·n)
β2

)

. For any r ≥ p−1 and

for any fixed choice of a vertex v ∈ S
(p)
i,j,r, if we take a sample of size g(p) of neighbors of v and let γ

(p)
j (v)

be the number of neighbors in the sample that belong to Γj(v), then with probability at least 1 − 1
16·t·n ,

1

1 + β
· dj(v)

d(v)
≤

γ
(p)
j (v)

g(p)
≤ (1 + β) · dj(v)

d(v)
.

In addition, for each r ≤ p − 2 and v ∈ S
(p)
i,j,r, with probability at least 1 − 1

16·t·n ,

γ
(p)
j (v)

g(p)
<

(1 + β)p−1

d(v)
.

The next lemma is central to our analysis. Ideally we would have liked each vertex in the sample to be
added to its “correct” subset. That is, if v ∈ S

(r)
i,j,r (= S(r) ∩ Bi,j,r) then ideally it should be added to Ŝ

(r)
i,j,r.

However, since the decision concerning whether to add a vertex to a particular subset depends on sampling
its neighbors and estimating the number of neighbors that it has in Bj , we can not ensure that it will be
added to precisely the right subset. However, we can ensure (with high probability) that it won’t be added
to a subset Ŝ

(p)
i,j,p for p that differ significantly from r.

Lemma 8 With high constant probability, for every i ∈ L, j /∈ L, 0 ≤ r ≤ i and v ∈ Bi,j,r such that v is

selected in the initial sample S i, the vertex v may belong to either Ŝ
(r+1)
i,j,r+1 or to Ŝ

(r)
i,j,r or to Ŝ

(r−1)
i,j,r−1, but not

to any other Ŝ
(r′)
i,j,r′ . In other words, Ŝ

(r)
i,j,r ⊆ Bi,j,r+1 ∪ Bi,j,r ∪ Bi,j,r−1.

Proof: By the definition of Bi,j,r, if v ∈ Bi,j,r then (1+β)r−1 < dj(v) ≤ (1+β)r . By Lemma 7, for each
p ≤ r + 1 with probability at least 1 − 1

16·t·n ,

1

1 + β
· (1 + β)r−1

d(v)
<

γ
(p)
j (v)

g(p)
≤ (1 + β) · (1 + β)r+1

d(v)
. (27)
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That is, for each p ≤ r + 1 and in particular for r − 1 ≤ p ≤ r + 1,

(1 + β)r−2

d(v)
<

γ
(p)
j (v)

g(p)
≤ (1 + β)r+2

d(v)
. (28)

On the other hand, for p ≥ r + 2, with probability at least 1 − 1
16·t·n ,

γ
(p)
j (v)

g(p)
<

(1 + β)p−1

d(v)
. (29)

By taking a union bound over all vertices v, and for each v ∈ Bi,j,r over all 0 ≤ p ≤ i, this implies that:
(1) for r + 2 ≤ p ≤ i, no vertex in S

(p)
i,j,r is added to Ŝ

(p)
i,j,r; (2) for r − 1 ≤ p ≤ r + 1 the following holds:

If a vertex v belongs to S
(r+1)
i,j,r , then it may be added to Ŝ

(r+1)
i,j,r+1, and if not, then it may be added to Ŝ

(r)
i,j,r

(assuming v ∈ S(r)). If it was added to neither of the two subsets and it is selected in S (r−1), them it is
added to Ŝ

(r−1)
i,j,r−1 (and it won’t be added to Ŝ

(p)
i,j,r for any p < r − 1).

We are now ready to prove that the estimates êi,j computed by Algorithm 2 are essentially close to
the corresponding values of |Ei,j|. Recall that SIG denotes the set of all significant indices (as defined in
Definition 1) and that Ej

def
=
⋃t

k=0 Ej,k.

Lemma 9 For an appropriate choice of c2 (in the definition of θ2(·) in Step 1 of Algorithm 2) and of c3 (in
Definition 1), with high constant probability, for all j /∈ L, if j ∈ SIG, then

(

1 − ε

8

)

∑

i∈L

|Ei,j| −
ε

16
|Ej| ≤

∑

i∈L

êi,j ≤
(

1 +
ε

4

)

|Ej | ,

and if j /∈ SIG then
∑

i∈L

1

2
êi,j ·

(

(1 + β)j − 1
)

≤ ε

4t
`(G) .

Proof: Recall that

êi,j =

i
∑

p=p0

n

s(p)
· |Ŝ(p)

i,j,p| · (1 + β)p . (30)

By Lemma 8, with high constant probability, for every i, j, r such that r ≥ p0 + 1, the contribution of
vertices in Bi,j,r to this sum is

n ·
(

|Ŝ(r+1)
i,j,r+1 ∩ Bi,j,r|

s(r+1)
· (1 + β)r+1 +

|Ŝ(r)
i,j,r ∩ Bi,j,r|

s(r)
· (1 + β)r +

|Ŝ(r−1)
i,j,r−1 ∩ Bi,j,r|

s(r−1)
· (1 + β)r−1

)

.

(31)
Assume from now on that this is in fact true and denote this sum by êi,j,r. Consider first the case that
|Bi,j,r| < 1

4θ2(r). By Corollary 6, with high constant probability, for every i, j, r, if |Bi,j,r| < 1
4θ2(r), then

|S(p)
i,j,r|
s(p) < (1 + β) · θ2(r)

4n for every p. Assuming this is in fact the case, we have that

êi,j,r ≤
3

4
· θ2(r) · (1 + β)r+2 . (32)
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If j ∈ SIG, then by Lemma 4 we have that |Ej| ≥ (c2/c
1/2
3 )t2

ε θ2(r) · (1 + β)r. Therefore,

êi,j,r ≤ ε

c4t2
|Ej | , (33)

for c4 = c2/c
1/2
3 (using β ≤ 1/32). If j /∈ SIG then (1 + β)j ≤ 2

c
1/2
3

(

ε˜̀

t|Bj |

)1/2
.

Using the fact that (1 + β)r ≤ |Bj | (because there are no multiple edges) and by the definition of θ2(r)
we get that

êi,j,r ·
(

(1 + β)j − 1
)

≤ 1

c2t5/2
· ε3/2 · ˜̀1/2 · |Bj |1/2 · 2

c
1/2
3

(

ε˜̀

t|Bj|

)1/2

≤ ε

c5t3
˜̀ ≤ ε

c5t3
`(G) , (34)

for c5 = c2c
1/2
3 /2.

We now turn to the case that |Bi,j,r| ≥ 1
4θ2(r). By Corollary 6, with high constant probability, for every

i, j, r, if |Bi,j,r| ≥ 1
4θ2(r), then for every r − 1 ≤ p ≤ i,

(

1

1 + β
2(i+1)

)i−p+1

· |Bi,j,r|
n

≤
|S(p)

i,j,r|
s(p)

≤
(

1 +
β

2(i + 1)

)i−p+1

· |Bi,j,r|
n

. (35)

Assume from this point on that this is in fact the case. Fixing such a choice of i, j, r, let

S̃
(r+1)
i,j,r

def
= S

(r+1)
i,j,r \ Ŝ

(r+1)
i,j,r+1 and S̃

(r)
i,j,r

def
= S

(r)
i,j,r \ (Ŝ

(r+1)
i,j,r+1 ∪ Ŝ

(r)
i,j,r) . (36)

That is, S̃
(r+1)
i,j,r is the subset of vertices in S

(r+1)
i,j,r (= S(r+1) ∩ Bi,j,r) that were not added to Ŝ

(r+1)
i,j,r+1 and

S̃
(r)
i,j,r is the subset of vertices in S

(r)
i,j,r (= S(r) ∩ Bi,j,r) that were added to neither Ŝ

(r+1)
i,j,r+1 nor to Ŝ

(r)
i,j,r. Let

α1
def
=

|S̃(r+1)
i,j,r |

|S(r+1)
i,j,r |

and α2
def
=

|S̃(r)
i,j,r|

|S̃(r+1)
i,j,r ∩ S(r)|

. (37)

Since S
(r+1)
i,j,r = (Ŝ

(r+1)
i,j,r ∩ Bi,j,r) ∪ S̃

(r+1)
i,j,r (where the two subsets on the right-hand side are disjoint),

according to the definition of α1 we have that |Ŝ(r+1)
i,j,r ∩ Bi,j,r| = (1 − α1)|S(r+1)

i,j,r |. By Equation (35),

|Ŝ(r+1)
i,j,r+1 ∩ Bi,j,r|

s(r+1)
=

(1 − α1) · |S(r+1)
i,j,r |

s(r+1)
≤ (1 + β)(1 − α1)

|Bi,j,r|
n

, (38)

and similarly
|Ŝ(r+1)

i,j,r+1 ∩ Bi,j,r|
s(r+1)

≥ (1 − β)(1 − α1)
|Bi,j,r|

n
. (39)

In order to obtain bounds on the second and third terms in Equation (31), assume first that both

|S̃(r+1)
i,j,r |

s(r+1)
≥ θ2(r)

4n
and

|S̃(r)
i,j,r|

s(r)
≥ θ2(r)

4n
. (40)
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That is,
α1 · |S(r+1)

i,j,r |
s(r+1)

≥ θ2(r)

4n
and

α2 · |S̃(r+1)
i,j,r ∩ S(r)|
s(r)

≥ θ2(r)

4n
. (41)

Under this assumption, by Lemma 5, with probability at least 1 − 1
32t4 ,

|S̃(r+1)
i,j,r ∩ S(r)|

s(r)
≤
(

1 +
β

2i

) |S̃(r+1)
i,j,r |

s(r+1)
=

(

1 +
β

2i

)

α1 · |S(r+1)
i,j,r |

s(r+1)
, (42)

and
|S̃(r+1)

i,j,r ∩ S(r)|
s(r)

