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Abstract. Groote and Zantema proved that a particular OBDD com-
putation of the pigeonhole formula has an exponential size and that lim-
ited OBDD derivations cannot simulate resolution polynomially. Here
we show that any arbitrary OBDD Apply refutation of the pigeonhole
formula has an exponential size: we prove that the size of one of the
intermediate OBDDs is at least §2(1.14™). We also present a family of
CNFs that require exponential increase for all OBDD refutations based
on Apply method to simulate unrestricted resolution refutation.

1 Introduction

The reason for this study comes from the interest in giving theoretical expla-
nations of the efficiency of algorithms for satisfiability testing. Many of these
algorithms are based either on resolution or on Ordered Binary Decision Dia-
grams (OBDDs).

The resolution rule in propositional logic is a single valid inference rule that
produces a new clause implied by two clauses containing complementary literals
[10]. When coupled with a complete search algorithm, the resolution rule yields
a sound and complete algorithm for deciding the satisfiability of a propositional
formula. This resolution technique uses proof by contradiction and is based on
the fact that any sentence in propositional logic can be transformed into an
equivalent sentence in Conjunctive Normal Form (CNF).

Presently, most of the state-of-the-art satisfiability solvers are based on the
DPLL which is a variant of resolution in combination with search. At the same
time resolution based solvers can be highly inefficient for solving some structured
problems and require time exponential in the size of an input instance. The most
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famous example of such CNF is the pigeonhole formula that formalizes a very
simple principle that n + 1 objects cannot be placed into n holes.

An OBDD, also referred as a Reduced OBDD (ROBDD) or just a BDD, is a
data structure that is used to represent Boolean functions [2,18]. OBDDs have
some interesting properties: they provide compact and canonic representations
of Boolean functions, and there are efficient algorithms for performing logical
operations on OBDDs. As a result, OBDDs have been successfully applied to a
wide variety of tasks, particularly in VLSI design and CAD verification.

The OBDD approaches for SAT solving can be divided into two groups:

(1) The first group is based on using Apply operator and is an explicit construc-
tion of an OBDD. Given an order on variables, an OBDD for the CNF is
built and then checked whether it is a terminal node 0.

(2) The second group utilizes symbolic quantifier elimination to extend the
Apply method by eliminating variables via the application of existential
quantifiers. It leads to significant speed up for curtain kinds of structured
instances. Thus, pigeonhole formulas require polynomial in n refutation size.

A proof system based on OBDDs was proposed by Atserias et al. [1]. The
authors introduce a very general proof system based on constraint propagation.
OBDDs are a special case of this proof system. Their proof system has four
rules: Axiom, Join, Projection, and Weakening. The first two rules, Axiom and Join,
correspond to an application of the Apply operator. Projection and Weakening are
introduced to reduce the size of intermediate OBDDs and where Projection rule
corresponds to an application of existential quantification. Hence, this proof
system contains lines that are OBDDs derived by any of the above rules. It was
shown that the OBDD proof system containing all four rules is strictly stronger
than resolution [1] but it is still exponential [8].

It was proven for the first time in [15] that OBDD proof systems with two
rules, Axiom and Join, i.e. corresponding to the Apply method have exponential
lower bound on refutations of the pigeonhole formula. However, the lower bound
£2(1.14™) presented in this paper is stricter in comparison with (2(1.025") in
[15]. We also demonstrate a family of CNFs that requires exponential increase
for all OBDD refutations based on Apply method, i.e. OBDD refutations with-
out existential quantification, to simulate unrestricted resolution refutation. The
formulas are the pigeonhole formulas extended with additional clauses as in [4].
These formulas are CNFs parameterized by n and have size O(n?). It is proven
that there is a resolution refutation for these formulas of size O(n*) [4]. We show
that an arbitrary OBDD Apply refutation has size 29(").

Related work. There have been done a lot of research on the relation of
different propositional proof systems [5,17] and, in particular, on the relation of
different forms of resolution and OBDDs [9, 14, 16].

In [6] Groote and Zantema proved that limited OBDD derivations cannot
simulate resolution refutations polynomially. The considered OBDD system joins
the clauses of a CNF in the order as they are listed, i.e. to build an OBDD for
C1 A (CaA\Cs), first an OBDD for Co ACj5 is built and then one for C; A(CaACs).
They present a lower bound for refutations of a formula of the form -z A (z A ),



where ¢ is a formula that is hard for both BDD and resolution. But this formula
is refuted trivially if to proceed it as (—~z A ) A .

In [3] a direct construction of polynomial size OBDD refutation of pigeonhole
formulas in presence of existential quantification is presented. Another interest-
ing result by Segerlind in [12] is that the OBDD derivations with the Axiom rule,
a tree-like application of the Join rule and the Projection rule cannot efficiently
simulate DAG-like resolution derivations.

Contribution. Our result differs with previous work in various ways. We
strengthen the result of [6]. In [6] the only OBDD computation of the pigeonhole
formulas considered that first computes the conjunction of all positive clauses,
then the conjunction of all negative clauses, and finally the conjunction of these
two. In our setting, the clauses of the pigeonhole formula may be processed in
any arbitrary order. We show that for any OBDD refutation of the pigeonhole
formula some of the intermediate OBDDs have size exponential in n. A con-
sequence of our result is that the gap between polynomial and exponential in
the OBDD refutation framework for pigeonhole formula is caused by existential
quantification, i.e. by Projection rule.

