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Abstract

We consider the regular languages recognized by weighted threshold
circuits with a linear number of wires. We present a simple proof to
show that parity cannot be computed by such circuits. Our proofs are
based on an explicit construction to restrict the input of the circuit such
that the value computed by the circuit are constant. The result is also a
corollary of [IPS93] where a different proof method based on randomized
restrictions is used.

1 Introduction

Our motivation is the characterization of the regular languages in TC0 with
a linear number of wires. The study of the regular languages recognized by
circuits has emerged as an important tool to understand the power of circuit
classes. From this point of view the study of subclasses as TC0 with linear wires
makes sense, since it is known that each regular language can be recognized by
circuits with an almost linear number of wires [CFL85, AK08]. Similar studies
for the case of AC0 and ACC0 with a linear number of wires can be found in
[KPT05].

In [IPS93] a superlinear lower bound for the number of wires needed to
recognize parity with a threshold circuit of constant depth is given. The proofs
of [IPS93] are based on random restriction methods.

The use of random restriction is not helpful when dealing with non commu-
tative languages. We have developed a new method with explicit restrictions
which gives us more freedom in selecting the restriction and apply it to show
that parity cannot be recongized. We hope that this method can be applied to
non commutative languages, e.g. the language (e∗ae∗be∗)∗ yielding a character-
ization of TC0 with linear wires.

2 Preliminaries

Circuits. A circuit is a directed acyclic graph. We call the nodes with fan-in
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zero input nodes and the other nodes gates. The edges are called wires. We say
a gate g is connected to a gate g′ if there is a wire from g′ to g.

For a circuit with n inputs each input node is labeled with i where 1 ≤ i ≤ n
Each gate is either labeled by a symmetric Boolean function f : {0, 1}k → {0, 1},
where k is the fan-in of the node, or by a family of symmetric Boolean functions
f = (fi)i∈N, where fi : {0, 1}i → {0, 1} is an i-ary Boolean function. A gate g
consults an input i, 1 ≤ i ≤ n, if there is a connection from g to an input node
labeled with i.

For a circuit Cn with n inputs and an input word w ∈ {0, 1}n we define the
values of a gate inductively as follows: An input nodes labeled with i has the
value wi. For a gate g let v1, . . . , vk be the nodes connected to g. If g is labeled
by a k-ary Boolean function f , the value of the gate g is f(v1, . . . , vk), if g is
labeled by a family of Boolean functions f = (fi)i∈N, then the value of the gate
g is fk(v1, . . . , vk). The value of the circuit Cn is the value of the output gate.

A word w is accepted by Cn iff the value of the output gate is 1. A language
L ⊆ {0, 1}∗ is recognized by a family of circuits (Cn)n, where Cn has n inputs,
if C|w| accepts w iff w ∈ L.

The depth of a circuit Cn is the length of the longest directed path in it. A
family of circuits C = (Cn)n has constant depth if there is a constant d such
that the depth of each circuit is bound by d. For a circuit family C = (Cn)n

we define the size as follows: size(C) : N→ N where n maps to the number of
nodes of Cn.

We denote by TC0 the class of languages recognizable by families of constant-
depth polynomial size circuits consisting of unbounded weighted threshold gates.
LTC0 is the subclass of TC0 being the class of languages recognized by linear
size circuit families with linear fan-in. If we further restrict the number of wires
to be linear we obtain the class WLTC0.

A weighted threshold gate with k binary inputs xi ∈ {0, 1} 1 ≤ i ≤ k is
defined by a value t ∈ N, the threshold, and k weight functions fi : {0, 1} → N.
The output of the gate is 1 if

∑k
i=1 fi(xi) > t and 0 otherwise. The usual

definition of threshold gates allows as fi only the identity function. One can
also think of the weight functions to be defined on the wires instead of the gates.
It should be further noted that we do not use AND, OR, or NOT gates. AND
and OR gates can be simulated by using the appropriate threshold. We can
avoid NOT gates by flipping the values of the appropriate weight functions of
the subsequent gates.

We consider circuits over the binary alphabet {0, 1}. Thus we assume to have
n input gates labeled by i ∈ {1 . . . n}. For an input word w1 . . . wn ∈ {0, 1}n
the input gate i has the value wi.

Without loss of generality we can assume that gates are either connected
only to input gates or only to threshold gates, we simply add buffer gates in the
other case.

Algebra. The variety DA, which is contained in A, the variety of all
monoids not containing a group, and can be characterized by the condition that
a monoid M is in DA if for all x, y, z ∈ M (xyz)ωy(xyz)ω = (xyz)ω. The
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variety DA has been extensively studied, see for example [TT02], where also a
list of characterization for DA is given. In this paper we will use the following
characterization of DA: Let (ab)∗ be the bicycle language and let B be its
syntactic monoid. Then DA is the largest variety in A that does not contain
B ([Alm95]).

3 Results

The main achievement of this paper is the presentation of a new proof using
only simple combinatorics for the following theorem, also proved in [IPS93]. It
is clear that parity can be recognized by a TC0 circuit with a linear number of
gates.