≥
(

1 − β

2i

)

α1 · |S(r+1)
i,j,r |

s(r+1)
. (43)

Similarly, with probability at least 1 − 1
32t4

,

|S̃(r)
i,j,r ∩ S(r−1)|

s(r−1)
≤
(

1 +
β

2i

) |S̃(r)
i,j,r|

s(r)
=

(

1 +
β

2i

)

α2 · |S̃(r+1)
i,j,r ∩ S(r)|
s(r)

, (44)

and
|S̃(r)

i,j,r ∩ S(r−1)|
s(r−1)

≥
(

1 − β

2i

)

α2 · |S̃(r+1)
i,j,r ∩ S(r)|
s(r)

. (45)

Assume that Equations (42)–(45) indeed hold. Observe that S̃
(r+1)
i,j,r ∩ S(r) = (Ŝ

(r)
i,j,r ∩ Bi,j,r) ∪ S̃

(r)
i,j,r

(where the two subsets on the right-hand side are disjoint), so that by the definition of α2 we have that
|Ŝ(r)

i,j,r ∩ Bi,j,r| = (1 − α2)|S̃(r+1)
i,j,r ∩ S(r)|. By Equation (35) and Equation (42),

|Ŝ(r)
i,j,r ∩ Bi,j,r|

s(r)
= (1 − α2)

|S̃(r+1)
i,j,r ∩ S(r)|

s(r)

≤
(

1 +
β

2i

)

(1 − α2)α1 ·
|S(r+1)

i,j,r |
s(r+1)

≤ (1 + β)(1 − α2)α1 ·
Bi,j,r

n
, (46)

and similarly (by Equation (35) and Equation (43)),

|Ŝ(r)
i,j,r ∩ Bi,j,r|

s(r)
≥ (1 − β)(1 − α2)α1 ·

Bi,j,r

n
, (47)

Finally, by our assumption (which holds with high probability), that sampled vertices in Bi,j,r are added
either to Ŝ

(r+1)
i,j,r+1 or to Ŝ

(r)
i,j,r or to Ŝ

(r−1)
i,j,r−1, all vertices in S̃

(r)
i,j,r ∩ S(r−1) are added to Ŝ

(r−1)
i,j,r−1. Therefore, by

Equations (35), (42) and (44) (and the definitions of α1 and α2),

|Ŝ(r−1)
i,j,r−1 ∩ Bi,j,r|

s(r−1)
=

|S̃(r)
i,j,r ∩ S(r−1)|

s(r−1)

≤
(

1 +
β

2i

) |S̃(r)
i,j,r|

s(r)
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=

(

1 +
β

2i

)

α2

|S̃(r+1)
i,j,r ∩ S(r)|

s(r)

≤
(

1 +
β

2i

)2

α2

|S̃(r+1)
i,j,r |

s(r+1)

=

(

1 +
β

2i

)2

α2α1

|S(r+1)
i,j,r |

s(r+1)

≤ (1 + β)α2α1 ·
Bi,j,r

n
. (48)

Similarly (by Equations (35), (43) and (45)),

|Ŝ(r−1)
i,j,r−1 ∩ Bi,j,r|

s(r−1)
≥ (1 − β)α2α1 ·

Bi,j,r

n
. (49)

The bounds in Equations (46)–(49) were obtained for the case that both α1 and α2 are above certain thresh-

olds. If α1·|S(r+1)
i,j,r |

s(r+1) < θ2(r)
4n , that is, |S̃(r+1)

i,j,r |
s(r+1) < θ2(r)

4n , then by Lemma 5, with probability at least 1 − 1
16t4 ,

|S̃(r+1)
i,j,r ∩S(r)|

s(r) ≤ (1 + β) θ2(r)
4n and |S̃(r)

i,j,r∩S(r−1)|
s(r−1) ≤ (1 + β) θ2(r)

4n as well. Similarly, if α2·|S̃(r+1)
i,j,r ∩S(r)|
s(r) < θ2(r)

4n ,

that is, |S̃(r)
i,j,r|
s(r) < θ2(r)

4n , then with probability at least 1 − 1
32t4

, |S̃(r)
i,j,r∩S(r−1)|

s(r−1) ≤ (1 + β) θ2(r)
4n .

By combining all the bounds above we get that (for |Bi,j,r| ≥ 1
4θ2(r)),

êi,j,r ≤ (1 + β)
(

(1 − α1)|Bi,j,r|(1 + β)r+1 + α1(1 − α2)|Bi,j,r|(1 + β)r

+ α1α2|Bi,j,r|(1 + β)r−1
)

+ 2θ2(r)(1 + β)r)

≤ |Bi,j,r|(1 + β)r+2 + 2θ2(r)(1 + β)r , (50)

and
êi,j,r ≥ |Bi,j,r|(1 + β)r−2 − θ2(r)(1 + β)r+1 . (51)

Similarly to what we have shown for the case that |Bi,j,r| < 1
4θ2(r) (see Equations (32)–(34)), if we let

Ei,j,r
def
= E(Bi,j,r, Bj) then we get that for j ∈ SIG,

(1 + β)−3|Ei,j,r| −
ε

c′4t
2
|Ej | ≤ êi,j,r ≤ (1 + β)3|Ei,j,r| +

ε

c′4t
2
|Ej | , (52)

and for j /∈ SIG,

êi,j,r ·
(

(1 + β)j − 1
)

≤ (1 + β)3|Ei,j,r| ·
(

(1 + β)j − 1
)

+
ε

c′5t
3
˜̀ , (53)

for c′4 = c2/(2c
1/2
3 ) and for c′5 = c2c

1/2
3 /4.

Let LARGE(i, j) denote the subset of indices r for which |Bi,j,r| ≥ 1
4θ2(r). By Equations (33) and

(34) (for the case that |Bi,j,r| < 1
4θ2(r)), and Equations (52) and (53) (for the case that |Bi,j,r| ≥ 1

4θ2(r)),
and by taking a union bound over all i, j and r we get that the following bounds hold with high constant
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probability. First, for every j ∈ SIG,

∑

i∈L

êi,j =
∑

i∈L

i
∑

p=p0

n

s(p)
· |Ŝ(p)

i,j,p| · (1 + β)p

≤
∑

i∈L

∑

r∈LARGE(i,j)

êi,j,r +
∑

i∈L

∑

r/∈LARGE(i,j)

êi,j,r

≤
(

1 +
ε

8

)

∑

i∈L

∑

r∈LARGE(i,j)

|Ei,j,r| +
ε

c′4
|Ej | +

ε

c4
|Ej |

≤
(

1 +
ε

8

)

∑

i∈L

|Ei,j | +
ε

c′4
|Ej | +

ε

c4
|Ej |

≤
(

1 +
ε

4

)

|Ej | , (54)

where the last inequality holds conditioned on c4 and c′4 (which are functions of c2 and c3) being sufficiently
large (and in particular holds for any c3 ≥ 1 and c2 ≥ 32 · c

1/2
3 ). Recall that p0 is the smallest value

of p satisfying 1
4θ2(p + 1) ≤ n. Since |Bi,j,r| ≤ n for every i, j, r while |Bi,j,r| ≥ 1

4θ2(r) for every
r ∈ LARGE(i, j), we have that r ≥ p0 + 1 for every r ∈ LARGE(i, j). Therefore,

∑

i∈L

êi,j ≥
∑

i∈L

∑

r∈LARGE(i,j)

êi,j,r

≥
(

1 − ε

8

)

∑

i∈L

∑

r∈LARGE(i,j)

|Ei,j,r| −
ε

c′4
|Ej |

≥
(

1 − ε

8

)

∑

i∈L





i
∑

r=0

|Ei,j,r| −
∑

r/∈LARGE(i,j)

|Ei,j,r|



− ε

c′4
|Ej |

≥
(

1 − ε

8

)

∑

i∈L

|Ei,j| − ε

(

1

c4
+

1

c′4

)

· |Ej |

≥
(

1 − ε

8

)

∑

i∈L

|Ei,j| −
ε

16
· |Ej | , (55)

where the last inequality holds for sufficiently large c4 and c′4 (and in particular whenever c3 ≥ 1 and
c2 ≥ 64 · c1/2

3 ). On the other hand, for j /∈ SIG,
∑

i∈L

1

2
êi,j ·

(

(1 + β)j − 1
)

=
∑

i∈L

1

2

∑

r∈LARGE(i,j)

êi,j,r ·
(

(1 + β)j − 1
)

+
∑

i∈L

1

2

∑

r/∈LARGE(i,j)

êi,j,r ·
(

(1 + β)j − 1
)

≤
(

1 +
ε

8

) 1

2

∑

i∈L

∑

r∈LARGE(i,j)

|Ei,j,r| ·
(

(1 + β)j − 1
)

+
ε

c′5t
`(G) +

ε

c5t
`(G)

≤
(

1 +
ε

8

) ε

c3t
˜̀+

ε

t

(

1

c′5
+

1

c5

)

`(G) (56)

<
ε

4t
`(G) , (57)
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where in Equation (56) we built on the definition of significant buckets and the last equation holds for
sufficiently large c3, c5 and c′5 (and in particular for any choice of c3 ≥ 32 and c2 ≥ 64/c

1/2
3 ). By taking

c3 ≥ 32 and c2 ≥ 64 · c1/2
3 , the proof of Lemma 9 is completed.

