Ordered Binary Decision Diagrams, Pigeonhole Formulas and Beyond

Olga Tveretina1*, Carsten Sinz1, Hans Zantema2,3

1 Institute for Theoretical Computer Science, Karlsruhe University
Am Fasanengarten 5, D-76131 Karlsruhe, Germany
olga@ira.uka.de, simz@ira.uka.de

2 Department of Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
h.zantema@tue.nl

3 Institute for Computing and Information Sciences, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. Grote and Zantema proved that a particular OBDD computation of the pigeonhole formula has an exponential size and that limited OBDD derivations cannot simulate resolution polynomially. Here we show that any arbitrary OBDD Apply refutation of the pigeonhole formula has an exponential size: we prove that the size of one of the intermediate OBDDs is at least \(\Omega(1.14^n) \). We also present a family of CNFs that require exponential increase for all OBDD refutations based on Apply method to simulate unrestricted resolution refutation.

1 Introduction

The reason for this study comes from the interest in giving theoretical explanations of the efficiency of algorithms for satisfiability testing. Many of these algorithms are based either on resolution or on Ordered Binary Decision Diagrams (OBDDs).

The resolution rule in propositional logic is a single valid inference rule that produces a new clause implied by two clauses containing complementary literals [10]. When coupled with a complete search algorithm, the resolution rule yields a sound and complete algorithm for deciding the satisfiability of a propositional formula. This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in Conjunctive Normal Form (CNF).

Presently, most of the state-of-the-art satisfiability solvers are based on the DPLL which is a variant of resolution in combination with search. At the same time resolution based solvers can be highly inefficient for solving some structured problems and require time exponential in the size of an input instance. The most

* This work was supported in part by the “Concept for the Future” of Karlsruhe Institute of Technology within the framework of the German Excellence Initiative.
famous example of such CNF is the pigeonhole formula that formalizes a very simple principle that \(n + 1 \) objects cannot be placed into \(n \) holes.

An OBDD, also referred as a Reduced OBDD (ROBDD) or just a BDD, is a data structure that is used to represent Boolean functions \([2, 18]\). OBDDs have some interesting properties: they provide compact and canonic representations of Boolean functions, and there are efficient algorithms for performing logical operations on OBDDs. As a result, OBDDs have been successfully applied to a wide variety of tasks, particularly in VLSI design and CAD verification.

The OBDD approaches for SAT solving can be divided into two groups:

1. The first group is based on using \texttt{Apply} operator and is an explicit construction of an OBDD. Given an order on variables, an OBDD for the CNF is built and then checked whether it is a terminal node 0.

2. The second group utilizes \textit{symbolic quantifier elimination} to extend the \texttt{Apply} method by eliminating variables via the application of existential quantifiers. It leads to significant speed up for certain kinds of structured instances. Thus, pigeonhole formulas require polynomial in \(n \) refutation size.

A proof system based on OBDDs was proposed by Asieras \textit{et al.} \([1]\). The authors introduce a very general proof system based on constraint propagation. OBDDs are a special case of this proof system. Their proof system has four rules: \texttt{Axiom}, \texttt{Join}, \texttt{Projection}, and \texttt{Weakening}. The first two rules, \texttt{Axiom} and \texttt{Join}, correspond to an application of the \texttt{Apply} operator. \texttt{Projection} and \texttt{Weakening} are introduced to reduce the size of intermediate OBDDs and where \texttt{Projection} rule corresponds to an application of existential quantification. Hence, this proof system contains lines that are OBDDs derived by any of the above rules. It was shown that the OBDD proof system containing all four rules is strictly stronger than resolution \([1]\) but it is still exponential \([8]\).

It was proven for the first time in \([15]\) that OBDD proof systems with two rules, \texttt{Axiom} and \texttt{Join}, i.e. corresponding to the \texttt{Apply} method have exponential lower bound on refutations of the pigeonhole formula. However, the lower bound \(\Omega(1.14^n) \) presented in this paper is stricter in comparison with \(\Omega(1.025^n) \) in \([15]\). We also demonstrate a family of CNFs that requires exponential increase for all OBDD refutations based on \texttt{Apply} method, i.e. OBDD refutations without existential quantification, to simulate unrestricted resolution refutation. The formulas are the pigeonhole formulas extended with additional clauses as in \([4]\). These formulas are CNFs parameterized by \(n \) and have size \(O(n^3) \). It is proven that there is a resolution refutation for these formulas of size \(O(n^2) \) \([4]\). We show that an arbitrary OBDD \texttt{Apply} refutation has size \(2^{\Omega(n)} \).

\textbf{Related work.} There have been done a lot of research on the relation of different propositional proof systems \([5, 17]\) and, in particular, on the relation of different forms of resolution and OBDDs \([9, 14, 16]\).

In \([6]\) Groote and Zantema proved that limited OBDD derivations cannot simulate resolution refutations polynomially. The considered OBDD system joins the clauses of a CNF in the order as they are listed, i.e. to build an OBDD for \(C_1 \land (C_2 \land C_3) \), first an OBDD for \(C_2 \land C_3 \) is built and then one for \(C_1 \land (C_2 \land C_3) \).

They present a lower bound for refutations of a formula of the form \(\neg x \land (x \land \varphi) \),
where \(\varphi \) is a formula that is hard for both BDD and resolution. But this formula is refuted trivially if to proceed it as \((\neg x \land x) \land \varphi \).

In [9] a direct construction of polynomial size OBDD refutation of pigeonhole formulas in presence of existential quantification is presented. Another interesting result by Segerlind in [12] is that the OBDD derivations with the Axiom rule, a tree-like application of the Join rule and the Projection rule cannot efficiently simulate DAG-like resolution derivations.

Contribution. Our result differs with previous work in various ways. We strengthen the result of [6]. In [6] the only OBDD computation of the pigeonhole formulas considered that first computes the conjunction of all positive clauses, then the conjunction of all negative clauses, and finally the conjunction of these two. In our setting, the clauses of the pigeonhole formula may be processed in any arbitrary order. We show that for any OBDD refutation of the pigeonhole formula some of the intermediate OBDDs have size exponential in \(n \). A consequence of our result is that the gap between polynomial and exponential in the OBDD refutation framework for pigeonhole formula is caused by existential quantification, i.e. by Projection rule.

The difference with work in [12] is the following. We consider a weaker OBDD proof system containing only two rules Axiom and Join. For this proof system we show that an unrestricted application of it cannot simulate resolution polynomially. At present it is not known whether there is an exponential separation between tree-like and DAG-like OBDD proof systems based on the Apply method. Therefore, we cannot say whether a tree-like proof system from [12] subsumes the OBDD proof system considered in this paper. Still a direct proof of exponential separation between an unrestricted OBDD Apply proof system and unrestricted resolution is presented for the first time in this paper. Moreover, although for a weaker proof system but we quantitatively improve the lower bounds on OBDD refutations than presented in [11, 12].

2 Propositional Proof Systems

We consider propositional formulas in **Conjunctive Normal Form** (CNFs). Basic blocks for building CNFs are propositional variables that take the values false or true. The set of propositional variables is denoted by \(\text{Var} \). A literal is either a variable \(x \) or its negation \(\neg x \). A clause is a disjunction of literals, and a CNF is a conjunction of clauses. By \(\bot \) we denote the empty clause. In the following, for convenience, we consider clauses as sets of variables, and a CNF as a set of clauses.