Theorem 1. The language Lparity is not in WLTC0.

Since the proof of the theorem above works for any cyclic group, this has
the direct consequence that:

Corollary 1. If a regular language with neutral letter is in WLTC0, then its
syntactic monoid is aperiodic.

In Theorem 14 of [KPT05] it was shown that a regular language with neutral
letter is in WLC0 iff its syntactic monoid is in DA. Since every AND-gate and
OR-gate is can be simulated by a threshold gate the all languages with neutral
letter and a syntactic monoid in DA are also on WLTC0.

We let Lbicycle be the language (ab)∗ together with a neutral letter e, i.e.
e∗(ae∗be∗)∗.

Conjecture 1. The language Lbicycle is not in WLTC0.

Since any variety V ⊆ A that does contain the bicycle is contained in DA
([Alm95]) the above conjecture implies the following conjecture.

Conjecture 2. The regular languages in WLTC0 are exactly those whose syn-
tactic monoid is in DA.

4 Proofs

In this section we prove that the language Lparity is not in WLTC0. Throughout
this section we will only consider regular languages L that have a neutral letter
e. The following construction is similar to the first step in the proof of Theorem
2.2 in [BS95].

Lemma 1. If a language L with neutral letter is recognized by a WLTC0 circuit
then there is a family of circuits in WLTC0 recognizing L, such that every input
is consulted only a constant number of times.
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Proof. Assume we have at most cn wires in each circuit Cn. Fix any even n,
then the set S of all inputs that are consulted more than 2c times has size less
or equal than n/2, otherwise we would have more than 2c · n/2 = cn wires.

We pick any S′ ⊇ S with |S′| = n/2. We place the neutral letter to all
inputs in S′, since we fix only a linear amount of inputs the number of wires is
still linear. This yields a circuit in WLTC0 with n/2 inputs. Hence for each n
we can construct a circuit with n inputs from C2n that still recognizes L, but
each input is consulted at most 2c times.

We call a gate trivial iff its fan-in is 1. In the case that every input is
consulted exactly once the gates that are connected to input gates induce a
partition on the inputs. We will prove that we can construct a similar situation
if we know that every input is consulted at most c times.

Lemma 2. Let c ∈ N and let C be a circuit with n inputs and such that each
input is consulted at most c times. Then there is a set S of bn/2(c + 1)c inputs
and a set G of non-trivial gates such that every input of S that is consulted by
a non-trivial gate is also consulted by exactly one gate of G.

Proof. We prove something slightly stronger, namely that we can find a set S
with the two properties:

1. Every input of S that is consulted by a non-trivial gate is also consulted
by exactly one gate of G.

2. If S′ is the set of all inputs consulted by gates of G, then |S′| ≤ 2|S|.

Assume S is a set of maximal size that fulfills conditions (1) and (2) and G
be the set of corresponding gates. Assume |S| < bn/(2(c + 1))c, otherwise we
are done.

We know S ⊆ S′ and |S′| ≤ 2|S|, and let S̄′ = {1, . . . , n} \ S′.
Let p ∈ S̄′. If there is no non-trivial gate that consults p, we can extend S

by p, a contradiction. Hence there is a non-trivial gate g that consults input p.
Let g̃ be the inputs consulted by g.

Assume that g consults more than twice as many inputs in S̄′ than in S, i.e.
|S̄′ ∩ g̃| > 2|S ∩ g̃|. Then the set T = (S \ g̃) ∪ (S̄′ ∩ g̃) with the set of gates
G ∪ {g} fulfills both conditions and |T | > |S|; a contradiction: |T | = |S| − |S ∩
g̃|+ |S̄′ ∩ g̃| ≥ |S|+ 1/2|S̄′ ∩ g̃|. Also every two gates of G ∪ {g} do not consult
the same input in T , so condition 1 is fulfilled for T . In order to show condition
2, we compute T ′ = S′ ∪ g̃, so |T ′| = |S′|+ |S̄′ ∩ g̃| ≤ 2(|S|+ 1/2|S̄′ ∩ g̃|) ≤ 2|T |.

So every gate that consults k inputs in S̄′ also consults at least k/2 inputs
in S, and by the previous arguments every input in S̄′ is consulted by a such
a gate. This allows to give an upper bound for the inputs in S̄′ by the inputs
in S. Since every input is consulted at most c times we get 2 · (c|S|) ≥ |S̄′| =
n− |S′| ≥ n− 2|S|. We get |S| ≥ n/(2(c + 1)), a contradiction.

If C is a LTC0-circuit such that all gates that are connected to input gates
are trivial, then there is a LTC0-circuit of lower depth that recognizes the same

4



language. Note that all gates with fan-in 1 compute either the identity or the
not function. If the gate computes the identity function we can simply replace
it by a wire. In the other case we replace it by a wire and switch the values of
the weight functions of the subsequent gate.

Lemma 3. If g is a non-trivial threshold gate that is connected to m input gates
(and no other gates), then we can fix the output of g by fixing at most d 12me of
the inputs.