Putting it all together: proving the first part of Theorem 1. Recall that

ˆ̀=
∑

i∈L

n · |Si|
|S| ·

(

(1 + β)i

2

)

+
∑

j /∈L

1

2

∑

i∈L

êi,j ·
(

(1 + β)j − 1
)

. (58)

Let `(G,L) denote the number of length-2 paths in G whose mid-point belongs to a bucket Bi such that
i ∈ L, and let `(G,L) denote the number of length-2 paths whose mid-point belongs to a bucket Bj such
that j /∈ L (so that `(G,L) + `(G,L) = `(G)). By the first part of Corollary 2 (and the setting of β) we
have that with high constant probability:

∑

i∈L

n · |Si|
|S| ·

(

(1 + β)i

2

)

=
(

1 ± ε

4

)

`(G,L) . (59)

Turning to the second summand in Equation (58), by Lemma 9,
∑

j /∈L

1

2

∑

i∈L

êi,j ·
(

(1 + β)j − 1
)

=
∑

j /∈L,j∈SIG

1

2

∑

i∈L

êi,j ·
(

(1 + β)j − 1
)

+
∑

j /∈L,j /∈SIG

1

2

∑

i∈L

êi,j ·
(

(1 + β)j − 1
)

≤
∑

j /∈L,j∈SIG

1

2
·
(

1 +
ε

4

)

|Ej | ·
(

(1 + β)j − 1
)

+
ε

4
`(G)

≤
(

1 +
ε

4

)

·
∑

j /∈L

1

2
|Ej | ·

(

(1 + β)j − 1
)

+
ε

4
`(G)

≤
(

1 +
ε

2

)

`(G,L) +
ε

4
`(G) . (60)

In the other direction, recall that `(σ)(G,L) =
∑

j /∈L `
(σ)
j (G,L) where for j /∈ L and σ ∈ {1, 2, 3}, we let

`
(σ)
j (G,L) denote the number of length-2 paths whose mid-point belongs to Bj and such that the number of

vertices on the path that belong to Bk for k /∈ L (including j) is σ,

∑

j /∈L

1

2

∑

i∈L

êi,j · (1 + β)j ≥
∑

j /∈L,j∈SIG

1

2

(

∑

i∈L

(

1 − ε

8

)

|Ei,j| −
ε

16
|Ej |

)

·
(

(1 + β)j − 1
)

≥
∑

j /∈L

1

2

∑

i∈L

(

1 − ε

8

)

|Ei,j | ·
(

(1 + β)j − 1
)

− (1 + β)ε

16
`(G)

−
∑

j /∈L,j /∈SIG

1

2

∑

i∈L

(

1 − ε

8

)

|Ei,j | ·
(

(1 + β)j − 1
)

≥
(

1 − ε

8

)

(

`(1)(G,L) +
1

2
`(2)(G,L)

)

− ε

4
`(G) (61)
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≥
(

1 − ε

8

)(

`(1)(G,L) + `(2)(G,L) + `(3)(G,L)
)

− 1

2
`(2)(G,L) − `(3)(G,L) − ε

4
`(G)

≥
(

1 − ε

8

)

`(G,L) − 3ε

4
`(G) , (62)

where in Equation (61) we used Equation (20) (based on the definition of SIG and taking c3 ≥ 32 as it was
set previously), and in the last inequality we applied Lemma 3. By combining Equations (59), (60) and (62)
we get that ˆ̀= (1 ± ε)`(G) with high constant probability.

3.5 Removing the assumption on ˜̀

Our analysis builds on the assumption that 1
2`(G) ≤ ˜̀≤ 2`(G). In order to get rid of this assumption we

observe that if we run Algorithm 1 with ˜̀> 2`(G) then our analysis implies that with high constant proba-
bility ˆ̀≤

(

1 + ε
2

)

`(G) + ε
8
˜̀. This is true because: (1) the algorithm still obtains (with high probability) an

estimate of `(G,L) that does not overestimate `(G,L) by more than a factor of
(

1 + ε
4

)

; (2) For the number
of length-2 paths whose mid-point is in a bucket Bj where j /∈ L and j ∈ SIG the approximation factor
is at most

(

1 + ε
2

)

; (3) The additional error caused by overestimating the number of length-2 paths whose
mid-point is in a bucket Bj where j /∈ L and j /∈ SIG is at most ε

8
˜̀.

Suppose we run Algorithm 1 with ˜̀ > 2`(G). Then with high constant probability ˆ̀ <
(

1
2 + ε

2

)

˜̀.
On the other hand, if we run Algorithm 1 with 1

2`(G) ≤ ˜̀ < `(G), then with high constant probability,
ˆ̀≥ (1 − ε)`(G) > (1 − ε)˜̀, which is greater than

(

1
2 + ε

2

)

˜̀ for every ε < 1/3.
Therefore, we do the following. Starting from ˜̀ = n ·

(n
2

)

, we repeatedly call a slight variant of
Algorithm 1 with our current estimate ˜̀. The variant is that we increase all sample sizes by a factor of
Θ(log log n) so as to reduce the failure probability of each execution to O(1/ log n) and we run the algorithm
with ε = min{ε, 1/4}. In each execution we reduce the previous value of ˜̀by a factor of 2, and stop once
ˆ̀> (1− ε)˜̀, at which point we output ˆ̀. By the above discussion, with high constant probability we do not
stop before ˜̀goes below 2`(G), and conditioned on this, with high probability (1−O(1/ log n)) we do stop
once 1

2`(G) ≤ ˜̀< `(G) (or possibly, one iteration earlier, when `(G) ≤ ˜̀< 2`(G)) with ˆ̀= (1 ± ε)`(G).
Since there is a non-zero probability that the algorithm does not stop when 1

2`(G) ≤ ˜̀< `(G), we next
bound the expected running time of the algorithm. The total running time of all executions until 1

2`(G) ≤
˜̀ < `(G) is O

(

n
`(G)1/3 + min

{

n1/2, n3/2

`(G)1/2

})

· poly(log n, 1/ε). Once ˜̀ < 1
2`(G), the algorithm may

terminate in Step 4 of Algorithm 1 or in Step 3c of Algorithm 2, but if it does not, then the probability
that ˆ̀ ≤ (1 − ε)˜̀ in any particular execution is upper bounded by O(1/ log n). Since the executions are
independent, the expected running time is O

(

n
`(G)1/3 + min

{

n1/2, n3/2

`(G)1/2

})

· poly(log n, 1/ε).
We thus have the following theorem.
Theorem 2 With probability at least 2/3, the aforementioned algorithm, which uses Algorithm 1 as a sub-
routine, returns an estimates ˆ̀ that satisfies ˆ̀= (1 ± ε) · `(G). The expected query complexity and running

time of the algorithm are O
(

n
(`(G))1/3 + min

{

n1/2, n3/2

(`(G))1/2

})

· poly(log n, 1/ε).

4 Lower Bounds for Approximating the Number of Length-2 Paths

In the next theorem we state three lower bounds that together match our upper bound in terms of the de-
pendence on n and `(G). In what follows, when we refer to a multiplicative approximation algorithm for
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the number of length-2 paths, we mean an algorithm that outputs an estimate ˆ̀ that with high probability
satisfies `(G)/C ≤ ˆ̀≤ C`(G) for some (predetermined) approximation factor C (where C may depend on
the size of the graph). If C is a constant then the algorithm is a constant factor approximation algorithm.

Theorem 3 1. Any multiplicative approximation algorithm for the number of length-2 paths must per-

form Ω
(

n
`1/3(G)

)

queries.

2. Any constant-factor approximation algorithm for the number of length-2 paths must perform Ω(
√

n)
queries when the number of length-2 paths is O(n2).

3. Any constant-factor approximation algorithm for the number of length-2 paths must perform Ω
(

n3/2

`1/2

)

queries when the number of length-2 paths is Ω(n2).

4.1 Proof of Item 1 in Theorem 3

To establish the first item in Theorem 3 we show that every n and for every value of `, there exists a family of
n-vertex graphs for which the following holds. For each graph G in the family we have that `(G) = Θ(`),
but it is not possible to distinguish with high constant probability between a random graph in the family
and the empty graph (for which `(G) = 0). Each graph in the family simply consists of a clique of size
b =

⌈

`1/3
⌉

and an independent set of size n−b. The number of length-2 paths in the graph is b·
(b−1

2

)

= Θ(`).
However, in order to distinguish between a random graph in the family and the empty graph it is necessary
to perform a query on a vertex in the clique. The probability of hitting such a vertex in o

(

n
`1/3(G)

)

queries
is o(1).

S (|S| = c)

d′ =
⌈√

2`
⌉

+ 1

d =
⌊

√

2`/n
⌋

v

u w

ΓS

ΓV \S

Figure 1: An illustration for the proof of Item 2 in Theorem 3. On the left-hand-side is a graph in G2, and on the
right-hand-side are the corresponding neighborhood tables, ΓV \S and ΓS . Each row in ΓV \S corresponds to a vertex
in V \S and each row in ΓS corresponds to a vertex in S. A connecting line between a pair of entries in the two tables
indicates that there is an edge between the two corresponding vertices.

4.2 Proof of Item 2 in Theorem 3

Since we have already established in Item 1 in Theorem 3 that there is a lower bound of Ω
(

n
`1/3(G)

)

, and
since for ` ≤ n3/2 we have that n

`1/3(G)
≥ n1/2, we may consider the case that `(G) > n3/2 > n. To
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establish Item 2 in Theorem 3 we show that every n, every constant c and every n < ` < (n/2c)2 there exist
two families of n-vertex graphs for which the following holds. In both families the number of length-2 paths
is Θ(`), but in one family this number is a factor c larger than in the other family. However, it is not possible
to distinguish with high constant probability between a graph selected randomly in one family and a graph
selected randomly in the other family using o(

√
n) queries. We first present two families that include some

graphs with multiple edges and self-loops, and then modify the construction to obtain simple graphs.

The graph families. In the first family, denoted G1, each graph is determined by d =
⌊

√

2`/n
⌋

matchings.

