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famous example of suh CNF is the pigeonhole formula that formalizes a verysimple priniple that n+ 1 objets annot be plaed into n holes.An OBDD, also referred as a Redued OBDD (ROBDD) or just a BDD, is adata struture that is used to represent Boolean funtions [2, 18℄. OBDDs havesome interesting properties: they provide ompat and anoni representationsof Boolean funtions, and there are e�ient algorithms for performing logialoperations on OBDDs. As a result, OBDDs have been suessfully applied to awide variety of tasks, partiularly in VLSI design and CAD veri�ation.The OBDD approahes for SAT solving an be divided into two groups:(1) The �rst group is based on using Apply operator and is an expliit onstru-tion of an OBDD. Given an order on variables, an OBDD for the CNF isbuilt and then heked whether it is a terminal node 0.(2) The seond group utilizes symboli quanti�er elimination to extend theApply method by eliminating variables via the appliation of existentialquanti�ers. It leads to signi�ant speed up for urtain kinds of struturedinstanes. Thus, pigeonhole formulas require polynomial in n refutation size.A proof system based on OBDDs was proposed by Atserias et al. [1℄. Theauthors introdue a very general proof system based on onstraint propagation.OBDDs are a speial ase of this proof system. Their proof system has fourrules: Axiom, Join, Projetion, andWeakening. The �rst two rules, Axiom and Join,orrespond to an appliation of the Apply operator. Projetion andWeakening areintrodued to redue the size of intermediate OBDDs and where Projetion ruleorresponds to an appliation of existential quanti�ation. Hene, this proofsystem ontains lines that are OBDDs derived by any of the above rules. It wasshown that the OBDD proof system ontaining all four rules is stritly strongerthan resolution [1℄ but it is still exponential [8℄.It was proven for the �rst time in [15℄ that OBDD proof systems with tworules, Axiom and Join, i.e. orresponding to the Apply method have exponentiallower bound on refutations of the pigeonhole formula. However, the lower bound
Ω(1.14n) presented in this paper is striter in omparison with Ω(1.025n) in[15℄. We also demonstrate a family of CNFs that requires exponential inreasefor all OBDD refutations based on Apply method, i.e. OBDD refutations with-out existential quanti�ation, to simulate unrestrited resolution refutation. Theformulas are the pigeonhole formulas extended with additional lauses as in [4℄.These formulas are CNFs parameterized by n and have size O(n3). It is proventhat there is a resolution refutation for these formulas of size O(n4) [4℄. We showthat an arbitrary OBDD Apply refutation has size 2Ω(n).Related work. There have been done a lot of researh on the relation ofdi�erent propositional proof systems [5, 17℄ and, in partiular, on the relation ofdi�erent forms of resolution and OBDDs [9, 14, 16℄.In [6℄ Groote and Zantema proved that limited OBDD derivations annotsimulate resolution refutations polynomially. The onsidered OBDD system joinsthe lauses of a CNF in the order as they are listed, i.e. to build an OBDD for
C1∧(C2∧C3), �rst an OBDD for C2∧C3 is built and then one for C1∧(C2∧C3).They present a lower bound for refutations of a formula of the form ¬x∧(x∧ϕ),



where ϕ is a formula that is hard for both BDD and resolution. But this formulais refuted trivially if to proeed it as (¬x ∧ x) ∧ ϕ.In [3℄ a diret onstrution of polynomial size OBDD refutation of pigeonholeformulas in presene of existential quanti�ation is presented. Another interest-ing result by Segerlind in [12℄ is that the OBDD derivations with the Axiom rule,a tree-like appliation of the Join rule and the Projetion rule annot e�ientlysimulate DAG-like resolution derivations.Contribution. Our result di�ers with previous work in various ways. Westrengthen the result of [6℄. In [6℄ the only OBDD omputation of the pigeonholeformulas onsidered that �rst omputes the onjuntion of all positive lauses,then the onjuntion of all negative lauses, and �nally the onjuntion of thesetwo. In our setting, the lauses of the pigeonhole formula may be proessed inany arbitrary order. We show that for any OBDD refutation of the pigeonholeformula some of the intermediate OBDDs have size exponential in n. A on-sequene of our result is that the gap between polynomial and exponential inthe OBDD refutation framework for pigeonhole formula is aused by existentialquanti�ation, i.e. by Projetion rule.The di�erene with work in [12℄ is the following. We onsider a weaker OBDDproof system ontaining only two rules Axiom and Join. For this proof systemwe show that an unrestrited appliation of it annot simulate resolution poly-nomially. At present it is not known whether there is an exponential separationbetween tree-like and DAG-like OBDD proof systems based on the Applymethod.Therefore, we annot say whether a tree-like proof system from [12℄ subsumes theOBDD proof system onsidered in this paper. Still a diret proof of exponentialseparation between an unrestrited OBDD Apply proof system and unrestritedresolution is presented for the �rst time in this paper. Moreover, although for aweaker proof system but we quantitatively improve the lower bounds on OBDDrefutations than presented in [11, 12℄.2 Propositional Proof SystemsWe onsider propositional formulas in Conjuntive Normal Form (CNFs). Basibloks for building CNFs are propositional variables that take the values falseor true. The set of propositional variables is denoted by Var. A literal is eithera variable x or its negation ¬x. A lause is a disjuntion of literals, and a CNFis a onjuntion of lauses. By ⊥ we denote the empty lause. In the following,for onveniene, we onsider lauses as sets of variables, and a CNF as a set oflauses.By Cls(ϕ) we denote the set of lauses ontained in a CNF ϕ and by Var(ϕ)we denote the set of variables ontained in the CNF ϕ. By A : Var → {true, false}we denote a funtion that assigns variables either to true or to false. We write
F |=A true if a CNF F takes a value true for an assignment A and F |=A falseif F takes a value false.



