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Abstract

An even cycle in a graph is called nice by Lovasz and Plummer in [LP86] if the graph
obtained by deleting all vertices of the cycle has some perfect matching. In the present
paper we prove some new complexity bounds for various versions of problems related to
perfect matchings in graphs with a polynomially bounded number of nice cycles. We show
that for graphs with a polynomially bounded number of nice cycles the perfect matching
decision problem is in SPL, it is hard for FewL, and the perfect matching construction
problem is in LC=L ∩ ⊕L. Furthermore, we significantly improve the best known upper
bounds, proved by Agrawal, Hoang, and Thierauf in the STACS’07-paper [AHT07], for the
polynomially bounded perfect matching problem by showing that the construction and the
counting versions are in C=L ∩ ⊕L and in C=L, respectively. Note that SPL,⊕L,C=L,
and LC=L are contained in NC2.

Moreover, we show that the problem of computing a maximum matching for bipartite
planar graphs is in LC=L. This solves Open Question 4.7 stated in the STACS’08-paper
by Datta, Kulkarni, and Roy [DKR08] where it is asked whether computing a maximum
matching even for bipartite planar graphs can be done in NC. We also show that the problem
of computing a maximum matching for graphs with a polynomially bounded number of even
cycles is in LC=L.

1 Introduction

A set M of edges in an undirected graph G such that no two edges of M share a vertex is called a
matching in G. A matching with maximal cardinality is called maximum. A maximum matching
is perfect if it covers all vertices in the graph. Graph matchings because of their fundamental
properties are one of the most fundamental and well-studied objects in mathematics and in
theoretical computer science (see e.g. [LP86, KR98]). In the wide research-topic on graph
matchings, perfect matchings and maximum matchings w.r.t. parallel computations receive a
great attention.

From the viewpoint of complexity theory it is well-known that a maximum matching can be
constructed efficiently in polynomial time [Edm65]. Hence the problem of deciding whether a
graph has a perfect matching (short: Decision-PM) and the problem of computing a perfect
matching in a graph(short: Search-PM) are in P. Regarding parallel computations, computing
a maximum matching is known to be in randomized NC [KUW86, MVV87], and particularly in
nonuniform SPL [ARZ99] (see Section 2 for more detail on the complexity classes). Therefore,
both problems Decision-PM and Search-PM are in nonuniform SPL. But it is a big open
question whether even Decision-PM is in uniform NC. Note that if Search-PM would be in
NC then also Decision-PM. Note further that there is a huge gap among the complexities of

∗Supported by DFG grant HO 4337/1-1.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 91 (2009)



the search and the counting version of the perfect matching problem (short: Counting-PM)
because computing the number of all perfect matching in a bipartite graph is known to be
#P-complete [Val79].

By Tutte’s Theorem [Tut47] (see next section for more detail), Decision-PM can be re-
duced to the problem of testing if a symbolic determinant is zero. This algebraic setting puts
Decision-PM into a special case of the well-studied problem Polynomial Identity Testing (short:
PIT), the problem of testing if a polynomial given in an implicit form, like an arithmetic cir-
cuit or a symbolic determinant, is zero. PIT can be solved by a randomized algorithm using
Schwartz-Zippel Lemma [Sch80, Zip79], but whether the method can be derandomized is a
prominent open question. Due to a result by Impagliazzo and Kabanets [KI04] stating that the
problem of derandomizing PIT is computationally equivalent to the problem of proving lower
bounds for arithmetic circuits, the matching problem attracts great attention.

In this paper we continue with the line of research that tries to characterize exactly the com-
plexity of the matching problem. The motivation for the work comes directly from the crucial im-
portance of the matching problem mentioned above. Since it is open whether the perfect match-
ing problem is in NC, diverse special cases of the problem have been studied and solved before.
For example, NC algorithms are known for Decision-PM for: planar graphs [Kas67, Vaz89],
regular bipartite graphs [LPV81], strongly chordal graphs [DK86], and dense graphs [DHK93].
Search-PM is also known in NC for bipartite planar graphs [MN95, MV00, DKR08], and for
graphs with a polynomially bounded number of perfect matchings [GK87, AHT07].