Thus, each vertex has degree d =
⌊

√

2`/n
⌋

and

`(G) = n ·
(

d

2

)

< ` . (63)

A random graph in G1 is determined by simply selecting d random matchings. In the second family, denoted
G2, each graph is determined as follows. There is a small subset, S, of c vertices, where each vertex in S has
degree d′ =

⌈√
2`
⌉

+1, and each vertex in V \S has degree d =
⌊

√

2`/n
⌋

(like all vertices in the graph in
G1). If we view each vertex in S as having d′ ports (one for each incident edge) and each vertex in V \ S as
having d ports, then a graph is the family G2 is defined by a perfect matching between the (n− c) · d + c · d′

ports (we assume this number is even, otherwise, d and d′ can be slightly modified). For an illustration, see
the left-hand-side of Figure 1. Thus,

`(G) > c ·
(

d′

2

)

= c ·
(

⌈√
2`
⌉

+ 1

2

)

> c` . (64)

Processes that construct graphs in the families. In order to show that it is hard to distinguish between
graphs selected randomly from the two families in o(

√
n) queries, we follow [GR02, KKR04] and define

two processes, P1 and P2, that interact with an approximation algorithm A. The process P1 answers the
queries of A while constructing a random graph in G1, and the process P2 answers the queries of A while
constructing a random graph in G2. We consider the distributions over the respective query-answer histories,
〈(q1, a1), . . . , (qt, at)〉, and show that for histories of length o(

√
n) the distributions are very close, implying

that A must have a high failure probability if it performs only o(
√

n) queries. Details follow.
For simplicity we assume that for every vertex that appears in either a neighbor query or an answer to

such a query, both processed give the degree of the vertex “for free”, so there is no need for degree queries.
We also assume that an answer u to a neighbor query (v, i) comes with the label i ′ of the edge from u’s side
of the edge. Clearly any lower bound under these assumptions gives a lower bound without the assumptions.

The Process P1. The process P1 maintains an n × d table Γ. A graph in G1 corresponds to a perfect
matching between the table entries. That is, if there is an edge (v, u) in the graph, and the edge is labeled
i from v’s side and i′ from u’s side, then Γ(v, i) = (u, i′) and Γ(u, i′) = (v, i). Thus, a random selection
of a graph in G1 corresponds to a random selection of a perfect matching between the entries of Γ. Such a
matching can be constructed iteratively, where in each iteration an unmatched entry in the table is selected
arbitrarily and matched to a uniformly selected yet-unmatched entry. The process P1 fills the entries of Γ in
the course of answering the queries of the algorithm A: Given a query qt+1 = (v, i), the process P1 answers
with a uniformly selected yet-unmatched entry, (u, i′)
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The Process P2. The process P2 maintains two tables: one (n − c) × d table, ΓV \S , and one c × d′

table, ΓS . The rows of ΓV \S correspond to vertices in V \ S, and the rows of ΓS correspond to vertices
in S. A random graph in G2 can be determined in the following iterative manner. In each step a pair (v, i)
is selected arbitrarily among all pairs such that: (1) either there is already a row labeled by v in one of the
two tables but the entry (v, i) is yet-unmatched, or (2) there is no row labeled by v. In the latter case, we
first select, uniformly at random, a yet-unlabeled row in one of the two tables, and label it by v. We then
select, uniformly at random, a yet-unmatched entry in one of the two tables. If the row of the selected entry
is yet-unlabeled, then we give it a random label (among all yet-unused labels in {1, . . . , n}).

The process P2 fills the entries of ΓV \S and ΓS in the course of answering the queries of the algorithm
A in the following manner. First note that once a vertex v that appears in either a query or an answer is
determined to belong to S, then we may assume that A terminates, since it has evidence to distinguish
between the two families (recall that the degree of a vertex is revealed when it appears in a query or an
answer). Now, given a query qt+1 = (v, i), if v is a vertex that was not yet observed in the query-answer
history (that is, it does not label any row), then P2 first determines whether it belongs to S or to V \ S,
that is, if it labels a row in ΓS or in ΓV \S . Let the number of vertices already determined to be in V \ S
be denoted by b (so that b ≤ 2t). With probability c

n−b the vertex v is determined to belong to S (at which
point A can terminate) and with probability 1 − c

n−b it is determined to belong to V \ S, so that it labels
a yet-unlabeled row in ΓV \S . Next, a yet-unmatched entry is selected uniformly among all such entries in
ΓV \S and ΓS . If the selected entry is in ΓS then A can terminate. Otherwise, let i′ be the column to which
the entry belongs (in ΓV \S). If the entry belongs to a row that is already labeled by some u ∈ {1, . . . , n},
then P2 answers (u, i′), and if the row is unlabeled then P2 uniformly selects a label u ∈ {1, . . . , n} among
all yet-unused row labels, and answers (u, i′).

Analyzing the distributions on query-answer histories. Consider P2, and observe that if the number of
queries performed is o(

√
n) then the probability that a vertex v in a query (v, i) is determined to belong

to S is o(
√

n) · c
n−c−o(

√
n)

= o
(

1√
n

)

. The second observation about P2 is that for every t = o(
√

n), the
probability that the answer to a query (v, i) will be (u, i′) where u ∈ S is upper-bounded by c·d′

(n−c)·d−2t =

O
(

1√
n

)

, and so the probability that such an event occurs in a sequence of o(
√

n) queries is o(1).
Finally, for both processes, the probability that an an answer to a query qt+1 = (v, i) is (u, i′) for u that

has already appeared in the query-answer history is upper bounded by 2t
n = o

(

1√
n

)

, and so the probability
that such an event occurs in a sequence of o(

√
n) queries is o(1). Therefore, in both processes, if the number

of queries performed is o(
√

n), then for any algorithm A, with probability 1− o(1) the sequence of answers
to the queries of A is a sequence of uniformly selected distinct pairs (u, i′). This implies that the statistical
distance between the corresponding distributions on query-answer histories is o(1), and so it is not possible
to distinguish between a random graph in G1 and a random graph in G2 with probability greater than 1

2 +o(1).

The issue of multiple edges. As defined above, the graphs may have multiple edges. In order to avoid
multiple edges, the distribution on answers to queries given any particular history is not as simple as when
allowing multiple edges. However, the main observation is that the probability of selecting an entry that
belongs to a row that already has some matched entries can only decrease. The only negative effect on our
bounds is in the upper bound on the probability that the answer to a query (v, i) will be (u, i ′) where u ∈ S,
which we can bound by c·d′

n·d−2t·d , which is still O
(

1√
n

)

for t = o(
√

n).
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4.3 Proof of Item 3 in Theorem 3

d − s

S

ΓS

ΓV \S

v

u

w

d =
⌊

√

2`/n
⌋

s =
⌈

4c`/n2
⌉

Figure 2: An illustration for the proof of Item 3 in Theorem 3. On the left-hand-side is a graph in G2, and on the
right-hand-side are the corresponding tables, ΓV \S and ΓS . A connecting line between a pair of entries indicates that
there is an edge between the two corresponding vertices.

Similarly to the proof of Item 2 in Theorem 3, to establish Item 3 in Theorem 3 we show that every n,
every constant c and every ` = Ω(n2), ` < n3/(16c2), there exist two families of n-vertex graphs for which
the following holds. In both families the number of length-2 paths is Θ(`), but in one family this number
is a factor c larger than in the other family. However, it is not possible to distinguish with high constant
probability between a graph selected randomly in one family and a graph selected randomly in the other
family using o

(

n3/2

`1/2

)

queries. (Note that when ` = Ω(n3), and in particular, ` ≥ n3/(16c2), the lower
bound is Ω(1), which is trivial.)

The first family, G1, is identical to the one defined in the proof of Item 2 in Theorem 3. That is, each
graph is determined by d =

⌊

√

2`/n
⌋

matchings so that each vertex has degree d and `(G) = n ·
(

d
2

)

< `.
In the second family, denoted G2, each graph is defined as follows. There is subset, S, of s =

⌈

4c`
n2

⌉

vertices,
and a complete bipartite graph between S and V \S. In addition, there are d− s perfect matchings between
vertices in V \ S. For an illustration, see Figure 2. Thus, each vertex in V \ S has degree d, just like in G1.
Now, for every G ∈ G2, using our assumption that ` < n3/(16c2) so that s < n/4,

`(G) ≥ s ·
(

n − s

2

)

> s ·
(

3n/4

2

)

=

⌈

4c`

n2

⌉

·
(

3n/4

2

)

> c` . (65)

The argument for proving the no algorithm can distinguish with high constant probability between a
graph selected randomly in G1 and a graph selected randomly in G2, is similar to the one presented in the
proof of Item 2 in Theorem 3, and is actually somewhat simpler. As in the proof of Item 2 in Theorem 3, we
define two processes, P1 and P2, where P1 is exactly as defined in the proof of Item 2 in Theorem 3.

The process P2. The process P2 maintains an (n− s)× d table, ΓV \S , and an s× (n− s) table, ΓS . The
rows of ΓV \S corresponds to vertices in V \ S and the rows in ΓS correspond to vertices in S. A graph in
G2 is determined by a perfect matching between the union of the entries in the two tables, where each row
in ΓV \S(v) contains exactly s entries that are matched with entries of ΓS , one from each row. Here too we
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may assume that once a vertex v that appears in either a query or an answer is determined to belong to S
(i.e., to label a row in ΓS), then A terminates, since it has evidence to distinguish between the two families.