2.1 ResolutionThe resolution priniple, due to Robinson [10℄, is a method to onstrut proofs byontradition. The resolution rule produes a new lause implied by two lausesontaining omplementary literals. The resulting lause ontains all literals ex-ept the omplementary ones. Formally this an be presented as following.Resolution: C ∪ {l} D ∪ {¬l}
C ∪DThus, from lauses C ∪ {l} and D ∪ {¬l} a new lause C ∪ D is derived.A lause C ∪ D is alled a resolvent of C ∪ {l} and D ∪ {¬l}. The resolutionproof rule de�nes a proof system in whih there are no axiom shemata, andonly one proof rule, resolution. The proofs by resolution start with lauses ofthe input CNF and derive new lauses until a ontradition whih is expressedas the empty lause is obtained.De�nition 1 (Resolution refutation). A resolution refutation of an unsat-is�able CNF ϕ is a sequene of CNFs ϕ ≡ ϕ0, ϕ1, . . . , ϕn with the followingproperties.� ϕi ≡ ϕi−1 ∪ {Ci}, i = 1, . . . , n, where Ci a resolvent of two lauses in ϕi−1.� ϕn ≡ ϕn−1 ∪ ⊥.� ⊥ 6∈ ϕi, i = 0, . . . , n− 1.We say that n is the size of the resolution refutation.2.2 OBDDs as a Proof SystemAn Binary Deision Diagram (BDD) is a a rooted, direted, ayli graph, whihonsists of deision nodes and two terminal nodes 0 and 1. Eah deision nodeis labeled by a propositional variable from Var and has two hild nodes alled alow hild and a high hild. The edge from a node to a low (high) hild representsan assignment of the variable to 0 (1). Suh a BDD is alled an ordered BDD(OBDD) if di�erent variables appear in the same order on all paths from the root.Therefore, OBDDs assume that there is a total order ≺ on the set of variables.An OBDD is said to be redued if the following two rules have been appliedto its graph: 1) merge isomorphi subgraphs; 2) eliminate any node whose twohildren are isomorphi.Redued OBDDs have the following property: For a �xed order ≺ on the setof variables, every propositional formula ϕ is uniquely represented by a reduedBDD B(ϕ,≺), and two formulas ϕ and ψ are equivalent if and only if B(ϕ,≺) =B(ψ,≺).Given a propositional formula ϕ and an order on variables ≺, we de�ne thesize of an OBDD B(ϕ,≺) representing ϕ with respet to ≺ as the number of itsinternal nodes and denote it by size(B(ϕ,≺)).In this paper we onsider OBDDs as a propositional proof system. Sinewe are dealing only with unsatis�able CNFs, we give a de�nition of a OBDDrefutation adapting the de�nition from [3℄.



De�nition 2 (OBDD refutation). Given a total order on variables ≺, aOBDD refutation of an unsatis�able CNF ϕ is a sequene of OBDDsB1(ϕ1,≺), . . . ,Bn(ϕn,≺)suh that Bn(ϕn,≺) is a OBDD representing the onstant false and for eahBi(ϕi,≺), 1 ≤ i ≤ n, exatly one of the following holds.� (AXIOM) Bi(ϕi,≺) represents one of the lauses C ∈ ϕ;� (JOIN) there are OBDDs Bi′(ϕi′ ,≺) and Bi′′ (ϕi′′ ,≺) suh that 1 ≤ i′ <
i′′ < i and ϕi = ϕi′ ∧ ϕi′′ .We say that the size of the OBDD refutation is de�ned as ∑n

i=1 size(Bi(ϕi,≺)).When it is onvenient, instead of B(ϕ,≺) we write B(ϕ) or just B. ByCls(B(ϕ)) we mean the set of lauses and by Var(B(ϕ)) the set of variablesontained in ϕ.Example 1. Figure 1 depits OBDD refutation of CNF ϕ ≡ (x ∨ y ∨ z) ∧ (¬x ∨
y) ∧ ¬y ∧ ¬z for the order on variables x ≺ y ≺ z. OBDDs a) − d) orrespondto appliations of Axiom rule and OBDDs e)− g) orrespond to appliations ofJoin rule.
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0Fig. 1. OBDD refutation of ϕ ≡ (x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ ¬y ∧ ¬z for the order onvariables x ≺ y ≺ z.



The size of the minimal OBDD representing a propositional formula F for agiven order on variables ≺ is desribed by the struture theorem from [13℄.Theorem 1 (Sieling and Wegener, 1993). Let mi, i < n, be the number ofsubfuntions of a Boolean funtion f(xi, . . . , xn), whih are obtained by replaingthe variables x1, . . . , xi−1 by onstants and whih depend essentially on xi (afuntion f depends essentially on a variable y if f|y=0 6= f|y=1). Then a minimalOBDD for f ontains exatly mi nodes labelled xi whih are reahed for thedi�erent subfuntions.The above observation is very simple and helpful to prove lower bounds. Inthis paper we use Theorem 2 whih is a variant of Theorem 1 and was presentedin [6℄. We use B = {0, 1} to denote the set of Boolean onstants.Theorem 2. Suppose for a given formula ϕ the following holds:� |Var(ϕ)| = n;� ≺ is a total order on the set of variables Var(ϕ);� x1, . . . , xk are the smallest k elements with respet to ≺ for some k < n;� A ⊆ {1, . . . , k};� z = (z1, . . . , zk) ∈ Bk.� For all distint −→x 1,
−→x 2 ∈ Bk suh that xi