The difference with work in [12] is the following. We consider a weaker OBDD
proof system containing only two rules Axiom and Join. For this proof system
we show that an unrestricted application of it cannot simulate resolution poly-
nomially. At present it is not known whether there is an exponential separation
between tree-like and DAG-like OBDD proof systems based on the Apply method.
Therefore, we cannot say whether a tree-like proof system from [12] subsumes the
OBDD proof system considered in this paper. Still a direct proof of exponential
separation between an unrestricted OBDD Apply proof system and unrestricted
resolution is presented for the first time in this paper. Moreover, although for a
weaker proof system but we quantitatively improve the lower bounds on OBDD
refutations than presented in [11,12].

2 Propositional Proof Systems

We consider propositional formulas in Conjunctive Normal Form (CNFs). Basic
blocks for building CNFs are propositional variables that take the values false
or true. The set of propositional variables is denoted by Var. A literal is either
a variable x or its negation —z. A clause is a disjunction of literals, and a CNF
is a conjunction of clauses. By L we denote the empty clause. In the following,
for convenience, we consider clauses as sets of variables, and a CNF as a set of
clauses.

By Cls(¢) we denote the set of clauses contained in a CNF ¢ and by Var(p)
we denote the set of variables contained in the CNF ¢. By A : Var — {true, false}
we denote a function that assigns variables either to true or to false. We write
F [=p true if a CNF F takes a value true for an assignment A and F' = false
if F' takes a value false.



2.1 Resolution

The resolution principle, due to Robinson [10], is a method to construct proofs by
contradiction. The resolution rule produces a new clause implied by two clauses
containing complementary literals. The resulting clause contains all literals ex-
cept the complementary ones. Formally this can be presented as following.

CcCu{l} Du{~l}
CuUD

Thus, from clauses C' U {I} and D U {=l} a new clause C U D is derived.
A clause C' U D is called a resolvent of C'U {l} and D U {-l}. The resolution
proof rule defines a proof system in which there are no axiom schemata, and
only one proof rule, resolution. The proofs by resolution start with clauses of
the input CNF and derive new clauses until a contradiction which is expressed
as the empty clause is obtained.

Resolution:

Definition 1 (Resolution refutation). A resolution refutation of an unsat-
isfiable CNF ¢ is a sequence of CNFs ¢ = ¢q,¢1,.-.,0n with the following
properties.

- pi=pi1 U{C;}, i =1,...,n, where C; a resolvent of two clauses in p;_1.
— Yn=pn-1U L.
- 1L &y;,i=0,....,n—1.

We say that n is the size of the resolution refutation.

2.2 OBDDs as a Proof System

An Binary Decision Diagram (BDD) is a a rooted, directed, acyclic graph, which
consists of decision nodes and two terminal nodes 0 and 1. Each decision node
is labeled by a propositional variable from Var and has two child nodes called a
low child and a high child. The edge from a node to a low (high) child represents
an assignment of the variable to 0 (1). Such a BDD is called an ordered BDD
(OBDD) if different variables appear in the same order on all paths from the root.
Therefore, OBDDs assume that there is a total order < on the set of variables.

An OBDD is said to be reduced if the following two rules have been applied
to its graph: 1) merge isomorphic subgraphs; 2) eliminate any node whose two
children are isomorphic.

Reduced OBDDs have the following property: For a fixed order < on the set
of variables, every propositional formula ¢ is uniquely represented by a reduced
BDD B(y, <), and two formulas ¢ and 1 are equivalent if and only if B(p, <) =
B(vy), <).

Given a propositional formula ¢ and an order on variables <, we define the
size of an OBDD B(¢p, <) representing ¢ with respect to < as the number of its
internal nodes and denote it by size(B(p, <)).

In this paper we consider OBDDs as a propositional proof system. Since
we are dealing only with unsatisfiable CNFs, we give a definition of a OBDD
refutation adapting the definition from [3].



Definition 2 (OBDD refutation). Given a total order on variables <, a
OBDD refutation of an unsatisfiable CNF ¢ is a sequence of OBDDs

81(901, <)a LA} BH(SDTH <)

such that B, (on, <) is a OBDD representing the constant false and for each
Bi(pi, <), 1 <i<mn, exactly one of the following holds.

— (AXIOM) B;(p;, <) represents one of the clauses C' € p;
— (JOIN) there are OBDDs By (¢i, <) and By (@i, <) such that 1 < i’ <
1" < i and ©; = @i N .

We say that the size of the OBDD refutation is defined as Y., size(B;(;, <)).

When it is convenient, instead of B(p, <) we write B(y) or just B. By
Cls(B(¢)) we mean the set of clauses and by Var(B(y)) the set of variables
contained in ¢.

Ezample 1. Figure 1 depicts OBDD refutation of CNF o = (z VyV 2) A (—z V
y) A =y A =z for the order on variables < y < z. OBDDs a) — d) correspond
to applications of Axiom rule and OBDDs e) — g) correspond to applications of
Join rule.
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Fig. 1. OBDD refutation of ¢ = (z VyV 2) A (mz V y) A =y A =z for the order on
variables z < y < z.



The size of the minimal OBDD representing a propositional formula F' for a
given order on variables < is described by the structure theorem from [13].

Theorem 1 (Sieling and Wegener, 1993). Let m;, i < n, be the number of
subfunctions of a Boolean function f(x;,...,x,), which are obtained by replacing
the variables x1,...,x;—1 by constants and which depend essentially on x; (a
function f depends essentially on a variable y if fi,—o # fiy=1). Then a minimal
OBDD for f contains exactly m; nodes labelled x; which are reached for the
different subfunctions.