Given a query qt+1 = (v, i), if v is a vertex that was not yet observed in the query-answer history, then
P2 first determines whether it belongs to S or to V \ S. Let the number of vertices already determined to
be in V \ S be denoted by b (so that b ≤ 2t). With probability s

n−b the vertex v is determined to belong
to S (at which point A can terminate) and with probability 1 − s

n−b it is determined to belong to V \ S,
so that it labels a randomly chosen yet-unlabeled row in ΓV \S . Next, the process decides whether the entry
(v, i) corresponds to an edge whose other endpoint is in S or in V \ S. Let b(v) be the number of entries
in the row of v that have already been determined. Then, with probability s

d−b(v) the entry is matched to a
uniformly selected entry in ΓS (so that A can terminate), and with probability 1 − s

d−b(v) it is matched to a
yet-unmatched entry in ΓS . This entry is selected as follows. For each row r in ΓV \S (labeled or unlabeled),
let b(r) be the number of entries in r that are already matched. Then a row r is selected with probability

d−b(r)−s
P

r(d−b(r)−s) . If the row is yet unlabeled then P2 uniformly selects a label u ∈ {1, . . . , n} among all
yet-unused row labels. The index i′ is selected uniformly among all yet-unmatched entries in the row r.

Analyzing the distributions on query-answer histories. Consider P2, and observe that if the number
of queries performed is o(n3/2/`1/2) then the probability that a vertex v in a query (v, i) is determined to
belong to S is

o(n3/2/`1/2) · s

n − o(n3/2/`1/2)
= o(n3/2/`1/2) ·

⌈

(4c`)/n2
⌉

n
= o

(

`1/2

n3/2

)

= o(1) . (66)

The second observation about P2 is that for every t = o(n3/2/`1/2), the probability that the answer to a
query (v, i) will be (u, i′) where u ∈ S is upper-bounded by

s

d − b(v)
=

⌈

(4c`)/n2
⌉

⌊

√

2`/n
⌋

− o(n3/2/`1/2)
= O(`1/2/n3/2) , (67)

and so the probability that such an event occurs in a sequence of o(n3/2/`1/2)) queries is o(1). Finally, for
both processes, the probability that an an answer to a query qt+1 = (v, i) is (u, i′) for u that has already
appeared in the query-answer history is upper-bounded by 2t

n = o
(

n1/2`1/2
)

, and so the probability that
such an event occurs in a sequence of o(n3/2/`1/2) queries is o(n2/`) = o(1).

Therefore, in both processes, if the number of queries performed is o(n3/2/`1/2), then for any algorithm
A, with probability 1−o(1) the sequence of answers to the queries of A is a sequence of uniformly selected
distinct pairs (u, i′). This implies that the statistical distance between the corresponding distributions on
query-answer histories is o(1), and so it is not possible to distinguish random graphs from the two families
with probability greater than 1

2 + o(1). The issue of multiple edges is dealt with as in the proof of Item 2 in
Theorem 3,

5 Extending the Algorithm to Stars

In this section we explain how our result for approximating the number of length-2 paths can be extended
to larger stars. Recall that an s-star is a graph over s + 1 vertices in which one single vertex (the star
center) is adjacent to all other vertices (and there are no edges between the other vertices). In particular,
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a length-2 path is a 2-star. The algorithm for approximating the number of s-stars for s > 2 is a natural
extension of the algorithm we presented for the case of s = 2, and its analysis is very similar. Here we
describe the modifications in the algorithm and its analysis. Recall that νs(G) denotes the number of s-
stars in a graph G. Here too we assume the algorithm is given a rough estimate ν̃s for νs(G), such that
1
2νs(G) ≤ ν̃s ≤ 2νs(G), and this assumption is removed in the same manner as in the case of length-2
paths. We assume for simplicity that s is a constant, though it can also be a very slowly growing function of
n (since the dependence on s is exponential).

Algorithm 3 (Estimating the number of s-stars in G = (V, E))
Input: ε, s, and ν̃s.

1. Let β
def
= ε

32s , t
def
=
⌈

log(1+β) n
⌉

, and

θ1
def
=

ε
s

s+1 ν̃
1

s+1
s

c1(s)t
2s

s+1

,

where c1(s) will be set in the analysis.

2. Uniformly and independently select Θ
(

n
θ1

· log t
ε2

)

vertices from V , and let S denote the multiset of

selected vertices (that is, we allow repetitions).

3. For i = 0, . . . , t, determine Si = S ∩ Bi by performing a degree query on every vertex in S.

4. Let L =
{

i : |Si|
|S| ≥ 2 θ1

n

}

. If maxi∈L

{

((1+β)i−1

s

)

· θ1

}

> 4ν̃s then terminate.

5. For each i ∈ L run a slight variant of Algorithm 2 (that is described below) to get estimates {ê i,j}j /∈L

for {|Ei,j |}j /∈L.

6. Output

ν̂s =
∑

i∈L

n · |Si|
|S| ·

(

(1 + β)i

s

)

+
∑

j /∈L

1

s

∑

i∈L

êi,j

(

(1 + β)j − 1

s − 1

)

.

The variant of Algorithm 2 used to get the estimates {êi,j}j /∈L is the following. For each 0 ≤ p ≤ i let

θ2(p)
def
=

ε
s+1

s ν̃
1
s
s

c2(s)t
2s+1

s (1 + β)
p
s

, (68)

where c2(s) grows at most exponentially with s. The minimum value p0 of p is still the smallest value of p
satisfying 1

4θ2(p + 1) ≤ n. The sample size s(p) is still

s(p) = Θ

(

n

θ2(p)

(

t

β

)2

log t

)

, (69)

and in Step 3c we have:

3c. If |S(p)
i | < s(p)

n · 1
4(1+β)θ2(p), then go to Step 4. Else, if |S(p)

i | > s(p)

n · 4ν̃s

((1+β)i−1

s )
then terminate.
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Theorem 4 If 1
2νs(G) ≤ ν̃s ≤ 2νs(G), then with probability at least 2/3, the output, ν̂s, of Algorithm 3

satisfies ν̂s = (1 ± ε) · νs(G). The query complexity and running time of the algorithm are

O

(

n

ν̃
1

s+1
s

+ min

{

n1− 1
s ,

ns− 1
s

ν̃
1− 1

s
s

})

· poly(log n, 1/ε) .

As noted previously, the assumption that the algorithm has an estimate ν̃s for νs(G) is removed similarly to
the way it was removed in the case of 2-stars.

5.1 Analyzing the complexity of Algorithm 3

As in the case of Algorithm 1, the running time of Algorithm 3 is linear in its query complexity, and
hence it suffices to bound the latter. Recall that we restrict our attention to constant s, and hence, in our
bounds, we shall ignore terms that depend only on s. The query complexity of Algorithm 3 is the sum of

Θ
(

n
θ1

· log t
ε2

)

= O

(

n

ν̃
1

s+1
s

)

· poly(log n, 1/ε) (the size of the sample selected in Step 2 of the algorithm)

and the number of queries performed in the executions of the variant of Algorithm 2. In order to bound the
latter we first observe that if Algorithm 3 did not terminate in Step 4, then

∀ i ∈ L : (1 + β)i = O





ν̃
1

s+1
s · t 2s

s+1

ε
1

s+1



 . (70)

Similarly, if the variant of Algorithm 2 did not terminate in any of its executions in Step 3c (where this step
is as described following Equation (69), then

∀ i ∈ L and p0 ≤ p ≤ i : |S(p)
i | = O

(

s(p)

n
· ν̃s
((1+β)i−1

s

)

)

. (71)

In addition, it trivially always holds that |S (p)
i | ≤ s(p) = O

(

n
θ2(p)

(

t
β

)2
log t

)

. Recall that p runs from i

down to p0 where p0 is the smallest value of p satisfying 1
4θ2(p+1) ≤ n where θ2(p)

def
= ε

s+1
s ν̃

1
s
s

c2(s)t
2s+1

s (1+β)
p
s

.

That is, p0 =
⌊

log1+β
εs+1ν̃s

c′2(s)·t2s+1ns

⌋

for an appropriate choice of c′2(s). This implies that if ν̃s ≤ c′2(s)·t2s+1

εs+1 ·
ns, then p0 = 0, and otherwise it may be larger. Therefore, the total number of queries performed in the
executions of the variant of Algorithm 2 is upper bounded by:

∑

i∈L

i
∑

p=p0

(

s(p) + min

{

s(p),
s(p)

n
· 4ν̃s
((1+β)i−1

s

)

}

· g(p)

)

≤
∑

i∈L

i · s(i) +
∑

i∈L

i
∑

p=p0

min

{

s(p),
s(p)

n
· 4ν̃s
((1+β)i−1

s

)

}

· g(p) . (72)

For the first summand we apply Equation (70) and get:

∑

i∈L

i · s(i) ≤
∑

i∈L

t · O
(

n · t4+ 1
s log t · (1 + β)

i
s

ε3+ 1
s · ν̃

1
s
s

)
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= O







n · t6+ 1
s log t

ε3+ 1
s · ν̃

1
s
s

·





ν̃
1

s+1
s · t3+ 1

s

ε
1

s+1





1
s







= O

(

n

ν̃
1

s+1
s

)

· poly(log n, 1/ε) . (73)

Turning to the second summand,

∑

i∈L

i
∑

p=p0

min

{

s(p),
s(p)

n
· 4ν̃s
(

(1+β)i−1

s

)

}

· g(p)

=
∑

i∈L

i
∑

p=p0

O



min







n · (1 + β)
p
s

ν̃
1
s
s

,
ν̃

1− 1
s

s

(1 + β)si− p
s







· (1 + β)i−p



 · poly(log n, 1/ε)

=
∑

i∈L

O



min







n · (1 + β)i

ν̃
1
s
s

,
ν̃

1− 1
s

s

(1 + β)(s−1)i







· poly(log n, 1/ε)





· (1 + β)−((1− 1
s)p0 ·

i−p0
∑

k=0

(1 + β)−(1− 1
s )k . (74)