By \(\text{Cls}(\varphi) \) we denote the set of clauses contained in a CNF \(\varphi \) and by \(\text{Var}(\varphi) \) we denote the set of variables contained in the CNF \(\varphi \). By \(A : \text{Var} \to \{\text{true}, \text{false}\} \) we denote a function that assigns variables either to true or to false. We write \(F \models_A \text{true} \) if a CNF \(F \) takes a value true for an assignment \(A \) and \(F \models_A \text{false} \) if \(F \) takes a value false.
2.1 Resolution

The resolution principle, due to Robinson [10], is a method to construct proofs by contradiction. The resolution rule produces a new clause implied by two clauses containing complementary literals. The resulting clause contains all literals except the complementary ones. Formally this can be presented as following.

\[
\text{Resolution: } \frac{C \cup \{l\} \quad D \cup \{-l\}}{C \cup D}
\]

Thus, from clauses \(C \cup \{l\} \) and \(D \cup \{-l\} \) a new clause \(C \cup D \) is derived. A clause \(C \cup D \) is called a resolvent of \(C \cup \{l\} \) and \(D \cup \{-l\} \). The resolution proof rule defines a proof system in which there are no axiom schemata, and only one proof rule, resolution. The proofs by resolution start with clauses of the input CNF and derive new clauses until a contradiction which is expressed as the empty clause is obtained.

Definition 1 (Resolution refutation). A resolution refutation of an unsatisfiable CNF \(\varphi \) is a sequence of CNFs \(\varphi \equiv \varphi_0, \varphi_1, \ldots, \varphi_n \) with the following properties.

- \(\varphi_i \equiv \varphi_{i-1} \cup \{C_i\}, \ i = 1, \ldots, n \), where \(C_i \) a resolvent of two clauses in \(\varphi_{i-1} \).
- \(\varphi_n \equiv \varphi_{n-1} \cup \bot \).
- \(\bot \notin \varphi_i, \ i = 0, \ldots, n-1 \).

We say that \(n \) is the size of the resolution refutation.

2.2 OBDDs as a Proof System

An Binary Decision Diagram (BDD) is a a rooted, directed, acyclic graph, which consists of decision nodes and two terminal nodes 0 and 1. Each decision node is labeled by a propositional variable from \(\text{Var} \) and has two child nodes called a low child and a high child. The edge from a node to a low (high) child represents an assignment of the variable to 0 (1). Such a BDD is called an ordered BDD (OBDD) if different variables appear in the same order on all paths from the root. Therefore, OBDDs assume that there is a total order \(\prec \) on the set of variables.

An OBDD is said to be reduced if the following two rules have been applied to its graph: 1) merge isomorphic subgraphs; 2) eliminate any node whose two children are isomorphic.

Reduced OBDDs have the following property: For a fixed order \(\prec \) on the set of variables, every propositional formula \(\varphi \) is uniquely represented by a reduced BDD \(B(\varphi, \prec) \), and two formulas \(\varphi \) and \(\psi \) are equivalent if and only if \(B(\varphi, \prec) = B(\psi, \prec) \).

Given a propositional formula \(\varphi \) and an order on variables \(\prec \), we define the size of an OBDD \(B(\varphi, \prec) \) representing \(\varphi \) with respect to \(\prec \) as the number of its internal nodes and denote it by \(\text{size}(B(\varphi, \prec)) \).

In this paper we consider OBDDs as a propositional proof system. Since we are dealing only with unsatisfiable CNFs, we give a definition of a OBDD refutation adapting the definition from [3].
Definition 2 (OBDD refutation). Given a total order on variables \prec, a OBDD refutation of an unsatisfiable CNF φ is a sequence of OBDDs

$$B_1(\varphi_1, \prec), \ldots, B_n(\varphi_n, \prec)$$

such that $B_n(\varphi_n, \prec)$ is a OBDD representing the constant fake and for each $B_i(\varphi_i, \prec)$, $1 \leq i \leq n$, exactly one of the following holds.

- (AXIOM) $B_i(\varphi_i, \prec)$ represents one of the clauses $C \in \varphi$;
- (JOIN) there are OBDDs $B_{i'}(\varphi_{i'}, \prec)$ and $B_{i''}(\varphi_{i''}, \prec)$ such that $1 \leq i' < i'' < i$ and $\varphi_i = \varphi_{i'} \land \varphi_{i''}$.

We say that the size of the OBDD refutation is defined as $\sum_{i=1}^{n} \text{size}(B_i(\varphi_i, \prec))$.

When it is convenient, instead of $B(\varphi, \prec)$ we write $B(\varphi)$ or just B. By $\text{Cls}(B(\varphi))$ we mean the set of clauses and by $\text{Var}(B(\varphi))$ the set of variables contained in φ.

Example 1. Figure 1 depicts OBDD refutation of CNF $\varphi \equiv (x \lor y \lor z) \land (\neg x \lor y) \land \neg y \land \neg z$ for the order on variables $x \prec y \prec z$. OBDDs $a) - d)$ correspond to applications of Axiom rule and OBDDs $e) - g)$ correspond to applications of Join rule.

![Fig. 1](image-url) OBDD refutation of $\varphi \equiv (x \lor y \lor z) \land (\neg x \lor y) \land \neg y \land \neg z$ for the order on variables $x \prec y \prec z$.

The size of the minimal OBDD representing a propositional formula \(F \) for a given order on variables \(\prec \) is described by the structure theorem from [13].

Theorem 1 (Sieling and Wegener, 1993). Let \(m_i, \ i < n, \) be the number of subfunctions of a Boolean function \(f(x_1, \ldots, x_n) \), which are obtained by replacing the variables \(x_1, \ldots, x_{i-1} \) by constants and which depend essentially on \(x_i \) (a function \(f \) depends essentially on a variable \(y \) if \(f|_{y=0} \neq f|_{y=1} \)). Then a minimal OBDD for \(f \) contains exactly \(m_i \) nodes labelled \(x_i \) which are reached for the different subfunctions.

The above observation is very simple and helpful to prove lower bounds. In this paper we use Theorem 2 which is a variant of Theorem 1 and was presented in [6]. We use \(B = \{0, 1\} \) to denote the set of Boolean constants.

Theorem 2. Suppose for a given formula \(\varphi \) the following holds:
- \(|\text{Var}(\varphi)| = n; \)
- \(\prec \) is a total order on the set of variables \(\text{Var}(\varphi); \)
- \(x_1, \ldots, x_k \) are the smallest \(k \) elements with respect to \(\prec \) for some \(k < n; \)
- \(A \subseteq \{1, \ldots, k\} \);
- \(z = (z_1, \ldots, z_k) \in \mathbb{B}^k. \)
- For all distinct \(\overline{x}_1, \overline{x}_2 \in \mathbb{B}^k \) such that \(x_i^1 = x_i^2 = z_i \) for all \(i \notin A \) there exists a \(\overline{y} \in \mathbb{B}^{n-k} \) such that \(\varphi(\overline{x}_1, \overline{y}) \neq \varphi(\overline{x}_2, \overline{y}) \).

Then the size of the OBDD \(B(\varphi, \prec) \) is at least \(2^{|A|}. \)

The proof of the lower bounds presented in Section 4 is based on Theorem 2. However, in order to obtain a lower bound we still have to solve some combinatorial problems.