In the first part of the paper, in Section 3, we investigate the complexity of the perfect
matching problem for graphs with a polynomially bounded number of so-called nice cycles. An
even cycle C in a graph G is called nice [LP86] if the graph obtained from G by deleting all
vertices of C has some perfect matching. The nice cycles play a crucial role for deterministic
isolations of perfect matchings (see Lemma 3.1 on page 5), thereby a deterministic isolation
in NC would bring both the decision and search versions of the perfect matching problem in
NC. Thus, towards a derandomization of the perfect matching problem, our considered promise
problems in Section 3 is not purposeless. Moreover, this promise problem is a generalization of
the polynomially bounded perfect matching problem which has been studied in [GK87, AHT07],
since on the one hand the number of all nice cycles in any graph is at most the square of the
number of all perfect matchings in it and on the other hand the number of all perfect matchings
in a graph with a polynomially bounded number of nice cycles might be exponentially big. The
results in Section 3 can be summarized as follows:

• Following a general paradigm for derandomizing polynomial identity testing by
Agrawal [Agr03] and introducing a method different from one in [AHT07] for solving the
polynomially bounded perfect matching problem, in Section 3 we show that for graphs
with a polynomially bounded number of nice cycles both the decision and search versions
of the perfect matching problem are respectively in SPL and LC=L ∩ ⊕L, which are
contained in NC2.

• We improve significantly the best known upper bounds LC=L and NC1(GapL), proved
in [AHT07] for the construction and the counting versions of the polynomially bounded
perfect matching problem, to C=L ∩ ⊕L and C=L, respectively.

Moreover, the results and techniques presented in Section 3 give evidence that in general the
perfect matching problem might be solvable by a method we describe in Section 5.

In the second part of the paper, in Section 4, we show an algebraic method for constructing
a maximum matching once some weight function for isolating a maximum matching is given.
Thereby we solve Open Question 4.7 in [DKR08] which asked whether the problem of construct-
ing a maximum matching even for bipartite planar graphs is in NC. In particular, we show
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that the maximum matching problem for bipartite planar graphs is in LC=L. Furthermore,
using the results from Section 3 we show that the maximum matching problem for graphs with
a polynomially bounded number of even cycles is also in LC=L. These results are significant
because the considered problems were not known to be in NC previously.

2 Preliminaries

Algebraic Graph Theory. We describe some basic notions on graph matchings. For more
detail we refer the readers to [LP86, MSV99], or to standard textbooks in linear algebra and
graph theory.

Let G = (V,E) be an undirected graph with n vertices, V = {1, 2, . . . , n}, and m edges
E = {e1, . . . , em} ⊆ V × V . A matching in G is a set M ⊆ E, such that no two edges in M
have a vertex in common. A matching M is called perfect if M covers all vertices of G, i.e.
|M | = 1

2 n, M of maximal size is called maximum. The weight of a matching in a weighted
graph is defined as the sum of all weights of the edges in the matching.

Graph G can be presented by its adjacency matrix. This is an n × n symmetric matrix
A ∈ {0, 1}n×n where Ai,j = 1 iff (i, j) ∈ E, for all 1 ≤ i, j ≤ n. Assign weights w(i, j) to edges
(i, j) to get the weighted graph G. Assign orientations to the edges of weighted graph G, i.e.
edge (i, j) gets one of two orientations, from i to j or from j to i, to obtain an orientation ~G
for which we have a so-called Tutte skew-symmetric matrix T as follows:

Ti,j =
{

Ai,j w(i, j) , if an edge of ~G is directed from i to j,
−Ai,j w(i, j) , otherwise.

In the case when all directed edges of ~G are oriented from smaller to larger vertices, the ori-
entation ~G and the matrix T are called canonical. The Pfaffian of a skew-symmetric matrix T
from an orientation ~G, denoted by pf(T ) or pf(~G, w), is defined as follows:

pf(~G, w) =
∑

perfect matching M in G

sign(M) value(M)

where sign(M) ∈ {−1,+1} is the sign of M that depends on the orientation ~G, and value(M) =∏
(i,j)∈M w(i, j) is the value of M that depends on the weighting scheme for G. It is known

from linear algebra that det(S) = pf2(S) if S is a skew-symmetric matrix of even order, and
pf(S) = 0 for all skew-symmetric matrices of odd order. We refer the reader to [Kas67, MSV99]
for more detail.