Proof. Let f1, . . . , fm ∈ {0, 1} → N be the weight functions, and x1, . . . , xm ∈
{0, 1} be the inputs, then the output of the majority gate depends on

∑m
i fi(xi) >

t.
First we might assume that either fi(0) = 0 or fi(1) = 0 for all i. Otherwise

we set ki = min{fi(0), fi(1)}, f ′i = fi−ki and k :=
∑m

i=1 ki. If we use f ′i instead
of fi and t′ = t − k instead of t, then the function computed by the gate does
not change. Note that if t− k < 0 then the value of g was already independent
of the input.

Now we fix the output of g by fixing at most d 12me of the inputs: If there
exists a set I of inputs |I| = d 12me and a set of assignments for the xi with
i ∈ I, such that

∑
i∈I fi(xi) > t, then we fix these inputs and the output is

fixed. Otherwise we have for every set J of inputs with no more than 1
2m

elements that there are no 〈xi〉i∈J such that
∑

i∈J fi(xi) > t. Pick any set I of
inputs with |I| = d 12me and choose for i ∈ I the xi such that

∑
i∈I fi(xi) = 0.

Then there are not more than 1
2m elements left arbitrary.

Then the output of the gate depends on

m∑
i=1

fi(xi) =
∑
i∈I

fi(xi) +
∑
i/∈I

fi(xi) =
∑
i/∈I

fi(xi).

Since |{1, . . . ,m} \ I| ≤ 1
2m, the sum is less or equal to t.

In the following we use the fact that for any natural number m greater than
1, we have b 23mc ≥ d 12me.

Given a family of circuits that accepts the parity language, we can construct
a family of circuits that accepts the complement by fixing the first input to 1.
With the same construction we can get from a circuit family that accepts the
complement to a circuit family that accepts the parity language. Also we do
not need to fix the first input but we could fix any input to 1.

On the other hand if we fix a proper subset of all inputs in a circuit family
to any input, the language accepted by the remaining inputs would be still the
parity language or its complement. If we fix for each n only a linear amount of
inputs the number of wires will be still linear in the number of the new inputs.

Lemma 4. Let C be a WLTC0 circuit with n = (k + 1) · (4(c + 1))c inputs
such that every input is consulted at most c times by non-trivial gates and C
has depth d. If C recognizes Lparity ∩ Σn, then there is a circuit WLTC0 C ′

with k inputs of depth d− 1, that recognizes Lparity ∩ Σk.
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Proof. We do induction on c.
Assume c = 0, then we can obtain a circuit of depth d− 1.
Assume c ≥ 1, then we apply Lemma 2 and obtain a set S of inputs and G

of gates. We fix all inputs outside of S to 0, hence we have bn/(2(c+1))c inputs
left. This gives a slightly modified threshold circuit with bn/(2(c + 1))c inputs.
In this circuit we use Lemma 3 for each (modified) gate g ∈ G, this fixing at
most half of the remaining inputs. Thus we get a (again modified) circuit with
bn/(4(c + 1))c inputs. This circuit recognizes either Lparity or its complement.
But since each of these inputs was consulted by no non-trivial gate or a gate
of G, which was removed, we have constructed a circuit, where each input is
consulted at most c−1 times by non-trivial gates. Hence by induction the result
follows.

The circuits constructed either accept Lparity or its complement. By fixing
one more input, to 0 or 1 we get a circuit that accepts Lparity.

Finally we can prove our upper bound.

Proof of Theorem 1. Assume by contradiction that there is a family of circuits
in WLTC0 that recognizes Lparity. We let d be the depth of this family and c
the fan-out on the input, see Lemma 1. We assume that d is minimal. Note
that d > 1.

By Lemma 4 we can construct for each n a circuit C ′n of depth d − 1 from
Cn·(6(c+2))c+1 that recognizes Lparity ∩ Σn. Hence (C ′n) recognizes Lparity, a
contradiction.

5 Discussion

We have shown via the language Lparity that TC0 with linear wires is strictly
contained in TC0 with linear gates. This is an analogon to a result of Koucký
et al. [KPT05] who separated AC0 with linear wires from AC0 with linear gates
via an explicit language (and similar for ACC0).

Methods from communication complexity were used to show that gates with
small communication complexity cannot recognize languages with large com-
munication complexity. Since threshold gates have logarithmic communication
complexity this method does not work in the case of TC0. By separating via the
language Lparity we use an opposite approach since this language has constant
communication complexity.

At the moment our approach can only be applied to commutative languages.
The obstacle is Lemma 3 where inputs are fixed to letters other than the neutral
letter. There is hope to extend this method by fixing more inputs and thus
hopefully gaining more freedom in the choice of the letters. It is an open question
whether we can use such an extension to show that the bicycle is not in TC0

with linear wires.
Another way to prove this conjecture might be a combination of our approach

and the tools of communication complexity. This could be achieved by using
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Lemma 2 to limit the number of gates spanning to two different subsets of the
input to a constant number.
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