
Proof Systems that Take Advice★

Olaf Beyersdorff1, Johannes Köbler2, and Sebastian Müller2

1 Institut für Theoretische Informatik, Leibniz-Universität Hannover, Germany
beyersdorff@thi.uni-hannover.de

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
{koebler,smueller}@informatik.hu-berlin.de

Abstract. One of the starting points of propositional proof complexity is the
seminal paper by Cook and Reckhow [CR79], where they defined propositional
proof systems as poly-time computable functions which have all propositional
tautologies as their range. Motivated by provability consequences in bounded
arithmetic, Cook and Kraj́ıček [CK07] have recently started the investigation
of proof systems which are computed by poly-time functions using advice.
In this paper we concentrate on three fundamental questions regarding this new
model. First, we investigate whether a given a language L admits a polyno-
mially bounded proof system with advice. Depending on the complexity of the
underlying language L and the amount and type of the advice used by the proof
system, we obtain different characterizations for this problem. In particular, we
show that this question is tightly linked with the question whether L has small
nondeterministic instance complexity.
The second question concerns the existence of optimal proof systems with ad-
vice. For propositional proof systems, Cook and Kraj́ıček [CK07] gave a surpris-
ing positive answer which we extend to all languages.
These results show that using advice yields a more powerful model, but it is also
less directly applicable in practice. Our third question therefore asks whether
the usage of advice in propositional proof systems can be simplified or even elim-
inated. While in principle, the advice can be very complex, we show that propo-
sitional proof systems with logarithmic advice are also computable in poly-time
with access to a sparse NP-oracle. Employing a recent technique of Buhrman
and Hitchcock [BH08] we also manage to transfer the advice from the proof to
the formula, which leads to an easier computational model.

1 Introduction

Propositional proof complexity studies the question how difficult it is to prove
propositional tautologies. In the classical Cook-Reckhow model, proofs are ver-
ified in deterministic polynomial time [CR79]. While this is certainly the most
useful setting for practical applications, it is nevertheless interesting to ask if
proofs can be shortened when their verification is possible with stronger com-
putational resources. In this direction, Cook and Kraj́ıček [CK07] have recently
initiated the study of proof systems which use advice for the verification of
proofs. Their results show that, like in the classical Cook-Reckhow setting,
these proof systems enjoy a close connection to theories of bounded arithmetic.

In this paper we continue their investigation and particularly focus on the
following fundamental questions for this new model:

★ Preliminary versions of the results in this paper have appeared in the proceedings of
LATA’09 [BKM09] and SAT’09 [BM09]. Part of the results of this paper are also con-
tained in the technical report TR08-075 at ECCC. Research was supported by DFG grant
KO 1053/5-2.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 92 (2009)

Q1: Given a language L, do there exist polynomially bounded
proof systems with advice for L?

Q2: Do there exist optimal proof systems with advice for L?
Q3: For propositional proof systems, does advice help to shorten proofs?

For question Q1, one of the major motivations for proof complexity [CR79],
we obtain a complete complexity-theoretic characterization. The classical Cook-
Reckhow Theorem states that NP = coNP if and only if the set of all tautologies
TAUT has a polynomially bounded proof system, i.e., there exists a polynomial
p such that every tautology ' has a proof of size ≤ p(∣'∣) in the system. Con-
sequently, showing super-polynomial lower bounds to the proof size in proposi-
tional proof systems of increasing strength provides one way to attack the P/NP
problem. This approach, also known as the Cook-Reckhow program, has lead
to a very fruitful research on the length of propositional proofs (cf. [Pud98]).

As in the Cook-Reckhow Theorem above, we obtain a series of results leading
to a complete characterization for Q1. In particular, we show a tight connection
of this problem to the notion of nondeterministic instance complexity. Similarly
as Kolmogorov complexity, instance complexity measures the complexity of in-
dividual instances of a language [OKSW94]. In its nondeterministic version,
Arvind, Köbler, Mundhenk, and Torán [AKMT00] used this complexity mea-
sure to show that, under reasonable complexity-theoretic assumptions, there
are infinitely many tautologies that are hard to prove in every propositional
proof system. In the light of our present contribution, this connection between
nondeterministic instance complexity and proof complexity is strengthened by
results of the following form: all elements of a given language L have small
instance complexity if and only if L has a proof system with advice such that
every x ∈ L has a short proof.

While the existence of optimal proof systems in the classical model is a
prominent open problem posed by Kraj́ıček and Pudlák twenty years ago [KP89],
question Q2 receives a surprising positive answer: optimal proof systems exist
when a small amount of advice is allowed. For propositional proof systems this
was already shown by Cook and Kraj́ıček [CK07]. Using the proof technique
from [CK07], we show that for every language L, the class of all proof systems
for L using logarithmic advice contains an optimal proof system.

For question Q3 we concentrate on the most interesting case of propositional
proof systems. Unfortunately, proof systems with advice do not constitute a
feasible model for the verification of proofs in practice, as the non-uniform
advice can be very complex (and even non-recursive). Approaching question Q3,
we therefore investigate whether the advice can be simplified or even eliminated
while still preserving the same upper bounds on the lengths of proofs. Our
first result in this direction shows that proving propositional tautologies does
not require complicated or even non-recursive advice: every propositional proof
system with up to logarithmic advice is simulated by a propositional proof
system computable in polynomial time with access to a sparse NP-oracle. Thus
in propositional proof complexity, computation with advice can be replaced by
a more realistic computational model.

2

While this result holds unconditionally, our next two results explore con-
sequences of a positive or negative answer to question Q3. Assume first that
advice helps to prove tautologies in the sense that proof systems with advice
admit non-trivial upper bounds on the lengths of proofs. Then we show that the
same upper bound can be achieved in a proof system with a simplified advice
model. On the other hand, if the answer is negative in the sense that advice does
not help to shorten proofs even for simple tautologies, then we obtain optimal
propositional proof systems without advice.

This paper is organized as follows. After reviewing some facts from compu-
tational complexity in Sect. 2, we start in Sect. 3 by introducing our general
model for proof systems with advice. In Sect. 4 we show that in the propo-
sitional case, proof systems with logarithmic advice are simulated by proof
systems computable in poly-time with access to a sparse NP-oracle.

Section 5 contains our results on optimal proof systems with advice (Q2).
Before we turn to question Q1, we review the notion of instance complexity and
related complexity classes in Sect. 6. In particular, we prove strict inclusions
for a chain of complexity classes which play a central role in our characteri-
zation of Q1. In Sect. 7 we investigate Q1 for arbitrary languages, whereas in
Sect. 8 we focus on TAUT which presents the most interesting case for practical
applications.

Again, in Sect. 9 we concentrate on propositional proof systems and con-
tribute to an answer to Q3 by proving that advice can be transferred from the
proof to the formula, leading to an easier computational model. We obtain this
result by employing a recent technique by Buhrman and Hitchcock [BH08]. Fi-
nally, in Sect. 10 we conclude with a discussion and some directions to future
research.

