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t. Groote and Zantema proved that a parti
ular OBDD 
om-putation of the pigeonhole formula has an exponential size and that lim-ited OBDD derivations 
annot simulate resolution polynomially. Herewe show that any arbitrary OBDD Apply refutation of the pigeonholeformula has an exponential size: we prove that the size of one of theintermediate OBDDs is at least Ω(1.14n). We also present a family ofCNFs that require exponential in
rease for all OBDD refutations basedon Apply method to simulate unrestri
ted resolution refutation.1 Introdu
tionThe reason for this study 
omes from the interest in giving theoreti
al expla-nations of the e�
ien
y of algorithms for satis�ability testing. Many of thesealgorithms are based either on resolution or on Ordered Binary De
ision Dia-grams (OBDDs).The resolution rule in propositional logi
 is a single valid inferen
e rule thatprodu
es a new 
lause implied by two 
lauses 
ontaining 
omplementary literals[10℄. When 
oupled with a 
omplete sear
h algorithm, the resolution rule yieldsa sound and 
omplete algorithm for de
iding the satis�ability of a propositionalformula. This resolution te
hnique uses proof by 
ontradi
tion and is based onthe fa
t that any senten
e in propositional logi
 
an be transformed into anequivalent senten
e in Conjun
tive Normal Form (CNF).Presently, most of the state-of-the-art satis�ability solvers are based on theDPLL whi
h is a variant of resolution in 
ombination with sear
h. At the sametime resolution based solvers 
an be highly ine�
ient for solving some stru
turedproblems and require time exponential in the size of an input instan
e. The most
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famous example of su
h CNF is the pigeonhole formula that formalizes a verysimple prin
iple that n+ 1 obje
ts 
annot be pla
ed into n holes.An OBDD, also referred as a Redu
ed OBDD (ROBDD) or just a BDD, is adata stru
ture that is used to represent Boolean fun
tions [2, 18℄. OBDDs havesome interesting properties: they provide 
ompa
t and 
anoni
 representationsof Boolean fun
tions, and there are e�
ient algorithms for performing logi
aloperations on OBDDs. As a result, OBDDs have been su

essfully applied to awide variety of tasks, parti
ularly in VLSI design and CAD veri�
ation.The OBDD approa
hes for SAT solving 
an be divided into two groups:(1) The �rst group is based on using Apply operator and is an expli
it 
onstru
-tion of an OBDD. Given an order on variables, an OBDD for the CNF isbuilt and then 
he
ked whether it is a terminal node 0.(2) The se
ond group utilizes symboli
 quanti�er elimination to extend theApply method by eliminating variables via the appli
ation of existentialquanti�ers. It leads to signi�
ant speed up for 
urtain kinds of stru
turedinstan
es. Thus, pigeonhole formulas require polynomial in n refutation size.A proof system based on OBDDs was proposed by Atserias et al. [1℄. Theauthors introdu
e a very general proof system based on 
onstraint propagation.OBDDs are a spe
ial 
ase of this proof system. Their proof system has fourrules: Axiom, Join, Proje
tion, andWeakening. The �rst two rules, Axiom and Join,
orrespond to an appli
ation of the Apply operator. Proje
tion andWeakening areintrodu
ed to redu
e the size of intermediate OBDDs and where Proje
tion rule
orresponds to an appli
ation of existential quanti�
ation. Hen
e, this proofsystem 
ontains lines that are OBDDs derived by any of the above rules. It wasshown that the OBDD proof system 
ontaining all four rules is stri
tly strongerthan resolution [1℄ but it is still exponential [8℄.It was proven for the �rst time in [15℄ that OBDD proof systems with tworules, Axiom and Join, i.e. 
orresponding to the Apply method have exponentiallower bound on refutations of the pigeonhole formula. However, the lower bound
Ω(1.14n) presented in this paper is stri
ter in 
omparison with Ω(1.025n) in[15℄. We also demonstrate a family of CNFs that requires exponential in
reasefor all OBDD refutations based on Apply method, i.e. OBDD refutations with-out existential quanti�
ation, to simulate unrestri
ted resolution refutation. Theformulas are the pigeonhole formulas extended with additional 
lauses as in [4℄.These formulas are CNFs parameterized by n and have size O(n3). It is proventhat there is a resolution refutation for these formulas of size O(n4) [4℄. We showthat an arbitrary OBDD Apply refutation has size 2Ω(n).Related work. There have been done a lot of resear
h on the relation ofdi�erent propositional proof systems [5, 17℄ and, in parti
ular, on the relation ofdi�erent forms of resolution and OBDDs [9, 14, 16℄.In [6℄ Groote and Zantema proved that limited OBDD derivations 
annotsimulate resolution refutations polynomially. The 
onsidered OBDD system joinsthe 
lauses of a CNF in the order as they are listed, i.e. to build an OBDD for
C1∧(C2∧C3), �rst an OBDD for C2∧C3 is built and then one for C1∧(C2∧C3).They present a lower bound for refutations of a formula of the form ¬x∧(x∧ϕ),



where ϕ is a formula that is hard for both BDD and resolution. But this formulais refuted trivially if to pro
eed it as (¬x ∧ x) ∧ ϕ.In [3℄ a dire
t 
onstru
tion of polynomial size OBDD refutation of pigeonholeformulas in presen
e of existential quanti�
ation is presented. Another interest-ing result by Segerlind in [12℄ is that the OBDD derivations with the Axiom rule,a tree-like appli
ation of the Join rule and the Proje
tion rule 
annot e�
ientlysimulate DAG-like resolution derivations.Contribution. Our result di�ers with previous work in various ways. Westrengthen the result of [6℄. In [6℄ the only OBDD 
omputation of the pigeonholeformulas 
onsidered that �rst 
omputes the 
onjun
tion of all positive 
lauses,then the 
onjun
tion of all negative 
lauses, and �nally the 
onjun
tion of thesetwo. In our setting, the 
lauses of the pigeonhole formula may be pro
essed inany arbitrary order. We show that for any OBDD refutation of the pigeonholeformula some of the intermediate OBDDs have size exponential in n. A 
on-sequen
e of our result is that the gap between polynomial and exponential inthe OBDD refutation framework for pigeonhole formula is 
aused by existentialquanti�
ation, i.e. by Proje
tion rule.The di�eren
e with work in [12℄ is the following. We 
onsider a weaker OBDDproof system 
ontaining only two rules Axiom and Join. For this proof systemwe show that an unrestri
ted appli
ation of it 
annot simulate resolution poly-nomially. At present it is not known whether there is an exponential separationbetween tree-like and DAG-like OBDD proof systems based on the Applymethod.Therefore, we 
annot say whether a tree-like proof system from [12℄ subsumes theOBDD proof system 
onsidered in this paper. Still a dire
t proof of exponentialseparation between an unrestri
ted OBDD Apply proof system and unrestri
tedresolution is presented for the �rst time in this paper. Moreover, although for aweaker proof system but we quantitatively improve the lower bounds on OBDDrefutations than presented in [11, 12℄.2 Propositional Proof SystemsWe 
onsider propositional formulas in Conjun
tive Normal Form (CNFs). Basi
blo
ks for building CNFs are propositional variables that take the values falseor true. The set of propositional variables is denoted by Var. A literal is eithera variable x or its negation ¬x. A 
lause is a disjun
tion of literals, and a CNFis a 
onjun
tion of 
lauses. By ⊥ we denote the empty 
lause. In the following,for 
onvenien
e, we 
onsider 
lauses as sets of variables, and a CNF as a set of
lauses.By Cls(ϕ) we denote the set of 
lauses 
ontained in a CNF ϕ and by Var(ϕ)we denote the set of variables 
ontained in the CNF ϕ. By A : Var → {true, false}we denote a fun
tion that assigns variables either to true or to false. We write
F |=A true if a CNF F takes a value true for an assignment A and F |=A falseif F takes a value false.