Assign indeterminates xi,j to the edges (i, j) of a graph G to get the graph G(X). Let T (X)
be the canonical Tutte skew-symmetric matrix of G(X). The perfect matching problem can
be decided by a randomized algorithm using the following theorem and the Schwartz-Zippel
Lemma [Sch80, Zip79].

Theorem 2.1 (Tutte, [Tut47]) Graph G has no perfect matching iff pf(T (X)) = 0.

An orientation such that all perfect matchings in G have the same sign +1 (or −1) is called
a Pfaffian orientation [Kas67]. Hence the number of perfect matchings in a graph G can be
computed by finding a Pfaffian orientation in it and then by computing the Pfaffian. But there
are graphs which do not admit any Pfaffian orientation, the complete bipartite graph K3,3 is an
example of them. However, planar graphs [Kas67] and K3,3-free graphs [Vaz89] admit always
Pfaffian orientations which are computable in NC, and thus the number of all perfect matchings
in such a graph can be computed efficiently.
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Complexity Classes. The complexity classes P, L, NP, and NL are well known. We
mention briefly some other classes we work with. We refer the reader to [AO96, ABO99, ARZ99]
for more detail.

The classes NCk, for fixed k, consists of families of Boolean circuit with ∧-, ∨-gates of fan-in
2, and ¬ -gates, of depth O(logkn) and of polynomial size. NC = ∪k≥0NCk. The class AC0

is defined as the set of families of Boolean circuit with (unbounded fan-in) ∧-, ∨-gates, and
¬ -gates, of constant-depth and of polynomial-size. It is know that

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P.

For an NL machine M , we denote the number of accepting and rejecting computation paths
on input x by #accM (x) and #rejM (x), respectively. FewL is the class of languages accepted
by NL machines with at most a polynomial number of accepting computations [BDHM91].
The class GapL consists of all functions gapM , where M is an NL-machine, and for all
x, gapM (x) = #accM (x)−#rejM (x). This class is characterized by the determinant of integer
matrices [Dam91, Tod91, Vin91, Val92]. Note that the problem of computing the determinant
of an integer matrix is in NC2 [Ber84]. GapL is closed under addition, subtraction, mul-
tiplication, and restricted composition [AO96, AAM03]. The following classes are related to
GapL.

• ⊕L is the class of sets A for which there exists a function f ∈ GapL such that ∀ x : x ∈
A ⇐⇒ f(x) 6≡ 0(mod 2). Obviously, we have L⊕L = ⊕L.

• C=L (Exact Counting in Logspace) consists of all problems of verifying a GapL-function,
i.e. it is the class of sets A for which there exists a function f ∈ GapL such that
∀ x : x ∈ A ⇐⇒ f(x) = 0.

• The Hierarchy over C=L collapses to LC=L [ABO99] which is equal to AC0(C=L), the
class of all problems AC0-reducible to C=L. The problem of computing the rank of an
integer matrix is complete for LC=L = AC0(C=L) [ABO99].

• SPL [ARZ99] is the class of all languages for which their characteristic functions are
in GapL, i.e. SPL = {L ∈ Σ∗|χL ∈ GapL}. It is known that SPL is closed under
complement, moreover LSPL = SPL. Note that the inclusion NL ⊆ SPL remains open.

We list some known inclusions among the mentioned classes:

L ⊆ FewL ⊆ SPL ⊆ C=L ⊆ LC=L ⊆ NC2,
SPL ⊆ ⊕L ⊆ NC2,
L ⊆ FewL ⊆ NL ⊆ C=L,
L ⊆ GapL ⊆ NC2.

The Pfaffian of an integer skew-symmetric matrix is known to be in GapL [MSV99]. Given a
univariate polynomial matrix A(x), i.e. the elements of A(x) are polynomials in x of logarithmic
bit length in the degree, the problem of computing det(A(x)) is known to be in GapL [AAM03]:
all the coefficients of det(A(x)) are computable in GapL. By following the latter and the
combinatorial setting for Pfaffians in [MSV99], it is not hard to show that in the case when
A(x) is skew-symmetric, all the coefficients of pf(A(x)) are GapL-computable.