2 Preliminaries

We assume familiarity with standard complexity classes (cf. [BDG88]). In the
following we just mention a few classes which occur in this paper. The Boolean
hierarchy BH is the closure of NP under union, intersection, and complementa-
tion. The levels of BH are denoted BHk, where BH2 is also known as Dp. The
Boolean hierarchy coincides with PNP[O(1)] consisting of all languages which can
be solved in polynomial time with constantly many queries to an NP oracle. If
we allow O(log n) adaptive queries we get the presumably larger class PNP[log].

Throughout the paper we fix the alphabet � = {0, 1}. A set A ⊆ �∗ is
sparse if there exists a polynomial p such that for each n ∈ ℕ, ∣A∩�n∣ ≤ p(n).
A sparse set A is called tally if A ⊆ {1n ∣ n ∈ ℕ}. The set of all sparse and tally
sets are denoted by Sparse and Tally, respectively.

Complexity classes with advice were first considered by Karp and Lipton
[KL80]. For each function ℎ : ℕ → �∗ and each language L we let L/ℎ = {x ∣
⟨x, ℎ(∣x∣)⟩ ∈ L}. If C is a complexity class and F is a class of functions, then
C/F = {L/ℎ ∣ L ∈ C, ℎ ∈ F}. Usually the family of functions F is defined by
some bound on the length of the values in terms of the argument. Thus, for
example, NP/O(1) denotes the class of languages recognized by NP machines
with advice functions ℎ where ∣ℎ(n)∣ is bounded by a constant (cf. [BDG88]).

3

3 Proof Systems with Advice

We start with a general semantic definition of proof systems:

Definition 1. A proof system for a language L is a (possibly partial) surjective
function f : �∗ → L. For L = TAUT, f is called a propositional proof system.

A string w with f(w) = x is called an f -proof of x. Proof complexity studies
lengths of proofs, so we use the following notion: for a function t : ℕ → ℕ, a
proof system f for L is t-bounded if every x ∈ L has an f -proof of size ≤ t(∣x∣).
If t is a polynomial, then f is called polynomially bounded.

Proof systems are compared according to their strength by simulations as
introduced in [CR79] and [KP89]. If f and g are proof systems for L, we say
that g simulates f (denoted f ≤ g), if there exists a polynomial p such that for
all x ∈ L and f -proofs w of x there is a g-proof w′ of x with ∣w′∣ ≤ p (∣w∣). If
such a proof w′ can even be computed from w in polynomial time, we say that
g p-simulates f and denote this by f ≤p g. If the systems f and g mutually
(p-)simulate each other they are called (p-)equivalent.

In the classical framework of Cook and Reckhow [CR79], proof systems are
additionally required to be computable in polynomial time. Recently, Cook and
Kraj́ıček [CK07] have started to investigate propositional proof systems that are
computable in polynomial time with the help of advice. We will first generalize
this concept to arbitrary languages.

Our general model of computation for proof systems f with advice is a poly-
nomial-time Turing transducer with several tapes: an input tape containing the
proof �, possibly several work tapes for the computation of the machine, an
output tape where we output the proven element f(�), and an advice tape
containing the advice. We start with a quite flexible definition of proof systems
with advice for arbitrary languages, generalizing the notion of propositional
proof systems with advice from [CK07] and [BM].

Definition 2. For a function k : ℕ → ℕ, a proof system f for L is a proof
system with k bits of advice, if there exist a polynomial-time Turing transducer
M , an advice function ℎ : ℕ→ �∗, and an advice selector function ℓ : �∗ → 1∗

such that

1. ℓ is computable in polynomial time,

2. M computes the proof system f with the help of the advice ℎ, i.e., for all
� ∈ �∗, f(�) = M(�, ℎ(∣ℓ(�)∣)), and

3. for all n ∈ ℕ, the length of the advice ℎ(n) is bounded by k(n).

For a class F of functions, we denote by ps/F the class of all ps/k with k ∈ F .

We say that f uses k bits of input advice if ℓ has the special form ℓ(�) = 1∣�∣.
On the other hand, in case ℓ(�) = 1∣f(�)∣ for all � in the domain of f , then f is
said to use k bits of output advice. By this definition, proof systems with input
advice use non-uniform information depending on the length of the proof, while
proof systems with output advice use non-uniform information depending on
the length of the proven formula.

4

We note that proof systems with advice are a quite powerful concept, as for
every language L ⊆ �∗ there exists a proof system for L with only one bit of
advice. In contrast, the class of all languages for which proof systems without
advice exist coincides with the class of all recursively enumerable languages.

The above definition of a proof system with advice allows a very liberal use of
advice, in the sense that for each input, the advice string used is determined by
the advice selector function ℓ. For L = TAUT this general definition coincides
with our definition of propositional proof systems with advice from [BM]. In
[CK07] and [BM], concrete proof systems arising from extensions of EF were
investigated, which indeed require this general framework with respect to the
advice.

In the next proposition we observe that proof systems with input advice are
already as powerful as our general model of proof systems with advice.

Proposition 3. Let k : ℕ → ℕ be a monotone function, L ⊆ �∗, and f be a
ps/k for L. Then there exists a proof system f ′ for L with k bits of input advice
such that f and f ′ are p-equivalent.

Proof. We choose a polynomial-time computable bijective pairing function ⟨⋅, ⋅⟩
on ℕ such that ⟨n1, n2⟩ ≥ n1 + n2 for all numbers n1 and n2. Let f be a ps/k
for L with advice function ℎ and advice selector ℓ. We define a proof system f ′

for L with input advice as follows: on input �′ of length n the function f ′ first
computes the two unique numbers n1 and n2 such that n = ⟨n1, n2⟩. It then
interprets the first n1 bits �′1 . . . �

′
n1

of �′ as an f -proof � and checks whether
ℓ(�) = 1n2 . If this is the case, f ′(�′) = f(�), otherwise f ′ outputs a fixed
element x0 ∈ L. Obviously, f ′(�′) is computable with advice ℎ(∣ℓ(�)∣) = ℎ(n2)
whose length is bounded by k(n1) ≤ k(n). This shows that f ′ is a ps/k for L
with input advice.

The p-simulation of f by f ′ is computed by the function � 7→ �′ = �1m

where m = ⟨∣�∣, ∣ℓ(�)∣⟩ − ∣�∣. The converse simulation f ′ ≤p f is given by

�′ 7→

{
� = �′1 . . . �

′
n1

if ∣�′∣ = ⟨n1, n2⟩ and ℓ(�) = 1n2

�0 otherwise,

where �0 is a fixed f -proof of x0. ⊓⊔

4 Substituting Advice by Weak Oracles

From a practical point of view, proof systems with advice are susceptive to
criticism: advice can be arbitrarily complex (even non-recursive) and thus com-
puting proofs with advice does not form a feasible model to use in practice.
Our next result shows that instead of possibly complex non-uniform informa-
tion we can also use sparse NP-oracles to achieve the same proof lengths as in
propositional proof systems with advice.

Theorem 4.

1. Every propositional proof system with logarithmic advice is simulated by a
propositional proof system computable in polynomial time with access to a
sparse NP-oracle.

5

2. Conversely, every propositional proof system computable in polynomial time
with access to a sparse NP-oracle is simulated by a propositional proof system
with logarithmic advice.