The above observation is very simple and helpful to prove lower bounds. In
this paper we use Theorem 2 which is a variant of Theorem 1 and was presented
in [6]. We use B = {0,1} to denote the set of Boolean constants.

Theorem 2. Suppose for a given formula ¢ the following holds:

~ Var(¢)| = n;

< is a total order on the set of variables Var(y);

— x1,...,%k are the smallest k elements with respect to < for some k < n;

- Ag {L"'?k};

- z=(24,...,2%) e B

— For all distinct @1, 7o € BF such that 2} = xb = 2 for all i ¢ A there
exists a y € B"F such that o(T'1,Y) # (T2, 7).

Then the size of the OBDD B(yp, <) is at least 2141

The proof of the lower bounds presented in Section 4 is based on Theorem
2. However, in order to obtain a lower bound we still have to solve some combi-
natorial problems.

3 Pigeonhole Formulas and Beyond

The pigeonhole formulas is a family of unsatisfiable CNFs parameterized by n.
They are often used as a standart benchmark for checking efficiency of (UN)SAT
algorithms. It is very easy to give an argument for unsatisfiability of these for-
mulas but most of the techniques need time exponential in n to produce a formal
proof of unsatisfiability.

In our paper we consider also another class of unsatisfiable CNFs that we
call as extended pigeonhole formulas. These formulas were introduced by Cook
in his paper on the extended resolution proof of the pigeonhole formulas [4].

3.1 Pigeonhole Formulas

The pigeonhole principle states that n holes can hold at most n objects with
one object in a hole. The propositional formulas describing this principle were
introduced as following. Atomic proposition F;; says that i is mapped to j,
and the set of clauses PHP,, states that there is a one-to-one map from the set
{1,...,n+ 1} to the set {1,...,n}.



Definition 3 (Pigeonhole Formulas). The pigeonhole formula PHP,, n > 0,
is defined as follows.

n+l n
PC.= ALV Pl NCo= A [FPi V=P,
i=1 j=1 1<i<j<n+1

1<k<n

PHP,, = PC,, ANGC,,.

The formula PC,, states that at least one variable is true in all n + 1 rows
and the formula NC,, states that at most one variable is true in all n columns.

These formulas were studied intensively in relation to complexity of different
propositional proof systems, and in particular, it has been proved in [7] that
every resolution proof for PHP,, has size exponential in n.

3.2 Extended Pigeonhole Formulas

Years before a proof of an exponential low bound on resolution refutation for
the pigeonhole formulas was found by Haken, Cook showed that there exists a
short proof of PHP,, with extended resolution of size polynomial in n [4]. The
idea of Cook was to define new variables Q;; as Qi; = Pij V (Pin A Pog1,5),
1<i<n,1<j<n-—1and to describe this equivalence by the set Q,, of the
following clauses.

(1) Qij V Py,

(2) Qij V ~Pin V =Pri1,,
(3) =Qij V Pij V Py,
(4)

4 _(QH\V}%jV/ﬁ n+1,5-
Following the idea of Cook we define extended pigeonhole formulas.

Definition 4 (Extended Pigeonhole Formulas). The extended pigeonhole
formula EPHP,, for n > 1 is defined as EPHP,, = PHP, A /\;l:1 EC., where

P) = Py and clauses EC!, constructed as follows.

(1) EC, = A 1<k<n—1, [PEV-P5TY,
1<i<n—k+1,
1<j<n—k

(2) EC2 = N\ 1<k<n—1, [Pz]; Vit ¥ ﬁPvlztll,j]’
1<i<n—k+1,
1<j<n—k
(8) EC2 = N\ 1<k<n_1, [PtV Pi?l v PE,
1<i<n—k+1,
1<j<n—k
(4) EC,, = A\ 1<k<n—1, [FP5V PET Vv PIL.
1<i<n—k+1,
1<j<n—k



The resulting EPHP,, formula has interesting properties. It is constructed by
adding 4n(n—1)(n—+1)/3 new clauses to PHP,,. Hence, it is a simple unsatisfiable
CNF with size polynomial in n. There is a resolution refutation of EPHP,, with
size O(n*) [4]. But, as we prove in Section 5, all OBDD refutations of EPHP,,
have size exponential in n. Moreover, for each OBDD refutation of EPHP,, there
is a corresponding OBDD refutation of PHP,, such that lower bound on the
OBDD proof of EPHP,, is not smaller than lower bound on the OBDD proof of
PHP,,.

Theorem 3 (Cook). There is a resolution refutation of EPHP,, n > 1, of size
O(n%).

We present here a proof of the above theorem because it is missing in the
original paper and we think that it is of interest itself. In our proof we follow
the idea from [4] that from EPHP,, one can derive the clauses PHP,,_; in O(n?)
resolution steps.

Proof (Proof of Theorem 3). The proof has the following steps.

(1) Show that Q;1 V-V Qin_1, 1 <i<mn, can be derived from PHP,, and the
set of clauses Q,, in O(n) resolution steps.

(2) Show that =Qir V =Qjk, 1 <i < j<mn,1<k<n-—1,can be derived from
PHP,, and the set of clauses Q,, in O(n?) resolution steps.