1 = xi
2 = zi for all i 6∈ A thereexists a −→y ∈ Bn−k suh that ϕ(−→x 1,

−→y ) 6= ϕ(−→x 2,
−→y ).Then the size of the OBDD B(ϕ,≺) is at least 2|A|.The proof of the lower bounds presented in Setion 4 is based on Theorem2. However, in order to obtain a lower bound we still have to solve some ombi-natorial problems.3 Pigeonhole Formulas and BeyondThe pigeonhole formulas is a family of unsatis�able CNFs parameterized by n.They are often used as a standart benhmark for heking e�ieny of (UN)SATalgorithms. It is very easy to give an argument for unsatis�ability of these for-mulas but most of the tehniques need time exponential in n to produe a formalproof of unsatis�ability.In our paper we onsider also another lass of unsatis�able CNFs that weall as extended pigeonhole formulas. These formulas were introdued by Cookin his paper on the extended resolution proof of the pigeonhole formulas [4℄.3.1 Pigeonhole FormulasThe pigeonhole priniple states that n holes an hold at most n objets withone objet in a hole. The propositional formulas desribing this priniple wereintrodued as following. Atomi proposition Pij says that i is mapped to j,and the set of lauses PHPn states that there is a one-to-one map from the set

{1, . . . , n+ 1} to the set {1, . . . , n}.



De�nition 3 (Pigeonhole Formulas). The pigeonhole formula PHPn, n > 0,is de�ned as follows.PCn =
n+1
∧
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[
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[¬Pi,k ∨ ¬Pj,k],PHPn = PCn ∧ NCn.The formula PCn states that at least one variable is true in all n + 1 rowsand the formula NCn states that at most one variable is true in all n olumns.These formulas were studied intensively in relation to omplexity of di�erentpropositional proof systems, and in partiular, it has been proved in [7℄ thatevery resolution proof for PHPn has size exponential in n.3.2 Extended Pigeonhole FormulasYears before a proof of an exponential low bound on resolution refutation forthe pigeonhole formulas was found by Haken, Cook showed that there exists ashort proof of PHPn with extended resolution of size polynomial in n [4℄. Theidea of Cook was to de�ne new variables Qij as Qij ≡ Pij ∨ (Pin ∧ Pn+1,j),
1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 and to desribe this equivalene by the set Qn of thefollowing lauses.(1) Qij ∨ ¬Pij ,(2) Qij ∨ ¬Pin ∨ ¬Pn+1,j ,(3) ¬Qij ∨ Pij ∨ ¬Pin,(4) ¬Qij ∨ Pij ∨ ¬Pn+1,j .Following the idea of Cook we de�ne extended pigeonhole formulas.De�nition 4 (Extended Pigeonhole Formulas). The extended pigeonholeformula EPHPn for n > 1 is de�ned as EPHPn = PHPn ∧ ∧4
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The resulting EPHPn formula has interesting properties. It is onstruted byadding 4n(n−1)(n+1)/3 new lauses to PHPn. Hene, it is a simple unsatis�ableCNF with size polynomial in n. There is a resolution refutation of EPHPn withsize O(n4) [4℄. But, as we prove in Setion 5, all OBDD refutations of EPHPnhave size exponential in n. Moreover, for eah OBDD refutation of EPHPn thereis a orresponding OBDD refutation of PHPn suh that lower bound on theOBDD proof of EPHPn is not smaller than lower bound on the OBDD proof ofPHPn.Theorem 3 (Cook). There is a resolution refutation of EPHPn, n > 1, of size
O(n4).We present here a proof of the above theorem beause it is missing in theoriginal paper and we think that it is of interest itself. In our proof we followthe idea from [4℄ that from EPHPn one an derive the lauses PHPn−1 in O(n3)resolution steps.Proof (Proof of Theorem 3). The proof has the following steps.(1) Show that Qi1 ∨ · · · ∨Qi,n−1, 1 ≤ i ≤ n, an be derived from PHPn and theset of lauses Qn in O(n) resolution steps.(2) Show that ¬Qik ∨ ¬Qjk, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n− 1, an be derived fromPHPn and the set of lauses Qn in O(n2) resolution steps.After repeating the above steps n−1 times one produes the set of lauses PHP1from whih the empty lause an be derived in two resolution steps. It results ina resolution refutation of size O(n4). The size of the refutation an be expressedalternatively as O(N4/3), where N is a number of lauses in EPHPn.(1) We show how to derive Qi1 ∨ · · · ∨Qi,n−2 from PHPn and the set of lauses

Qn.(a) Qi1 ∨ · · · ∨Qi,n−1 ∨ Pi,n is derived from Pi1 ∨ · · · ∨ Pi,n and Qij ∨ ¬Pij .(b) Qi1 ∨ · · · ∨ Qi,n−1 ∨ ¬Pn+1,j , 1 ≤ j ≤ n − 1, is derived from (a) and
Qij ∨ ¬Pin ∨ ¬Pn+1,j .() ¬Pi,n ∨Pn+1,1 ∨ · · · ∨Pn+1,n−1 is derived from Pn+1,1 ∨ · · · ∨Pn+1,n and
¬Pin ∨ ¬Pn+1,n.(d) Pn+1,1 ∨ · · · ∨ Pn+1,n−1 ∨Qi1 ∨ · · · ∨Qi,n−1 is derived from (a) and (c).(e) Qi1 ∨ · · · ∨Qi,n−2 is derived from (b) and (d).(2) We show how ¬Qik ∨¬Qjk an be derived from PHPn and the set of lauses

Qn in O(n2) resolution steps.(a) ¬Qik∨¬Qjk∨Pn+1,k is derived from ¬Pik∨¬Pjk and ¬Qik∨Pik∨Pn+1,kand ¬Qjk ∨ Pjk ∨ Pn+1,k.(b) ¬Qik ∨ ¬Qjk ∨ ¬Pik is derived from (a) and ¬Pik ∨ ¬Pn+1,k.() ¬Qik ∨ ¬Qjk ∨ ¬Pjk is derived from (a) and ¬Pjk ∨ ¬Pn+1,k.