Proof. For the first claim, let f be a propositional proof system computed by the
polynomial-time Turing transducer Mf with advice function ℎf where ∣ℎf (n)∣ ≤
c ⋅ log n for some constant c. Without loss of generality, we may assume that f
uses input advice (Proposition 3). We choose a length-injective polynomial-time
computable pairing function ⟨⋅⟩ and consider the set

A =
{
⟨1n, a⟩ ∣ a ∈ �≤c⋅logn and for some � ∈ �n, Mf (�, a) ∕∈ TAUT

}
,

where Mf (�, a) denotes the computation of Mf on input � under advice a.
Intuitively, A collects all incorrect advice strings for Mf on length n. By con-
struction, A is sparse. Further, A ∈ NP because on input ⟨1n, a⟩ we can guess
� ∈ �n and nondeterministically verify Mf (�, a) ∕∈ TAUT by guessing a satis-
fying assignment for ¬Mf (�, a).

We now construct a polynomial-time oracle Turing transducer Mg which
under oracle A computes a proof system g ≥ f . Proofs in g will be of the
form ⟨�, '⟩. On such input, Mg queries all strings ⟨1∣�∣, a⟩, a ∈ �≤c⋅log ∣�∣. For
each negative answer, Mg simulates Mf on input � using a as advice. If any
of these simulations outputs ', then Mg also outputs ', otherwise g(⟨�, '⟩)
is undefined. Because Mg performs at most polynomially many simulations of
Mf , the machine Mg runs in polynomial time. Correctness and completeness of
g follow from the fact that Mf is simulated with all correct advice strings, and
the original advice used by Mf is among these (as also other advice strings are
used, g might have shorter proofs than f , though).

For the second claim, let f be a propositional proof system computed by the
oracle transducer Mf under the sparse NP-oracle A. Let MA be an NP-machine
for A and let p(n) be a polynomial bounding the cardinality of A∩�≤n as well
as the running times of MA and Mf . With these conventions, there are at most
q(n) = p(p(n)) many strings in A that Mf may query on inputs of length n.

We now define a machine Mg, an advice function ℎg, and an advice selector
ℓg which together yield a propositional proof system g ≥ f with logarithmic
advice. The advice function will be ℎg(n) = ∣A ∩ �≤p(n)∣. As A is sparse this
results in logarithmic advice. Proofs in the system g are of the form

�g =
〈
a1, w1, . . . , aq(n), wq(n), �f

〉
where �f ∈ �n (an f -proof), a1, . . . , aq(n) ∈ �≤p(n) (elements from A), and

w1, . . . , wq(n) ∈ �≤q(n) (computations of MA). At such a proof �g, the advice
selector chooses the advice corresponding to ∣�f ∣, i.e., we set ℓg(�g) = ∣�f ∣.
The machine Mg works as follows: it first uses its advice to obtain the number
m = ℎg(∣�f ∣) and checks whether a1, . . . , am are pairwise distinct and for each
i = 1, . . . ,m, the string wi is an accepting computation of MA on input ai. If
all these simulations succeed, then we know that A ∩ �≤p(n) = {a1, . . . , am}.
Hence Mg can now simulate Mf on �f and give correct answers to all oracle
queries made in this computation. ⊓⊔

6

As a consequence, we get the following simplicity result stating that we
can bound the complexity of the non-uniform part (the advice) when proving
propositional tautologies:

Corollary 5. Every ps/log f for TAUT is simulated by a ps/log g whose advice
function ℎ is computable in FPNP∩Sparse[log], i.e., ℎ is computable in polynomial
time with a logarithmic number of queries to a sparse NP-oracle.

Proof. The claim follows by first applying item 1 and then item 2 of Theorem 4
and observing that the advice function of the resulting proof system (denoted
ℎg in the proof above) is computable using binary search with logarithmically
many questions to the sparse NP-set { ⟨1m, 1n⟩ ∣ m ≤ ∣A ∩�≤p(n)∣ }. ⊓⊔

Apparently, Theorem 4 and Corollary 5 do not only hold for propositional
proof systems, but for all proof systems for languages in coNP. Further, by an
easy modification in the above proofs it follows that instead of a sparse NP-set
it also suffices to use a tally NP-set as the oracle. Let us remark that Balcázar
and Schöning [BS92] have shown a similar trade-off between advice and oracle
access in complexity theory: coNP ⊆ NP/log if and only if coNP ⊆ NPS for
some sparse S ∈ NP. We complete the picture by showing that the simulations
in the previous theorem cannot be strengthened to a full equivalence between
the two concepts:

Proposition 6. For every language L there exist proof systems with constant
advice which cannot be computed with access to a recursive oracle.

Proof. Let us first consider the case that L is recursively enumerable and let
f be a polynomial-time computable proof system for L. With each infinite
sequence a = (ai)i∈ℕ, ai ∈ {0, 1}, we associate the proof system

fa(�) =

{
f(�′) if either � = 0�′ or (� = 1�′ and a∣�∣ = 0)

undefined if � = 1�′ and a∣�∣ = 1.

Because of the first line of its definition, fa is a complete proof system for L. As
different sequences a and b yield different proof systems fa and fb, there exist
uncountably many different propositional proof systems with one bit of advice.
On the other hand, there are only countably many proof systems computed by
oracle Turing machines under recursive oracles. Hence the claim follows.

Now consider the case that L is not recursively enumerable. Yet, L has a
proof system with one bit of advice which is computed by the machine M

M(w) =

{
x if ℎ(∣w∣) = 1 and w = 1x (the string x coded in unary)

undef. otherwise

where ℎ is the advice function for M defined as

ℎ(n) =

{
1 if n = ∣1x∣ and x ∈ L
0 otherwise.

On the other hand, if L is not recursively enumerable, then L does not have a
proof system which is computable in polynomial time under a recursive oracle.
Hence the claim also holds in this case. ⊓⊔

7

For polynomial instead of logarithmic advice, we obtain a similar result as
Theorem 4, but there are two differences. On the one hand, the result holds
for arbitrary languages, whereas Theorem 4 only holds for languages in coNP.
Also, we will now get a full equivalence between the two concepts (compare
with Proposition 6). On the other hand, the oracle will still be sparse, but we
cannot bound its complexity—it will be as complex as the original advice.

Proposition 7. Let L be an arbitrary language and let f a proof system for L.
Then f is a ps/poly if and only if f can be computed in polynomial time with
access to a sparse oracle.

Proof. For the first direction, let f be a proof system for L computed by the
polynomial-time Turing transducer Mf with advice function ℎf where ∣ℎf (n)∣ ≤
p(n) for some polynomial p. We choose a length-injective polynomial-time com-
putable pairing function ⟨⋅⟩ and consider the set

A = { ⟨1n, a⟩ ∣ a is a prefix of ℎf (n) } .

Now, f can be computed in polynomial time with oracle access to A by first
computing the relevant advice using prefix search and then simulating Mf .

Conversely, if f is computed in polynomial time q(n) under a sparse oracle
B, then f is computable by a ps/poly with input advice using as advice function
ℎ(n) the concatenation of all strings from B ∩�≤q(n). ⊓⊔

5 Optimal Proof Systems

A proof system for a language L which simulates every other proof system
for L is called optimal. While in the classical setting, the existence of optimal
proof systems is a prominent open question [KP89], Cook and Kraj́ıček [CK07]
have shown that there exists a propositional proof system with one bit of input
advice which simulates all classical Cook-Reckhow proof systems. The proof of
this result easily generalizes to arbitrary languages L, thus yielding:

Theorem 8. For every language L there exists a proof system P with one bit
of input advice such that P simulates all ps/log for L. Moreover, P p-simulates
all advice-free proof systems for L.