3 Pigeonhole Formulas and Beyond

The pigeonhole formulas are a family of unsatisfiable CNFs parameterized by \(n. \) They are often used as a standard benchmark for checking efficiency of (UN)SAT algorithms. It is very easy to give an argument for unsatisfiability of these formulas but most of the techniques need time exponential in \(n \) to produce a formal proof of unsatisfiability.

In our paper we consider also another class of unsatisfiable CNFs that we call as extended pigeonhole formulas. These formulas were introduced by Cook in his paper on the extended resolution proof of the pigeonhole formulas [4].

3.1 Pigeonhole Formulas

The pigeonhole principle states that \(n \) holes can hold at most \(n \) objects with one object in a hole. The propositional formulas describing this principle were introduced as following. Atomic proposition \(P_{ij} \) says that \(i \) is mapped to \(j, \) and the set of clauses \(\text{PHP}_n \) states that there is a one-to-one map from the set \(\{1, \ldots, n + 1\} \) to the set \(\{1, \ldots, n\} \).
Definition 3 (Pigeonhole Formulas). The pigeonhole formula \(\text{PHP}_n, n > 0\), is defined as follows.

\[
\text{PC}_n = \bigwedge_{i=1}^{n+1} \left(\bigvee_{j=1}^{n} P_{i,j} \right), \quad \text{NC}_n = \bigwedge_{1 \leq i < j \leq n+1} \left[\neg P_{i,k} \vee \neg P_{j,k} \right],
\]

\[
\text{PHP}_n = \text{PC}_n \land \text{NC}_n.
\]

The formula \(\text{PC}_n\) states that at least one variable is true in all \(n + 1\) rows and the formula \(\text{NC}_n\) states that at most one variable is true in all \(n\) columns.

These formulas were studied intensively in relation to complexity of different propositional proof systems, and in particular, it has been proved in [7] that every resolution proof for \(\text{PHP}_n\) has size exponential in \(n\).

3.2 Extended Pigeonhole Formulas

Years before a proof of an exponential low bound on resolution refutation for the pigeonhole formulas was found by Haken, Cook showed that there exists a short proof of \(\text{PHP}_n\) with extended resolution of size polynomial in \(n\) [4]. The idea of Cook was to define new variables \(Q_{ij}\) as \(Q_{ij} \equiv P_{ij} \lor (P_{in} \land P_{n+1,j}), 1 \leq i \leq n, 1 \leq j \leq n - 1\) and to describe this equivalence by the set \(Q_n\) of the following clauses.

1. \(Q_{ij} \lor \neg P_{ij}\),
2. \(Q_{ij} \lor \neg P_{in} \lor \neg P_{n+1,j}\),
3. \(\neg Q_{ij} \lor P_{ij} \lor \neg P_{in}\),
4. \(\neg Q_{ij} \lor P_{ij} \lor \neg P_{n+1,j}\).

Following the idea of Cook we define extended pigeonhole formulas.

Definition 4 (Extended Pigeonhole Formulas). The extended pigeonhole formula \(\text{EPHP}_n\) for \(n > 1\) is defined as \(\text{EPHP}_n = \text{PHP}_n \land \bigwedge_{i=1}^{4} \text{EC}_n^i\), where \(P_{ij}^0 \equiv P_{ij}\) and clauses \(\text{EC}_n^i\) constructed as follows.

1. \(\text{EC}_n^1 = \bigwedge_{1 \leq k \leq n-1, 1 \leq i \leq n-k+1} \left[P_{ij}^k \lor \neg P_{ij}^{k-1} \right],\)
2. \(\text{EC}_n^2 = \bigwedge_{1 \leq k \leq n-1, 1 \leq i \leq n-k+1} \left[P_{ij}^k \lor \neg P_{in}^{k-1} \lor \neg P_{n+1,j}^{k-1} \right],\)
3. \(\text{EC}_n^3 = \bigwedge_{1 \leq k \leq n-1, 1 \leq i \leq n-k+1} \left[\neg P_{ij}^k \lor P_{ij}^{k-1} \lor P_{in}^{k-1} \lor P_{n+1,j}^{k-1} \right],\)
4. \(\text{EC}_n^4 = \bigwedge_{1 \leq k \leq n-1, 1 \leq i \leq n-k+1} \left[\neg P_{ij}^k \lor P_{ij}^{k-1} \lor P_{n+1,j}^{k-1} \right].\)
The resulting EPHP\(_n\) formula has interesting properties. It is constructed by adding \(4n(n-1)(n+1)/3\) new clauses to PHP\(_n\). Hence, it is a simple unsatisfiable CNF with size polynomial in \(n\). There is a resolution refutation of EPHP\(_n\) with size \(O(n^4)\) \([4]\). But, as we prove in Section 5, all OBDD refutations of EPHP\(_n\) have size exponential in \(n\). Moreover, for each OBDD refutation of EPHP\(_n\) there is a corresponding OBDD refutation of PHP\(_n\) such that lower bound on the OBDD proof of EPHP\(_n\) is not smaller than lower bound on the OBDD proof of PHP\(_n\).

Theorem 3 (Cook). There is a resolution refutation of EPHP\(_n\), \(n > 1\), of size \(O(n^3)\).

We present here a proof of the above theorem because it is missing in the original paper and we think that it is of interest itself. In our proof we follow the idea from \([4]\) that from EPHP\(_n\) one can derive the clauses PHP\(_{n-1}\) in \(O(n^3)\) resolution steps.

Proof (Proof of Theorem 3). The proof has the following steps.

1. Show that \(Q_{i1} \lor \cdots \lor Q_{i,n-1}, 1 \leq i \leq n\), can be derived from PHP\(_n\) and the set of clauses \(Q_n\) in \(O(n)\) resolution steps.
2. Show that \(\neg Q_{ik} \lor \neg Q_{jk}, 1 \leq i < j \leq n, 1 \leq k < n-1\), can be derived from PHP\(_n\) and the set of clauses \(Q_n\) in \(O(n^2)\) resolution steps.

After repeating the above steps \(n-1\) times one produces the set of clauses PHP\(_1\) from which the empty clause can be derived in two resolution steps. It results in a resolution refutation of size \(O(n^4)\). The size of the refutation can be expressed alternatively as \(O(N^{4/3})\), where \(N\) is a number of clauses in EPHP\(_n\).

1. We show how to derive \(Q_{i1} \lor \cdots \lor Q_{i,n-2}\) from PHP\(_n\) and the set of clauses \(Q_n\).
 (a) \(Q_{i1} \lor \cdots \lor Q_{i,n-1} \lor P_{i,n}\) is derived from \(P_{i1} \lor \cdots \lor P_{i,n}\) and \(Q_{ij} \lor \neg P_{ij}\).
 (b) \(Q_{i1} \lor \cdots \lor Q_{i,n-1} \lor \neg P_{n+1,i,j}, 1 \leq j \leq n-1\), is derived from (a) and \(Q_{ij} \lor \neg P_{in} \lor \neg P_{n+1,i,j}\).
 (c) \(\neg P_{in} \lor P_{n+1,i} \lor \cdots \lor P_{n+1,n-1}\) is derived from \(P_{n+1,i} \lor \cdots \lor P_{n+1,n}\) and \(\neg P_{in} \lor \neg P_{n+1,n}\).
 (d) \(P_{n+1,i} \lor \cdots \lor P_{n+1,n-1} \lor Q_{i1} \lor \cdots \lor Q_{i,n-1}\) is derived from (a) and (c).
 (e) \(Q_{i1} \lor \cdots \lor Q_{i,n-2}\) is derived from (b) and (d).