By Decision-PM, Search-PM, and Counting-PM we denote the decision, the search,
and the counting version of the perfect matching problem, respectively. By Search-MM we
denote the problem of computing a maximum matching in a graph.
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3 Isolating and computing perfect matchings

In this section we show that the perfect matching problem for graphs with a polynomially
bounded number of nice cycles is in NC2. It is well known that for any computational problem
the decision version is reducible to the search version. Thus, in order to obtain an upper bound
for the perfect matching problem we can concentrate on Search-PM. Our method for searching
a perfect matching consists of two standard steps: a) isolating a perfect matching by a weight
function, and b) computing the isolated perfect matching.

Isolating a perfect matching. Given a graph G = (V,E) with n vertices V = {1, 2, . . . , n},
m edges E = {e1, e2, . . . , em}, and with at most nk nice cycles, where k is a fixed positive
integer, (recall that an even cycle C in G is called nice if the graph obtained by deleting from
G all vertices of C has some perfect matching or it is empty), we show how to deterministically
isolate a perfect matching in G.

Let w be a weight function for the edges of G, i.e. edge e gets the weight w(e), for every e.
Observe that a simple cycle C (in G) with 2l edges, l > 0, has exactly two perfect matchings N1

and N2, each of them is of size l. By W (N1) and W (N2) we denote the weights of N1 and N2,
respectively. Recall that the weight of a matching is the sum of the weights on its edges. The
difference of the weights of the two perfect matchings in an even cycle is called the circulation
of the cycle [DKR08]:

circulation(C) = |W (N1)−W (N2)|.
This function has been used in Lemma 3.2 in [DKR08] as follows: if all the cycles of a bipartite
graph have non-zero circulations, then the minimum weight perfect matching in it is unique. In
general, Lemma 3.2 in [DKR08] holds also for non-bipartite graphs by considering circulations
of only nice cycles. We omit the proof of the following lemma because it is in analogy to the
proof of Lemma 3.2 in [DKR08].

Lemma 3.1 ([DKR08]) If all nice cycles in a weighted graph have non-zero circulations, then
there is a unique minimum weight perfect matching in it.

Thus the circulations of nice cycles play a central role for isolating a perfect matching in graphs.
It is easy to see that the converse of Lemma 3.1 is not true. For example: we can easily assign
integer weights to 6 edges of K4, the complete graph with 4 vertices, so that the minimum
weight perfect matching is unique but there is a nice cycle of zero circulation.

We call a weight function admissible for G if it assigns positive integers with a logarithmically
bounded number of bits to the edges in G so that a minimum weight perfect matching becomes
unique. By Lemma 3.1, in order to isolate deterministically a perfect matching we can determine
an admissible weight function such that all nice cycles in the graph get non-zero circulations.
We show the following lemma for isolating a perfect matching in graphs having a polynomially
bounded number of nice cycles.

Lemma 3.2 Let G = (V,E) be an undirected graph with |V | = n vertices and m edges E =
{e1, e2, . . . , em}, and let the number of nice cycles in G be at most nk, for some positive constant
k. Then there exists a prime number p < 2nk(m+1) such that the weight function wp : E 7→ Zp

where wp(ei) = 2i mod p is admissible for G.

Proof . Assign 2i to every edge ei in G. Then each nice cycle C in G has a non-zero circulation
because two perfect matchings defined in C have different weights. Consider the product of all
the circulations:

Q =
∏

C is a nice cycle

circulation(C).
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Since the number of nice cycles in G is at most nk and since 0 < circulation(C) < 2m+1 holds
for every nice cycle C, we get 0 < Q < 2nk(m+1). It is well-known from Number Theory that∏

all primes pi≤2N

pi > 2N , for all N > 2.

Therefore, there exists a prime p < 2nk(m + 1) such that p is not a factor of Q, i.e. we have
Q mod p 6= 0, or equivalently: circulation(C) mod p 6= 0 for all nice cycles C in G. Hence
by Lemma 3.1 a minimum weight perfect matching becomes unique under the weight function
wp : E → Zp where

wp(ei) = 2i mod p, for i = 1, 2, . . . ,m.

Note that all the prime numbers q < 2nk(m + 1) and the weight functions wq are computable
in logspace. This completes the proof of the lemma. �

Observe that the set of all nice cycles in any graph is the union of all symmetric differences
between two different perfect matchings. Hence it is easy to see that the number of all nice cycles
in a graph is at most the square of the number of all perfect matchings in the graph. Therefore,
Lemma 3.2 can be used also for isolating a perfect matching in graphs with polynomially
bounded number of perfect matchings.