Proof. Let ⟨⋅, . . . , ⋅⟩ be a polynomial-time computable tupling function on �∗

which is length injective, i.e., ∣⟨x1, . . . , xn⟩∣ = ∣⟨y1, . . . , yn⟩∣ implies ∣xi∣ = ∣yi∣
for i = 1, . . . , n. We define the proof system P as follows. P -proofs are of the
form w = ⟨�, 1T , 1a, 1m⟩ with �, T, a ∈ �∗ and m ∈ ℕ (here 1T and 1a denote
unary encodings of T and a, respectively).

The proof system P uses one bit ℎ(∣w∣) of advice, where ℎ(∣w∣) = 1 if and
only if the transducer T with advice a only outputs elements from L for inputs
of length ∣�∣. Note that by the length injectivity of ⟨⋅, . . . , ⋅⟩, the advice bit can
in fact refer to T , a, and ∣�∣. Now, if ℎ(∣w∣) = 1 and T on input � with advice a
outputs y after at most m steps, then P (w) = y. Otherwise, P (w) is undefined.

In case Q is a proof system computed by some polynomial-time transducer T
without (i.e. zero bits of) advice, then Q is p-simulated by P via the polynomial-
time computable function � 7→ ⟨�, 1T , 1", 1p(∣�∣)⟩, where p is a polynomial bound

8

for the running time of T (and " is the empty string). On the other hand, if T
uses advice ℎ(∣ℓ(�)∣) of at most logarithmic length, then Q is simulated by P
via the function � 7→ ⟨�, 1T , 1ℎ(∣ℓ(�)∣), 1p(∣�∣)⟩. ⊓⊔

In contrast, it seems unlikely that we can obtain a similar result for out-
put advice by current techniques (cf. [BM] were we investigated this problem
for propositional proof systems). The question whether this optimality result
can be strengthened to p-optimality (where the simulations are replaced by p-
simulations) was also studied in detail in [BM], with both negative and positive
results providing partial answers to the question.

Combining Theorems 4 and 8, we can reformulate the optimality result for
propositional proof systems in the oracle model:

Corollary 9. There exists a propositional proof system f which simulates ev-
ery polynomial-time computable propositional proof system. The system f is
computable in polynomial time under a sparse NP-oracle.

Our next result shows that if advice does not help to shorten proofs even
for easy languages, then optimal propositional proof systems exist.

Theorem 10. If every polynomially bounded proof system with one bit of out-
put advice for some L ∈ coNP can be simulated by a proof system without
advice, then the class of all polynomial-time computable propositional proof sys-
tems contains an optimal system.

Proof. Book [Boo74] showed that NE = E if and only if any tally set A ∈ coNP
belongs to NP. The former, however, implies the existence of an optimal proof
system by a result of Kraj́ıček and Pudlák [KP89]. Therefore it suffices to show
that the assumption implies that any tally set A ∈ coNP belongs to NP. Since
A is tally, A has a polynomially bounded propositional proof system f with
one bit of output advice because we can define f(x) = x if the advice ℎ(∣x∣)
equals 1 and leave it undefined otherwise. Here, the advice function ℎ is the
characteristic function of A. Now let g be a propositional proof system without
advice that simulates f . Then it follows that g is polynomially bounded and
hence A ∈ NP. ⊓⊔

Let us remark that the hypothesis in Theorem 10 does not refer to TAUT,
but only to some of its subsets which are easy to prove with the help of advice.

6 Intermezzo – Nondeterministic Instance Complexity

Before we can continue our investigation of proof systems with advice and
approach question Q1 on the existence of polynomially bounded proof systems,
we need to review the notion of nondeterministic instance complexity and prove
some new facts on this complexity measure.

While Kolmogorov complexity studies the hardness of individual strings,
the notion of instance complexity was introduced by Orponen, Ko, Schöning,
and Watanabe [OKSW94] to measure the hardness of individual instances of a
given language. The deterministic instance complexity of [OKSW94] was later

9

generalized to the nondeterministic setting by Arvind, Köbler, Mundhenk, and
Torán [AKMT00].

As required for Kolmogorov complexity and instance complexity, we fix a
universal Turing machine U(M,x) which executes nondeterministic programs
M on inputs x. In the sequel, we refrain from always mentioning U explicitly.
Thus we simply write statements like “M is a t-time bounded Turing machine”
with the precise meaning that U always spends at most t(n) steps to simulate
M on inputs of length n. Likewise, to “simulate a machine M on input x”
always means executing U(M,x).

A nondeterministic Turing machine M is consistent with a language L (or
L-consistent), if L(M) ⊆ L. We can now give the definition of nondeterministic
instance complexity from [AKMT00].

Definition 11 (Arvind et al. [AKMT00]). For a set L and a time bound
t, the t-time-bounded nondeterministic instance complexity of x with respect to
L is defined as

nict(x : L) = min{ ∣M ∣ : M is an L-consistent t-time-bounded nondeter-

ministic machine, and M decides correctly on x } .

Similarly as in the deterministic case in [OKSW94], we collect all languages
with prescribed upper bounds on the running time and nondeterministic in-
stance complexity in a complexity class.

Definition 12. Let F1 and F2 be two classes of functions. We define

NIC[F1, F2] = {L : there exist s ∈ F1 and t ∈ F2 such that for all x ∈ �∗

nict(x : L) ≤ s(∣x∣)} .

A particularly interesting choice for the classes F1 and F2 is to allow poly-
nomial running time, but only logarithmic descriptions for the machines. This
leads to the class NIC[log, poly] which plays a central role in this paper. Simi-
larly as in the deterministic case (cf. [OKSW94]), the next proposition locates
this class between the nonuniform classes NP/log and NP/poly.

Proposition 13. NP/log ⊆ NIC[log, poly] ⊆ NP/poly.

Proof. For the first inclusion, let L ∈ NP/log. Let M be a nondeterministic
Turing machine with logarithmic advice that decides L and let an be the advice
given to M for inputs of length n. We define a collection of programs Mn,an for
L as follows. On input x the machine Mn,an first checks, whether the length of
the input is n. For this we need to code the number n into Mn,an . If ∣x∣ ∕= n,
then Mn,an rejects. Otherwise, Mn,an simulates M on input x with advice an
which is also coded into Mn,an . Essentially, the machines Mn,an are constructed
by hardwiring n and an into M , and thus the size of Mn,an is logarithmic in n.
Therefore L ∈ NIC[log, poly].

For the second inclusion, let L ∈ NIC[log, poly]. Then there exist a constant
c and a polynomial p such that for all x we have nicp(x : L) ≤ c log ∣x∣+ c. We
construct a nondeterministic Turing machine M with polynomial advice that

10

accepts exactly L. The advice of M for length n consists of all nondeterministic
Turing machines M1, . . . ,Mm of size at most c log n + c which are consistent
with L. Note that for each input length n, there are only polynomially many
machines of the appropriate size ≤ c log n+ c. Hence polynomial advice suffices
to encode the whole list M1, . . . ,Mm. On input x, the machine M simulates
each Mi on x for at most p(∣x∣) steps. If any of the Mi accepts, then M accepts
as well, otherwise it rejects.