2. We show how \(\neg Q_{ik} \lor \neg Q_{jk}\) can be derived from PHP\(_n\) and the set of clauses \(Q_n\) in \(O(n^2)\) resolution steps.
 (a) \(\neg Q_{ik} \lor \neg Q_{jk} \lor P_{n+1,k}\) is derived from \(\neg P_{ik} \lor \neg P_{jk}\) and \(\neg Q_{ik} \lor P_{ik} \lor P_{n+1,k}\) and \(\neg Q_{jk} \lor P_{jk} \lor P_{n+1,k}\).
 (b) \(\neg Q_{ik} \lor \neg Q_{jk} \lor \neg P_{ik}\) is derived from (a) and \(\neg P_{ik} \lor \neg P_{n+1,k}\).
 (c) \(\neg Q_{ik} \lor \neg Q_{jk} \lor \neg P_{jk}\) is derived from (a) and \(\neg P_{jk} \lor \neg P_{n+1,k}\).
(d) \(\neg Q_{ik} \vee \neg Q_{jk} \vee P_{im} \) is derived from (b) and \(\neg Q_{ik} \vee P_{ik} \vee P_{in} \).
(e) \(\neg Q_{ik} \vee \neg Q_{jk} \vee P_{jn} \) is derived from (c) and \(\neg Q_{ik} \vee P_{jk} \vee P_{jn} \).
(f) \(\neg Q_{ik} \vee \neg Q_{jk} \vee \neg P_{jn} \) is derived from (d) and \(\neg P_{in} \vee \neg P_{jn} \).
(g) \(\neg Q_{ik} \vee \neg Q_{jk} \) is derived from (e) and (f).

Hence, we have shown the correctness of the theorem by presenting the resolution steps.

\[\square \]

4 Technical Background

In this section we introduce notations and technical lemmas that will be used throughout the paper. Some combinatorial properties of square matrices are presented in Lemma 1. Lemma 2 generalizes a well-known fact about binary trees claiming the existence of subtrees with a weight lying between a and 2a for any definition of weight as a sum of the weights of its leaves.

4.1 Notations

The variables of the pigeonhole formula can be seen as entries of a matrix with \(n+1 \) rows and \(n \) columns. We denote such a matrix by Matrix\((\text{PHP}_n) \), where the \(i \)-th row corresponds to the clause \(\bigvee_{j=1}^n P_{ij} \). For each row in Matrix\((\text{PHP}_n) \) there is a corresponding clause in \(\text{PC}_n \) and vice versa, therefore, if it is needed, we can refer to a row as to a clause.

Let \(S_< \) denote a set containing the \(\lfloor n^2/2 \rfloor \) smallest elements of \(\text{Var}(\text{PC}_n^*) \), where \(\prec \) is a given order on variables and \(\text{PC}_n^* \) is obtained from \(\text{PC}_n \) by removing an arbitrary clause. And \(S<_x \) = \(\text{Var}(\text{PHP}_n) \setminus S_< \). We denote by \(S^*_x \) and by \(S^*_x \) the following sets:

\[S^*_x = \{ P_{ab} \in \text{Var}(\text{PHP}_n) \mid P_{ab} \leq \max_{P_{cd} \in S_x} P_{cd} \} \quad \text{and} \quad S^*_x = \text{Var}(\text{PHP}_n) \setminus S^*_x. \]

Suppose \(B_1, \ldots, B_i \) is an OBDD refutation on \(\text{PHP}_n \). Then for each \(B_i \) we define

\[S^*_i = S^*_x \cap \text{Var}(B_i) \quad \text{and} \quad S^*_i = \text{Var}(B_i) \setminus S^*_x. \]

Moreover, we define

\[\text{Cls}^{neg}(B_i) = \text{Cls}(B_i) \cap \text{Cls}(\text{NC}_n) \quad \text{and} \quad \text{Cls}^{pos}(B_i) = \text{Cls}(B_i) \cap \text{Cls}(\text{PC}_n). \]

4.2 Technical Lemmas

Lemma 1 was presented for the first time in [15], but with a smaller coefficient \(c = 1/2 - 1/\sqrt{2} \approx 0.146 \). This lemma is of interest from a point of view of Ramsey Theory that typically asks questions of the form: How many elements of some structure must there be to guarantee that a particular property will hold?

Groote and Zantema in [6] considered an \(n \times m \) matrix containing entries equally colored white and black and proved that such a matrix has either \(\sqrt{2}(n-}
1)/2 rows or $\sqrt{2}(m - 1)/2$ columns containing both a black and a white entry. Lemma 1 presents another combinatorial property of a matrix containing entries equally colored white and black. In comparison with [15] we present another proof that gives us a better $c = \frac{4}{3} - \frac{1}{4}\sqrt{5} \approx 0.19098$.

Lemma 1. Consider a matrix $M = \{m_{ij}\}$, $1 \leq i \leq n$, $1 \leq j \leq n$. Let the matrix entries be colored equally white and black, i.e., the difference between the number of white entries and the number of black entries is at most one. Let $m = \lfloor cn \rfloor$ for $c = \frac{4}{3} - \frac{1}{4}\sqrt{5} \approx 0.19098$. Then at least one of the following holds.

- One can choose m rows, and in every of these rows a white and a black entry, such that all these $2m$ entries are in different columns.
- One can choose m columns, and in every of these columns a white and a black entry, such that all these $2m$ entries are in different rows.

Proof. Starting by the given matrix repeat the following process as long as possible.

Choose a row in the matrix containing both a white and a black entry.

Remove both the column containing the white entry and the column containing the black entry.

Assume this repetition stops after k steps. Write $x = k/n$. If $x \geq c$ the first property of the lemma holds and we are done. In the remaining case we have $x < c$. We assume that the second property of the lemma does not hold, and then we will derive a contradiction.

The remaining matrix consists of n rows of $n(1 - 2x)$ entries, where the xn chosen rows are mixed, and the others either only consists of white entries or only of black entries. Assume that pn of these rows are totally white and qn of these rows are totally black. The $p + q = 1 - x$. Assume that in the xn chosen rows there are in total axn^2 white entries and bxn^2 black entries. So the total number of these entries is $(a + b)xn^2 = (1 - 2x)xn^2$, so $a + b = 1 - 2x$. All of these numbers x, p, q, a, b are reals in the interval $[0, 1]$. The total number of white entries in the the remaining matrix is $p(1 - 2x)n^2 + axn^2$. Since this should be less then $n^2/2$, we obtain

$$p(1 - 2x) + ax < \frac{1}{2},$$

and similarly $q(1 - 2x) + bx < \frac{1}{2}$ for the black entries.