2.1 ResolutionThe resolution prin
iple, due to Robinson [10℄, is a method to 
onstru
t proofs by
ontradi
tion. The resolution rule produ
es a new 
lause implied by two 
lauses
ontaining 
omplementary literals. The resulting 
lause 
ontains all literals ex-
ept the 
omplementary ones. Formally this 
an be presented as following.Resolution: C ∪ {l} D ∪ {¬l}
C ∪DThus, from 
lauses C ∪ {l} and D ∪ {¬l} a new 
lause C ∪ D is derived.A 
lause C ∪ D is 
alled a resolvent of C ∪ {l} and D ∪ {¬l}. The resolutionproof rule de�nes a proof system in whi
h there are no axiom s
hemata, andonly one proof rule, resolution. The proofs by resolution start with 
lauses ofthe input CNF and derive new 
lauses until a 
ontradi
tion whi
h is expressedas the empty 
lause is obtained.De�nition 1 (Resolution refutation). A resolution refutation of an unsat-is�able CNF ϕ is a sequen
e of CNFs ϕ ≡ ϕ0, ϕ1, . . . , ϕn with the followingproperties.� ϕi ≡ ϕi−1 ∪ {Ci}, i = 1, . . . , n, where Ci a resolvent of two 
lauses in ϕi−1.� ϕn ≡ ϕn−1 ∪ ⊥.� ⊥ 6∈ ϕi, i = 0, . . . , n− 1.We say that n is the size of the resolution refutation.2.2 OBDDs as a Proof SystemAn Binary De
ision Diagram (BDD) is a a rooted, dire
ted, a
y
li
 graph, whi
h
onsists of de
ision nodes and two terminal nodes 0 and 1. Ea
h de
ision nodeis labeled by a propositional variable from Var and has two 
hild nodes 
alled alow 
hild and a high 
hild. The edge from a node to a low (high) 
hild representsan assignment of the variable to 0 (1). Su
h a BDD is 
alled an ordered BDD(OBDD) if di�erent variables appear in the same order on all paths from the root.Therefore, OBDDs assume that there is a total order ≺ on the set of variables.An OBDD is said to be redu
ed if the following two rules have been appliedto its graph: 1) merge isomorphi
 subgraphs; 2) eliminate any node whose two
hildren are isomorphi
.Redu
ed OBDDs have the following property: For a �xed order ≺ on the setof variables, every propositional formula ϕ is uniquely represented by a redu
edBDD B(ϕ,≺), and two formulas ϕ and ψ are equivalent if and only if B(ϕ,≺) =B(ψ,≺).Given a propositional formula ϕ and an order on variables ≺, we de�ne thesize of an OBDD B(ϕ,≺) representing ϕ with respe
t to ≺ as the number of itsinternal nodes and denote it by size(B(ϕ,≺)).In this paper we 
onsider OBDDs as a propositional proof system. Sin
ewe are dealing only with unsatis�able CNFs, we give a de�nition of a OBDDrefutation adapting the de�nition from [3℄.



De�nition 2 (OBDD refutation). Given a total order on variables ≺, aOBDD refutation of an unsatis�able CNF ϕ is a sequen
e of OBDDsB1(ϕ1,≺), . . . ,Bn(ϕn,≺)su
h that Bn(ϕn,≺) is a OBDD representing the 
onstant false and for ea
hBi(ϕi,≺), 1 ≤ i ≤ n, exa
tly one of the following holds.� (AXIOM) Bi(ϕi,≺) represents one of the 
lauses C ∈ ϕ;� (JOIN) there are OBDDs Bi′(ϕi′ ,≺) and Bi′′ (ϕi′′ ,≺) su
h that 1 ≤ i′ <
i′′ < i and ϕi = ϕi′ ∧ ϕi′′ .We say that the size of the OBDD refutation is de�ned as ∑n

i=1 size(Bi(ϕi,≺)).When it is 
onvenient, instead of B(ϕ,≺) we write B(ϕ) or just B. ByCls(B(ϕ)) we mean the set of 
lauses and by Var(B(ϕ)) the set of variables
ontained in ϕ.Example 1. Figure 1 depi
ts OBDD refutation of CNF ϕ ≡ (x ∨ y ∨ z) ∧ (¬x ∨
y) ∧ ¬y ∧ ¬z for the order on variables x ≺ y ≺ z. OBDDs a) − d) 
orrespondto appli
ations of Axiom rule and OBDDs e)− g) 
orrespond to appli
ations ofJoin rule.
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0Fig. 1. OBDD refutation of ϕ ≡ (x ∨ y ∨ z) ∧ (¬x ∨ y) ∧ ¬y ∧ ¬z for the order onvariables x ≺ y ≺ z.