Note that it is still open if there is an NC-computable admissible weight function for an
arbitrary graph (without any restriction of the number of nice cycles). This open question is
similar to the open question of whether Isolating Lemma [MVV87] for randomly isolating a
perfect matching can be derandomized. We believe that there is an affirmative answer to this
open question. In Section 5 we give a discussion on this topic. Isolating Lemma can be stated
in general as follows:

Lemma 3.3 (Isolating Lemma [MVV87]) Let U be a universe of size m and S be a con-
sidered family of subsets of U . Let w : U → {1, . . . , 2m} be a random weight function. Then
with probability at least 1

2 there exists a unique minimum weight subset in S.

Computing perfect matchings.

Theorem 3.4 There exists a zero-one-valued GapL-function h that on input a graph G with
a polynomially bounded number of nice cycles h(G) = 1 if G has some perfect matching, and
h(G) = 0 if G has no perfect matching. A perfect matching in G, if one exists, can be constructed
in LC=L ∩ ⊕L.

Proof . Let G = (V,E) be a graph with n vertices, m edges E = {e1, . . . , em}, and with at most
nk nice cycles, for some positive constant k. Let U be the set of all prime numbers at most
2nk(m +1). Define the weight functions wp : E → Zp, for each p ∈ U , where wp(ei) = 2i mod p
for every edge ei.

Let x be an indeterminate. Assign xwp(e) to each edge e in G to get the graphs Gp(x), for
every p ∈ U . By G

(−e)
p (x) we denote the result of deleting edge e from Gp(x). The canonical

Tutte skew-symmetric matrices of Gp(x) and G
(−e)
p we denote respectively by Tp(x) and by

T
(−e)
p (x). Considering the Pfaffian polynomials of these matrices we observe that the value of a

perfect matching M becomes xW (M) where W (M) is the weight of M , the coefficient of xW (M)

in the polynomial is the sum of all signs of all perfect matchings having the same weight W (M).
Define K = nk+1(m + 1). Then we can write:

pf(Tp(x)) = cp,0 + cp,1x
1 + · · ·+ cp,KxK ,

pf(T (−e)
p (x)) = c

(−e)
p,0 + c

(−e)
p,1 x1 + · · ·+ c

(−e)
p,K xK .
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It is clear that all pf(Tp(x)) and pf(T (−e)
p (x)) vanish if G has no perfect matching.

Consider the case when G has some perfect matching. By Lemma 3.2 there exists some
p ∈ U such that the graph G under wp has a unique minimum weight perfect matching. Let
M0 be this unique matching and let I be its weight under wp. Observe that the coefficient
of xI in pf(Tp(x)), occurred as the lowest non-zero coefficient in the polynomial, should be
cp,I = sign(M0) ∈ {+1,−1}, or equivalently c2

p,I = 1. Recall from Section 2 that all the
coefficients of the polynomials we consider are computable in GapL. Therefore

h(G) = 1−
∏

0≤i≤K, p∈U

(1− c2
p,i)

is a zero-one-valued GapL-function that can be seen as the characteristic function for the
problem of testing if G has a perfect matching, i.e. h(G) = 1 iff G has some perfect matching.

It remains to show that we can construct a perfect matching of G in LC=L ∩⊕L . Observe
that if wp is admissible for G, then G has the unique minimum weight perfect matching M0

with weight 0 ≤ I ≤ K. Thus we have

c2
p,I = 1 and c

(−e)
p,I =

{
0 , if e ∈ M0

cp,I , otherwise.

Therefore, in C=L we can construct all edge-sets Mp,i as follows:

e ∈ Mp,i iff c2
p,i = 1 and c

(−e)
p,i = 0, for each edge e, for all p ∈ U and 0 ≤ i ≤ K.

It is easy to see that the same edge-sets will be constructed by the same procedure in Z2,
i.e. in ⊕L we can construct all the sets Mp,i. After that we can easily determine and output
in logspace all perfect matchings from the constructed edge-sets Mp,i. Note that there is at
least one edge-set, namely Mp,I from our construction, is indeed a perfect matching in G. Our
construction is in LC=L ∩⊕L because L⊕L = ⊕L. This completes the proof of the theorem.