After repeating the above steps n— 1 times one produces the set of clauses PHP;
from which the empty clause can be derived in two resolution steps. It results in
a resolution refutation of size O(n?). The size of the refutation can be expressed
alternatively as O(N%/3), where N is a number of clauses in EPHP,,.

(1) We show how to derive Qi1 V- -+ V Q; n—2 from PHP,, and the set of clauses
Qn.
(@) Qi1 V-V Qin-1V P, is derived from Py V-V P, ,, and Q;; V —P;;.
®) Qi1 V- VQin-1V-Pyi1j, 1 <j<n-—1,is derived from (a) and
Qij V P, VP 4.
(¢c) PV Poy11 V-V Pyy1p_1 is derived from P,y11 V-V Pyy1, and
P, vV jP’rH-l,n-

(d) Pog11V-VPug1n-1VQi1 V-V Qin_ is derived from (a) and (c).
(e) Qi1 V-V Qjn_2 is derived from (b) and (d).

(2) We show how —Q;x V =Qjx can be derived from PHP,, and the set of clauses
Q. in O(n?) resolution steps.

(a) “Qik \/ﬁij VPpi1kis derived from — Py VP, and ~Q;x V Pik V Ppi1,k
and —|ij \Y ij V PnJrLk.

(b) Qi V ﬁij V —Pj, is derived from (a) and — Py, V ﬁPn-‘,—l,k-

(C) Qi V ﬁij V ﬁij is derived from (a) and — ik V ﬁPn-‘,—l,k-



) —Qir V Qi V Py is derived from (b) and Qi V Pt V Piy,.
() Qix V —Qjr V Pjp is derived from (c) and —Q;x V Pjr V Pjy.
(£) =Qir V ~Qjr V —Pj, is derived from (d) and =P, V =Pjs,.

) —Qir V =Q;y is derived from (e) and (f).

Hence, we have shown the correctness of the theorem by presenting the resolution
steps. O

4 Technical Background

In this section we introduce notations and technical lemmas that will be used
throughout the paper. Some combinatorial properties of square matrices are
presented in Lemma 1. Lemma 2 generalizes a well-known fact about binary
trees claiming the existence of subtrees with a weight lying between a and 2a for
any definition of weight as a sum of the weights of its leaves.

4.1 Notations

The variables of the pigeonhole formula can be seen as entries of a matrix with
n + 1 rows and n columns. We denote such a matrix by Matrix(PHP,,), where
the i-th row corresponds to the clause \/?:1 P;;. For each row in Matrix(PHP,,)
there is a corresponding clause in PC,, and vice versa, therefore, if it is needed,
we can refer to a row as to a clause.

Let S~ denote a set containing the [n?/2] smallest elements of Var(PC}),
where < is a given order on variables and PC, is obtained from PC,, by removing
an arbitrary clause. And Sy = Var(PHP,,)\S~. We denote by S* and by S} the
following sets:

§% = {Pup € Var(PHP,,) | Pop < max Py} and ST = Var(PHP,)\S”.
cd €O <

Suppose B1,...,B; is an OBDD refutation on PHP,,. Then for each B; we
define _ _ _
5!, = S% NVar(B;) and S = Var(B;)\S™.

Moreover, we define

Cls"“9(B;) = Cls(B;) N Cls(NC,,) and Cls?**(B;) = Cls(B;) N Cls(PC,,).

4.2 Technical Lemmas

Lemma 1 was presented for the first time in [15], but with a smaller coefficient
c= % — % 2 =~ 0.146. This lemma is of interest from a point of view of Ramsey
Theory that typically asks questions of the form: How many elements of some
structure must there be to guarantee that a particular property will hold?
Groote and Zantema in [6] considered an n X m matrix containing entries

equally colored white and black and proved that such a matrix has either ﬁ(n—



1)/2 rows or v/2(m — 1)/2 columns containing both a black and a white entry.
Lemma 1 presents another combinatorial property of a matrix containing entries
equally colored white and black. In comparison with [15] we present another proof

that gives us a better ¢ = % — i 5 ~ 0.19098.

Lemma 1. Consider a matriz M = {m;;},1 <i<n,1<j < n. Let the matriz
entries be colored equally white and black, i.e. the difference between the number
of white entries and the number of black entries is at most one. Let m = |cn]
for c= % — % 5~ 0.19098. Then at least one of the following holds.

— One can choose m rows, and in every of these rows a white and a black entry,
such that all these 2m entries are in different columns.

— One can choose m columns, and in every of these columns a white and a
black entry, such that all these 2m entries are in different rows.

Proof. Starting by the given matrix repeat the following process as long as pos-
sible.

Choose a row in the matrix containing both a white and a black entry.
Remove both the column containing the white entry and the column
containing the black entry.

Assume this repetition stops after k steps. Write « = k/n. If > ¢ the first
property of the lemma holds and we are done. In the remaining case we have
x < c. We assume that the second property of the lemma does not hold, and
then we will derive a contradiction.

The remaining matrix consists of n rows of n(1 — 2z) entries, where the an
chosen rows are mixed, and the others either only consists of white entries or
only of black entries. Assume that pn of these rows are totally white and gn of
these rows are totally black. The p + ¢ = 1 — z. Assume that in the zn chosen
rows there are in total axn? white entries and bxn? black entries. So the the
total number of these entries is (a + b)zn? = (1 — 22)an?,s0 a +b =1—2z. All
of these numbers z,p, ¢, a, b are reals in the interval [0, 1]. The total number of
white entries in the the remaining matrix is p(1 —2z)n? + azn? Since this should
be less then n?/2, we obtain

1
p(1—2z)+azx < 3
and similarly ¢(1 — 2z) + bz < 3 for the black entries.