We claim, that L(M) = L. For, if x ∈ L, then there is a nondeterministic L-
consistent Turing machine Mi such that Mi(x) accepts and ∣Mi∣ ≤ c log ∣x∣+ c.
Thus, also M(x) accepts. If, on the other hand, M accepts x, then so does some
Mi which is consistent with L. Therefore, x ∈ L because L(Mi) ⊆ L. ⊓⊔

In fact, the inclusions in Proposition 13 are proper as we will show in The-
orem 15 below. For the proof we need the following notion:

Definition 14 (Buhrman, Fortnow, Laplante [BFL01]). For a time bound
t, the nondeterministic decision complexity of x, denoted CND t(x), is the mini-
mal size of a t-time-bounded nondeterministic Turing machine M with L(M) =
{x}.

As already noted in [AKMT00], the CND measure provides an upper bound
to the nic measure, i.e., for any language L and time bound t there is a constant
c > 0 such that nict(x : L) ≤ CND t(x) + c for all x ∈ �∗. By a simple counting
argument, it follows that for any length n there exist strings x of length n with
CND(x) ≥ n, where CND(x) is the minimal size of a nondeterministic Turing
machine M with L(M) = {x} (i.e., the time-unbounded CND measure).

Inspired by a similar result in [OKSW94], we now prove the following sep-
arations:

Theorem 15. 1. For every constant c > 0, NP/nc ∕⊇ NIC[log, poly].

2. NIC[log, poly] ∕⊇ P/lin.

Proof. For the first item, let 0 < c < d be natural numbers. Diagonalizing
against all NP machines and all advice strings, we inductively define a set A
with A ∈ NIC[log, poly], but A ∕∈ NP/nc. Let (Ni)i∈ℕ be an enumeration of
all NP machines, in which every machine occurs infinitely often. In step n we
diagonalize against the machine Nn and every advice string of length ≤ nc which
Nn might use for length n. Let x1, . . . , x2n be the lexicographic enumeration of
all strings in �n and let Sn = {x1, . . . , xnd} ⊆ �n. For each string w of length
at most nc, let Aw = {x ∈ Sn : Nn(x) accepts under advice w}. Since there

are only 2n
c

such sets, but 2n
d

subsets of Sn, there must be one which is not
equal to any Aw. For every n, let An be one such set, and let A =

∪
nAn. By

construction, A ∕∈ NP/nc.

We still have to show A ∈ NIC[log, poly]. For each string s, let s̃ be the
substring of s which has all leading zeros deleted. For each n and each a ∈ An,
let Mn,ã be the following machine: on input x, the machine Mn,ã checks whether
∣x∣ = n and x̃ = ã. If this test is positive, then Mn,ã accepts, otherwise it rejects.
The machine Mn,ã is of size O(log n), as both n and ã are of length O(log n)

11

(Observe that the first nd elements in the lexicographic order of �n have no 1’s
appearing before the last log nd bits). Thus A ∈ NIC[log, poly].

For the second item, let A be a set that contains exactly one element x per
length with CND(x) ≥ ∣x∣. Obviously, A ∈ P/lin because A contains exactly one
string per length and this element can be given as advice. On the other hand,
A ∕∈ NIC[log, poly]. Assume on the contrary, that A ∈ NIC[log, poly]. Then there
are a constant c and a polynomial p, such that for each x ∈ A, there is an A-
consistent p-time-bounded machineMx of size≤ c log ∣x∣+c which accepts x. We
modify Mx to a machine M ′x such that L(M ′x) = {x} and ∣M ′x∣ ≤ c′ log ∣x∣+c′ for
some constant c′. This machine M ′x works as follows: on input y, the machine
M ′x first checks, whether ∣y∣ = ∣x∣. If not, it rejects. Otherwise, it simulates
Mx(y). Thus for all x ∈ A, CND(x) ≤ c′ log ∣x∣+ c′, contradicting the choice of
A. ⊓⊔

From Theorem 15 we infer that both inclusions in Proposition 13 are strict:

Corollary 16. NP/log ⊊ NIC[log, poly] ⊊ NP/poly.

7 Polynomially Bounded Proof Systems with Advice

For any language L, we now investigate question Q1 whether L has a polyno-
mially bounded proof system with advice. We obtain different characterizations
of this question, depending on

– whether we use input or output advice,
– which amount of advice the proof system may use, and
– the complexity of the proven language L.

We first consider proof systems with output advice. Similarly as in the clas-
sical result by Cook and Reckhow [CR79], we obtain the following equivalence:

Theorem 17. Let L ⊆ �∗ be a language and let k : ℕ→ ℕ be a function. Then
L has a polynomially bounded ps/k with output advice if and only if L ∈ NP/k.

Proof. For the forward implication, let P be a polynomially bounded ps/k with
output advice for L and let p be a bounding polynomial for P . We construct
an NP/k machine M which uses the same advice as P and decides L. On input
x, the machine M guesses a P proof w of size ≤ p(∣x∣) and checks whether
P (w) = x. If so, M accepts, otherwise M rejects.

For the backward implication, let N be an NP/k machine deciding L with
advice function ℎ. We define a proof system P for L with k bits of output
advice. Again, both P and N use the same advice. On input � = ⟨w, x⟩ the
proof system P checks, whether w is an accepting computation of N on input
x with advice ℎ(∣x∣). If so, then P (�) = x. Otherwise, P (�) is undefined. ⊓⊔

Given this result, we can now concentrate on input advice. In view of The-
orem 8, input advice appears to be a stronger concept than output advice (as
we probably cannot expect a similar result as Theorem 8 for output advice,
cf. [BM] and also Corollary 21 and Proposition 25 below for further results sup-
porting this claim). Surprisingly, the advantage of input advice seems to vanish
when we allow a polynomial amount of advice.

12

Theorem 18. Let L ⊆ �∗ be any language. Then L has a polynomially bounded
ps/poly with output advice if and only if L has a polynomially bounded ps/poly
with input advice.

Proof. The forward direction is a simple application of Proposition 3.
For the backward implication, let fin be a ps/poly with input advice for

L bounded by some polynomial p. Let an be the polynomially length-bounded
advice used by fin on inputs of length n.

We define a polynomially bounded ps/poly fout for L with output advice as
follows. Inputs x for fout are interpreted as pairs x = ⟨�, y⟩. If ∣�∣ ≤ p(∣y∣) and
fin(�) = y, then fout(x) = y. Otherwise, fout is undefined. The computation of
fout uses all advice strings for fin up to length p(∣y∣) as advice. This still results
in polynomial-size output advice for fout.

The system fout is correct, because fin is correct. It is complete, because
every y ∈ L has a proof �y with ∣�y∣ ≤ p(∣y∣), implying that fout(⟨�y, y⟩) = y.
Hence, fout is a polynomially bounded ps/poly with output advice. ⊓⊔

By Theorems 17 and 18, the existence of polynomially bounded ps/poly
with input advice for L is equivalent to L ∈ NP/poly. Next, we consider proof
systems with only a logarithmic amount of advice. In this case, we get a sim-
ilar equivalence as before, where the class NP/poly is replaced by the instance
complexity class NIC[log, poly].