The size of the minimal OBDD representing a propositional formula F for agiven order on variables ≺ is des
ribed by the stru
ture theorem from [13℄.Theorem 1 (Sieling and Wegener, 1993). Let mi, i < n, be the number ofsubfun
tions of a Boolean fun
tion f(xi, . . . , xn), whi
h are obtained by repla
ingthe variables x1, . . . , xi−1 by 
onstants and whi
h depend essentially on xi (afun
tion f depends essentially on a variable y if f|y=0 6= f|y=1). Then a minimalOBDD for f 
ontains exa
tly mi nodes labelled xi whi
h are rea
hed for thedi�erent subfun
tions.The above observation is very simple and helpful to prove lower bounds. Inthis paper we use Theorem 2 whi
h is a variant of Theorem 1 and was presentedin [6℄. We use B = {0, 1} to denote the set of Boolean 
onstants.Theorem 2. Suppose for a given formula ϕ the following holds:� |Var(ϕ)| = n;� ≺ is a total order on the set of variables Var(ϕ);� x1, . . . , xk are the smallest k elements with respe
t to ≺ for some k < n;� A ⊆ {1, . . . , k};� z = (z1, . . . , zk) ∈ Bk.� For all distin
t −→x 1,
−→x 2 ∈ Bk su
h that xi

1 = xi
2 = zi for all i 6∈ A thereexists a −→y ∈ Bn−k su
h that ϕ(−→x 1,

−→y ) 6= ϕ(−→x 2,
−→y ).Then the size of the OBDD B(ϕ,≺) is at least 2|A|.The proof of the lower bounds presented in Se
tion 4 is based on Theorem2. However, in order to obtain a lower bound we still have to solve some 
ombi-natorial problems.3 Pigeonhole Formulas and BeyondThe pigeonhole formulas is a family of unsatis�able CNFs parameterized by n.They are often used as a standart ben
hmark for 
he
king e�
ien
y of (UN)SATalgorithms. It is very easy to give an argument for unsatis�ability of these for-mulas but most of the te
hniques need time exponential in n to produ
e a formalproof of unsatis�ability.In our paper we 
onsider also another 
lass of unsatis�able CNFs that we
all as extended pigeonhole formulas. These formulas were introdu
ed by Cookin his paper on the extended resolution proof of the pigeonhole formulas [4℄.3.1 Pigeonhole FormulasThe pigeonhole prin
iple states that n holes 
an hold at most n obje
ts withone obje
t in a hole. The propositional formulas des
ribing this prin
iple wereintrodu
ed as following. Atomi
 proposition Pij says that i is mapped to j,and the set of 
lauses PHPn states that there is a one-to-one map from the set

{1, . . . , n+ 1} to the set {1, . . . , n}.



De�nition 3 (Pigeonhole Formulas). The pigeonhole formula PHPn, n > 0,is de�ned as follows.PCn =
n+1
∧

i=1

[
n
∨

j=1

Pi,j ], NCn =
∧

1≤i<j≤n+1
1≤k≤n

[¬Pi,k ∨ ¬Pj,k],PHPn = PCn ∧ NCn.The formula PCn states that at least one variable is true in all n + 1 rowsand the formula NCn states that at most one variable is true in all n 
olumns.These formulas were studied intensively in relation to 
omplexity of di�erentpropositional proof systems, and in parti
ular, it has been proved in [7℄ thatevery resolution proof for PHPn has size exponential in n.3.2 Extended Pigeonhole FormulasYears before a proof of an exponential low bound on resolution refutation forthe pigeonhole formulas was found by Haken, Cook showed that there exists ashort proof of PHPn with extended resolution of size polynomial in n [4℄. Theidea of Cook was to de�ne new variables Qij as Qij ≡ Pij ∨ (Pin ∧ Pn+1,j),
1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 and to des
ribe this equivalen
e by the set Qn of thefollowing 
lauses.(1) Qij ∨ ¬Pij ,(2) Qij ∨ ¬Pin ∨ ¬Pn+1,j ,(3) ¬Qij ∨ Pij ∨ ¬Pin,(4) ¬Qij ∨ Pij ∨ ¬Pn+1,j .Following the idea of Cook we de�ne extended pigeonhole formulas.De�nition 4 (Extended Pigeonhole Formulas). The extended pigeonholeformula EPHPn for n > 1 is de�ned as EPHPn = PHPn ∧ ∧4

i=1 ECi
n, where

P 0
ij ≡ Pij and 
lauses ECi

n 
onstru
ted as follows.(1) EC1
n =

∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[P k
ij ∨ ¬P k−1

ij ],(2) EC2
n =

∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[P k
ij ∨ ¬P k−1

in ∨ ¬P k−1
n+1,j ],(3) EC3

n =
∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[¬P k
ij ∨ P k−1

ij ∨ P k−1
in ],(4) EC4

n =
∧

1≤k≤n−1,
1≤i≤n−k+1,

1≤j≤n−k

[¬P k
ij ∨ P k−1

ij ∨ P k−1
n+1,j ].



The resulting EPHPn formula has interesting properties. It is 
onstru
ted byadding 4n(n−1)(n+1)/3 new 
lauses to PHPn. Hen
e, it is a simple unsatis�ableCNF with size polynomial in n. There is a resolution refutation of EPHPn withsize O(n4) [4℄. But, as we prove in Se
tion 5, all OBDD refutations of EPHPnhave size exponential in n. Moreover, for ea
h OBDD refutation of EPHPn thereis a 
orresponding OBDD refutation of PHPn su
h that lower bound on theOBDD proof of EPHPn is not smaller than lower bound on the OBDD proof ofPHPn.Theorem 3 (Cook). There is a resolution refutation of EPHPn, n > 1, of size
O(n4).We present here a proof of the above theorem be
ause it is missing in theoriginal paper and we think that it is of interest itself. In our proof we followthe idea from [4℄ that from EPHPn one 
an derive the 
lauses PHPn−1 in O(n3)resolution steps.Proof (Proof of Theorem 3). The proof has the following steps.(1) Show that Qi1 ∨ · · · ∨Qi,n−1, 1 ≤ i ≤ n, 
an be derived from PHPn and theset of 
lauses Qn in O(n) resolution steps.(2) Show that ¬Qik ∨ ¬Qjk, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n− 1, 
an be derived fromPHPn and the set of 
lauses Qn in O(n2) resolution steps.After repeating the above steps n−1 times one produ
es the set of 
lauses PHP1from whi
h the empty 
lause 
an be derived in two resolution steps. It results ina resolution refutation of size O(n4). The size of the refutation 
an be expressedalternatively as O(N4/3), where N is a number of 
lauses in EPHPn.(1) We show how to derive Qi1 ∨ · · · ∨Qi,n−2 from PHPn and the set of 
lauses

