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Abstract. We describe a fixed parameter tractable (fpt) algorithm for Colored Hy-
pergraph Isomorphism which has running time b!2O(b)NO(1), where the parameter b is
the maximum size of the color classes of the given hypergraphs and N is the input size.
We also describe fpt algorithms for certain permutation group problems that are used as
subroutines in our algorithm.
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computational complexity.

1 Introduction

A hypergraph is an ordered pair X = (V,E) where V is the vertex set and E ⊆ 2V

is the edge set. Two hypergraphs X = (V,E) and X ′ = (V ′, E ′) are said to be
isomorphic, denoted X ∼= X ′, if there is a bijection ϕ : V → V ′ such that for
all e = {u1, · · · , ul} ⊆ V , e ∈ E if and only if ϕ(e) = {ϕ(u1), · · · , ϕ(ul)} ∈ E ′.
Given two hypergraphs X and X ′ the decision problem Hypergraph Isomor-
phism (HI) asks whether X ∼= X ′. Graph Isomorphism (GI) is obviously
polynomial-time reducible to HI. Conversely, HI is also known to be polynomial-
time reducible to GI: Given a pair of hypergraphs X = (V,E) and X ′ = (V ′, E ′)
as instance for HI, the reduced instance of GI consists of two corresponding bi-
partite graphs Y and Y ′ defined as follows. The graph Y has vertex set V ] E
and edge set E(Y ) = {{v, e} | v ∈ V, e ∈ E and v ∈ e}, whereas Y ′ is defined
accordingly. Here, C ] D denotes the disjoint union of the sets C and D. It is
easy to verify that Y ∼= Y ′ if and only if X ∼= X ′.

The input to Colored Hypergraph Isomorphism (CHI) is a pair of
hypergraphs X = (V,E) and X ′ = (V ′, E ′) together with partitions V = C1 ]
· · · ]Cm and V ′ = C ′1 ] · · · ]C ′m of their vertex sets into color classes Ci and C ′i,
respectively. The problem is to decide if there is an isomorphism ϕ that preserves
the colors (meaning that v ∈ Ci ⇔ ϕ(v) ∈ C ′i). Colored Graph Isomorphism
(CGI) is the analogous problem where instead of hypergraphs we have graphs as
inputs.

Furst, Hopcroft and Luks gave an fpt algorithm for CGI [8] with running time
2O(b2)nO(1), where the parameter b is the maximum size of the color classes and
n is the number of vertices of the input graphs. Although HI is polynomial time
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many-one reducible to GI, the reduction we described above does not impose
any bound on the size of the color classes of the bipartite graphs Y and Y ′. More
specifically, if the color classes of the hypergraphs X and X ′ have maximum size
b, then the vertices of the graphs Y and Y ′ that correspond to the edges of X and
X ′ do not get partitioned into color classes of size bounded by any function of b
(since in general, the hyperedges are of nonconstant size). Thus, the fpt algorithm
for CGI cannot be combined with the above reduction to get an fpt algorithm
for CHI. Moreover, even if b is bounded by a constant (say 2), the color classes
in the resulting bipartite graphs Y and Y ′ can have size up to 2n/2 and hence,
this approach would only give a double exponential time algorithm for CHI.

However, an algorithm for CHI with a running time of the form NO(b) was
shown in [1], where b bounds the size of the color classes of the given hyper-
graphs and N is the input size. Hence, if b is bounded by a constant, we have a
polynomial-time algorithm for CHI. This algorithm basically applies Luks’ sem-
inal result [9] showing that the set stabilizer problem with respect to a class
of permutation groups Γd can be solved in time nO(d). Recall that a finite per-
mutation group G < Sn is said to belong to the class Γd if every nonabelian
composition factor of G is isomorphic to some subgroup of the symmetric group
Sd.

Parametrized complexity and isomorphism testing

Parametrized complexity is a fundamental strategy for coping with intractability.
Pioneered by Downey and Fellows in [4], it is a flourishing area of research (see,
e.g. the monographs [5, 7]). Fixed parameter tractability provides a notion of fea-
sible computation less restrictive than polynomial time. It provides a theoretical
basis for the design of new algorithms that are efficient and practically useful for
small parameter values. We quickly recall the rudiments of this theory relevant
for the present paper. For more details see [5, 7].