(d) ¬Qik ∨ ¬Qjk ∨ Pin is derived from (b) and ¬Qik ∨ Pik ∨ Pin.(e) ¬Qik ∨ ¬Qjk ∨ Pj,n is derived from (c) and ¬Qik ∨ Pjk ∨ Pjn.(f) ¬Qik ∨ ¬Qjk ∨ ¬Pjn is derived from (d) and ¬Pin ∨ ¬Pjn.(g) ¬Qik ∨ ¬Qjk is derived from (e) and (f).Hene, we have shown the orretness of the theorem by presenting the resolutionsteps. ⊓⊔4 Tehnial BakgroundIn this setion we introdue notations and tehnial lemmas that will be usedthroughout the paper. Some ombinatorial properties of square matries arepresented in Lemma 1. Lemma 2 generalizes a well-known fat about binarytrees laiming the existene of subtrees with a weight lying between a and 2a forany de�nition of weight as a sum of the weights of its leaves.4.1 NotationsThe variables of the pigeonhole formula an be seen as entries of a matrix with
n + 1 rows and n olumns. We denote suh a matrix by Matrix(PHPn), wherethe i-th row orresponds to the lause ∨n

j=1 Pij . For eah row in Matrix(PHPn)there is a orresponding lause in PCn and vie versa, therefore, if it is needed,we an refer to a row as to a lause.Let S≺ denote a set ontaining the ⌊n2/2⌋ smallest elements of Var(PC∗
n),where ≺ is a given order on variables and PC∗

n is obtained from PCn by removingan arbitrary lause. And S≻ = Var(PHPn)\S≺. We denote by S∗
≺ and by S∗

≻ thefollowing sets:
S∗
≺ = {Pab ∈ Var(PHPn) | Pab � max

Pcd∈S≺

Pcd} and S∗
≻ = Var(PHPn)\S∗

≺.Suppose B1, . . . ,Bl is an OBDD refutation on PHPn. Then for eah Bi wede�ne
Si
≺ = S∗

≺ ∩ Var(Bi) and Si
≻ = Var(Bi)\Si

≺.Moreover, we de�neClsneg(Bi) = Cls(Bi) ∩ Cls(NCn) and Clspos(Bi) = Cls(Bi) ∩ Cls(PCn).4.2 Tehnial LemmasLemma 1 was presented for the �rst time in [15℄, but with a smaller oe�ient
c = 1

2 − 1
4

√
2 ≈ 0.146. This lemma is of interest from a point of view of RamseyTheory that typially asks questions of the form: How many elements of somestruture must there be to guarantee that a partiular property will hold?Groote and Zantema in [6℄ onsidered an n × m matrix ontaining entriesequally olored white and blak and proved that suh a matrix has either √2(n−



1)/2 rows or √2(m − 1)/2 olumns ontaining both a blak and a white entry.Lemma 1 presents another ombinatorial property of a matrix ontaining entriesequally olored white and blak. In omparison with [15℄ we present another proofthat gives us a better c = 3
4 − 1

4

√
5 ≈ 0.19098.Lemma 1. Consider a matrixM = {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Let the matrixentries be olored equally white and blak, i.e. the di�erene between the numberof white entries and the number of blak entries is at most one. Let m = ⌊cn⌋for c = 3

4 − 1
4

√
5 ≈ 0.19098. Then at least one of the following holds.� One an hoose m rows, and in every of these rows a white and a blak entry,suh that all these 2m entries are in di�erent olumns.� One an hoose m olumns, and in every of these olumns a white and ablak entry, suh that all these 2m entries are in di�erent rows.Proof. Starting by the given matrix repeat the following proess as long as pos-sible.Choose a row in the matrix ontaining both a white and a blak entry.Remove both the olumn ontaining the white entry and the olumnontaining the blak entry.Assume this repetition stops after k steps. Write x = k/n. If x ≥ c the �rstproperty of the lemma holds and we are done. In the remaining ase we have

x < c. We assume that the seond property of the lemma does not hold, andthen we will derive a ontradition.The remaining matrix onsists of n rows of n(1 − 2x) entries, where the xnhosen rows are mixed, and the others either only onsists of white entries oronly of blak entries. Assume that pn of these rows are totally white and qn ofthese rows are totally blak. The p + q = 1 − x. Assume that in the xn hosenrows there are in total axn2 white entries and bxn2 blak entries. So the thetotal number of these entries is (a+ b)xn2 = (1− 2x)xn2, so a+ b = 1− 2x. Allof these numbers x, p, q, a, b are reals in the interval [0, 1]. The total number ofwhite entries in the the remaining matrix is p(1−2x)n2 +axn2 Sine this shouldbe less then n2/2, we obtain
p(1 − 2x) + ax <

1

2
,and similarly q(1 − 2x) + bx < 1

2 for the blak entries.Now assume that q ≥ c and p + a ≥ c. We will onstrut at least m = ⌊cn⌋olumns. For the �rst an hoose a white entry from a mixed row and a blakentry in the same olumn from a full blak row. This an be repeated at least antimes. Then the proess is ontinued by hoosing pn entries from the full whiterows. Sine q ≥ c and p + a ≥ c we have hosen at least cn olumns in thisway, yielding the seond property of the lemma. Sine we assume this seondproperty does not hold, we onlude
q < c ∨ p+ a < c.