Now assume that ¢ > ¢ and p + a > ¢. We will construct at least m = |en|
columns. For the first an choose a white entry from a mixed row and a black
entry in the same column from a full black row. This can be repeated at least an
times. Then the process is continued by choosing pn entries from the full white
rows. Since ¢ > ¢ and p + a > ¢ we have chosen at least ¢n columns in this
way, yielding the second property of the lemma. Since we assume this second
property does not hold, we conclude

g<cVp+a<ec.



By symmetry we similarly obtain p < ¢V ¢ 4+ b < ¢. Since the combination of
g < cand p < ¢ can not occur due to z < ¢ < .2 and p+ g = 1 — z, we either
have p+a < cor ¢+ b < c¢. By symmetry we may assume without loss of
generality that p + a < ¢. Now substitutingb=1—-2z —acandg=1—x —pin
q(1 —22) + bz < % we obtain

(1—x—p)(1—2x)+(1—2x—a)x<%

hence
1
1—p+(2p—a—2)x<§.

Since z < ¢ and 2p —a — 2 < 0, we conclude
1
1-p+2p—a—-2)c< 3
Since p + a < ¢ we conclude
1
1-p+Bp—c—2)c< 3
hence 1 — ¢ — 2¢ — p(1 — 3c) < 1. Since ¢ > p and 1 — 3¢ > 0 this yields

)

1
5=2c2—3c+1:1—c2—2c—c(1—3c)<

N =

contradiction, using ¢ = % — i\/g O

By fine-tuning the argument the constant ¢ in Lemma 1 can be improved.
We conjecture that it also holds for ¢ = 1 — %\/5 ~ 0.293. Choosing the n x n
matrix in which the left upper k x k-square is black for k ~ \% and the rest is
white, one observes that this value will be sharp. As our main result involves an
exponential lower bound, we do not focus on the precise optimal value of c.

Example 2. Consider a square 7 x 7 matrix with 24 black and 25 white entries.
For this example there are three rows such that one can pick up one black and
one white entry in each row in such a way that all entries are in different columns.
At the same time Lemma 1 gives us much lower but a guaranteed bound.

The OBDD representing an unsatisfiable CNF is just a terminal node 0.
Therefore, we have to show that for an arbitrary order on variables and an arbi-
trary way to combine clauses there is an intermediate OBDD of a size exponen-
tial in n. Hence, we start by the simple observations describing some properties
of intermediate OBDDs. And the following lemma generalizes a well-known fact
about binary trees claiming the existence of subtrees with a weight lying between
a and 2a.

Lemma 2. Let C be a finite set, R C C with |R| > 2, and By,...,B; C C a
sequence with:



C00@O®
ceoQee
000000
C00000O0O
ool JeoJel@le
0000 0@®O

o) oI JeoJe

O @ O O

Fig. 2. An example of a 7 x 7 matrix with entries equally colored black and white.

1. B =C
2. For each B; (1 <1i <1), either B; =0, B; = {c} force€ C, or B; = B;UBy,
for some j, k with j < k < i.

Then, for each a with ﬁ <a< %, there is a j <l such that
a|R| < |B;j N R| < 2al|R).

Proof. We give a proof by contradiction. Suppose, for each B, either |B;NR| <
alR| or |B;j N R| > 2a|R)|.

As BN R = CNR =R, the inequality |B; N R| > 2a|R)| holds for the final
element B; of the sequence. On the other hand, for singletons B; = {c}, we
have [BjNR| = 0 < a|R| for ¢ ¢ R, and |B;NR| =1 < a|R| for ¢ € R, as
a > 1/|R|. Moreover, for B; = (}, | B; N R| < a|R| obviously holds. Following now
the predecessors of B; (via the construction by set union) in the sequence B;
backwards, we finally arrive at an index k for which the following holds:

— |Bx N R| > 2a|R|, and
— By = By U By, where |Bk/ n R| < a|R| and |Bk// n R| < a|R|

As BLNR = (Bk/ @] Bk//) NR= (Bk/ n R) @] (Bk// n R), and thus |Bk n R| <
|Bir N R| + | Bk N R| < 2a|R)|, we arrive at a contradiction to |Bx N R| > 2a|R|.
O

Lemma 3. Suppose Bq,...,B; is an OBDD refutation either on PHP,, or on
EPHP,, and R C Cls(PC,,) with |R| > 4. Then there is an i <l such that

|R|/4 < |CIs(B;) N R| < |R|/2.
Proof. Follows directly from Lemma 2. a

Let By,...,B; be an OBDD refutation either on PHP,, or on EPHP,,. For
each ¢ <[, we define J; as follows:

Ji = {] S {1,...,71} | da, b : -P,; VP, € C|S(BZ) & P, € S< & Py € S}}



Lemma 4. Suppose Bq,...,B; is an OBDD refutation either on PHP,, or on
EPHP,, for a total order on variables <. Let G C {1,...,n} such that |G| > 4.
Then there is an i <l such that

G|/4 < |J:in G| < |G|/2.