Qn.(a) Qi1 ∨ · · · ∨Qi,n−1 ∨ Pi,n is derived from Pi1 ∨ · · · ∨ Pi,n and Qij ∨ ¬Pij .(b) Qi1 ∨ · · · ∨ Qi,n−1 ∨ ¬Pn+1,j , 1 ≤ j ≤ n − 1, is derived from (a) and
Qij ∨ ¬Pin ∨ ¬Pn+1,j .(
) ¬Pi,n ∨Pn+1,1 ∨ · · · ∨Pn+1,n−1 is derived from Pn+1,1 ∨ · · · ∨Pn+1,n and
¬Pin ∨ ¬Pn+1,n.(d) Pn+1,1 ∨ · · · ∨ Pn+1,n−1 ∨Qi1 ∨ · · · ∨Qi,n−1 is derived from (a) and (c).(e) Qi1 ∨ · · · ∨Qi,n−2 is derived from (b) and (d).(2) We show how ¬Qik ∨¬Qjk 
an be derived from PHPn and the set of 
lauses

Qn in O(n2) resolution steps.(a) ¬Qik∨¬Qjk∨Pn+1,k is derived from ¬Pik∨¬Pjk and ¬Qik∨Pik∨Pn+1,kand ¬Qjk ∨ Pjk ∨ Pn+1,k.(b) ¬Qik ∨ ¬Qjk ∨ ¬Pik is derived from (a) and ¬Pik ∨ ¬Pn+1,k.(
) ¬Qik ∨ ¬Qjk ∨ ¬Pjk is derived from (a) and ¬Pjk ∨ ¬Pn+1,k.



(d) ¬Qik ∨ ¬Qjk ∨ Pin is derived from (b) and ¬Qik ∨ Pik ∨ Pin.(e) ¬Qik ∨ ¬Qjk ∨ Pj,n is derived from (c) and ¬Qik ∨ Pjk ∨ Pjn.(f) ¬Qik ∨ ¬Qjk ∨ ¬Pjn is derived from (d) and ¬Pin ∨ ¬Pjn.(g) ¬Qik ∨ ¬Qjk is derived from (e) and (f).Hen
e, we have shown the 
orre
tness of the theorem by presenting the resolutionsteps. ⊓⊔4 Te
hni
al Ba
kgroundIn this se
tion we introdu
e notations and te
hni
al lemmas that will be usedthroughout the paper. Some 
ombinatorial properties of square matri
es arepresented in Lemma 1. Lemma 2 generalizes a well-known fa
t about binarytrees 
laiming the existen
e of subtrees with a weight lying between a and 2a forany de�nition of weight as a sum of the weights of its leaves.4.1 NotationsThe variables of the pigeonhole formula 
an be seen as entries of a matrix with
n + 1 rows and n 
olumns. We denote su
h a matrix by Matrix(PHPn), wherethe i-th row 
orresponds to the 
lause ∨n

j=1 Pij . For ea
h row in Matrix(PHPn)there is a 
orresponding 
lause in PCn and vi
e versa, therefore, if it is needed,we 
an refer to a row as to a 
lause.Let S≺ denote a set 
ontaining the ⌊n2/2⌋ smallest elements of Var(PC∗
n),where ≺ is a given order on variables and PC∗

n is obtained from PCn by removingan arbitrary 
lause. And S≻ = Var(PHPn)\S≺. We denote by S∗
≺ and by S∗

≻ thefollowing sets:
S∗
≺ = {Pab ∈ Var(PHPn) | Pab � max

Pcd∈S≺

Pcd} and S∗
≻ = Var(PHPn)\S∗

≺.Suppose B1, . . . ,Bl is an OBDD refutation on PHPn. Then for ea
h Bi wede�ne
Si
≺ = S∗

≺ ∩ Var(Bi) and Si
≻ = Var(Bi)\Si

≺.Moreover, we de�neClsneg(Bi) = Cls(Bi) ∩ Cls(NCn) and Clspos(Bi) = Cls(Bi) ∩ Cls(PCn).4.2 Te
hni
al LemmasLemma 1 was presented for the �rst time in [15℄, but with a smaller 
oe�
ient
c = 1

2 − 1
4

√
2 ≈ 0.146. This lemma is of interest from a point of view of RamseyTheory that typi
ally asks questions of the form: How many elements of somestru
ture must there be to guarantee that a parti
ular property will hold?Groote and Zantema in [6℄ 
onsidered an n × m matrix 
ontaining entriesequally 
olored white and bla
k and proved that su
h a matrix has either √2(n−



1)/2 rows or √2(m − 1)/2 
olumns 
ontaining both a bla
k and a white entry.Lemma 1 presents another 
ombinatorial property of a matrix 
ontaining entriesequally 
olored white and bla
k. In 
omparison with [15℄ we present another proofthat gives us a better c = 3
4 − 1

4

√
5 ≈ 0.19098.Lemma 1. Consider a matrixM = {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Let the matrixentries be 
olored equally white and bla
k, i.e. the di�eren
e between the numberof white entries and the number of bla
k entries is at most one. Let m = ⌊cn⌋for c = 3

4 − 1
4

√
5 ≈ 0.19098. Then at least one of the following holds.� One 
an 
hoose m rows, and in every of these rows a white and a bla
k entry,su
h that all these 2m entries are in di�erent 
olumns.� One 
an 
hoose m 
olumns, and in every of these 
olumns a white and abla
k entry, su
h that all these 2m entries are in di�erent rows.Proof. Starting by the given matrix repeat the following pro
ess as long as pos-sible.Choose a row in the matrix 
ontaining both a white and a bla
k entry.Remove both the 
olumn 
ontaining the white entry and the 
olumn
ontaining the bla
k entry.Assume this repetition stops after k steps. Write x = k/n. If x ≥ c the �rstproperty of the lemma holds and we are done. In the remaining 
ase we have

x < c. We assume that the se
ond property of the lemma does not hold, andthen we will derive a 
ontradi
tion.The remaining matrix 
onsists of n rows of n(1 − 2x) entries, where the xn
hosen rows are mixed, and the others either only 
onsists of white entries oronly of bla
k entries. Assume that pn of these rows are totally white and qn ofthese rows are totally bla
k. The p + q = 1 − x. Assume that in the xn 
hosenrows there are in total axn2 white entries and bxn2 bla
k entries. So the thetotal number of these entries is (a+ b)xn2 = (1− 2x)xn2, so a+ b = 1− 2x. Allof these numbers x, p, q, a, b are reals in the interval [0, 1]. The total number ofwhite entries in the the remaining matrix is p(1−2x)n2 +axn2 Sin
e this shouldbe less then n2/2, we obtain
p(1 − 2x) + ax <

1

2
,and similarly q(1 − 2x) + bx < 1

2 for the bla
k entries.Now assume that q ≥ c and p + a ≥ c. We will 
onstru
t at least m = ⌊cn⌋
olumns. For the �rst an 
hoose a white entry from a mixed row and a bla
kentry in the same 
olumn from a full bla
k row. This 
an be repeated at least antimes. Then the pro
ess is 
ontinued by 
hoosing pn entries from the full whiterows. Sin
e q ≥ c and p + a ≥ c we have 
hosen at least cn 
olumns in thisway, yielding the se
ond property of the lemma. Sin
e we assume this se
ondproperty does not hold, we 
on
lude
q < c ∨ p+ a < c.