�

Note that the formulation “Decision-PM for graphs with a polynomially bounded number
of nice cycles is in SPL”, used sometimes in the paper, is not completely formal. It means
that there is a GapL-function h that on input a graph with a polynomially bounded number
of nice cycles h is zero-one valued and it tests the existence of perfect matching in G, but this
GapL-function h might be not zero-one-valued for graphs outside the considered promise. We
further note that it is easily to see in the proof of Theorem 3.4 that Decision-PM for graphs
with a polynomially bounded number of nice cycles is in C=L ∩ coC=L. (This avoids any
possibility of confusion.)

Allender et. al. [ARZ99] show that in general a perfect matching can be constructed in
nonuniform SPL. Unfortunately, in the proof of Theorem 3.4 we do not know how to perform
in (uniform) SPL the decision of which prime p from U is ”right” for isolating a minimum
weight perfect matching.

The polynomially bounded perfect matching problem. The best known upper bounds
for the polynomially bounded perfect matching problem, taken from [GK87, AHT07], are given
in the following theorem.

Theorem 3.5 ([AHT07]) For graphs with a polynomially bounded number of perfect match-
ings, the perfect matching decision problem is in coC=L, the counting problem is in AC0(C=L),
and all the perfect matchings can be constructed in NC1(GapL).
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Note that coC=L ⊆ AC0(C=L) = LC=L ⊆ NC1(GapL) ⊆ NC2 where NC1(GapL) is the
class of all problems NC1-reducible to the determinant.

Obviously, upper bounds for the decision version of the polynomially bounded perfect match-
ing problem come directly from the preceded paragraph. We show the following:

Theorem 3.6 For graphs with a polynomially bounded number of perfect matchings

(1) Decision-PM is hard for FewL,

(2) Search-PM is in C=L ∩ ⊕L, and Counting-PM is in C=L.

Proof . (1) We omit the proof that Decision-PM is hard for FewL since it is straightforward
by modifying the reduction from the directed connectivity problem, which is NL-complete, to
the bipartite unique perfect matching problem [HMT06], or to the bipartite perfect matching
problem [CSV84].

(2) Let G = (V,E) be an undirected graph with n vertices, m edges |E| = {e1, . . . , em}, and
with at most nk perfect matchings. We show how to construct all perfect matchings in G. Our
construction consists of two steps as follows:

a) compute a prime p such that wp : wp(ei) = 2i mod p isolates all perfect matchings,

b) construct all perfect matchings from the Pfaffians pf(Tp(x)) and pf(T (−e)
p (x)).

Consider Step a). Let’s call a prime p from Step a) “right” if wp isolates all perfect matchings
in G. Observe that any perfect matchings M and N have different weight under w : w(ei) = 2i,
i.e. 0 < |W (M) − W (N)| < 2m+1 where W (M) and W (N) are the weights of M and N ,
respectively.

0 < Q =
∏

M 6=N

|W (M)−W (N)| < 2(m+1)(nk

2 ) < 2
1
2
(m+1)n2k

.

Therefore, in analogy to Lemma 3.2 there exists a prime p < (m+1)n2k such that Q mod p 6= 0.
Define U as the set of all prime numbers at most (m + 1)n2k. Observe that a prime p ∈ U

is “right” iff in pf(Tp(x)) all coefficients are from {−1, 0,+1} and the number of non-zero
coefficients is maximum. The latter is the number of all perfect matchings in G when p is
“right”.

Define K = (m + 1)n2k, and for every q, q′ ∈ U define the following GapL-functions:

hq =
K∑

i=0

(c2
q,i − 1) c2

q,i , gq =
K∑

i=0

c2
q,i,

Hq,q′ =
Kn4k∏
a=1

(hq′ − a)
Kn2k∏
a=0

(gq − gq′ − a).

We see that hq = 0 iff all cq,i ∈ {−1, 0, 1}. For a “right” prime p, gp is the number of all non-zero
coefficients. Moreover, observe that Hq,q′ = 0 iff hq′ 6= 0 or gq = gq′ + a for some non-negative
integer a. Hence we get gq > gq′ as long as hq′ = 0. Thus, in C=L we can select a “right” prime
p from U as follows:

p is “right” iff hp = 0 and Hp,q = 0 for all p 6= q ∈ U.