By symmetry we similarly obtain p < c ∨ q + b < c. Sine the ombination of
q < c and p < c an not our due to x < c < .2 and p + q = 1 − x, we eitherhave p + a < c or q + b < c. By symmetry we may assume without loss ofgenerality that p+ a < c. Now substituting b = 1 − 2x− a and q = 1 − x− p in
q(1 − 2x) + bx < 1

2 we obtain
(1 − x− p)(1 − 2x) + (1 − 2x− a)x <

1

2hene
1 − p+ (2p− a− 2)x <

1

2
.Sine x < c and 2p− a− 2 < 0, we onlude

1 − p+ (2p− a− 2)c <
1

2
.Sine p+ a < c we onlude

1 − p+ (3p− c− 2)c <
1

2
,hene 1 − c2 − 2c− p(1 − 3c) < 1

2 . Sine c > p and 1 − 3c > 0 this yields
1

2
= 2c2 − 3c+ 1 = 1 − c2 − 2c− c(1 − 3c) <

1

2
,ontradition, using c = 3

4 − 1
4

√
5. ⊓⊔By �ne-tuning the argument the onstant c in Lemma 1 an be improved.We onjeture that it also holds for c = 1 − 1

2

√
2 ≈ 0.293. Choosing the n × nmatrix in whih the left upper k × k-square is blak for k ≈ n√

2
and the rest iswhite, one observes that this value will be sharp. As our main result involves anexponential lower bound, we do not fous on the preise optimal value of c.Example 2. Consider a square 7 × 7 matrix with 24 blak and 25 white entries.For this example there are three rows suh that one an pik up one blak andone white entry in eah row in suh a way that all entries are in di�erent olumns.At the same time Lemma 1 gives us muh lower but a guaranteed bound.The OBDD representing an unsatis�able CNF is just a terminal node 0.Therefore, we have to show that for an arbitrary order on variables and an arbi-trary way to ombine lauses there is an intermediate OBDD of a size exponen-tial in n. Hene, we start by the simple observations desribing some propertiesof intermediate OBDDs. And the following lemma generalizes a well-known fatabout binary trees laiming the existene of subtrees with a weight lying betweena and 2a.Lemma 2. Let C be a �nite set, R ⊆ C with |R| ≥ 2, and B1, . . . , Bl ⊆ C asequene with:



Fig. 2. An example of a 7 × 7 matrix with entries equally olored blak and white.1. Bl = C2. For eah Bi (1 ≤ i ≤ l), either Bi = ∅, Bi = {c} for c ∈ C, or Bi = Bj ∪Bkfor some j, k with j < k < i.Then, for eah a with 1
|R| < a ≤ 1

2 , there is a j < l suh that
a|R| ≤ |Bj ∩R| < 2a|R|.Proof. We give a proof by ontradition. Suppose, for eah Bj , either |Bj ∩R| <

a|R| or |Bj ∩R| ≥ 2a|R|.As Bl ∩ R = C ∩ R = R, the inequality |Bl ∩ R| ≥ 2a|R| holds for the �nalelement Bl of the sequene. On the other hand, for singletons Bj = {c}, wehave |Bj ∩ R| = 0 < a|R| for c /∈ R, and |Bj ∩ R| = 1 < a|R| for c ∈ R, as
a > 1/|R|. Moreover, for Bi = ∅, |Bi ∩R| < a|R| obviously holds. Following nowthe predeessors of Bl (via the onstrution by set union) in the sequene Bibakwards, we �nally arrive at an index k for whih the following holds:� |Bk ∩R| ≥ 2a|R|, and� Bk = Bk′ ∪Bk′′ , where |Bk′ ∩R| < a|R| and |Bk′′ ∩R| < a|R|.As Bk ∩ R = (Bk′ ∪ Bk′′ ) ∩ R = (Bk′ ∩ R) ∪ (Bk′′ ∩ R), and thus |Bk ∩ R| ≤
|Bk′ ∩R|+ |Bk′′ ∩R| < 2a|R|, we arrive at a ontradition to |Bk ∩R| ≥ 2a|R|.

⊓⊔Lemma 3. Suppose B1, . . . ,Bl is an OBDD refutation either on PHPn or onEPHPn and R ⊆ Cls(PCn) with |R| ≥ 4. Then there is an i < l suh that
|R|/4 ≤ |Cls(Bi) ∩R| < |R|/2.Proof. Follows diretly from Lemma 2. ⊓⊔Let B1, . . . ,Bl be an OBDD refutation either on PHPn or on EPHPn. Foreah i ≤ l, we de�ne Ji as follows:

Ji = {j ∈ {1, . . . , n} | ∃a, b : ¬Paj ∨ ¬Pbj ∈ Cls(Bi) & Paj ∈ S≺ & Pbj ∈ S≻}.



Lemma 4. Suppose B1, . . . ,Bl is an OBDD refutation either on PHPn or onEPHPn for a total order on variables ≺. Let G ⊆ {1, . . . , n} suh that |G| ≥ 4.Then there is an i < l suh that
|G|/4 ≤ |Ji ∩G| < |G|/2.Proof. Follows from Lemma 2, using C = {1, . . . , n}, R = G, a = 1/4, and

J1, . . . , Jl for the sequene (Bi)1≤i≤l, for whih the preondition of Lemma 2holds, as is easily heked. ⊓⊔5 Exponential Lower Bound on OBDD Refutations ofPHPn and EPHPnIn this setion we prove lower bounds on OBDD refutations of the pigeonholeformula PHPn and related extended pigeonhole formula EPHPn. We start byproving lower bound for PHPn and the proof of lower bound for EPHPn is adiret onsequene of it.5.1 Lower Bound on OBDD Refutations of PHPnOur proof of lower bound on OBDD refutations of PHPn is based on Theorem2 and Lemmas 1-4. Before presenting the details of a formal proof we start withan example to give an intuition behind.Example 3. Let us onsider PHP4. This formula an be presented with a 5 × 4matrix, as for example in Figure 3.
Fig. 3. A 5 × 4 matrix for PHP5. The blak and the white entries represent elementsfrom the sets S≺ and S≻ orrespondingly.Suppose one of the intermidiate OBDDs is an OBDD depited in Figure 4and it represents
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∧

i=2

[

4
∨

j=1

Pij ] ∧ [¬P24 ∨ ¬P34],where P21 ≺ P31 ≺ P32 ≺ P22 ≺ P23 ≺ P33 ≺ P24 ≺ P34.
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0 1Fig. 4. An OBDD for V
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i=2
[
W