Now assume that $q \geq c$ and $p + a \geq c$. We will construct at least $m = \lfloor cn \rfloor$ columns. For the first an choose a white entry from a mixed row and a black entry in the same column from a full black row. This can be repeated at least an times. Then the process is continued by choosing pn entries from the full white rows. Since $q \geq c$ and $p + a \geq c$ we have chosen at least cn columns in this way, yielding the second property of the lemma. Since we assume this second property does not hold, we conclude

$$q < c \lor p + a < c.$$
By symmetry we similarly obtain $p < c \lor q + b < c$. Since the combination of $q < c$ and $p < c$ cannot occur due to $x < c < \frac{1}{2}$ and $p + q = 1 - x$, we either have $p + a < c$ or $q + b < c$. By symmetry we may assume without loss of generality that $p + a < c$. Now substituting $b = 1 - 2x - a$ and $q = 1 - x - p$ in $q(1 - 2x) + bx < \frac{1}{2}$ we obtain

$$(1 - x - p)(1 - 2x) + (1 - 2x - a)x < \frac{1}{2}$$

hence

$$1 - p + (2p - a - 2)x < \frac{1}{2}$$

Since $x < c$ and $2p - a - 2 < 0$, we conclude

$$1 - p + (2p - a - 2)c < \frac{1}{2}$$

Since $p + a < c$ we conclude

$$1 - p + (3p - c - 2)c < \frac{1}{2}$$

hence $1 - c^2 - 2c - p(1 - 3c) < \frac{1}{2}$. Since $c > p$ and $1 - 3c > 0$ this yields

$$\frac{1}{2} = 2c^2 - 3c + 1 = 1 - c^2 - 2c - c(1 - 3c) < \frac{1}{2},$$

contradiction, using $c = \frac{3}{4} - \frac{1}{4}\sqrt{5}$.

By fine-tuning the argument the constant c in Lemma 1 can be improved. We conjecture that it also holds for $c = 1 - \frac{1}{4}\sqrt{2} \approx 0.293$. Choosing the $n \times n$ matrix in which the left upper $k \times k$-square is black for $k \approx \sqrt{\frac{1}{2}}$ and the rest is white, one observes that this value will be sharp. As our main result involves an exponential lower bound, we do not focus on the precise optimal value of c.

Example 2. Consider a square 7×7 matrix with 24 black and 25 white entries. For this example there are three rows such that one can pick up one black and one white entry in each row in such a way that all entries are in different columns. At the same time Lemma 1 gives us much lower but a guaranteed bound.

The OBDD representing an unsatisfiable CNF is just a terminal node 0. Therefore, we have to show that for an arbitrary order on variables and an arbitrary way to combine clauses there is an intermediate OBDD of a size exponential in n. Hence, we start by the simple observations describing some properties of intermediate OBDDs. And the following lemma generalizes a well-known fact about binary trees claiming the existence of subtrees with a weight lying between a and 2a.

Lemma 2. Let C be a finite set, $R \subseteq C$ with $|R| \geq 2$, and $B_1, \ldots, B_l \subseteq C$ a sequence with:
Fig. 2. An example of a 7×7 matrix with entries equally colored black and white.

1. $B_l = C$
2. For each B_i (1 ≤ i ≤ l), either $B_i = \emptyset$, $B_i = \{c\}$ for $c \in C$, or $B_i = B_j \cup B_k$ for some j, k with $j < k < i$.

Then, for each a with $\frac{1}{|R|} < a \leq \frac{1}{2}$, there is a $j < l$ such that

$$a|R| \leq |B_j \cap R| < 2a|R|.$$

Proof. We give a proof by contradiction. Suppose, for each B_j, either $|B_j \cap R| < a|R|$ or $|B_j \cap R| \geq 2a|R|$.

As $B_l \cap R = C \cap R = R$, the inequality $|B_l \cap R| \geq 2a|R|$ holds for the final element B_l of the sequence. On the other hand, for singletons $B_j = \{c\}$, we have $|B_j \cap R| = 0 < a|R|$ for $c \notin R$, and $|B_j \cap R| = 1 < a|R|$ for $c \in R$, as $a > 1/|R|$. Moreover, for $B_i = \emptyset$, $|B_i \cap R| < a|R|$ obviously holds. Following now the predecessors of B_l (via the construction by set union) in the sequence B_i backwards, we finally arrive at an index k for which the following holds:

- $|B_k \cap R| \geq 2a|R|$, and
- $B_k = B_{k'} \cup B_{k''}$, where $|B_{k'} \cap R| < a|R|$ and $|B_{k''} \cap R| < a|R|$.

As $B_l \cap R = (B_{k'} \cup B_{k''}) \cap R = (B_{k'} \cap R) \cup (B_{k''} \cap R)$, and thus $|B_k \cap R| \leq |B_{k'} \cap R| + |B_{k''} \cap R| < 2a|R|$, we arrive at a contradiction to $|B_l \cap R| \geq 2a|R|$.

\Box

Lemma 3. Suppose B_1, \ldots, B_l is an OBDD refutation either on PHP$_n$ or on EPHP$_n$ and $R \subseteq \mathrm{Cls}(P\varepsilon_n)$ with $|R| \geq 4$. Then there is an $i < l$ such that

$$|R|/4 \leq |\mathrm{Cls}(B_i) \cap R| < |R|/2.$$

Proof. Follows directly from Lemma 2.

Let B_1, \ldots, B_l be an OBDD refutation either on PHP$_n$ or on EPHP$_n$. For each $i \leq l$, we define J_i as follows:

$$J_i = \{j \in \{1, \ldots, n\} \mid \exists a, b: \neg P_{a_j} \vee \neg P_{b_j} \in \mathrm{Cls}(B_i) \& P_{a_j} \in S^\omega \& P_{b_j} \in S^\omega\}.$$
Lemma 4. Suppose B_1, \ldots, B_l is an OBDD refutation either on PHP$_n$ or on EPHP$_n$ for a total order on variables \prec. Let $G \subseteq \{1, \ldots, n\}$ such that $|G| \geq 4$. Then there is an $i < l$ such that

$$|G|/4 \leq |J_i \cap G| < |G|/2.$$

Proof. Follows from Lemma 2, using $C = \{1, \ldots, n\}$, $R = G$, $a = 1/4$, and J_1, \ldots, J_l for the sequence $(B_i)_{1 \leq i \leq l}$, for which the precondition of Lemma 2 holds, as is easily checked. \Box

5 Exponential Lower Bound on OBDD Refutations of PHP$_n$ and EPHP$_n$

In this section we prove lower bounds on OBDD refutations of the pigeonhole formula PHP$_n$ and related extended pigeonhole formula EPHP$_n$. We start by proving lower bound for PHP$_n$ and the proof of lower bound for EPHP$_n$ is a direct consequence of it.

5.1 Lower Bound on OBDD Refutations of PHP$_n$

Our proof of lower bound on OBDD refutations of PHP$_n$ is based on Theorem 2 and Lemmas 1-4. Before presenting the details of a formal proof we start with an example to give an intuition behind.

Example 3. Let us consider PHP$_4$. This formula can be presented with a 5×4 matrix, as for example in Figure 3.

![Fig 3. A 5×4 matrix for PHP$_5$. The black and the white entries represent elements from the sets $S_<$ and S_\ll correspondingly.](image)

Suppose one of the intermediate OBDDs is an OBDD depicted in Figure 4 and it represents

$$\bigwedge_{i=2}^{3} \bigvee_{j=1}^{4} P_{ij} \land \neg P_{24} \lor \neg P_{34},$$

where $P_{21} < P_{31} < P_{32} < P_{22} < P_{23} < P_{33} < P_{24} < P_{34}$.