Consider Step b). In C=L we can construct the edge-sets Mp,i corresponding to cp,i ∈
{−1,+1} in pf(Tp(x)) as stated in the proof of Theorem 3.4. Note that after Step b) we do
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not check again whether the constructed edge-sets are perfect matchings. This shows that all
perfect matchings in G can be constructed in C=L. The problem is in ⊕L by following the
proof of Theorem 3.4.

The number of all perfect matchings in G can be computed in C=L by verifying gp = a, for
some a ≤ nk and by testing if p from U is ”right”.

This completes the proof of the theorem. �

4 Isolating and computing a maximum matching

In this section we investigate the maximum matching problem. W.l.o.g., assume that the
considered graphs in this section have no perfect matching. We show the following lemma.

Lemma 4.1 Given a weight function w that assigns logarithmic bit long positive integers to
the edges of a graph G such that the weight of a maximum matching in G becomes unique, the
problem of computing a maximum matching in G is LC=L-reducible to the problem of computing
a perfect matching in a subgraph of G.

Proof . Let G = (V,E) be a graph with n vertices and m edges. Let M be a maximum matching
of G, and let |M | = l for some positive integer l. Suppose the weight of M is unique under the
weight function w. By GM we denote the subgraph of G, obtained by deleting n − 2l vertices
which are not covered by M .

Observe that the maximum matching M in G becomes perfect and unique in GM under the
weight function w. Therefore, the computation of M can be done by computing GM and then
by extracting a perfect matching in GM .

Let x be an indeterminate. By G(x) we denote the graph G by assigning xw(e) to every edge
e of G. By this weighting scheme we obtain GM (x) from GM . Let TG(x) and TGM

(x) be the
canonical Tutte skew-symmetric matrix of G(x) and of GM (x), respectively.

Since in GM the weight of the perfect matching M is unique under w, the Pfaffian poly-
nomial pf(TGM

(x)) should be non-zero and the order of TGM
(x) should be 2l. Hence we have

det(TGM
(x)) = pf2(TGM

(x)) 6= 0, and rank(TGM
(x)) = 2l. Moreover, since l is maximum,

TGM
(x) is a maximal non-singular polynomial skew-symmetric sub-matrix of TG(x). As a con-

sequence we have rank(TG(x)) = rank(TGM
(x)) = 2l.

Conversely, consider an n-bit vector ~b associated to a maximal set of linearly independent
columns of TG(x). We call vector ~b a column-basis of TG(x). Observe that the subgraph G~b

of
G that contains all vertices i of G such that ~bi = 1 has always perfect matchings of the size
l, and these matchings are maximum in G. Thus, in order to compute a subgraph having a
perfect matching which is a maximum matching of G we can compute a column-basis of TG(x).

The problem of computing a column-basis of an integer matrix [zG93] is reducible to the rank
of an integer matrix. The latter is known to be in LC=L [ABO99]. For polynomial matrices, we
show that a) the problem of computing a column-basis is reduced to the problem of computing
the rank and b) the rank can be computed in LC=L.

a) Let A(x) be an n× n univariate polynomial matrix where the degrees of matrix elements
are at most nc, for some positive constant c. Let ~a1(x), . . . , ~an(x) be its columns. One
has to compute a column-basis of A(x).

Let Ai(x) be the matrix formed by the first i columns ~a1(x), . . . , ~ai(x) of A(x), for all
1 ≤ i ≤ n. It is well known from linear algebra that a column-basis can be selected as
the collection of all ~ai(x) where rank(Ai−1(x)) + 1 = rank(Ai(x)), for every 1 ≤ i ≤ n.
Therefore, the computation of a column-basis is reduced to the problem of computing the
rank of a polynomial matrix.
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b) Let B(x) be an n × m univariate polynomial matrix, where the degrees of the matrix-
elements are at most nc, for some positive constant c. One has to compute rank(B(x)).

It is known that 2rank(B(x)) = rank(C(x)) where C(x) =
(

0 B(x)
Bt(x) 0

)
and Bt(x)

is the transpose of B(x). Since C(x) is an N×N symmetric matrix, where N = m+n, we
can compute rank(C(x)) by the characteristic polynomial χC(x) = det(yI −C(x)), where
y is an indeterminate, as follows: Let χC(x) = yN + pN−1(x)yN−1 + · · ·+ p1(x)y + p0(x),
where pi(x) is a polynomial in x. Then for some 0 ≤ j ≤ N we have

rank(C(x)) = j iff p0(x) = · · · = pN−j−1(x) = 0 and pN−j(x) 6= 0.