By symmetry we similarly obtain p < c ∨ q + b < c. Sin
e the 
ombination of
q < c and p < c 
an not o

ur due to x < c < .2 and p + q = 1 − x, we eitherhave p + a < c or q + b < c. By symmetry we may assume without loss ofgenerality that p+ a < c. Now substituting b = 1 − 2x− a and q = 1 − x− p in
q(1 − 2x) + bx < 1

2 we obtain
(1 − x− p)(1 − 2x) + (1 − 2x− a)x <

1

2hen
e
1 − p+ (2p− a− 2)x <

1

2
.Sin
e x < c and 2p− a− 2 < 0, we 
on
lude

1 − p+ (2p− a− 2)c <
1

2
.Sin
e p+ a < c we 
on
lude

1 − p+ (3p− c− 2)c <
1

2
,hen
e 1 − c2 − 2c− p(1 − 3c) < 1

2 . Sin
e c > p and 1 − 3c > 0 this yields
1

2
= 2c2 − 3c+ 1 = 1 − c2 − 2c− c(1 − 3c) <

1

2
,
ontradi
tion, using c = 3

4 − 1
4

√
5. ⊓⊔By �ne-tuning the argument the 
onstant c in Lemma 1 
an be improved.We 
onje
ture that it also holds for c = 1 − 1

2

√
2 ≈ 0.293. Choosing the n × nmatrix in whi
h the left upper k × k-square is bla
k for k ≈ n√

2
and the rest iswhite, one observes that this value will be sharp. As our main result involves anexponential lower bound, we do not fo
us on the pre
ise optimal value of c.Example 2. Consider a square 7 × 7 matrix with 24 bla
k and 25 white entries.For this example there are three rows su
h that one 
an pi
k up one bla
k andone white entry in ea
h row in su
h a way that all entries are in di�erent 
olumns.At the same time Lemma 1 gives us mu
h lower but a guaranteed bound.The OBDD representing an unsatis�able CNF is just a terminal node 0.Therefore, we have to show that for an arbitrary order on variables and an arbi-trary way to 
ombine 
lauses there is an intermediate OBDD of a size exponen-tial in n. Hen
e, we start by the simple observations des
ribing some propertiesof intermediate OBDDs. And the following lemma generalizes a well-known fa
tabout binary trees 
laiming the existen
e of subtrees with a weight lying betweena and 2a.Lemma 2. Let C be a �nite set, R ⊆ C with |R| ≥ 2, and B1, . . . , Bl ⊆ C asequen
e with:



Fig. 2. An example of a 7 × 7 matrix with entries equally 
olored bla
k and white.1. Bl = C2. For ea
h Bi (1 ≤ i ≤ l), either Bi = ∅, Bi = {c} for c ∈ C, or Bi = Bj ∪Bkfor some j, k with j < k < i.Then, for ea
h a with 1
|R| < a ≤ 1

2 , there is a j < l su
h that
a|R| ≤ |Bj ∩R| < 2a|R|.Proof. We give a proof by 
ontradi
tion. Suppose, for ea
h Bj , either |Bj ∩R| <

a|R| or |Bj ∩R| ≥ 2a|R|.As Bl ∩ R = C ∩ R = R, the inequality |Bl ∩ R| ≥ 2a|R| holds for the �nalelement Bl of the sequen
e. On the other hand, for singletons Bj = {c}, wehave |Bj ∩ R| = 0 < a|R| for c /∈ R, and |Bj ∩ R| = 1 < a|R| for c ∈ R, as
a > 1/|R|. Moreover, for Bi = ∅, |Bi ∩R| < a|R| obviously holds. Following nowthe prede
essors of Bl (via the 
onstru
tion by set union) in the sequen
e Biba
kwards, we �nally arrive at an index k for whi
h the following holds:� |Bk ∩R| ≥ 2a|R|, and� Bk = Bk′ ∪Bk′′ , where |Bk′ ∩R| < a|R| and |Bk′′ ∩R| < a|R|.As Bk ∩ R = (Bk′ ∪ Bk′′ ) ∩ R = (Bk′ ∩ R) ∪ (Bk′′ ∩ R), and thus |Bk ∩ R| ≤
|Bk′ ∩R|+ |Bk′′ ∩R| < 2a|R|, we arrive at a 
ontradi
tion to |Bk ∩R| ≥ 2a|R|.

⊓⊔Lemma 3. Suppose B1, . . . ,Bl is an OBDD refutation either on PHPn or onEPHPn and R ⊆ Cls(PCn) with |R| ≥ 4. Then there is an i < l su
h that
|R|/4 ≤ |Cls(Bi) ∩R| < |R|/2.Proof. Follows dire
tly from Lemma 2. ⊓⊔Let B1, . . . ,Bl be an OBDD refutation either on PHPn or on EPHPn. Forea
h i ≤ l, we de�ne Ji as follows:

Ji = {j ∈ {1, . . . , n} | ∃a, b : ¬Paj ∨ ¬Pbj ∈ Cls(Bi) & Paj ∈ S≺ & Pbj ∈ S≻}.