Computational problems often have inputs consisting of two or more parts
where some of these parts typically take only small values. For example, an input
instance of the vertex cover problem is (G, k), and the task is to determine if the
graph G has a vertex cover of size k. A similar example is the k-clique problem
where again an input instance is a pair (G, k) and the problem is to test if the
graph G has a clique of size k. For such problems an exhaustive search will take
time O(nk), where n is the number of vertices in G. However, a finer classification
is possible. The vertex cover problem has an algorithm running in time 2knO(1)

(even in time O(1.2738k+kn) [3]), whereas no algorithm is known for the k-clique
problem of running time O(no(k)). Thus, if the parameter k is such that k � n,
then we have a faster algorithm for the k-vertex cover problem than is known for
the k-clique problem.

Parametrized complexity theory deals with the study and design of algorithms
that have a running time of the form f(b)nO(1) where n is the input size, b is the
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parameter and f is a computable function. If a problem is solvable by such an
algorithm it is called fixed parameter tractable (fpt). For example, the vertex cover
problem has an fpt algorithm, whereas no fpt algorithm is known for the k-clique
problem.

Since no polynomial-time algorithm for GI is known, one approach is to design
fpt isomorphism testing algorithms with respect to natural graph parameters. For
example, the algorithm of Furst et al [8] mentioned above is fpt with respect to
the color class size. For isomorphism testing of graphs with eigenvalue multiplicity
bounded by k, Evdokimov and Ponomarenko have designed a highly nontrivial
fpt algorithm with running time kO(k)nO(1) [6].

Apart from this, fpt algorithms have also been designed with respect to the
parameters tree-distance width [16] and the size of the simplicial components of
the input graphs[15].

On the other hand, if we use the maximum degree [9], or the treewidth [2], or
the genus [12] of the input graphs as parameter b, the best known isomorphism
testing algorithms have a worst-case running time bound nO(b). It is an interesting
open question if GI has an fpt algorithm with respect to any of these three
parameters.

The results

In this paper we present an fpt algorithm for Colored Hypergraph Isomor-
phism that runs in time b!2O(b)NO(1), where b is the maximum size of the color
classes and N is the input size.

We use as subroutines fpt algorithms for certain permutation group problems
parametrized by the size of the largest color class of the group. More specifically,
following Luks’ method [10], we design fpt algorithms for the functional problems
Colered Coset Intersection and Colered Set Transporter (formal
definitions of these problems are given in Section 3).

While the parametrized complexity of permutation group problems, for differ-
ent parameters, is certainly interesting in its own right, it could also be applicable
to GI. For example, an fpt algorithm for Set Transporter with respect to
groups in Γd (with d as parameter) would result in an fpt algorithm for testing
isomorphism of graphs of maximum degree d.

2 Preliminaries

While designing the fpt algorithm for Colored Hypergraph Isomorphism
we will have to handle hypergraphs (V,E) with multiple hyperedges (i.e., E is a
multiset). Two multihypergraphs X = (V,E) and X ′ = (V ′, E ′) are isomorphic
via an isomorphism ϕ if any hyperedge e ∈ E has the same multiplicity as ϕ(e)
in E ′.
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Next we recall some basic group theory. Let G be a finite group and let Ω
be a finite nonempty set. The action of the group G on Ω is defined by a map
α : Ω ×G→ Ω such that for all x ∈ Ω, (i) α(x, id) = x, i.e., the identity id ∈ G
fixes each x ∈ Ω, and (ii) α(α(x, g), h) = α(x, gh) for all g, h ∈ G. We write xg

instead of α(x, g) when the group action is clear from the context.
For x ∈ Ω, its G-orbit is the set xG = {y|y ∈ X, y = xg for some g ∈ G}.

When the group is clear from the context, we call xG the orbit of x. Notice that
the orbits form a partition of Ω.

We write H ≤ G when H is a subgroup of G. The symmetric group on
a finite set Ω consisting of all permutations on Ω is denoted by Sym(Ω). If
Ω = [n] = {1, · · · , n}, we write Sn instead of Sym([n]). A finite permutation
group G is a subgroup of Sym(Ω) for some finite set Ω.

The permutation group generated by a subset S ⊆ Sym(Ω) is the smallest
subgroup of Sym(Ω) containing S and is denoted by 〈S〉. Each element of the
group 〈S〉 is expressible as a product of elements of S.

The subgroup G(i) of G ≤ Sn that fixes each of {1, . . . , i} is called a pointwise
stabilizer of G. These subgroups form a tower

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n−1) = {id}.

We notice that by the orbit-stabilizer lemma, the index [G(i−1) : G(i)] is at most
n. For each i, let Ri be a set of complete and distinct coset representatives of G(i)

in G(i−1). Then
⋃n−1
i=1 Ri generates G and is called a strong generating set for G.