In order to bound the expression in Equation (74) we first note that if (1 + β)i ≤ ν̃
1/s
s

n1/s then n·(1+β)i

ν̃
1/s
s

≤

n1−1/s, while if (1 + β)i ≥ ν̃
1/s
s

n1/s , then ν̃
1−1/s
s

(1+β)(s−1)i ≤ n1−1/s as well. Therefore, if p0 = 0 then (since
(1 + β)−(1−1/s)p0 = 1 and

∑i−p0

k=0 (1 + β)−(1−1/s)k = O(1/β)), the right-hand-side of Equation (74) is
upper bounded by

O
(

n1− 1
s

)

· poly(log n, 1/ε) . (75)

If p0 > 0 then the bound in Equation (75) should be multiplied by (1 + β)−(1−1/s)p0 . By definition of p0

we have that (1 + β)−(1−1/s)p0 = O
(

ns−1

ν̃
1−1/s
s

)

· poly(log n, 1/ε), and so we get the (tighter) bound:

O
(

n1− 1
s · (1 + β)−(1− 1

s )p0

)

· poly(log n, 1/ε) = O

(

ns− 1
s

ν̃
1− 1

s
s

)

· poly(log n, 1/ε) . (76)

The total number of queries performed in the executions of the variant of Algorithm 2 is hence upper
bounded by

O

(

n

ν̃
1

s+1
s

+ min

{

n1− 1
s ,

ns− 1
s

ν̃
1− 1

s
s

})

· poly(log n, 1/ε) . (77)

5.2 Analyzing the correctness of Algorithm 3

We first note that the size of the sample S selected by Algorithm 3 is Θ
(

n
θ1

· log t
ε2

)

, that is, the same, as
a function of θ1, as the sample size selected by Algorithm 1. Therefore, Lemma 1 and Corollary 2 hold
as is (for θ1 as defined in Step 1 of Algorithm 3). The first part of Corollary 2 implies that (with high
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constant probability) the estimate
∑

i∈L n · |Si|
|S| ·

((1+β)i

s

)

is close to the actual number of s-stars whose
center belongs to a bucket Bi such that i ∈ L. It also implies (similarly to what was shown in the case of
2-stars) that Algorithm 3 does not terminate in Step 4 (with high constant probability).

The remainder of the analysis deals with the quality of the estimate for the number of s-stars in G whose
center is not in L. First observe that by the second part of Corollary 2 we have that with high constant
probability,

∑

j /∈L

|Bj | < 4θ1t . (78)

We next introduce the following notations. For j /∈ L and σ ∈ {1, 2, ..., s + 1}, let ν
(σ)
s (j,G, L) denote

the number of s-stars in G whose center belongs to Bj and such that the number of vertices in the star that
belong to Bk for k /∈ L (including j) is σ. Let ν

(σ)
s (G,L) =

∑

j /∈L ν
(σ)
s (j,G, L) and let νs(j,G, L) =

∑s+1
σ=1 ν

(σ)
s (j,G, L).

We first observe that
∑s+1

σ=2 ν
(σ)
s (G,L) (stars that include at least one vertex from Bj such that j /∈ L in

addition to the center vertex), is relatively small (with high probability).

Lemma 10 With high constant probability,
∑s+1

σ=2 ν
(σ)
s (G,L) ≤ ε

8νs(G).

Proof: We first observe that since the total number of s-stars is νs(G), for every bucket Bj we have that
((1+β)j−1+1

s

)

≤ νs(G)/|Bj |. Hence,

(1 + β)j ≤ (1 + β) ·
(

(

s! · νs(G)

|Bj |

) 1
s

+ (s − 1)

)

. (79)

For each j /∈ L we have that
∑s+1

σ=2 ν
(σ)
s (j,G, L) is the number of s-stars whose center, v, is in Bj and that

have at least one additional vertex in a bucket Bk where k /∈ L. (The remaining s − 1 vertices may belong
to any of the at most (1 + β)j neighbors of v.) Therefore,

s+1
∑

σ=2

ν(σ)
s (G,L) ≤

∑

j /∈L

|Bj| ·
∑

k/∈L

|Bk| ·
(

(1 + β)j

s − 1

)

≤ 4θ1t ·
∑

j /∈L

|Bj| ·
((1 + β) ·

(

(

s!·νs(G)
|Bj |

) 1
s

+ (s − 1)

)

s − 1

)

. (80)

Let J1 = {j /∈ L :
(

s!·νs(G)
|Bj |

) 1
s ≤ s} and let Let J2 = {j /∈ L :

(

s!·νs(G)
|Bj |

) 1
s

> s}. Then,

4θ1t ·
∑

j∈J1

|Bj| ·
((1 + β) ·

(

(

s!·νs(G)
|Bj |

)
1
s

+ (s − 1)

)

s − 1

)

≤ 16(θ1 · t)2 · 24s <
ε

32
ν̃s , (81)

where the last inequality holds for c1(s) ≥ 24s+9. Turning to J2 we have that

4θ1t ·
∑

j∈J2

|Bj | ·
((1 + β) ·

(

(

s!·νs(G)
|Bj |

) 1
s

+ (s − 1)

)

s − 1

)
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≤ 4θ1t ·
∑

j∈J2

|Bj| ·
(

4 ·
(

s!·νs(G)
|Bj |

)
1
s

s − 1

)

≤ 4θ1t ·
∑

j∈J2

4s(s!)
1
s

(s − 1)!
· |Bj |

1
s · (νs(G))1−

1
s

≤ 4s(s!)
1
s

(s − 1)!
· 4θ1t · t · (4θ1)

1
s · (νs(G))1−

1
s

≤ 4s+2(s!)
1
s

(s − 1)!
· t2 · θ1+ 1

s
1 · (νs(G))1−

1
s

≤ 4s+2(s!)
1
s

(s − 1)!
· t2 ·





ε
s

s+1 ν̃
1

s+1
s

c1(s)t
2s

s+1





1+ 1
s

· (νs(G))1−
1
s

≤ ε

32
ν̃s , (82)

where the last inequality holds for an appropriate choice of c1(s). The lemma follows by combining Equa-
tions (80), (81) and (82).
We next modify the notion of significant buckets (for buckets Bj such that j /∈ L).
Definition 2 (Significant small buckets) For every j /∈ L we say that j is significant if

|Bj | ·
(

(1 + β)j

s

)

≥ ε

c3(s)t
ν̃s ,

where c3(s) grows at most exponentially with s. We denote the set of indices of significant buckets Bj (where
j /∈ L) by SIG.

Note that by the definition of SIG,
∑

j /∈L,j /∈SIG

νs(j) <
ε

c3(s)
ν̃s ≤ 2ε

c3(s)
νs(G) . (83)

The next lemma is proved very similarly to Lemma 4, and the proof is hence omitted (recall that θ2(r)
def
=

ε
s+1

s ν̃
1
s
s

c2(s)t
2s+1

s (1+β)
r
s

).

Lemma 11 If j ∈ SIG, then for every r such that |Bi,j,r| > 0 for some i we have that

|Ej| ≥
c4(s)t

2

ε
· θ2(r) · (1 + β)r−1

for c4(s) = (c2(s)/c3(s)
1/s) · (s!)1/s.

We now turn to explaining what needs to be modified in the analysis of the variant of Algorithm 2
that is used in Algorithm 3. Recall that s(p) denotes the size of the sample S(p), where s(p) =

Θ

(

n
θ2(p) ·

(

t
β

)2
log t

)

, That is, the sample size is the same, as a function of θ2(p), as in Algorithm 2.

Hence, Lemma 5, and Corollary 6 hold as is, and here we also have that with high constant probability, the
variant of Algorithm 2 does not terminate in Step 3c. Lemma 7 and Lemma 8 also hold without any changes.
We do however need to modify (the second part of) Lemma 9, and the modified version is stated next.
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Lemma 12 For an appropriate choice of c2(s) (in the definition of θ2(·), that is, Equation (68)) and of c3(s)
(in Definition 1), with high constant probability, for all j /∈ L, if j ∈ SIG, then

(

1 − ε

8

)

∑

i∈L

|Ei,j| −
ε

16
|Ej| ≤

∑

i∈L

êi,j ≤
(

1 +
ε

4

)

|Ej | ,

and if j /∈ SIG then
∑

i∈L

1

s
êi,j ·

(

(1 + β)j

s − 1

)

≤ ε

4t
νs(G) .

The proof of Lemma 12 is very similar to the proof of Lemma 9. The only difference is that here we use
the modified definition of significant buckets (Definition 2) and the corresponding lemma (Lemma 11) rather
than the original definition (Definition 1) and lemma (Lemma 4). Note that in both lemmas, if j ∈ SIG

then |Ej| is lower bounded by Ω
(

t2

ε θ2(r) · (1 + β)r
)

(when Bi,j,r is non-empty). As shown in the proof
of Lemma 9 (based on the lemmas that hold as is for the case of s-stars), when |Bi,j,r| ≤ 1

4θ2(r), the upper
bound on êi,j,r is of the order of θ2(r) · (1 + β)r (see Equation (32)), and when |Bi,j,r| > 1

4θ2(r) the
additive term in the deviation from |Ei,j,r| is of the same order (see Equations (50) and (51)). Therefore,
when j ∈ SIG they both translate to expressions of the form ε

c4(s)t2
|Ej |, as in the proof of Lemma 9 (see

Equations (33) and (52)). On the other hand, when j /∈ SIG we need to show that

θ2(r) · (1 + β)r ·
(

(1 + β)j

s − 1

)

≤ ε

c5(s)t3
νs(G) (84)

for an appropriate choice of c5(s).