Lemma 4. Suppose B1, . . . ,Bl is an OBDD refutation either on PHPn or onEPHPn for a total order on variables ≺. Let G ⊆ {1, . . . , n} su
h that |G| ≥ 4.Then there is an i < l su
h that
|G|/4 ≤ |Ji ∩G| < |G|/2.Proof. Follows from Lemma 2, using C = {1, . . . , n}, R = G, a = 1/4, and

J1, . . . , Jl for the sequen
e (Bi)1≤i≤l, for whi
h the pre
ondition of Lemma 2holds, as is easily 
he
ked. ⊓⊔5 Exponential Lower Bound on OBDD Refutations ofPHPn and EPHPnIn this se
tion we prove lower bounds on OBDD refutations of the pigeonholeformula PHPn and related extended pigeonhole formula EPHPn. We start byproving lower bound for PHPn and the proof of lower bound for EPHPn is adire
t 
onsequen
e of it.5.1 Lower Bound on OBDD Refutations of PHPnOur proof of lower bound on OBDD refutations of PHPn is based on Theorem2 and Lemmas 1-4. Before presenting the details of a formal proof we start withan example to give an intuition behind.Example 3. Let us 
onsider PHP4. This formula 
an be presented with a 5 × 4matrix, as for example in Figure 3.
Fig. 3. A 5 × 4 matrix for PHP5. The bla
k and the white entries represent elementsfrom the sets S≺ and S≻ 
orrespondingly.Suppose one of the intermidiate OBDDs is an OBDD depi
ted in Figure 4and it represents

3
∧

i=2

[

4
∨

j=1

Pij ] ∧ [¬P24 ∨ ¬P34],where P21 ≺ P31 ≺ P32 ≺ P22 ≺ P23 ≺ P33 ≺ P24 ≺ P34.



P21

P31 P31

P32 P32

P22 P22

P23 P23

P33 P33

P24 P24

P34

0 1Fig. 4. An OBDD for V

3

i=2
[
W

4

j=1
Pij ]∧ [¬P24 ∨¬P34], where P21 ≺ P31 ≺ P32 ≺ P22 ≺

P23 ≺ P33 ≺ P24 ≺ P34.Our proofs of lower bounds on OBDD refutations are based on Theorem 2.Hen
e, we need to 
hoose set A satisfying the theorem 
onditions. For this weuse Lemma 1. The bla
k and white entries represent elements of sets S≺ and
S≻ 
orrespondingly. We 
olle
t the bla
k entries satisfying Lemma 1 in A. Thewhite entries satisfying Lemma 1 are used to prove the 
onditions of Theorem2. We apply Lemma 1 and Theorem 2 to this example and 
olle
t the vari-ables P21 and P32 in A. A

ording Theorem 2 the size of the OBDD is at least
2|{P21,P32}| = 4. For this parti
ular example the size of the OBDD is mu
h larger.This raises an open question whether lower bounds presented in this paper 
anbe improved.Lemma 5. Let B1, . . . ,Bl be an OBDD refutation of PHPn and ≺ be an orderon variables. Assume that there are two sets, a set R of rows and a set SR ofentries of Matrix(PCn) su
h that the following holds:� For ea
h r ∈ R there are Pra, Prb ∈ SR su
h that Pra ∈ S≺ and Prb ∈ S≻.� For distin
t Pab, Pcd ∈ SR, b 6= d.Then there is an i < l su
h thatsize(Bi) ≥ 2|R|/4.



Proof. Let for 1 ≤ i ≤ l,
Ri = Cls(Bi) ∩R.We apply Lemma 3. Thus we know that there is an i < l su
h that

|R|/4 ≤ |Ri| < |R|/2,and we get
2|Ri| + 1 ≤ |R|.Taking it into a

ount, we 
ompute

|Clspos(Bi)| ≤ (n+ 1) − (|R| − |Ri|)
≤ (n+ 1) − ((2|Ri| + 1) − |Ri|)
= n− |Ri|.We denote Ri = Clspos(Bi)\Ri. By de�nition Ri ⊆ Clspos(Bi). Hen
e, we obtain

|Ri| = |Clspos(Bi)| − |Ri|
≤ n− 2|Ri|.For ea
h row r ∈ Ri we �x an entry that is in the set S≺. We 
olle
t theseelements in the set A. For ea
h row r ∈ Ri we also �x an entry that is in S≻and 
olle
t these elements in the set Y . Suppose

Rc = {j | ∃i : Pij ∈ A ∪ Y }.Sin
e the set of rows Ri satis�es Lemma 1, we get
|Rc| = 2|Ri|.Let J = n− |Rc|. Then we obtain
J = n− 2|Ri|and
|Ri| ≤ |J |.Taking into a

ount |Ri| ≤ |J |, for ea
h row in Ri we �x one entry, 
olle
t theseentries in the set X . We require the following.� for distin
t Pab, Pcd ∈ X , b 6= d;� for ea
h Pab ∈ X , b 6∈ Rc.We de�ne

X≺ = S∗
≺ ∩X, and X≻ = S∗

≻ ∩X.We apply Lemma 2 on
k = |Si

≺|,



where Si
≺ = S∗

≺ ∩ Var(Bi). Let for j = 1, . . . , k,
zj =

{

1, if zj ∈ X≺
0, otherwiseChoose distin
t −→x ,−→x ′ ∈ Bk su
h that xj = x′j = zj for all zj 6∈ A. Then thereis j′ su
h that xj′ 6= x′j′ . Let −→y = (yk+1, . . . , yq), where q = |Var(Bi)|, be theve
tor de�ned for yj ∈ Y by

yj =

{

0, if yj is in the same row as xj′

1, otherwiseand for yj 6∈ Y by
yj =

{

1, if yj ∈ X≻
0, otherwiseHen
e, the subset of 
lauses represented by Bi evaluates to xj′ for the assignment

(−→x ,−→y ) and to x′j′ for the assignment (−→x ′,−→y ). Taking into a

ount that |A| ≥
|R|/4, by Theorem 2, we obtainsize(Bi) ≥ 2|A| ≥ 2|R|/4.

⊓⊔Lemma 6. Let B1, . . . , Bl be an OBDD refutation of PHPn and ≺ be a givenorder on variables. Assume that there is a set Q of 
olumns and a set SQ ofentries of Matrix(PHPn) su
h that the following holds:� For ea
h q ∈ Q there are Paq, Pbq ∈ SQ su
h that Paq ∈ S≺ and Pbq ∈ S≻.� For distin
t Pab, Pcd ∈ SQ, a 6= c.Then there is an i < l su
h thatsize(Bi) ≥ 2|Q|/4.Proof. Let
Qc

i = {j | ∃a, b : ¬Paj ∨ ¬Pbj ∈ Cls(Bi) & Paj ∈ S≺ & Pbj ∈ S≻}.By Lemma 4, there is an i < l su
h that
|Q|/4 ≤ |Qc| < |Q|/2.For ea
h 
olumn in Qc we �x one entry that is in the set S≺ and 
olle
t theseelements in A. For ea
h 
olumn in Qc we also �x one entry that is in the set S≻and 
olle
t these elements in the set Y . Let

Qr = {i | ∃j : Pij ∈ A ∪ Y }.Suppose
Qc = Q\Qc

i .