Our proofs of lower bounds on OBDD refutations are based on Theorem 2. Hence, we need to choose set \(A \) satisfying the theorem conditions. For this we use Lemma 1. The black and white entries represent elements of sets \(S_\prec \) and \(S_\succ \) correspondingly. We collect the black entries satisfying Lemma 1 in \(A \). The white entries satisfying Lemma 1 are used to prove the conditions of Theorem 2.

We apply Lemma 1 and Theorem 2 to this example and collect the variables \(P_{21} \) and \(P_{32} \) in \(A \). According to Theorem 2 the size of the OBDD is at least \(2^{2(|P_{21}P_{32}|)} \). For this particular example the size of the OBDD is much larger. This raises an open question whether lower bounds presented in this paper can be improved.

Lemma 5. Let \(B_1, \ldots, B_l \) be an OBDD refutation of PHP\(_n\) and \(\prec \) be an order on variables. Assume that there are two sets, a set \(R \) of rows and a set \(S^R \) of entries of Matrix\((PC_n)\) such that the following holds:

- For each \(r \in R \) there are \(P_{ra}, P_{rb} \in S^R \) such that \(P_{ra} \in S_\prec \) and \(P_{rb} \in S_\succ \).
- For distinct \(P_{ab}, P_{cd} \in S^R \), \(b \neq d \).

Then there is an \(i < l \) such that

\[
\text{size}(B_i) \geq 2^{\frac{|R|}{4}}.
\]
Proof. Let for $1 \leq i \leq l$,

$$R^i = \text{Cls}(B_i) \cap R.$$

We apply Lemma 3. Thus we know that there is an $i < l$ such that

$$|R|/4 \leq |R^i| < |R|/2,$$

and we get

$$2|R^i| + 1 \leq |R|.$$

Taking it into account, we compute

$$|\text{Cls}^\text{pos}(B_i)| \leq (n + 1) - (|R| - |R^i|)$$

$$\leq (n + 1) - ((2|R^i| + 1) - |R^i|)$$

$$= n - |R^i|.$$

We denote $\overline{R^i} = \text{Cls}^\text{pos}(B_i) \setminus R^i$. By definition $R^i \subseteq \text{Cls}^\text{pos}(B_i)$. Hence, we obtain

$$|\overline{R^i}| = |\text{Cls}^\text{pos}(B_i)| - |R^i|$$

$$\leq n - 2|R^i|.$$

For each row $r \in R^i$ we fix an entry that is in the set $S_{<}$. We collect these elements in the set A. For each row $r \in \overline{R^i}$ we also fix an entry that is in $S_{>}$ and collect these elements in the set Y. Suppose

$$R_c = \{ j \mid \exists i : P_{ij} \in A \cup Y \}.$$

Since the set of rows R^i satisfies Lemma 1, we get

$$|\overline{R^i}| = 2|R^i|.$$

Let $J = n - |R_c|$. Then we obtain

$$J = n - 2|R^i|$$

and

$$|\overline{R^i}| \leq |J|.$$

Taking into account $|\overline{R^i}| \leq |J|$, for each row in $\overline{R^i}$ we fix one entry, collect these entries in the set X. We require the following.

- for distinct $P_{ab}, P_{cd} \in X$, $b \neq d$;
- for each $P_{ab} \in X$, $b \notin R_c$.

We define

$$X_{<} = S^+_{<} \cap X,$$

and

$$X_{>} = S^+_{>} \cap X.$$

We apply Lemma 2 on

$$k = |S^+_{<}|,$$
where $S'_x = S'* \cap \text{Var}(B_i)$. Let for $j = 1, \ldots, k$,

$$z_j = \begin{cases}
1, & \text{if } z_j \in X_< \\
0, & \text{otherwise}
\end{cases}$$

Choose distinct $\overrightarrow{x}, \overrightarrow{x}' \in \mathbb{B}^k$ such that $x_j = x_j' = z_j$ for all $z_j \not\in A$. Then there is j' such that $x_j' \neq x_j'$. Let $\overrightarrow{y} = (y_{k+1}, \ldots, y_q)$, where $q = |\text{Var}(B_i)|$, be the vector defined for $y_j \in Y$ by

$$y_j = \begin{cases}
0, & \text{if } y_j \text{ is in the same row as } x_j' \\
1, & \text{otherwise}
\end{cases}$$

and for $y_j \not\in Y$ by

$$y_j = \begin{cases}
1, & \text{if } y_j \in X_> \\
0, & \text{otherwise}
\end{cases}$$

Hence, the subset of clauses represented by B_i evaluates to x_j' for the assignment $(\overrightarrow{x}, \overrightarrow{y})$ and to x_j' for the assignment $(\overrightarrow{x}', \overrightarrow{y})$. Taking into account that $|A| \geq |R|/4$, by Theorem 2, we obtain

$$\text{size}(B_i) \geq 2^{|A|} \geq 2^{|R|/4}.$$

\[\square \]

Lemma 6. Let B_1, \ldots, B_l be an OBDD refutation of PHP$_n$ and \prec be a given order on variables. Assume that there is a set Q of columns and a set S^Q of entries of Matrix(PHP$_n$) such that the following holds:

- For each $q \in Q$ there are $P_{aj}, P_{aj}' \in S^Q$ such that $P_{aj} \in S_<$ and $P_{aj}' \in S_>$.
- For distinct $P_{ab}, P_{cd} \in S^Q$, $a \neq c$.

Then there is an $i < l$ such that

$$\text{size}(B_i) \geq 2^{|Q|/4}.$$

Proof. Let

$$Q^c_i = \{ j \mid \exists a, b : \neg P_{aj} \lor \neg P_{bj} \in \text{Cls}(B_i) \& P_{aj} \in S_< \& P_{bj} \in S_\succ \}.$$

By Lemma 4, there is an $i < l$ such that

$$|Q|/4 \leq |Q^c| < |Q|/2.$$

For each column in Q^c we fix one entry that is in the set $S_<$ and collect these elements in A. For each column in Q^c we also fix one entry that is in the set $S_>$ and collect these elements in the set Y. Let