Proof. Follows from Lemma 2, using C = {1,...,n}, R = G, a = 1/4, and
Ji,...,J; for the sequence (B;)1<i<;, for which the precondition of Lemma 2
holds, as is easily checked. O

5 Exponential Lower Bound on OBDD Refutations of
PHP,, and EPHP,,

In this section we prove lower bounds on OBDD refutations of the pigeonhole
formula PHP,, and related extended pigeonhole formula EPHP,. We start by
proving lower bound for PHP,, and the proof of lower bound for EPHP,, is a
direct consequence of it.

5.1 Lower Bound on OBDD Refutations of PHP,,

Our proof of lower bound on OBDD refutations of PHP,, is based on Theorem
2 and Lemmas 1-4. Before presenting the details of a formal proof we start with
an example to give an intuition behind.

Example 8. Let us consider PHP,4. This formula can be presented with a 5 x 4
matrix, as for example in Figure 3.

Fig. 3. A 5 x 4 matrix for PHP5. The black and the white entries represent elements
from the sets S< and Sy correspondingly.

Suppose one of the intermidiate OBDDs is an OBDD depicted in Figure 4

and it represents
3 4

/\[\/ P;;] A [mPag V —Pa4],

i=2 j=1

where Py; < P31 < P39 < Py < Pog < P33 < Poy < Pay.



Fig. 4. An OBDD for /\?:2[\/?:1 Pij] A\ [—|P24 Vv —|P34], where Po; < P31 < P3s < Py <
Pz < P33 < Poy < P3y.

Our proofs of lower bounds on OBDD refutations are based on Theorem 2.
Hence, we need to choose set A satisfying the theorem conditions. For this we
use Lemma 1. The black and white entries represent elements of sets S~ and
S, correspondingly. We collect the black entries satisfying Lemma 1 in A. The
white entries satisfying Lemma 1 are used to prove the conditions of Theorem
2.

We apply Lemma 1 and Theorem 2 to this example and collect the vari-
ables P»; and P35 in A. According Theorem 2 the size of the OBDD is at least
oH{P21. P52}l — 4 For this particular example the size of the OBDD is much larger.
This raises an open question whether lower bounds presented in this paper can
be improved.

Lemma 5. Let By,...,B; be an OBDD refutation of PHP,, and < be an order
on variables. Assume that there are two sets, a set R of rows and a set ST of
entries of Matrix(PC,,) such that the following holds:

— For each v € R there are Pyrq, P,y € ST such that P, € S~ and Py € S,
— For distinct Py, P.q € ST, b #d.

Then there is an i <l such that

size(B;) > 218/4,



Proof. Let for 1 <i <1, _
R =CIs(B;) N R.

We apply Lemma 3. Thus we know that there is an ¢ < [ such that
|R|/4 < |R'| <[R|/2,

and we get _
2|R'|+ 1< |R|.

Taking it into account, we compute

8 (Bl < (n+1) = (R - |R)
(n+1) = (IR +1) - |Ri)

=n—|R|.

<
<

We denote R? = Cls”*(B;)\R’. By definition R? C Cls"**(B;). Hence, we obtain
|[RT| = |CIs"*(By)| — |R'|
<n—2|R'|.

For each row r € R’ we fix an entry that is in the set S.. We collect these
elements in the set A. For each row r € R' we also fix an entry that is in S
and collect these elements in the set Y. Suppose

RC={j|3i:P; e AUY}.
Since the set of rows R’ satisfies Lemma 1, we get
|R¢| = 2|RY).
Let J =n —|R°|. Then we obtain
J=n—2|RY

and o
|Ri < [J].

Taking into account [Ri| < |.J|, for each row in R we fix one entry, collect these
entries in the set X. We require the following.

— for distinct Py, P.q € X, b # d;
— for each Py, € X, b ¢ R°.

We define
X< :S: ﬂX, and X} = S:ﬁX

We apply Lemma 2 on '
k= |Sl<|’



where S% = S* NVar(B;). Let for j =1,...,k,

o 1, if Zj € X<
A 0, otherwise

Choose distinct 2, 7" € B¥ such that z; = 2 = z; for all z; ¢ A. Then there
is j’ such that z; # z,. Let Y = (Yk+1,---,Yq), where ¢ = |Var(B;)|, be the
vector defined for y; € Y by

~_ J0,if y; is in the same row as w;/
Yi = 1, otherwise

and for y; € Y by

o 1, if Y; € X
Yi = 0, otherwise

Hence, the subset of clauses represented by B; evaluates to x; for the assignment
(@', 7y) and to 2, for the assignment (7', y). Taking into account that |A| >
|R|/4, by Theorem 2, we obtain

size(B;) > 2141 > ol El/4,
O

Lemma 6. Let By,...,B; be an OBDD refutation of PHP,, and < be a given
order on variables. Assume that there is a set Q of columns and a set S of
entries of Matrix(PHP,,) such that the following holds:

— For each g € Q there are Pyy, Pyg € S® such that Pog € S5 and Py € S,
— For distinct Py, Pog € S9, a # c.

Then there is an i <l such that
size(B;) > 2/@1/4,
Proof. Let
Qf=1{j|3a,b:-P,; v-Py; €Cls(B;) & P,; € S5 & P,; € S.-}.
By Lemma 4, there is an ¢ < [ such that
Ql/4A < Q] < 1QI/2.