Then we get
Qc > |Q|/2.For ea
h j ∈ Qc we �x Pajj , Pbjj ∈ SQ, where Pajj ∈ S≺ and Pbjj ∈ S≻. We
olle
t Pajj in X≺ and we 
olle
t Pbjj in X≻ for all j ∈ Qc. We de�ne

Qr = {a | ∃b : Pab ∈ X≺ ∪X≻}.By Lemma 1 all entries 
olle
ted in Qr are from di�erent rows. Hen
e, we obtain
|Qr| = 2|Qc|.Taking into a

ount that Qc > |Q|/2, we get
Qr > |Q|and sin
e Qr is a natural number we get

Qr ≥ |Q| + 1.We denote
Q∗ = Clspos(Bi)\Qr.No restri
tions are posed on the size of the set Clspos(Bi). Hen
e,

1 ≤ |Clspos(Bi)| ≤ n+ 1.We take into a

ount that |Qr| ≥ |Q| + 1 and 
ompute
|Q∗| ≤ (n+ 1) − |Qr|

≤ (n+ 1) − (|Q| + 1)

= n− |Q|.We de�ne J = {j |∃a : Paj ∈ Var(PHPn) & j 6∈ Q}. Then
|J | = n− |Q|.Therefore,
|Q∗| ≤ |J |.We take into a

ount |Q∗| ≤ |J | and for ea
h row r ∈ Q∗ we �x one entry and
olle
t these entries in the set W . We require the following:� for distin
t Pab, Pcd ∈W , b 6= d;� for ea
h Pab ∈W , b 6∈ Qc.We apply Lemma 2 on
k = |Si

≺|,where Si
≺ = S∗

≺ ∪ Var(Bi). We denote W≺ = Si
≺ ∩W and W≻ = Si

≻ ∩W . For
j = 1, . . . , k we de�ne

zj =

{

1, if zj ∈ X≺ ∪W≺
0, otherwise



Choose −→x ,−→x ′ ∈ Bk su
h that −→x 6= −→x ′ and xj = x′j = zj for all zj 6∈ A.Sin
e x 6= x′ there is a j′ su
h that xj′ 6= x′j′ . Let −→y = (yk+1, . . . , yq), where
q = |Var(Bi)|, be the ve
tor de�ned for yj ∈ Y by

yj =

{

1, if yj is in the same 
olumn as xj′

0, otherwiseand for yj 6∈ Y by
yj =

{

1, if yj ∈ X≻ ∪W≻
0, otherwiseHen
e, the subset of 
lauses represented by Bi evaluates to ¬xj′ for the assign-ment (−→x ,−→y ) and to ¬x′j′ for the assignment (−→x ′,−→y ). Taking into a

ount that

|A| ≥ |Q|/4, by Theorem 2 we obtainsize(Bi) ≥ 2|A| ≥ 2|Q|/4.

⊓⊔Theorem 4. For every order ≺ on the set of variables, the size of ea
h OBDDrefutation of PHPn is 2Ω(n).Proof. Let n > 20, and B1, . . . ,Bl be a OBDD refutation of PHPn. We provethat for an arbitrary total order on variables ≺ there is i ≤ l su
h thatsize(Bi) ≥ 2n( 3

4
− 1

4

√
5)/4 > 1.14n.Hen
e, the size of an arbitrary OBDD refutation on PHPn is 2Ω(n). First weapply Lemma 1 to the matrix representing PC∗

n, where PC∗
n is obtained fromPCn by removing one (arbitrary) 
lause. Then one of the following holds.(1) There is a set of ⌊n(3

4 − 1
4

√
5)⌋ rows (we denote this set by R) and thereis a set of 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SR) su
h that thefollowing holds:

• For ea
h r ∈ R there are Pra, Prb ∈ SR su
h that Pra ∈ S≺ and Prb ∈ S≻.
• For distin
t Pab, Pcd ∈ SR, b 6= d.(2) There is a set of ⌊n(3

4 − 1
4

√
5)⌋ 
olumns (we denote this set by Q) and thereis a set 
ontaining 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SQ) su
hthat the following holds:

• For ea
h q ∈ Q there are Paq, Pbq ∈ SQ su
h that Paq ∈ S≺ and Pbq ∈ S≻.
• For distin
t Pab, Pcd ∈ SQ, a 6= c.We obtain by Lemma 5 in the �rst 
asesize(Bi) ≥ 2|R|/4 = 2n( 3

4
− 1

4

√
5)/4,and by Lemma 6 in the se
ond 
asesize(Bi) ≥ 2|Q|/4 = 2n( 3

4
− 1

4

√
5)/4.From this we 
on
lude that an arbitrary OBDD refutation of PHPn has sizeexponential in n. ⊓⊔



5.2 Lower Bound on OBDD Refutations of EPHPnIn this se
tion we give a formal proof that an arbitrary OBDD refutation ofEPHPn has a lower bound exponential in n.Theorem 5. For every order ≺ on the set of variables, the size of ea
h OBDDrefutation of EPHPn is 2Ω(n).First we need to prove intermidiate lemmas.Lemma 7. Let F and G be CNFs su
h that F ⊂ PHPn and G ⊆ ∧4
1 ECi

n.Assume that A : Var → {true, false} is an assignment of variables su
h that
F |=A true. Then there is an assignment A′ : Var → {true, false} su
h that forea
h Pij ∈ Var(F ), A′(Pij) = A(Pij) and F ∪G |=A′ true.Proof. It follows straightforwardly from the 
onstru
tion of ∧4

1 ECi
n. ⊓⊔Lemma 8. Let F ⊆ PHPn, G ⊆ ∧4

1 ECi
n. Then for any order on variables ≺size(B(F ∪G,≺)) ≥ size(B(F,≺)).Proof. Our proof is based on Theorem 1. It is su�
ient to show that if B(F,≺)has k nodes labeled with a variable Pij then B(F ∪ G,≺) has at least k nodeslabeled with Pij . To prove this we need to show the following.(1) If there is a node in B(F,≺) labeled with a variable Pij then there is a
orresponding node in B(F ∪G,≺) labeled with Pij .(2) For two distin
t nodes in B(F,≺) labeled with a variable Pij there are twodistin
t nodes in B(F ∪G) labeled with Pij .Now we prove the above statements.(1) Suppose n1 ∈ B(F,≺) is labeled with a variable Pij . Then the sub-OBDDsrooted at the left 
hild and the right 
hild of the node are not isomorphi
 andtherefore 
annot be merged. It follows from Lemma 7 that there is a node

n2 ∈ B(F ∪G,≺) labeled with Pij su
h that the sub-OBDDs rooted at theleft 
hild and the right 
hild of this node are not isomorphi
 and therefore
annot be merged. Hen
e, there is a node in B(F ∪ G,≺) labeled with avariable Pij .(2) Let n1, n
′
1 ∈ B(F,≺) be distin
t nodes labeled with a variable Pij . Using thesame arguments as in (1) and Lemma 7 we 
on
lude that there are distin
tnodes n2, n

′
2 ∈ B(F ∪G,≺) labeled with a variable Pij .By Theorem 1, we 
on
lude that size(B(F ∪G,≺)) ≥ size(B(F,≺)). ⊓⊔Now we are ready to give a proof of Theorem 5.