If j /∈ SIG then
(

(1+β)j

s

)

≤ ε
c3t

ν̃s
|Bj | , and so (1 + β)j ≤

(

εs!
c3t · ν̃s

|Bj |

)1/s
+ (s − 1). If

(

εs!
c3t

ν̃s
|Bj |

)1/s
≤ s

then (1 + β)j ≤ 2s so that

θ2(r) · (1 + β)r ·
(

(1 + β)j

s − 1

)

≤ ε
s+1

s ν̃
1
s
s

c2(s)t
2+ 1

s (1 + β)
r
s

· (1 + β)r · 22s

≤ ε
s+1

s ν̃
1
s
s

c2(s)t
2+ 1

s

· (1 + β)(1−
1
s ) · 22s

≤ ε
s+1

s ν̃
1
s
s

c2(s)t
2+ 1

s

· (4θ1)
1− 1

s · 22s

≤ ε
s+1

s ν̃
1
s
s

c2(s)t
2+ 1

s

·





4ε
s

s+1 ν̃
1

s+1
s

c1(s)t
2s

s+1





1− 1
s

· 22s

=
ε

c5(s)t3
νs(G) , (85)

for an appropriate setting of c5(s) (that is a function of c1(s), c2(s) and s). We have used the fact that

(1 + β)r ≤ |Bj | (since there are no multiple edges) and that j /∈ L (so that |Bj | ≤ 4θ1 = 4ε
s

s+1 ν̃
1

s+1
s

c1(s)t
2s

s+1
). On
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the other hand, if
(

εs!
c3(s)t

ν̃s
|Bj |

)1/s
> s then (1 + β)j ≤ 2

(

εs!
c3(s)t

ν̃s
|Bj |

)1/s
so that

θ2(r) · (1 + β)r ·
(

(1 + β)j

s − 1

)

≤ ε
s+1

s ν̃
1
s
s

c2(s)t
2+ 1

s

· (1 + β)r(1−1/s) · 2s−1 ·
(

εs!

c3(s)t
· ν̃s

|Bj|

)1− 1
s

<
s2s

c2(s)c3(s)
· ε

t3
· ν̃s =

ε

c′5(s)t
3
νs(G) (86)

for an appropriate setting of c′5(s), which is a function of c2(s), c3(s) and s (where here too we used the fact
that (1 + β)r ≤ |Bj|).
The remainder of the proof is essentially as in the proof of Lemma 9 where the only difference is in the
constraints on c2(s) and c3(s).

5.3 Putting it all together: proving the first part of Theorem 4

Recall that
ν̂s =

∑

i∈L

n · |Si|
|S| ·

(

(1 + β)i

s

)

+
∑

j /∈L

1

s

∑

i∈L

êi,j ·
(

(1 + β)j − 1

s − 1

)

. (87)

Let νs(G,L) denote the number of s-stars in G whose center belongs to a bucket Bi such that i ∈ L, and
let νs(G,L) denote the number of s-stars whose center belongs to a bucket Bj such that j /∈ L (so that
νs(G,L) + νs(G,L) = νs(G)). By the first part of Corollary 2 (and the setting of β = ε

32s ) we have that
with high constant probability:

∑

i∈L

n · |Si|
|S| ·

(

(1 + β)i

s

)

=
(

1 ± ε

4

)

νs(G,L) . (88)

Turning to the second summand in Equation (87), by Lemma 12,

∑

j /∈L

1

s

∑

i∈L

êi,j ·
(

(1 + β)j − 1

s − 1

)

=
∑

j /∈L,j∈SIG

1

s

∑

i∈L

êi,j ·
(

(1 + β)j − 1

s − 1

)

+
∑

j /∈L,j /∈SIG

1

s

∑

i∈L

êi,j ·
(

(1 + β)j − 1

s − 1

)

≤
∑

j /∈L,j∈SIG

1

s
·
(

1 +
ε

4

)

|Ej | ·
(

(1 + β)j − 1

s − 1

)

+
ε

4
νs(G)

≤
(

1 +
ε

4

)

·
∑

j /∈L

1

s
|Ej | ·

(

(1 + β)j − 1

s − 1

)

+
ε

4
νs(G)

≤
(

1 +
ε

2

)

νs(G,L) +
ε

4
νs(G) . (89)

In the other direction, recall that ν
(σ)
s (G,L) =

∑

j /∈L ν
(σ)
s (j,G, L) where for j /∈ L and σ ∈ {1, . . . , s+1},

we let ν
(σ)
s (j,G, L) denote the number of s-stars whose center belongs to Bj and such that the number of
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vertices in the star that belong to Bk for k /∈ L (including j) is σ,
∑

j /∈L

1

s

∑

i∈L

êi,j ·
(

(1 + β)j − 1

s − 1

)

≥
∑

j /∈L,j∈SIG

1

s

(

∑

i∈L

(

1 − ε

8

)

|Ei,j | −
ε

16
|Ej |

)

·
(

(1 + β)j − 1

s − 1

)

≥
∑

j /∈L

1

s

∑

i∈L

(

1 − ε

8

)

|Ei,j| ·
(

(1 + β)j − 1

s − 1

)

− (1 + β)s−1ε

16
νs(G)

−
∑

j /∈L,j /∈SIG

1

s

∑

i∈L

(

1 − ε

8

)

|Ei,j | ·
(

(1 + β)j − 1

s − 1

)

≥
(

1 − ε

8

)

·
s
∑

σ=1

s − (σ − 1)

s
ν(σ)

s (G,L) − ε

4
νs(G) (90)

≥
(

1 − ε

8

)

·
s+1
∑

σ=1

ν(σ)
s (G,L) −

s+1
∑

σ=2

ν(σ)
s (G,L) − ε

4
νs(G)

≥
(

1 − ε

8

)

νs(G,L) − ε

8
νs(G) − ε

4
νs(G) (91)

=
(

1 − ε

8

)

νs(G,L) − 3ε

8
νs(G) , (92)

where in Equation (90) we used Equation (83) (based on the definition of SIG and for an appropriate choice
of c3(s)), and in Equation (91) we applied Lemma 10. By combining Equations (88), (89) and (92) we get
that ν̂s = (1 ± ε)νs(G) with high constant probability.

6 Lower Bounds for Approximating the Number of s-Stars

We also have matching lower bounds similarly to what we had for the case of length-2 paths. For simplicity
we state them for constant s but they can be extended to non-constant s.

Theorem 5 Let s be a constant.

1. Any (multiplicative) approximation algorithm for the number of s-stars must perform Ω

(

n

(νs(G))
1

s+1

)

queries.

2. Any constant-factor approximation algorithm for the number of s-stars must perform Ω(n1− 1
s )

queries when the number of s-stars is O(ns).

3. Any constant-factor approximation algorithm for the number of s-stars must perform Ω

(

ns− 1
s

(νs(G))1−
1
s

)

queries when the number of s-stars is Ω(ns).

Since the constructions are very similar to those used in the proofs of Items 1–3 of Theorem 3, we only
describe the needed modifications in the constructions and the analysis. Here too we allow multiple edges
in the constructions, and this assumption can be removed in a similar manner to the way it was dealt with in
Theorem 3.
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Proof sketch of Item 1 in Theorem 5. For any choice of ν̃s, consider the family of all n-vertex graphs

that each consists of a clique of size b =

⌈

ν̃
1

s+1
s

⌉

and an independent set of size n − b. The number of

s-stars in the graph is b ·
(b−1

s

)

= Θ(ν̃s) (recall that we assume that s is a constant). However, in order to
distinguish between a random graph in the family and the empty graph it is necessary to perform a query on

a vertex in the clique. The probability of hitting such a vertex in o

(

n

νs

1
s+1 (G)

)

queries is o(1).

Proof sketch of Item 2 in Theorem 5. First note that the lower bound in Item 1 (Ω
(

n

(νs(G))
1

s+1

)

) is

higher than the lower bound in this item (Ω(n1− 1
s )) for νs(G) < n1+ 1

s , and hence we may restrict our
attention to the case that νs(G) ≥ n1+ 1

s . We modify the construction of the two families of graphs from the
proof of Item 2 in Theorem 3, in the following manner. We start with the second family, denoted G2. As in
the proof of Item 2 in Theorem 3, each graph in this family is determined by two subsets: S, of a constant
size c (which determines the gap between the number of s-stars in the two families), and V \S. Each vertex

in S has d′ =
⌈

(s! · ν̃s)
1
s

⌉

+ s, neighbors in V \ S, and each vertex in V \ S has d =

⌊

(

s!ν̃s
n

)
1
s

⌋

neighbors

(in V \ S and possibly in S). Thus, the difference between the family G2 as defined here and as defined in
the proof of Item 2 in Theorem 3 is only in the setting of d and d′.

The family G1 is also very similar to the one defined in the proof of Item 2 in Theorem 3, but we perform
a small modification, which slightly simplifies the analysis. Consider taking a graph in G2 and matching the
edges between V \ S and S. That is, we replace pairs of edges (v, w), (u, z) where u, v ∈ V \ S and
w, z ∈ S, by a single edge between v and u. We shall refer to these edges as special edges. Note that the
degree of each vertex in V \ S remains the same (d), and the set S becomes an independent set. Let G1 be
the family of graphs resulting from performing this operation on graphs in G2 (where the matching may be
arbitrary. Observe that the number of s-stars in each graph G ∈ G1 satisfies:

νs(G) = (n − c) ·
(

d

s

)

< ν̃s , (93)

and the number of s-stars in each graph G ∈ G2 satisfies:

νs(G) > c ·
(

d′

s

)

= c ·
(

⌈

(s! · ν̃s)
1
s

⌉

+ s

s

)

> c · ν̃s . (94)

Given the above description, the two processes (that answer the queries of the algorithm and construct a
random graph along the way), are essentially as in the proof of Item 2 in Theorem 3. The only difference is
in the setting of d and d′ and in the fact that the first process also has a small probability of “hitting” a vertex
in S (at which point the algorithm can terminate since the vertices in S have degree 0). We also assume
that the first process notifies the algorithm when a special edge is revealed (at which point the algorithm can
terminate).