For each column in Q¢ we fix one entry that is in the set S~ and collect these
elements in A. For each column in Q¢ we also fix one entry that is in the set S,
and collect these elements in the set Y. Let

QT:{Z|3jPlJ€AUY}

Suppose o
o =Q\Qr



Then we get o
Q°>1Q1/2.
For each j € Q¢ we fix Py, j, Py,j € S, where P,,j € S< and Py,; € S.. We
collect Py ; in X and we collect P, ; in X, for all j € Q¢. We define
Qr={a|3:Pypec X UX, }.
By Lemma 1 all entries collected in Q" are from different rows. Hence, we obtain
Q7| = 2/Q7.
Taking into account that Q¢ > |Q|/2, we get
Q> Q|
and since Q" is a natural number we get

Q> 1Q|+1.
We denote o
Q* = Cls?”*(B;)\Q".
No restrictions are posed on the size of the set Cls"**(B;). Hence,
1 <|CIs?”(B;)| < n+ 1.
We take into account that [Q"| > |Q| + 1 and compute
Q< (n+1)— Q"]
<(n+1)-(Q[+1)
=n—|Q|.
We define J = {j |Ja : Py; € Var(PHP,,) & j ¢ Q}. Then

[Jl=n—1Ql.
Therefore,
Q[ < |J].
We take into account |Q*| < |J| and for each row r € @* we fix one entry and
collect these entries in the set . We require the following:

— for distinct Py, Peg € W, b # d;
— for each Py, € W, b ¢ Q°.

We apply Lemma 2 on _
k= |SE<|’
where S, = S% U Var(B;). We denote W< = S, N W and W, = S N W. For
j=1,...,k we define
A 0, otherwise



Choose 7', 7’ € B such that 7 # 7' and z; = 2/, = z; for all z; ¢ A.
Since x # &’ there is a j’ such that x; # 2/,. Let ¥ = (yks1,---,Yq), Where
q = |Var(B;)|, be the vector defined for y; € Y by

<

~_ J 1,if y; is in the same column as x;:
Yi = 0, otherwise

and for y; € Y by
Yi = 0, otherwise
Hence, the subset of clauses represented by B; evaluates to —x; for the assign-

ment (7, 7y) and to -z, for the assignment (z”, /). Taking into account that
|A| > |Q|/4, by Theorem 2 we obtain

size(B;) > 2lAl > 9lQl/4
O

Theorem 4. For every order < on the set of variables, the size of each OBDD
refutation of PHP,, is 29(")

Proof. Let n > 20, and By,...,B; be a OBDD refutation of PHP,,. We prove
that for an arbitrary total order on variables < there is ¢ < [ such that

size(B;) > 23 —3VH)/4 5 1 147,

Hence, the size of an arbitrary OBDD refutation on PHP,, is 2(") First we
apply Lemma 1 to the matrix representing PC}, where PC}, is obtained from

no

PC,, by removing one (arbitrary) clause. Then one of the following holds.

(1) There is a set of [n(2 — 2v/5)| rows (we denote this set by R) and there
is a set of 2|n(2 — 11/5)] entries (we denote this set by S%) such that the

following holds:

e For each r € R there are P.q, Pry € ST such that P, € S and Py, € S,
o For distinct P, P.g € S, b # d.

(2) There is a set of [n(2 — 21/5)] columns (we denote this set by @) and there

is a set containing 2|n(3 — 1v/5)] entries (we denote this set by S%) such

that the following holds:
e For each ¢ € Q there are P, , P,y € S such that P,, € S< and Py, € S .
e For distinct Py, P.g € S9, a # c.

We obtain by Lemma 5 in the first case
size(B;) > 9lRI/4 2"(%_iﬁ)/4’
and by Lemma 6 in the second case

3__1

size(B;) > 21QI/4 = on(G-3V5)/4,

From this we conclude that an arbitrary OBDD refutation of PHP,, has size
exponential in n. O



5.2 Lower Bound on OBDD Refutations of EPHP,,

In this section we give a formal proof that an arbitrary OBDD refutation of
EPHP,, has a lower bound exponential in n.

Theorem 5. For every order < on the set of variables, the size of each OBDD
refutation of EPHP,, is 22(7),

First we need to prove intermidiate lemmas.

Lemma 7. Let F' and G be CNF's such that F C PHP, and G C /\411 EC..
Assume that A : Var — {true,false} is an assignment of variables such that
F |=4 true. Then there is an assignment A’ : Var — {true,false} such that for
each P;; € Var(F), A'(P;;) = A(Pij) and F UG =4/ true.

Proof. Tt follows straightforwardly from the construction of /\‘11 EC. O
Lemma 8. Let FF C PHP,, G C /\41l EC;. Then for any order on variables <
size(B(F'U G, <)) > size(B(F, <)).

Proof. Our proof is based on Theorem 1. It is sufficient to show that if B(F, <)
has k nodes labeled with a variable P;; then B(F U G, <) has at least k nodes
labeled with P;;. To prove this we need to show the following.

(1) If there is a node in B(F, <) labeled with a variable P;; then there is a
corresponding node in B(F U G, <) labeled with P;;.

(2) For two distinct nodes in B(F, <) labeled with a variable P;; there are two
distinct nodes in B(F' U G) labeled with P;;.

Now we prove the above statements.

(1) Suppose ni € B(F, <) is labeled with a variable P,;. Then the sub-OBDDs
rooted at the left child and the right child of the node are not isomorphic and
therefore cannot be merged. It follows from Lemma 7 that there is a node
ny € B(F UG, <) labeled with P;; such that the sub-OBDDs rooted at the
left child and the right child of this node are not isomorphic and therefore
cannot be merged. Hence, there is a node in B(F U G, <) labeled with a
variable F;;.