Theorem 19. For every language L the following conditions are equivalent:

1. L has a polynomially bounded ps/1 with input advice.
2. L has a polynomially bounded ps/log with input advice.
3. L ∈ NIC[log, poly].

Proof. The implication 1 ⇒ 2 follows by definition.
To prove the implication 2 ⇒ 3, let f be a polynomially bounded ps/log

with input advice and bounding polynomial p. For each x we have to construct
a program M which is consistent with L and correctly decides x. If x ∕∈ L, then
M can just always reject. If x ∈ L, then there exists an f -proof � of x of length
≤ p(∣x∣). Let a be the advice for f on inputs of length ∣�∣. To construct the
machine M for x, we hardwire the values of ∣x∣, ∣�∣, and a into M . On input y
the machine M checks, whether ∣y∣ = ∣x∣. If not, it rejects. Otherwise M guesses
an f -proof �′ of length ∣�∣ for y and verifies that f(�′) = y using the advice a.
If this test is positive, then M accepts, otherwise M rejects. Clearly, M accepts
exactly all elements from L of length ∣x∣ which have f -proofs of length ∣�∣. In
particular, M accepts x. Additionally, M is a polynomial-time nondeterministic
program of length at most c+log ∣x∣+log ∣�∣+∣a∣ for some constant c. Therefore
L ∈ NIC[log, poly].

For the remaining implication 3 ⇒ 1, let us assume that there are a poly-
nomial p and a constant c, such that for every x, nicp(x : L) ≤ c ⋅ log(∣x∣) + c.
We define a polynomially bounded ps/1 f for L with input advice as follows.
Proofs in f take the form � = ⟨x,w, 1M ⟩, where ⟨⋅, . . . , ⋅⟩ is a polynomial-time
computable and length-injective tupling function. The advice for f certifies
whether or not M is a polynomial-time Turing machine that is consistent with

13

L. If this is the case and w is an accepting computation of M on input x, then
f(�) = x. Otherwise, f(�) is undefined. Note that in the proof � we described
the machine M in tally form. Together with the length-injectivity of the tupling
function this allows the advice to refer to the machine M (but not to the input
x which is given in binary notation).

Now, since L ∈ NIC[log, poly], for every x ∈ L there is an L-consistent Turing
machine Mx with running time p which accepts x and ∣Mx∣ ≤ c ⋅ log ∣x∣ + c.
Thus every element x ∈ L has a polynomial-size f -proof ⟨x,w, 1Mx⟩ where w is
an accepting path of Mx(x). ⊓⊔

In fact, we can prove a more general version of the preceding theorem, where
we replace polynomial upper bounds for the proof length by arbitrary upper
bounds. In this way we obtain:

Theorem 20. For any language L and any function t : ℕ→ ℕ, t ∈ n
(1), the
following conditions are equivalent:

1. L has a tO(1)-bounded ps/1 with input advice.

2. L has a tO(1)-bounded ps/log with input advice.

3. L ∈ NIC[O(log t), tO(1)].

For a language L we now consider the following three assertions:

A1: L has a polynomially bounded ps/log with output advice.
A2: L has a polynomially bounded ps/log with input advice.
A3: L has a polynomially bounded ps/poly with output advice.

By our results so far, assertions A1, A2, and A3 are equivalent to the statement
that L is contained in the classes NP/log, NIC[log, poly], and NP/poly, respec-
tively. As these classes form a chain of inclusions by Proposition 13, we get
the implications A1 ⇒ A2 ⇒ A3 for every L. Moreover, by Corollary 16, the
inclusions NP/log ⊊ NIC[log, poly] ⊊ NP/poly are proper. Hence we obtain:

Corollary 21. There exist languages L for which A2 is fulfilled, but A1 fails.
Likewise, there exist languages L for which A3 is fulfilled, but A2 fails.

Table 1 provides an overview of our results on question Q1 obtained so
far, showing which languages possess polynomially bounded proof systems with
advice. It is interesting to note that all languages appearing in this table form
a chain of strict inclusions (cf. Corollary 16).

8 Polynomially Bounded Proof Systems for TAUT

From a practical point of view, it is most interesting to investigate what precisely
happens for L = TAUT (or more generally for problems in coNP). Even though
by Corollary 16, NP/log and NIC[log, poly] are distinct, they do not differ inside
coNP, as the next theorem shows.

Theorem 22. Let L ∈ coNP. Then L ∈ NP/log if and only if L ∈ NIC[log, poly].
Moreover, if L ∈ NP/log, then the advice can be computed in FPNP[log].

14

Table 1. Languages with polynomially bounded proof systems

input advice output advice

ps/poly NP/poly NP/poly

ps/log NIC[log, poly] NP/log

ps/1 NIC[log, poly] NP/1

ps/0 NP

Proof. By Proposition 13 we only have to prove the backward implication. For
this let L be a language from coNP. Assuming L ∈ NIC[log, poly], there exists
a polynomial p and a constant c such that nicp(x : L) ≤ c log ∣x∣ + c for all
x ∈ �∗. Let �n be the set of all p-time bounded nondeterministic machines
M with ∣M ∣ ≤ c log n+ c. Let further an be the number of machines from �n

that are not consistent with L ∩�≤n. As the cardinality of �n is bounded by
a polynomial in n, the length of the number an is logarithmic in n.

We now construct a nondeterministic Turing machine N that uses c log n+
c + 1 bits of advice for inputs of length n and decides L. The advice of N for
input length n will be the number an. On input x of length n, the machine N
nondeterministically chooses an pairwise distinct machines M1, . . . ,Man ∈ �n

and strings x1, . . . , xan ∈ �≤n. Next, N verifies that x1, . . . , xan do not belong
to L. As L ∈ coNP, this can be done in nondeterministic polynomial time.
Then N checks whether for each i = 1, . . . , an the machine Mi accepts the
input xi. If any of the tests so far failed, N rejects. Otherwise, if all these tests
were positive, we know that every machine in �n ∖ {M1, . . . ,Man} is consistent
with L ∩�≤n. After this verification has successfully taken place, N simulates
all remaining machines M ∈ �n ∖ {M1, . . . ,Man} on input x. If one of these
simulations accepts, then also N accepts x, otherwise N rejects.

Since there are only consistent machines left after an machines have been
deleted, N never accepts any x ∕∈ L. On the other hand, the assumption L ∈
NIC[log, poly] guarantees that for every x ∈ L there is a machine in �n which
is consistent with L and accepts x. Therefore N correctly decides L, and thus
L ∈ NP/log, as claimed.

For the additional claim in the theorem, it suffices to observe that using
binary search we can compute the advice an with at most logarithmically many
queries of the form “Do there exist at least m logarithmic-size machines which
are inconsistent with L ∩ �≤n?” As this is an NP question, the advice can be
computed in FPNP[log]. ⊓⊔

By Theorem 18 we already know that TAUT has a polynomially bounded
ps/poly with input advice if and only if it has a polynomially bounded ps/poly
with output advice. As a corollary to Theorem 22 we obtain the same equiva-
lence for logarithmic advice.