$$Q^r = \{ i \mid \exists j : P_{ij} \in A \cup Y \}.$$

Suppose

$$Q^c = Q \setminus Q^c_i.$$
Then we get
\[\overline{Q^c} > |Q|/2. \]
For each \(j \in \overline{Q^c} \) we fix \(P_{aj}, P_{bj} \in S^Q \), where \(P_{aj}, P_{bj} \in S_\prec \) and \(P_{aj}, P_{bj} \in S_\succ \). We collect \(P_{aj} \) in \(X_\prec \) and we collect \(P_{bj} \) in \(X_\succ \) for all \(j \in \overline{Q^c} \). We define
\[\overline{Q^c} = \{ a \mid \exists b : P_{ab} \in X_\prec \cup X_\succ \}. \]
By Lemma 1 all entries collected in \(\overline{Q^c} \) are from different rows. Hence, we obtain
\[|\overline{Q^c}| = 2|Q^c|. \]
Taking into account that \(\overline{Q^c} > |Q|/2 \), we get
\[\overline{Q^c} > |Q| \]
and since \(\overline{Q^c} \) is a natural number we get:
\[\overline{Q^c} \geq |Q| + 1. \]
We denote
\[Q^* = \text{Cl}_{\text{pos}}(B_i) \setminus \overline{Q^c}. \]
No restrictions are posed on the size of the set \(\text{Cl}_{\text{pos}}(B_i) \). Hence,
\[1 \leq |\text{Cl}_{\text{pos}}(B_i)| \leq n + 1. \]
We take into account that \(|\overline{Q^c}| \geq |Q| + 1 \) and compute
\[
|Q^*| \leq (n + 1) - |\overline{Q^c}|
\leq (n + 1) - (|Q| + 1)
= n - |Q|.
\]
We define \(J = \{ j \mid \exists a : P_{aj} \in \text{Var}(\text{PHP}^n) \& j \notin Q \}. \) Then
\[|J| = n - |Q|. \]
Therefore,
\[|Q^*| \leq |J|. \]
We take into account \(|Q^*| \leq |J| \) and for each row \(r \in Q^* \) we fix one entry and collect these entries in the set \(W \). We require the following:
- for distinct \(P_{ab}, P_{cd} \in W, b \neq d; \)
- for each \(P_{ab} \in W, b \notin Q^c. \)
We apply Lemma 2 on
\[k = |S^i_\prec|, \]
where \(S^i_\prec = S^i_\prec \cup \text{Var}(B_i) \). We denote \(W_\prec = S^i_\prec \cap W \) and \(W_\succ = S^i_\succ \cap W \). For \(j = 1, \ldots, k \) we define
\[z_j = \begin{cases} 1, & \text{if } z_j \in X_\prec \cup W_\prec \\ 0, & \text{otherwise} \end{cases} \]
Choose $\mathbf{x}, \mathbf{x}' \in \mathbb{B}^k$ such that $\mathbf{x} \neq \mathbf{x}'$ and $x_j = x'_j = z_j$ for all $z_j \not\in A$. Since $x \neq x'$ there is a j' such that $x_{j'} \neq x'_{j'}$. Let $\mathbf{y} = (y_{k+1}, \ldots, y_q)$, where $q = |\text{Var}(B_i)|$, be the vector defined for $y_j \in Y$ by

$$y_j = \begin{cases} 1, & \text{if } y_j \text{ is in the same column as } x_{j'} \\ 0, & \text{otherwise} \end{cases}$$

and for $y_j \not\in Y$ by

$$y_j = \begin{cases} 1, & \text{if } y_j \in X_\omega \cup W_\omega \\ 0, & \text{otherwise} \end{cases}$$

Hence, the subset of clauses represented by B_i evaluates to $\neg x_{j'}$ for the assignment (\mathbf{x}, \mathbf{y}) and to $\neg x'_{j'}$ for the assignment $(\mathbf{x}', \mathbf{y})$. Taking into account that $|A| \geq |Q|/4$, by Theorem 2 we obtain

$$\text{size}(B_i) \geq 2^{|A|} \geq 2^{|Q|/4}.$$

\square

Theorem 4. For every order $<$ on the set of variables, the size of each OBDD refutation of PHP$_n$ is $2^{O(n)}$.

Proof. Let $n > 20$, and B_1, \ldots, B_l be a OBDD refutation of PHP$_n$. We prove that for an arbitrary total order on variables $<$ there is $i \leq l$ such that

$$\text{size}(B_i) \geq 2^{n(\frac{2}{3} - \frac{1}{4}\sqrt{5})/4} > 1.14^n.$$

Hence, the size of an arbitrary OBDD refutation on PHP$_n$ is $2^{O(n)}$. First we apply Lemma 1 to the matrix representing PC$_n^{\ominus}$, where PC$_n^{\ominus}$ is obtained from PC$_n$ by removing one (arbitrary) clause. Then one of the following holds.

1. There is a set of $\lfloor n(\frac{2}{3} - \frac{1}{4}\sqrt{5}) \rfloor$ rows (we denote this set by R) and there is a set of $2\lfloor n(\frac{2}{3} - \frac{1}{4}\sqrt{5}) \rfloor$ entries (we denote this set by S_R) such that the following holds:
 - For each $r \in R$ there are $P_{ra}, P_{rb} \in S_R$ such that $P_{ra} \in S_\omega$ and $P_{rb} \in S_\omega$.
 - For distinct $P_{ab}, P_{cd} \in S_R$, $b \neq d$.

2. There is a set of $\lfloor n(\frac{2}{3} - \frac{1}{4}\sqrt{5}) \rfloor$ columns (we denote this set by Q) and there is a set containing $2\lfloor n(\frac{2}{3} - \frac{1}{4}\sqrt{5}) \rfloor$ entries (we denote this set by S_Q) such that the following holds:
 - For each $q \in Q$ there are $P_{aq}, P_{cq} \in S_Q$ such that $P_{aq} \in S_\omega$ and $P_{cq} \in S_\omega$.
 - For distinct $P_{ab}, P_{cd} \in S_Q$, $a \neq c$.

We obtain by Lemma 5 in the first case

$$\text{size}(B_i) \geq 2^{|R|/4} = 2^{n(\frac{2}{3} - \frac{1}{4}\sqrt{5})/4},$$

and by Lemma 6 in the second case

$$\text{size}(B_i) \geq 2^{|Q|/4} = 2^{n(\frac{2}{3} - \frac{1}{4}\sqrt{5})/4}.$$

From this we conclude that an arbitrary OBDD refutation of PHP$_n$ has size exponential in n.

\square
5.2 Lower Bound on OBDD Refutations of EPHP$_n$

In this section we give a formal proof that an arbitrary OBDD refutation of EPHP$_n$ has a lower bound exponential in n.

Theorem 5. For every order \prec on the set of variables, the size of each OBDD refutation of EPHP$_n$ is $2^{O(n)}$.

First we need to prove intermediate lemmas.

Lemma 7. Let F and G be CNFs such that $F \subseteq \text{PHP}_n$ and $G \subseteq \bigwedge^i_1 \text{EC}_n^i$. Assume that $A : \text{Var} \to \{\text{true}, \text{false}\}$ is an assignment of variables such that $F \models_A \text{true}$. Then there is an assignment $A' : \text{Var} \to \{\text{true}, \text{false}\}$ such that for each $P_{ij} \in \text{Var}(F)$, $A'(P_{ij}) = A(P_{ij})$ and $F \cup G \models_{A'} \text{true}$.

Proof. It follows straightforwardly from the construction of $\bigwedge^4_1 \text{EC}_n^i$.

Lemma 8. Let $F \subseteq \text{PHP}_n$, $G \subseteq \bigwedge^4_1 \text{EC}_n^i$. Then for any order on variables \prec

$$\text{size}(B(F \cup G, \prec)) \geq \text{size}(B(F, \prec)).$$

Proof. Our proof is based on Theorem 1. It is sufficient to show that if $B(F, \prec)$ has k nodes labeled with a variable P_{ij} then $B(F \cup G, \prec)$ has at least k nodes labeled with P_{ij}. To prove this we need to show the following.

(1) If there is a node in $B(F, \prec)$ labeled with a variable P_{ij} then there is a corresponding node in $B(F \cup G, \prec)$ labeled with P_{ij}.

(2) For two distinct nodes in $B(F, \prec)$ labeled with a variable P_{ij} there are two distinct nodes in $B(F \cup G)$ labeled with P_{ij}.

Now we prove the above statements.