4

j=1
Pij ]∧ [¬P24 ∨¬P34], where P21 ≺ P31 ≺ P32 ≺ P22 ≺

P23 ≺ P33 ≺ P24 ≺ P34.Our proofs of lower bounds on OBDD refutations are based on Theorem 2.Hene, we need to hoose set A satisfying the theorem onditions. For this weuse Lemma 1. The blak and white entries represent elements of sets S≺ and
S≻ orrespondingly. We ollet the blak entries satisfying Lemma 1 in A. Thewhite entries satisfying Lemma 1 are used to prove the onditions of Theorem2. We apply Lemma 1 and Theorem 2 to this example and ollet the vari-ables P21 and P32 in A. Aording Theorem 2 the size of the OBDD is at least
2|{P21,P32}| = 4. For this partiular example the size of the OBDD is muh larger.This raises an open question whether lower bounds presented in this paper anbe improved.Lemma 5. Let B1, . . . ,Bl be an OBDD refutation of PHPn and ≺ be an orderon variables. Assume that there are two sets, a set R of rows and a set SR ofentries of Matrix(PCn) suh that the following holds:� For eah r ∈ R there are Pra, Prb ∈ SR suh that Pra ∈ S≺ and Prb ∈ S≻.� For distint Pab, Pcd ∈ SR, b 6= d.Then there is an i < l suh thatsize(Bi) ≥ 2|R|/4.



Proof. Let for 1 ≤ i ≤ l,
Ri = Cls(Bi) ∩R.We apply Lemma 3. Thus we know that there is an i < l suh that

|R|/4 ≤ |Ri| < |R|/2,and we get
2|Ri| + 1 ≤ |R|.Taking it into aount, we ompute

|Clspos(Bi)| ≤ (n+ 1) − (|R| − |Ri|)
≤ (n+ 1) − ((2|Ri| + 1) − |Ri|)
= n− |Ri|.We denote Ri = Clspos(Bi)\Ri. By de�nition Ri ⊆ Clspos(Bi). Hene, we obtain

|Ri| = |Clspos(Bi)| − |Ri|
≤ n− 2|Ri|.For eah row r ∈ Ri we �x an entry that is in the set S≺. We ollet theseelements in the set A. For eah row r ∈ Ri we also �x an entry that is in S≻and ollet these elements in the set Y . Suppose

Rc = {j | ∃i : Pij ∈ A ∪ Y }.Sine the set of rows Ri satis�es Lemma 1, we get
|Rc| = 2|Ri|.Let J = n− |Rc|. Then we obtain
J = n− 2|Ri|and
|Ri| ≤ |J |.Taking into aount |Ri| ≤ |J |, for eah row in Ri we �x one entry, ollet theseentries in the set X . We require the following.� for distint Pab, Pcd ∈ X , b 6= d;� for eah Pab ∈ X , b 6∈ Rc.We de�ne

X≺ = S∗
≺ ∩X, and X≻ = S∗

≻ ∩X.We apply Lemma 2 on
k = |Si

≺|,



where Si
≺ = S∗

≺ ∩ Var(Bi). Let for j = 1, . . . , k,
zj =

{

1, if zj ∈ X≺
0, otherwiseChoose distint −→x ,−→x ′ ∈ Bk suh that xj = x′j = zj for all zj 6∈ A. Then thereis j′ suh that xj′ 6= x′j′ . Let −→y = (yk+1, . . . , yq), where q = |Var(Bi)|, be thevetor de�ned for yj ∈ Y by

yj =

{

0, if yj is in the same row as xj′

1, otherwiseand for yj 6∈ Y by
yj =

{

1, if yj ∈ X≻
0, otherwiseHene, the subset of lauses represented by Bi evaluates to xj′ for the assignment

(−→x ,−→y ) and to x′j′ for the assignment (−→x ′,−→y ). Taking into aount that |A| ≥
|R|/4, by Theorem 2, we obtainsize(Bi) ≥ 2|A| ≥ 2|R|/4.

⊓⊔Lemma 6. Let B1, . . . , Bl be an OBDD refutation of PHPn and ≺ be a givenorder on variables. Assume that there is a set Q of olumns and a set SQ ofentries of Matrix(PHPn) suh that the following holds:� For eah q ∈ Q there are Paq, Pbq ∈ SQ suh that Paq ∈ S≺ and Pbq ∈ S≻.� For distint Pab, Pcd ∈ SQ, a 6= c.Then there is an i < l suh thatsize(Bi) ≥ 2|Q|/4.Proof. Let
Qc

i = {j | ∃a, b : ¬Paj ∨ ¬Pbj ∈ Cls(Bi) & Paj ∈ S≺ & Pbj ∈ S≻}.By Lemma 4, there is an i < l suh that
|Q|/4 ≤ |Qc| < |Q|/2.For eah olumn in Qc we �x one entry that is in the set S≺ and ollet theseelements in A. For eah olumn in Qc we also �x one entry that is in the set S≻and ollet these elements in the set Y . Let

Qr = {i | ∃j : Pij ∈ A ∪ Y }.Suppose
Qc = Q\Qc

i .