Corollary 23. TAUT has a polynomially bounded ps/log with input advice if
and only if TAUT has a polynomially bounded ps/log with output advice.

15

Descending to constant advice, this equivalence seems to fail, as we show
below. For this we use a result of Buhrman, Chang, and Fortnow [BCF03]:

Theorem 24 (Buhrman, Chang, Fortnow [BCF03]). For every constant
k ≥ 1, coNP ⊆ NP/k if and only if PH ⊆ BH2k .

Using this result we conclude that the assertions of the existence of poly-
nomially bounded proof systems with input and output advice appear to be
of different strength, as otherwise the equivalence of two collapses of PH of
presumably different strength follows.

Proposition 25. Assume that TAUT having a polynomially bounded ps/1 with
input advice implies that TAUT has a polynomially bounded ps/1 with output
advice. Then PH ⊆ BH already implies PH ⊆ Dp.

Proof. If the polynomial hierarchy collapses to the Boolean hierarchy, then PH
in fact collapses to some level BHk of BH. By Theorem 24, this means that
coNP ⊆ NP/k′ for some constant k′. Hence by Theorem 17, TAUT has a poly-
nomially bounded ps/k′ P with output advice. By Theorem 8, this proof system
P is simulated by a proof system P ′ which only uses 1 bit of input advice. As
P is polynomially bounded, this is also true for P ′. By our assumption, TAUT
also has polynomially bounded ps/1 with output advice. By Theorem 17 this
implies coNP ⊆ NP/1 and therefore PH ⊆ Dp by Theorem 24. ⊓⊔

So far we have provided different characterizations of question Q1 whether
polynomially bounded proof systems with advice exist. At this point it is natural
to ask, how likely these assumptions actually are, i.e., what consequences follow
from the assumption that such proof systems exist. For TAUT we obtain a series
of collapse consequences of presumably different strength as shown in Table 2.

Table 2. Consequences of the existence of polynomially bounded proof systems

Assumption Consequence
if TAUT has a polynomially bounded . . . then PH collapses to . . .

ps/poly (input or output advice) SNP
2 ⊆ Σp

3

ps/log (input or output advice) PNP[log]

ps/O(1) (input advice) PNP[log]

ps/O(1) (output advice) PNP[O(1)] = BH

ps/0 (no advice) NP

The first line in Table 2 follows from Theorems 17 and 18 and a result of
Cai, Chakaravarthy, Hemaspaandra, and Ogihara [CCHO05], who have shown
that coNP ⊆ NP/poly implies PH ⊆ SNP2 . For the second line, the distinction
between input and output advice is again irrelevant (Corollary 23). Here we use
a result of Arvind, Köbler, Mundhenk, and Torán [AKMT00], who showed that
TAUT ∈ NIC[log, poly] implies PH ⊆ PNP[log]. Finally, the constant-advice case
(lines 3 and 4), follows from Theorem 24 in conjunction with Theorems 17 and
19. In comparison, the classical Cook-Reckhow Theorem states that TAUT has

16

an advice-free polynomially bounded proof system if and only if PH ⊆ NP (line
5).

9 Simplifying the Advice in Propositional Proof Systems

In this final section we again concentrate on propositional proof systems and
prove a result which contributes to an answer to our last question Q3. There
are two natural ways to enhance proof systems with advice by either supplying
non-uniform information to the proof (input advice) or to the proven formula
(output advice). Intuitively, input advice is the stronger model: proofs can be
quite long and formulas of the same size typically require proofs of different size.
Hence, supplying advice depending on the proof size is not only more flexible,
but also results in more advice per formula. This view is also supported by
our results obtained so far: there exist optimal proof systems with input advice
(Theorem 8), whereas for output advice a similar result cannot be obtained
by current techniques [BM]. Further evidence is provided by the existence of
languages that have polynomially bounded proof systems with logarithmic input
advice, but do not have such systems with output advice (Corollary 21).

In our next result we show how input advice can be transformed into out-
put advice. We obtain this simplification of advice under the assumption of
weak, but non-trivial upper bounds to the proof size. More precisely, from a
propositional proof system which uses logarithmic input advice and has sub-
exponential size proofs of all tautologies, we construct a system with polynomial
output advice which obeys almost the same upper bounds. For the proof we
use a new technique by Buhrman and Hitchcock [BH08] who show that sets of
sub-exponential density are not NP-hard unless coNP ⊆ NP/poly.

Theorem 26. Let t(n) ∈ 2O(
√
n) and assume that there exists a t(n)-bounded

propositional proof system f with polylogarithmic input advice. Then there exists
an s(n)-bounded propositional proof system g with polynomial output advice
where s(n) ∈ O(t(d ⋅ n2)) with some fixed constant d independent of f .

Proof. Let t(n) ≤ 2c⋅
√
n for some constant c and let f be a t(n)-bounded propo-

sitional proof system with polylogarithmic input advice. We say that � is a
conjunctive f -proof for a tautology ' if there exist tautologies 1, . . . , n with
∣ i∣ = ∣'∣ = n such that f(�) = 1 ∧ ⋅ ⋅ ⋅ ∧ n and ' is among the i. For a
number m ≥ 1, we denote by ♯nm the number of tautologies ' ∈ TAUT=n which
have conjunctive f -proofs of size exactly m. By counting we obtain

(♯nm)n ≥ ∣{('1, . . . , 'n) ∣ '1 ∧ ⋅ ⋅ ⋅ ∧ 'n has an f -proof of size m and

∣'i∣ = n for 1 ≤ i ≤ n }∣ .
(1)

As f is t-bounded, every ' ∈ TAUT=n has a conjunctive f -proof of size at
most t(d ⋅ n2) where d is a constant such that for each sequence 1, . . . , n of
formulas of length n, ∣ 1 ∧ ⋅ ⋅ ⋅ ∧ n∣ ≤ d ⋅ n2. Let ♯n = max{♯nm ∣ m ≤ t(d ⋅ n2)}.

17

Using (1) we obtain

∣TAUT=n∣n ≤
t(d⋅n2)∑
m=1

(♯nm)n ≤ (♯n)n ⋅ t(d ⋅ n2)

≤ (♯n)n ⋅ 2c⋅
√
d⋅n2

= (♯n ⋅ 2c⋅
√
d)n .

Thus, setting � = 2−c⋅
√
d, we get ♯n ≥ � ⋅ ∣TAUT=n∣. Therefore, by definition of

♯n there exists a number mn,0 ≤ t(d ⋅n2) such that ♯nmn,0
≥ � ⋅ ∣TAUT=n∣, i.e., a

�-fraction of all tautologies of length n has a conjunctive f -proof of size mn,0.

Consider now the set TAUT=n
0 of all tautologies of length n which do

not have conjunctive f -proofs of size mn,0. Repeating the above argument for
TAUT=n

0 yields a proof length mn,1 such that ♯nmn,1
≥ � ⋅ ∣TAUT=n

0 ∣. Iterating
this argument we obtain a sequence

mn,0,mn,1, . . . ,mn,ℓ(n) with ℓ(n) =

⌈
log ∣TAUT=n∣
log(1− �)−1

⌉
≤
⌈

n

log(1− �)−1

⌉
such that every ' ∈ TAUT=n has a conjunctive f proof of size mn,i for some
i ∈ {0, . . . , ℓ(n)}.