Consider both processes and observe that if the number of queries performed is o
(

n1− 1
s

)

, then for both
processes the probability that a vertex v in a query (v, i) is determined to belong to S is

o
(

n1− 1
s

)

· c

n − c − o
(

n1− 1
s

) = o
(

n− 1
s

)

(95)
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The second observation is that for every t = o
(

n1− 1
s

)

, the probability that the answer of P2 to a query
qt = (v, i) will be (u, i′) where u ∈ S, and similarly, that the answer of P1 corresponds to a special edge, is
upper-bounded by

c · d′
(n − c) · d − 2t

=
c ·
(⌈

(s! · ν̃s)
1
s

⌉

+ s
)

(n − c) ·
⌊

(

s!ν̃s
n

)
1
s

⌋

− o
(

n1− 1
s

)

= O
(

n−(1− 1
s
)
)

. (96)

Hence, the probability that such an event occurs in a sequence of o
(

n1− 1
s

)

queries is o(1).
As opposed to the analysis in the proof of Item 2 in Theorem 3, here we do not (and cannot) claim

that the probability that an answer to a query qt+1 = (v, i) is (u, i′) for u that has already appeared in the
query-answer history is sufficiently small. However, given the way we modified the construction, as long as
neither of the abovementioned events occur, the distributions on the query-answer histories are identical.

Proof sketch of Item 3 in Theorem 5. We modify the construction of the two families of graphs from the
proof of Item 3 in Theorem 3 in the following manner, where we start with the second family, G2. In G2

each graph contains a subset S, of b =
⌈

c·4s!ν̃s
ns

⌉

vertices. There is a complete bipartite graph between S and

V \ S and there are d − b perfect matchings between vertices in V \ S where d =

⌊

(

s!ν̃s
n

)
1
s

⌋

, so that every

vertex in V \S has degree d. In order to define the first family, G1, we perform the same “edge-contraction”
procedure as in the proof of Item 2. That is, given a graph in G2 we replace pairs of edges between V \S and
S with single edges between vertices in V \ S. Here too we maintain the degrees of vertices in V \ S, and
S becomes an independent set. Observe that by the choice of d, the number of s-stars in each graph in G1 is
upper bounded by ν̃s. Assuming ν̃s < ns+1/c′ for some sufficiently large constant c′, for every G ∈ G2, we
have that b < n/(2s) and so:

νs(G) ≥ b ·
(

n − b

s

)

> b ·
(

n(1 − 1/(2s))

s

)

≥ c · 4s!ν̃s

ns
· (n(1 − 1

s ))s

s!
> c · ν̃s . (97)

The processes P1 and P2 are defined very similarly to the way they were defined in the proof of Item 3 in
Theorem 3, where d and |S| = b are as defined above. Other than the different setting of the parameters, here
we take into account (in the definition of P1) the fact that in each graph in G1, the d perfect matchings are
only between vertices in V \ S, and that there is a probability of “hitting” vertices in S. For both processes,

if the number of queries performed is o

(

ns− 1
s /ν̃

1− 1
s

s

)

then the probability that a vertex v in a query (v, i)

is determined to belong to S is

o

(

ns− 1
s /ν̃

1− 1
s

s

)

· b

n − o

(

ns− 1
s /ν̃

1− 1
s

s

) = o

(

ns− 1
s /ν̃

1− 1
s

s

)

· c · 4s!ν̃s/n
s

n

= o

(

ν̃
1
s
s /n(1+ 1

s
)

)

= o(1) . (98)

Next, for every t = o
(

n1− 1
s

)

, the probability that the answer of P2 to a query qt = (v, i) will be (u, i′)

where u ∈ S, and similarly, that the answer of P1 corresponds to a special edge, is upper-bounded by

O

(

ν̃s/n
s

(ν̃s/n)
1
s

)

= 0

(

ν̃
1− 1

s
s /ns− 1

s

)

. (99)
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Therefore, the probability that such an event occurs in a sequence of o

(

ns− 1
s /ν̃

1− 1
s

s

)

queries is o(1). If
none of the above events occur then we get the same distribution on query-answer histories.

7 Other Small Subgraphs

Other than s-stars, two additional natural extensions of length-2 paths are triangles and length-3 paths (or,
more generally, length-L paths).

We first observe that there are lower bounds that are linear in the number of edges m when m = Θ(n),
both for triangles and for length-3 paths. These lower bounds hold in the query model studied in this paper,
that is, assuming the algorithm is allowed only degree queries and neighbor queries. Moreover, these lower
bounds hold even if the algorithm is also allowed to sample edges uniformly. However, they do not hold if
the algorithm is allowed vertex-pair queries, that is, if it may ask whether there is an edge between any two
vertices u and v of its choice. Thus, it is possible that there are sublinear algorithms for approximating the
number of these subgraphs assuming the algorithm is allowed vertex-pair queries. It can be verified that in
the case of length-2 paths, and more generally, s-stars, the lower bounds hold even when allowed vertex-pair
queries.6

Theorem 6 For m = O(n) it is necessary to perform Ω(m) queries in order to distinguish with high
constant probability between the case that a graph contains Θ(n) triangles and the case that it contains no
triangles. This bound holds when neighbor and degree queries are allowed.

Proof: Consider the following two families of graphs. In the first family each graph consists of a complete
bipartite graph between two vertices and all other vertices. In the second family each graph consists of a
complete bipartite graph between two vertices and all other vertices but one, where this vertex is an isolated
vertex. In addition there is an edge between the two vertices. Within each family the graphs differ only in
the labeling of vertices and in the labeling of the edges incident to each vertex. Observe that in both families
the two high-degree vertices have degree n− 2 and the rest of the vertices have degree 2, with the exception
of the single isolated vertex in the second family. By construction, each graph in the first family contains
no triangles and each graph in the second family contains n − 3 triangles. However, in order to distinguish
between a random graph in the first family and a random graph in the second family it is necessary to either
hit the isolated vertex in graphs of the second family, or to hit the edge between the two high-degree vertices
in graphs of the second family, or to observe all neighbors of one of the high-degree vertices in the first
family. In the latter case n− 2 queries are necessary, and in the former cases Ω(n) queries are necessary (in
order for one of these events to occur with constant probability).

Theorem 7 For m = O(n) it is necessary to perform Ω(m) queries in order to distinguish with high
constant probability between the case that a graph contains Θ(n2) length-3 paths and the case that it
contains no length-3 paths. This bound holds when neighbor and degree queries are allowed.

Proof: Consider the following two families of graphs, where we assume for simplicity that n is even
(otherwise there is an isolated vertex and the graph is defined over n−1 vertices where n−1 is even). In the
first family each graph consists of two stars, where in each star there are n/2 vertices (including the center

6To verify this note that the lower bounds are essentially based on “hitting” a certain subset of vertices, either by querying one
of these vertices or receiving one of them in an answer to a neighbor queries. If vertex-pair queries are allowed then the algorithm
still needs to hit a vertex in this subset in one of its queries.
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vertex). In the second family each graph consists of two stars, where in each star there are n/2 − 1 vertices
(including the center vertex). In addition, there are two isolated vertices, and there is an edge between the
two star centers. Graphs in the two families differ only in the labeling of vertices and in the labeling of the
edges for the star centers. Observe that in both families the star centers have degree n/2. By construction,
each graph in the first family contains no length-3 paths and each graph in the second family contains Θ(n2)
length-3 paths. However, in order to distinguish between a random graph in the first family and a random
graph in the second family it is necessary to either hit one of the isolated vertices in graphs of the second
family, or to hit the edge between the centers in graphs of the second family, or to observe all neighbors of
one of the centers in the first family. In the latter case n/2 queries are necessary, and in the former cases
Ω(n) queries are necessary (in order for one of these events to occur with constant probability).

Acknowledgements

We would like to thank several anonymous reviewers of SODA 2010 for their helpful comments.

References

[ADH+08] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular network
motif counting and discovery by color coding. Bioinformatics, 24(13):241–249, 2008.

[AFS09] O. Amini, F. Fomin, and S. Saurabh. Counting subgraphs via homomorphisms. In Automata,
Languages and Programming: Thirty-Sixth International Colloquium (ICALP), pages 71–82,
2009.

[AG07] N. Alon and S. Gutner. Balanced families of perfect hash functions and their applications. In
Proceedings of the 34th International Colloquium on Automata, Languages and Programming
(ICALP), pages 435–446, 2007.

[AG09] N. Alon and S. Gutner. Balanced hashing, color coding and approximate counting. Technical
Report TR09-012, Electronic Colloquium on Computational Complexity (ECCC), 2009.

[AR02] V. Arvind and V. Raman. Approximation algorithms for some parameterized counting prob-
lems. In Proceedings of the 13th International Symposium on Algorithms and Computation
(ISAAC), pages 453–464, 2002.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM, 42:844–856, 1995.

[AYZ97] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17:209–223, 1997.

[BBCG08] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms for local
triangle counting in massive graphs. In Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), pages 16–24, 2008.

[BHKK09] A. Björklund, T. Husfeldt, P. Kasaki, and M. Koivisto. Counting paths and packings in halves.
In Proceedings of the Seventeenth Annual European Symposium on Algorithms (ESA), pages
578–586, 2009.

38



[CEF+05] A. Czumaj, F. Ergun, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler. Approx-
imating the weight of the euclidean minimum spanning tree in sublinear time. SIAM Journal
on Computing, 35(1):91–109, 2005.

[CRT05] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight
in sublinear time. SIAM Journal on Computing, 34(6):1370–1379, 2005.

[CS04] A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning trees in sublinear
time. In Proceedings of the Thirty-Sixth Annual ACM Symposium on the Theory of Computing
(STOC), pages 175–183, 2004.
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