Proof (Proof of Theorem 5). Let n > 20, and B1, . . . ,Bl be an OBDD refutationof EPHPn. Similar to the proof of Theorem 4 we show that for an arbitrary totalorder on variables ≺ there is an i < l su
h thatsize(Bi) ≥ 2n( 3

4
− 1

4

√
5)/4.We apply Lemma 1 to the matrix representing PC∗

n, and then one of the followingholds.(1) There is a set of ⌊n(3
4 − 1

4

√
5)⌋ rows (we denote this set by R) and thereis a set of 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SR) su
h that thefollowing holds:

• For ea
h r ∈ R there are Pra, Prb ∈ SR su
h that Pra ∈ S≺ and Prb ∈ S≻.
• For distin
t Pab, Pcd ∈ SR, b 6= d.(2) There is a set of ⌊n(3

4 − 1
4

√
5)⌋ 
olumns (we denote this set by Q) and thereis a set 
ontaining 2⌊n(3

4 − 1
4

√
5)⌋ entries (we denote this set by SQ) su
hthat the following holds:

• For ea
h q ∈ Q there are Paq, Pbq ∈ SQ su
h that Paq ∈ S≺ and Pbq ∈ S≻.
• For distin
t Pab, Pcd ∈ SQ, a 6= c.For ea
h i < l we denote by B∗

i the OBDD representing Cls(Bi)∩Cls(PHPn) withthe same order on variables ≺. We 
on
lude by Lemmas 5 and 8 in 
ase (1) thatthere is an i < l su
h thatsize(Bi) ≥ size(B∗
i ) ≥ 2|R|/4 = 2n( 3

4
− 1

4

√
5)/4,and by Lemmas 6 and 8 in 
ase (2) that there is an i < l su
h thatsize(Bi) ≥ size(B∗

i ) ≥ 2|Q|/4 = 2n( 3

4
− 1

4

√
5)/4.Hen
e, for an arbitrary OBDD refutation of EPHPn there is an intermidiateOBDD with size exponential in n. ⊓⊔6 Unrestri
ted OBDDs Do not Simulate ResolutionPolynomiallyThe above observations establish that unrestri
ted OBDD proof system withoutexistential quanti�
ation 
annot simulate unrestri
ted resolution proofs polyno-mially. In parti
ular, there are 
ontradi
tory CNFs for whi
h there is a resolutionrefutation exponentially stronger than any OBDD refutation 
ontaining only tworules, Axiom and Join.Theorem 6. There is a sequen
e of 
ontradi
tory CNFs ϕi, i > 0, of size

O(N3\4) for whi
h there is a resolution refutation of size O(N) and an arbi-trary OBDD refutation has size 2Ω(N3\4).Proof. Let ϕi be EPHPi and N = n4\3. Then the size of ϕi is O(N3\4) and byTheorems 3 and 4 there is a resolution refutation of size O(N) and an arbitraryOBDD refutation has size 2Ω(N3\4). ⊓⊔



7 Con
lusions and Future Resear
hOne of the results of the paper is a 
lass of CNFs that for in�nitely many values of
N has a resolution refutation of size O(N), and an arbitrary OBDD Apply refu-tation of these formulas has size at least 2Ω(N3\4). This extends earlier work on
omparison of OBDD-based proof systems and resolution-based systems in thefollowing ways.(1) An exponential separation between a parti
ular OBDD proof system andresolution is presented in [6℄. The problem whether there are CNFs of size

O(N) that have resolution refutation of size polynomial in N and an ar-bitrary refutation for a more e�
ient OBDD Apply proof system, like forexample the one in [19℄, has size at least exponential in N was open in [6℄.In 
omparison with [6℄, we 
onsidered a stronger OBDD proof system thatallows 
lauses to be pro
eed in an arbitrary order. In this paper we solvedthe above open problem by presenting a 
lass of formulas that are easy forresolution and hard for an arbitrary OBDD Apply method.(2) We have improved from 1.025Ω(n) to 1.14Ω(n) lower bound on OBDD refu-tations of PHPn presented in [15℄ .(2) The main open question in [11℄ is to improve lower bound on arbitrary OBDDrefutations by in
reasing the 
onstant in the Ω() of the 2Ω( 7
√

N/ ln N). This
onstant is extremely small and it is below 2−500. We 
onsidered a family ofCNFs that have a higher lower bound on OBDD refutations. But the OBDDproof system we 
onsidered is less strong than the one in [11℄.(3) A lot of resear
h has been done on exponential lower bounds on the sizes ofOBDDs for Boolean fun
tions. But most of the methods to obtain su
h lowerbounds are based on one-way 
ommuni
ation 
omplexity and the resultsfrom monotone 
ir
uits 
omplexity. Clearly, solving stru
tured 
ombinatorialproblems in style of Ramsey Theory may lead to new approa
hes for provinglower bounds.Still some interesting questions related to 
omparison of OBDD-based andresolution-based proof systems remain unsolved. It is shown in [6℄ that bi
on-ditional formulas have short OBDD proofs and after transforming them intoCNFs they requires exponentially long resolution proofs. But OBDD proofs ofthe transformed formulas need exponential size OBDD proofs. For OBDD meth-ods that allow existential quanti�
ation we know that there are formulas thathave polynomial size OBDD refutation [3℄ and resolution refutation of exponen-tial size, i.e. this proof system is stronger than any form of resolution. An openquestion is whether the OBDD Apply methods 
an be simulated by resolutionpolynomially.Another not solved problem is to give a proof of the tight 
onstant in Lemma1. The 
onstant c 
an be improved, and we 
onje
ture that the lemma also holdsfor c = 1− 1
2

√
2 ≈ 0.293. Although, it is very easy to give an intuitive explanationwhy it holds, a pre
ise proof is still needed. Su
h a proof would result in a betterlower bound on OBDD refutations presented in this paper.
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