Then we get
Qc > |Q|/2.For eah j ∈ Qc we �x Pajj , Pbjj ∈ SQ, where Pajj ∈ S≺ and Pbjj ∈ S≻. Weollet Pajj in X≺ and we ollet Pbjj in X≻ for all j ∈ Qc. We de�ne

Qr = {a | ∃b : Pab ∈ X≺ ∪X≻}.By Lemma 1 all entries olleted in Qr are from di�erent rows. Hene, we obtain
|Qr| = 2|Qc|.Taking into aount that Qc > |Q|/2, we get
Qr > |Q|and sine Qr is a natural number we get

Qr ≥ |Q| + 1.We denote
Q∗ = Clspos(Bi)\Qr.No restritions are posed on the size of the set Clspos(Bi). Hene,

1 ≤ |Clspos(Bi)| ≤ n+ 1.We take into aount that |Qr| ≥ |Q| + 1 and ompute
|Q∗| ≤ (n+ 1) − |Qr|

≤ (n+ 1) − (|Q| + 1)

= n− |Q|.We de�ne J = {j |∃a : Paj ∈ Var(PHPn) & j 6∈ Q}. Then
|J | = n− |Q|.Therefore,
|Q∗| ≤ |J |.We take into aount |Q∗| ≤ |J | and for eah row r ∈ Q∗ we �x one entry andollet these entries in the set W . We require the following:� for distint Pab, Pcd ∈W , b 6= d;� for eah Pab ∈W , b 6∈ Qc.We apply Lemma 2 on
k = |Si

≺|,where Si
≺ = S∗

≺ ∪ Var(Bi). We denote W≺ = Si
≺ ∩W and W≻ = Si

≻ ∩W . For
j = 1, . . . , k we de�ne

zj =

{

1, if zj ∈ X≺ ∪W≺
0, otherwise



Choose −→x ,−→x ′ ∈ Bk suh that −→x 6= −→x ′ and xj = x′j = zj for all zj 6∈ A.Sine x 6= x′ there is a j′ suh that xj′ 6= x′j′ . Let −→y = (yk+1, . . . , yq), where
q = |Var(Bi)|, be the vetor de�ned for yj ∈ Y by

yj =

{

1, if yj is in the same olumn as xj′

0, otherwiseand for yj 6∈ Y by
yj =

{

1, if yj ∈ X≻ ∪W≻
0, otherwiseHene, the subset of lauses represented by Bi evaluates to ¬xj′ for the assign-ment (−→x ,−→y ) and to ¬x′j′ for the assignment (−→x ′,−→y ). Taking into aount that

|A| ≥ |Q|/4, by Theorem 2 we obtainsize(Bi) ≥ 2|A| ≥ 2|Q|/4.

⊓⊔Theorem 4. For every order ≺ on the set of variables, the size of eah OBDDrefutation of PHPn is 2Ω(n).Proof. Let n > 20, and B1, . . . ,Bl be a OBDD refutation of PHPn. We provethat for an arbitrary total order on variables ≺ there is i ≤ l suh thatsize(Bi) ≥ 2n( 3

4
− 1

4

√
5)/4 > 1.14n.Hene, the size of an arbitrary OBDD refutation on PHPn is 2Ω(n). First weapply Lemma 1 to the matrix representing PC∗

n, where PC∗
n is obtained fromPCn by removing one (arbitrary) lause. Then one of the following holds.(1) There is a set of ⌊n(3

4 − 1
4

√
5)⌋ rows (we denote this set by R) and thereis a set of 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SR) suh that thefollowing holds:

• For eah r ∈ R there are Pra, Prb ∈ SR suh that Pra ∈ S≺ and Prb ∈ S≻.
• For distint Pab, Pcd ∈ SR, b 6= d.(2) There is a set of ⌊n(3

4 − 1
4

√
5)⌋ olumns (we denote this set by Q) and thereis a set ontaining 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SQ) suhthat the following holds:

• For eah q ∈ Q there are Paq, Pbq ∈ SQ suh that Paq ∈ S≺ and Pbq ∈ S≻.
• For distint Pab, Pcd ∈ SQ, a 6= c.We obtain by Lemma 5 in the �rst asesize(Bi) ≥ 2|R|/4 = 2n( 3

4
− 1

4

√
5)/4,and by Lemma 6 in the seond asesize(Bi) ≥ 2|Q|/4 = 2n( 3

4
− 1

4

√
5)/4.From this we onlude that an arbitrary OBDD refutation of PHPn has sizeexponential in n. ⊓⊔



5.2 Lower Bound on OBDD Refutations of EPHPnIn this setion we give a formal proof that an arbitrary OBDD refutation ofEPHPn has a lower bound exponential in n.Theorem 5. For every order ≺ on the set of variables, the size of eah OBDDrefutation of EPHPn is 2Ω(n).First we need to prove intermidiate lemmas.Lemma 7. Let F and G be CNFs suh that F ⊂ PHPn and G ⊆ ∧4
1 ECi

n.Assume that A : Var → {true, false} is an assignment of variables suh that
F |=A true. Then there is an assignment A′ : Var → {true, false} suh that foreah Pij ∈ Var(F ), A′(Pij) = A(Pij) and F ∪G |=A′ true.Proof. It follows straightforwardly from the onstrution of ∧4

1 ECi
n. ⊓⊔Lemma 8. Let F ⊆ PHPn, G ⊆ ∧4

1 ECi
n. Then for any order on variables ≺size(B(F ∪G,≺)) ≥ size(B(F,≺)).Proof. Our proof is based on Theorem 1. It is su�ient to show that if B(F,≺)has k nodes labeled with a variable Pij then B(F ∪ G,≺) has at least k nodeslabeled with Pij . To prove this we need to show the following.(1) If there is a node in B(F,≺) labeled with a variable Pij then there is aorresponding node in B(F ∪G,≺) labeled with Pij .(2) For two distint nodes in B(F,≺) labeled with a variable Pij there are twodistint nodes in B(F ∪G) labeled with Pij .Now we prove the above statements.(1) Suppose n1 ∈ B(F,≺) is labeled with a variable Pij . Then the sub-OBDDsrooted at the left hild and the right hild of the node are not isomorphi andtherefore annot be merged. It follows from Lemma 7 that there is a node

n2 ∈ B(F ∪G,≺) labeled with Pij suh that the sub-OBDDs rooted at theleft hild and the right hild of this node are not isomorphi and thereforeannot be merged. Hene, there is a node in B(F ∪ G,≺) labeled with avariable Pij .(2) Let n1, n
′
1 ∈ B(F,≺) be distint nodes labeled with a variable Pij . Using thesame arguments as in (1) and Lemma 7 we onlude that there are distintnodes n2, n

′
2 ∈ B(F ∪G,≺) labeled with a variable Pij .By Theorem 1, we onlude that size(B(F ∪G,≺)) ≥ size(B(F,≺)). ⊓⊔Now we are ready to give a proof of Theorem 5.