We will now define a proof system g which uses polynomial output advice
and obeys the same proof lengths as f . Assume that f is computed by the
polynomial-time Turing transducer Mf with advice function ℎf . The system g
will be computed by a polynomial-time Turing transducer Mg using the advice
function

ℎg(n) =
〈
mn,0, ℎf (mn,0), . . . ,mn,ℓ(n), ℎf (mn,ℓ(n))

〉
.

The machine Mg works as follows: first Mg checks whether the proof has the
form

⟨', 1, . . . , n, �, i⟩

where ', 1, . . . , n are formulas of length n such that ' ∈ { 1, . . . , n}, � is a
string (an f -proof), and i is a number ≤ ℓ(n). If this test fails, then Mg outputs
⊤n (an easy tautology of length n). Then Mg uses its advice to check whether
∣�∣ = mn,i. If so, then Mg simulates Mf on input � using advice ℎf (mn,i) (which
is available through the advice function ℎg). If the output of this simulation is
 1 ∧ ⋅ ⋅ ⋅ ∧ n, then Mg outputs ', otherwise it outputs ⊤n.

By our analysis above, g is a propositional proof system (it is correct and
complete). The advice only depends on the length n of the proven formula, so
g uses output advice. To estimate the advice length, let ∣ℎf (m)∣ ≤ logam for
some constant a. Then

∣ℎg(n)∣ ≤
ℓ(n)∑
i=0

(∣mn,i∣+ ∣ℎ(mn,i∣) ≤ (ℓ(n) + 1)
(
c
√
n+ loga(2c

√
n)
)
∈ nO(1) .

The size of a g-proof ⟨', 1, . . . , n, �, i⟩ for ' ∈ TAUT=n is dominated by
∣�∣ ≤ t(d ⋅n2), and therefore g is s(n)-bounded for some s(n) ∈ O(t(d ⋅n2)). ⊓⊔

18

In some sense, Theorem 26 transfers the results of Theorem 18 and Corol-
lary 23 to super-polynomial proof lengths. However, while Theorem 18 has an
easy proof and holds for all languages, the last construction is rather non-trivial
and uses some assumption on L. Here we stated the result for the most inter-
esting case L = TAUT, but the same proof also works for all languages L with
a polynomial-time computable AND-function.

10 Conclusion

In this paper we have addressed some fundamental questions on proof systems
in the new advice model. From a practical perspective, propositional proof sys-
tems with advice form the most interesting instances. Undoubtedly, the main
question is: Does advice help to prove propositional tautologies? In this gen-
erality, we leave open the question—but our results provide partial answers.
On the one hand, when proving tautologies “very complicated” advice is not
necessary—it suffices to use a “small amount of simple” advice (Theorem 4).
Further, if advice is helpful to prove tautologies in the sense that proofs become
shorter in general, then again the advice can be simplified (Theorem 26).

On the other hand, if advice is not at all useful to prove tautologies, then
optimal propositional proof systems exist (Theorem 10), a consequence which
is considered unlikely by many researchers (cf. [KMT03]). For further research,
it seems interesting to explore how natural proof systems like resolution can
facilitate advice. Is it possible to shorten proofs in such systems by using advice?

Acknowledgement. The first author wishes to thank Uwe Schöning for sug-
gesting to apply results from [BS92] in the context of proof systems with advice.
We also thank the anonymous referees of the conference versions for helpful
comments and detailed suggestions on how to improve this paper.

References

[AKMT00] V. Arvind, Johannes Köbler, Martin Mundhenk, and Jacobo Torán. Nondeter-
ministic instance complexity and hard-to-prove tautologies. In Proc. 17th Sympo-
sium on Theoretical Aspects of Computer Science, volume 1770 of Lecture Notes
in Computer Science, pages 314–323. Springer-Verlag, Berlin Heidelberg, 2000.

[BCF03] Harry Buhrman, Richard Chang, and Lance Fortnow. One bit of advice. In
Proc. 20th Symposium on Theoretical Aspects of Computer Science, volume 2607
of Lecture Notes in Computer Science, pages 547–558. Springer-Verlag, Berlin Hei-
delberg, 2003.

[BDG88] José L. Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Complexity I.
Springer-Verlag, Berlin Heidelberg, 1988.

[BFL01] Harry Buhrman, Lance Fortnow, and Sophie Laplante. Resource-bounded Kol-
mogorov complexity revisited. SIAM Journal on Computing, 31(3):887–905, 2001.

[BH08] Harry Buhrman and John M. Hitchcock. NP-hard sets are exponentially dense
unless coNP⊆ NP/poly. In Proc. 23rd Annual IEEE Conference on Computational
Complexity, pages 1–7, 2008.

[BKM09] Olaf Beyersdorff, Johannes Köbler, and Sebastian Müller. Nondeterministic in-
stance complexity and proof systems with advice. In Proc. 3rd International
Conference on Language and Automata Theory and Applications, volume 5457
of Lecture Notes in Computer Science, pages 164 – 175. Springer-Verlag, Berlin
Heidelberg, 2009.

19

[BM] Olaf Beyersdorff and Sebastian Müller. A tight Karp-Lipton collapse result in
bounded arithmetic. ACM Transactions on Computational Logic. To appear.

[BM09] Olaf Beyersdorff and Sebastian Müller. Does advice help to prove propositional
tautologies? In Proc. 12th International Conference on Theory and Applications
of Satisfiability Testing, volume 5584 of Lecture Notes in Computer Science, pages
65 – 72. Springer-Verlag, Berlin Heidelberg, 2009.

[Boo74] R. Book. Tally languages and complexity classes. Information and Control, 26:186–
193, 1974.

[BS92] J.L. Balcázar and U. Schöning. Logarithmic advice classes. Theoretical Computer
Science, 99:279–290, 1992.

[CCHO05] Jin-Yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori
Ogihara. Competing provers yield improved Karp-Lipton collapse results. Infor-
mation and Computation, 198(1):1–23, 2005.

[CK07] Stephen A. Cook and Jan Kraj́ıček. Consequences of the provability of NP ⊆
P/poly. The Journal of Symbolic Logic, 72(4):1353–1371, 2007.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform
and uniform complexity classes. In Proc. 12th ACM Symposium on Theory of
Computing, pages 302–309. ACM Press, 1980.

[KMT03] Johannes Köbler, Jochen Messner, and Jacobo Torán. Optimal proof systems
imply complete sets for promise classes. Information and Computation, 184(1):71–
92, 2003.

[KP89] Jan Kraj́ıček and Pavel Pudlák. Propositional proof systems, the consistency of
first order theories and the complexity of computations. The Journal of Symbolic
Logic, 54(3):1063–1079, 1989.

[OKSW94] P. Orponen, K. Ko, U. Schöning, and O. Watanabe. Instance complexity. Journal
of the ACM, 41(1):96–121, 1994.

[Pud98] Pavel Pudlák. The lengths of proofs. In Samuel R. Buss, editor, Handbook of Proof
Theory, pages 547–637. Elsevier, Amsterdam, 1998.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