Consider on of the polynomials pi(x). If pi(x) = 0 then it is clear that pi(a) = 0 for all
a’s. Otherwise, if pi(x) 6= 0 then there exists an integer a from {0, 1, . . . ,deg(pi(x))} such
that pi(a) 6= 0. Since deg(pi(x)) ≤ Nnc = (m + n)nc, for all 0 ≤ i ≤ N − 1, where c is
a constant, we define S = {0, 1, . . . , (m + n)nc}. Then the rank of B(x) is equal to the
maximum of the ranks rank(B(a)) over all a ∈ S. The rank of an integer matrix is known
to be in LC=L [ABO99]. Therefore, rank(B(x)) is in LC=L.

The proof of the lemma is complete. �

Now we solve the maximum matching problem for bipartite planar graphs. A deterministic
isolation of maximum matchings is due to Datta, Kulkarni, and Roy [DKR08]:

Lemma 4.2 ([DKR08]) In logspace one can assign polynomially bounded weights to the edges
of a bipartite planar graph so that the circulation of any cycle is non-zero.

By Lemma 4.1, a subgraph GM of a given bipartite planar graph G can be computed in LC=L so
that perfect matchings in GM are maximum in G. Computing a perfect matching for bipartite
planar graphs is in SPL [DKR08]. Since SPL ⊆ C=L ⊆ LC=L, the maximum matching
problem for bipartite planar graphs is in LC=L. We obtain the following theorem which is
a positive answer to Open Question 4.7 stated in [DKR08] whether a maximum matching in
bipartite planar graphs can be computed in NC.

Theorem 4.3 The maximum matching problem for bipartite planar graphs is in LC=L.

A method within NC for computing a maximum matching under the promise that the input
graphs have a polynomial number of even cycles is given by the following theorem.

Theorem 4.4 The maximum matching problem for graphs with a polynomially bounded number
of even cycles is in LC=L.

Proof . Let G be a graph with a polynomially bounded number of even cycles. In analogy to
Lemma 3.2 we can show that there exists a small prime p such that all even cycles in G have
non-zero circulations under wp : E 7→ Zp where wp(ei) = 2i mod p, for every edge ei. Thus, all
nice cycles in any subgraph H of G such that perfect matchings in H are maximum matchings in
G have non-zero circulations under wp. Hence by Lemma 3.1 H has a unique minimum weight
perfect matching. By Lemma 4.1 such a graph H can be computed in LC=L. By Theorem 3.4
a perfect matching in H can be computed in LC=L. Therefore a maximum matching in G can
be computed in LC=L. The proof of the theorem is complete. �
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5 Discussion

As seen in the paper, isolations of graph matchings play a crucial role for a potential NC
algorithm for both the decision and the search versions of the matching problem. Deterministic
isolations of perfect matchings have been shown only for bipartite planar graphs [DKR08] and for
graphs with a polynomially bounded number of nice cycles (the present paper). We conjecture
that the method stated bellow can be used in general for isolating a perfect matching in graphs
(without any promise).

Assign to each edge ei of the graph G a polynomial gi(x) in x such that the circulation
polynomial pC(x) of each even cycle C is non-zero in the ring Z[x]. For example: gi(x) = aix

i

for arbitrary small integers ai. Consider pC(x) in the field F = ZP [x]/(h(x)) where P is a small
prime number and h(x) is an irreducible polynomial in the polynomial ring ZP [x]. Since F has
P deg(h) elements, we have to choose h(x) of constant degree, say deg(h(x)) ≤ l for a constant
l. If all the polynomials pC(x) are non-zero in F, then there exists a ∈ ZQ, where Q is a small
prime number of size at least P l ≤ nkl, such that all the circulation-polynomials do not vanish
at point a. Formally, we have (pC(x) mod P, h(x)) mod Q, x−a 6= 0 for all C under the weight
function w : w(ei) = (aix

i mod P, h(x)) mod Q, x−a, for every edge ei. The main problem we
have to solve is how to define gi(x), h(x), and P such that pC(x) is in F \ 0 for every nice cycle
C. A positive answer to this question would give a deterministic isolation as described. Note
that the described isolation works for bipartite planar graphs.
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