Proof (Proof of Theorem 5). Let n > 20, and B1, . . . ,Bl be an OBDD refutationof EPHPn. Similar to the proof of Theorem 4 we show that for an arbitrary totalorder on variables ≺ there is an i < l suh thatsize(Bi) ≥ 2n( 3

4
− 1

4

√
5)/4.We apply Lemma 1 to the matrix representing PC∗

n, and then one of the followingholds.(1) There is a set of ⌊n(3
4 − 1

4

√
5)⌋ rows (we denote this set by R) and thereis a set of 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SR) suh that thefollowing holds:

• For eah r ∈ R there are Pra, Prb ∈ SR suh that Pra ∈ S≺ and Prb ∈ S≻.
• For distint Pab, Pcd ∈ SR, b 6= d.(2) There is a set of ⌊n(3

4 − 1
4

√
5)⌋ olumns (we denote this set by Q) and thereis a set ontaining 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SQ) suhthat the following holds:

• For eah q ∈ Q there are Paq, Pbq ∈ SQ suh that Paq ∈ S≺ and Pbq ∈ S≻.
• For distint Pab, Pcd ∈ SQ, a 6= c.For eah i < l we denote by B∗

i the OBDD representing Cls(Bi)∩Cls(PHPn) withthe same order on variables ≺. We onlude by Lemmas 5 and 8 in ase (1) thatthere is an i < l suh thatsize(Bi) ≥ size(B∗
i ) ≥ 2|R|/4 = 2n( 3

4
− 1

4

√
5)/4,and by Lemmas 6 and 8 in ase (2) that there is an i < l suh thatsize(Bi) ≥ size(B∗

i ) ≥ 2|Q|/4 = 2n( 3

4
− 1

4

√
5)/4.Hene, for an arbitrary OBDD refutation of EPHPn there is an intermidiateOBDD with size exponential in n. ⊓⊔6 Unrestrited OBDDs Do not Simulate ResolutionPolynomiallyThe above observations establish that unrestrited OBDD proof system withoutexistential quanti�ation annot simulate unrestrited resolution proofs polyno-mially. In partiular, there are ontraditory CNFs for whih there is a resolutionrefutation exponentially stronger than any OBDD refutation ontaining only tworules, Axiom and Join.Theorem 6. There is a sequene of ontraditory CNFs ϕi, i > 0, of size

O(N3\4) for whih there is a resolution refutation of size O(N) and an arbi-trary OBDD refutation has size 2Ω(N3\4).Proof. Let ϕi be EPHPi and N = n4\3. Then the size of ϕi is O(N3\4) and byTheorems 3 and 4 there is a resolution refutation of size O(N) and an arbitraryOBDD refutation has size 2Ω(N3\4). ⊓⊔



7 Conlusions and Future ResearhOne of the results of the paper is a lass of CNFs that for in�nitely many values of
N has a resolution refutation of size O(N), and an arbitrary OBDD Apply refu-tation of these formulas has size at least 2Ω(N3\4). This extends earlier work onomparison of OBDD-based proof systems and resolution-based systems in thefollowing ways.(1) An exponential separation between a partiular OBDD proof system andresolution is presented in [6℄. The problem whether there are CNFs of size

O(N) that have resolution refutation of size polynomial in N and an ar-bitrary refutation for a more e�ient OBDD Apply proof system, like forexample the one in [19℄, has size at least exponential in N was open in [6℄.In omparison with [6℄, we onsidered a stronger OBDD proof system thatallows lauses to be proeed in an arbitrary order. In this paper we solvedthe above open problem by presenting a lass of formulas that are easy forresolution and hard for an arbitrary OBDD Apply method.(2) We have improved from 1.025Ω(n) to 1.14Ω(n) lower bound on OBDD refu-tations of PHPn presented in [15℄ .(2) The main open question in [11℄ is to improve lower bound on arbitrary OBDDrefutations by inreasing the onstant in the Ω() of the 2Ω( 7
√

N/ ln N). Thisonstant is extremely small and it is below 2−500. We onsidered a family ofCNFs that have a higher lower bound on OBDD refutations. But the OBDDproof system we onsidered is less strong than the one in [11℄.(3) A lot of researh has been done on exponential lower bounds on the sizes ofOBDDs for Boolean funtions. But most of the methods to obtain suh lowerbounds are based on one-way ommuniation omplexity and the resultsfrom monotone iruits omplexity. Clearly, solving strutured ombinatorialproblems in style of Ramsey Theory may lead to new approahes for provinglower bounds.Still some interesting questions related to omparison of OBDD-based andresolution-based proof systems remain unsolved. It is shown in [6℄ that bion-ditional formulas have short OBDD proofs and after transforming them intoCNFs they requires exponentially long resolution proofs. But OBDD proofs ofthe transformed formulas need exponential size OBDD proofs. For OBDD meth-ods that allow existential quanti�ation we know that there are formulas thathave polynomial size OBDD refutation [3℄ and resolution refutation of exponen-tial size, i.e. this proof system is stronger than any form of resolution. An openquestion is whether the OBDD Apply methods an be simulated by resolutionpolynomially.Another not solved problem is to give a proof of the tight onstant in Lemma1. The onstant c an be improved, and we onjeture that the lemma also holdsfor c = 1− 1
2

√
2 ≈ 0.293. Although, it is very easy to give an intuitive explanationwhy it holds, a preise proof is still needed. Suh a proof would result in a betterlower bound on OBDD refutations presented in this paper.
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