(1) Suppose $n_1 \in B(F, \prec)$ is labeled with a variable P_{ij}. Then the sub-OBDDs rooted at the left child and the right child of the node are not isomorphic and therefore cannot be merged. It follows from Lemma 7 that there is a node $n_2 \in B(F \cup G, \prec)$ labeled with P_{ij} such that the sub-OBDDs rooted at the left child and the right child of this node are not isomorphic and therefore cannot be merged. Hence, there is a node in $B(F \cup G, \prec)$ labeled with a variable P_{ij}.

(2) Let $n_1, n'_1 \in B(F, \prec)$ be distinct nodes labeled with a variable P_{ij}. Using the same arguments as in (1) and Lemma 7 we conclude that there are distinct nodes $n_2, n'_2 \in B(F \cup G, \prec)$ labeled with a variable P_{ij}.

By Theorem 1, we conclude that $\text{size}(B(F \cup G, \prec)) \geq \text{size}(B(F, \prec))$. □

Now we are ready to give a proof of Theorem 5.
Proof. (Proof of Theorem 5). Let \(n > 20 \) and \(B_1, \ldots, B_l \) be an OBDD refutation of \(\text{EPHP}_n \). Similar to the proof of Theorem 4 we show that for an arbitrary total order on variables \(\prec \) there is an \(i < l \) such that
\[
\text{size}(B_i) \geq 2^{n(\frac{4}{5} - \frac{1}{\sqrt{5}})/4}.
\]
We apply Lemma 1 to the matrix representing \(PC_n^\prime \), and then one of the following holds.

(1) There is a set of \(\lfloor n(\frac{4}{5} - \frac{1}{\sqrt{5}}) \rfloor \) rows (we denote this set by \(R \)) and there is a set of \(2\lfloor n(\frac{4}{5} - \frac{1}{\sqrt{5}}) \rfloor \) entries (we denote this set by \(R^R \)) such that the following holds:
 - For each \(r \in R \) there are \(P_{ra}, P_{rb} \in S^r \) such that \(P_{ra} \in S_\prec \) and \(P_{rb} \in S_\succ \).
 - For distinct \(P_{rb}, P_{cd} \in S^r, b \neq d \).

(2) There is a set of \(\lfloor n(\frac{4}{5} - \frac{1}{\sqrt{5}}) \rfloor \) columns (we denote this set by \(Q \)) and there is a set containing \(2\lfloor n(\frac{4}{5} - \frac{1}{\sqrt{5}}) \rfloor \) entries (we denote this set by \(S^Q \)) such that the following holds:
 - For each \(q \in Q \) there are \(P_{aq}, P_{bg} \in S^q \) such that \(P_{aq} \in S_\prec \) and \(P_{bg} \in S_\succ \).
 - For distinct \(P_{ac}, P_{bd} \in S^q, a \neq c \).

For each \(i < l \) we denote by \(B_i^\prime \) the OBDD representing \(\text{Cls}(B_i) \cap \text{Cls}(\text{PHP}_n) \) with the same order on variables \(\prec \). We conclude by Lemmas 5 and 8 in case (1) that there is an \(i < l \) such that
\[
\text{size}(B_i) \geq \text{size}(B_i^\prime) \geq 2^{|R|/4} = 2^{n(\frac{4}{5} - \frac{1}{\sqrt{5}})/4},
\]
and by Lemmas 6 and 8 in case (2) that there is an \(i < l \) such that
\[
\text{size}(B_i) \geq \text{size}(B_i^\prime) \geq 2^{|Q|/4} = 2^{n(\frac{4}{5} - \frac{1}{\sqrt{5}})/4}.
\]
Hence, for an arbitrary OBDD refutation of \(\text{EPHP}_n \) there is an intermediate OBDD with size exponential in \(n \).

\[\square\]

6 Unrestricted OBDDs Do not Simulate Resolution Polynomially

The above observations establish that unrestricted OBDD proof system without existential quantification cannot simulate unrestricted resolution proofs polynomially. In particular, there are contradictory CNFs for which there is a resolution refutation exponentially stronger than any OBDD refutation containing only two rules, \text{Axiom} and \text{Join}.

\textbf{Theorem 6.} There is a sequence of contradictory CNFs \(\varphi_i, i > 0 \), of size \(O(N^{3^{3^3}}) \) for which there is a resolution refutation of size \(O(N) \) and an arbitrary OBDD refutation has size \(2^{O(N^{3^{3^3}})} \).

\textbf{Proof.} Let \(\varphi_i \) be \(\text{EPHP}_i \) and \(N = n^{3^3} \). Then the size of \(\varphi_i \) is \(O(N^{3^{3^3}}) \) and by Theorems 3 and 4 there is a resolution refutation of size \(O(N) \) and an arbitrary OBDD refutation has size \(2^{O(N^{3^{3^3}})} \). \[\square\]
7 Conclusions and Future Research

One of the results of the paper is a class of CNFs that for infinitely many values of N has a resolution refutation of size $O(N)$, and an arbitrary OBDD Apply refutation of these formulas has size at least $2^{O(N^{3/4})}$. This extends earlier work on comparison of OBDD-based proof systems and resolution-based systems in the following ways.

(1) An exponential separation between a particular OBDD proof system and resolution is presented in [6]. The problem whether there are CNFs of size $O(N)$ that have resolution refutation of size polynomial in N and an arbitrary refutation for a more efficient OBDD Apply proof system, like for example the one in [19], has size at least exponential in N was open in [6]. In comparison with [6], we considered a stronger OBDD proof system that allows clauses to be proceed in an arbitrary order. In this paper we solved the above open problem by presenting a class of formulas that are easy for resolution and hard for an arbitrary OBDD Apply method.

(2) We have improved from $1.025^{O(n)}$ to $1.14^{O(n)}$ lower bound on OBDD refutations of PHP_n presented in [15].

(3) The main open question in [11] is to improve lower bound on arbitrary OBDD refutations by increasing the constant in the $O()$ of the $2^{O(\sqrt{N/\ln N})}$. This constant is extremely small and it is below 2^{-500}. We considered a family of CNFs that have a higher lower bound on OBDD refutations. But the OBDD proof system we considered is less strong than the one in [11].

A lot of research has been done on exponential lower bounds on the sizes of OBDDs for Boolean functions. But most of the methods to obtain such lower bounds are based on one-way communication complexity and the results from monotone circuits complexity. Clearly, solving structured combinatorial problems in style of Ramsey Theory may lead to new approaches for proving lower bounds.

Still some interesting questions related to comparison of OBDD-based and resolution-based proof systems remain unsolved. It is shown in [6] that biconditional formulas have short OBDD proofs and after transforming them into CNFs they requires exponentially long resolution proofs. But OBDD proofs of the transformed formulas need exponential size OBDD proofs. For OBDD methods that allow existential quantification we know that there are formulas that have polynomial size OBDD refutation [3] and resolution refutation of exponential size, i.e. this proof system is stronger than any form of resolution. An open question is whether the OBDD Apply methods can be simulated by resolution polynomially.

Another not solved problem is to give a proof of the tight constant in Lemma 1. The constant c can be improved, and we conjecture that the lemma also holds for $c = 1 - \frac{1}{4}\sqrt{2} \approx 0.293$. Although, it is very easy to give an intuitive explanation why it holds, a precise proof is still needed. Such a proof would result in a better lower bound on OBDD refutations presented in this paper.
References