(2) Let nq1,n} € B(F, <) be distinct nodes labeled with a variable P;;. Using the
same arguments as in (1) and Lemma 7 we conclude that there are distinct
nodes ng,n5 € B(F UG, <) labeled with a variable P;;.

By Theorem 1, we conclude that size(B(F U G, <)) > size(B(F, <)). O

Now we are ready to give a proof of Theorem 5.



Proof (Proof of Theorem 5). Let n > 20, and By, ..., B; be an OBDD refutation
of EPHP,,. Similar to the proof of Theorem 4 we show that for an arbitrary total
order on variables < there is an ¢ < [ such that

size(B;) > 9n(§-3V5)/4,

We apply Lemma 1 to the matrix representing PC),, and then one of the following
holds.

(1) There is a set of [n(2 — 1v/5)] rows (we denote this set by R) and there
is a set of 2|n(2 — 1/5)] entries (we denote this set by S¥) such that the
following holds:

e Foreach r € R there are P,o, Py € ST such that P,, € S_ and Py € Sy
o For distinct P, P.g € S, b # d.

(2) There is a set of [n(2 — 2v/5)] columns (we denote this set by Q) and there

is a set containing 2|n(3 — 1v/5)] entries (we denote this set by S%) such

that the following holds:
e For each q € Q there are P,,, Py, € S9 such that P,, € S~ and P, € S .
e For distinct Py, P.g € S9, a # c.

For each ¢ < | we denote by B} the OBDD representing Cls(B;) NCls(PHP,,) with
the same order on variables <. We conclude by Lemmas 5 and 8 in case (1) that
there is an ¢ < [ such that

size(B;) > size(B}) > 2!BI/4 = gn(3-3V5)/4,
and by Lemmas 6 and 8 in case (2) that there is an ¢ < [ such that
size(B;) > size(B¥) > 2/Ql/4 = gn(§-3v5)/4,

Hence, for an arbitrary OBDD refutation of EPHP,, there is an intermidiate
OBDD with size exponential in n. O

6 Unrestricted OBDDs Do not Simulate Resolution
Polynomially

The above observations establish that unrestricted OBDD proof system without
existential quantification cannot simulate unrestricted resolution proofs polyno-
mially. In particular, there are contradictory CNFs for which there is a resolution
refutation exponentially stronger than any OBDD refutation containing only two
rules, Axiom and Join.

Theorem 6. There is a sequence of contradictory CNFs p;, i > 0, of size
O(N®\Y) for which there is a resolution refutation of size O(N) and an arbi-

trary OBDD refutation has size 22N,

Proof. Let ¢; be EPHP; and N = n*\3, Then the size of ¢; is O(N>\*) and by
Theorems 3 and 4 there is a resolution refutation of size O(N) and an arbitrary
OBDD refutation has size 22(V"""). O



7 Conclusions and Future Research

One of the results of the paper is a class of CNFs that for infinitely many values of
N has a resolution refutation of size O(N), and an arbitrary OBDD Apply refu-
tation of these formulas has size at least 22(N"*"). This extends earlier work on
comparison of OBDD-based proof systems and resolution-based systems in the
following ways.

(1) An exponential separation between a particular OBDD proof system and
resolution is presented in [6]. The problem whether there are CNFs of size
O(N) that have resolution refutation of size polynomial in N and an ar-
bitrary refutation for a more efficient OBDD Apply proof system, like for
example the one in [19], has size at least exponential in N was open in [6].
In comparison with [6], we considered a stronger OBDD proof system that
allows clauses to be proceed in an arbitrary order. In this paper we solved
the above open problem by presenting a class of formulas that are easy for
resolution and hard for an arbitrary OBDD Apply method.

(2) We have improved from 1.025%() to 1.14°(") lower bound on OBDD refu-
tations of PHP,, presented in [15] .

(2) The main open question in [11] is to improve lower bound on arbitrary OBDD

refutations by increasing the constant in the 2() of the 2( VN/InN) Thig
constant is extremely small and it is below 2759, We considered a family of
CNPFs that have a higher lower bound on OBDD refutations. But the OBDD
proof system we considered is less strong than the one in [11].

(3) A lot of research has been done on exponential lower bounds on the sizes of
OBDDs for Boolean functions. But most of the methods to obtain such lower
bounds are based on one-way communication complexity and the results
from monotone circuits complexity. Clearly, solving structured combinatorial
problems in style of Ramsey Theory may lead to new approaches for proving
lower bounds.

Still some interesting questions related to comparison of OBDD-based and
resolution-based proof systems remain unsolved. It is shown in [6] that bicon-
ditional formulas have short OBDD proofs and after transforming them into
CNFs they requires exponentially long resolution proofs. But OBDD proofs of
the transformed formulas need exponential size OBDD proofs. For OBDD meth-
ods that allow existential quantification we know that there are formulas that
have polynomial size OBDD refutation [3] and resolution refutation of exponen-
tial size, i.e. this proof system is stronger than any form of resolution. An open
question is whether the OBDD Apply methods can be simulated by resolution
polynomially.

Another not solved problem is to give a proof of the tight constant in Lemma,
1. The constant ¢ can be improved, and we conjecture that the lemma also holds
forc=1-— ; V2 & 0.293. Although, it is very easy to give an intuitive explanation
why it holds, a precise proof is still needed. Such a proof would result in a better
lower bound on OBDD refutations presented in this paper.
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