Given a permutation π ∈ G it is easy to check if π ∈ G(i). It is also easy to check if
two permutations π, σ ∈ G(i) are in the same coset of G(i+1) in G(i). We just have
to test if π−1σ ∈ G(i+1). These observations yield a polynomial-time algorithm
[13, 14, 8] for computing a strong generating set of a permutation group G. This
algorithm can also be used to test in polynomial time if g ∈ Sn is in the group
〈S〉 ≤ Sn.

In some applications there is an efficient algorithm for testing membership in
a subgroup H of G, where G ≤ Sn is given by a generating set but no generating
set for H is given. By [13, 14, 8] we can efficiently compute a generating set for
H provided that its index in G is polynomially bounded.

Theorem 1 (Schreier Generators). Let G = 〈S〉 ≤ Sn and H ≤ G. Then for
any set R of coset representatives of H in G, the set B = {r′xr−1 | r, r′ ∈ R, x ∈
S} ∩H generates H. The generators in B are called Schreier generators.

The proof of Theorem 1 also provides an algorithm for computing a suitable
set R of coset representatives by making m2|S| tests of membership in H, where
m = [G : H]. Though the set B of Schreier generators for H can be of size
polynomial in m, it is possible to convert it to a strong generating set for H of
size O(n2) [13, 14, 8].

For a permutation π ∈ Sym(Ω) and a subset C ⊆ Ω we use Cπ to denote the
set {xπ | x ∈ C}. For a set S of permutations, C is called S-stable if Cπ = C for
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all π ∈ S. For a permutation group G ≤ Sym(Ω), the stabilizer subgroup of G is
defined as GC = {π ∈ G | Cπ = C}.

3 Permutation group problems

In this section we describe fpt algorithms for some permutation group problems
with respect to the color class bound as parameter. We say that a group G ≤
Sym(Ω) has color class bound b if Ω can be partitioned into color classes C1]· · ·]
Cm of size |Ci| ≤ b such that each Ci is G-stable (equivalently, the maximum orbit
size of G is bounded by b). Since the orbits of G can be computed in polynomial
time (where G is given by a generating set S), we can also check in polynomial
time if G has color class bound b.

First we recall the definition of the set transporter problem for general per-
mutation groups.

Set Transporter (ST)

Input: A generating set for a group G ≤ Sym(Ω), a permutation z ∈
Sym(Ω) and subsets Π,Π ′ ⊆ Ω.

Output: A description of the set (Gz)Π→Π′ = {x ∈ Gz | Πx = Π ′} which is
either empty or a coset of GΠ .

For general permutation groups it is known that GI polynomial-time reduces to
ST. Here, we are particularly interested in the following parametrized version of
Set Transporter.

Colored Set Transporter (CST)

Input: A generating set for a group G ≤ Sym(Ω), a permutation z ∈
Sym(Ω), subsets Π1, . . . , Πm, Π

′
1, . . . , Π

′
m ⊆ Ω and a partition

Ω = C1 ] · · · ] Cm such that for each i, Ci is G-stable and
Πi, Π

′
i ⊆ Ci.

Parameter: b = max{|C1|, · · · , |Cm|}.
Output: A description of (Gz)Π1,...,Πm→Π′1,...,Π′m = {x ∈ Gz | Πx

i = Π ′i for
i = 1, . . . ,m}.

The fpt algorithm for solving CST works by restricting the problem to a par-
ticular color class, solving it, and then proceeding to the next color class. The
restricted version of the problem is defined as follows.

Restricted CST (RCST)

Input: A generating set for a group G ≤ Sym(C ] D), a permutation
z ∈ Sym(C ]D) and subsets Π,Π ′ ⊆ C, where C is G-stable.

Parameter: b = |C|.
Output: A description of (Gz)Π→Π′ = {x ∈ Gz | Πx = Π ′}.
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Lemma 2. There is an fpt algorithm for RCST running in time 2O(b)nO(1),
where b = |C| and n = |C|+ |D|.
Proof. Let GΠ = {x ∈ G | Πx = Π} be the stabilizer subgroup of G that
stabilizes Π. Since C is G-stable the set Π can only move to a subset Πx of size
k = |Π| contained in C. Thus, it follows that

[G : GΠ ] ≤
(
b

k

)
≤ 2b.

Also note that given x ∈ G, it only takes O(n) time to check if x ∈ GΠ . Thus
using the algorithm given by Theorem 1 we can compute a set R = {ρ1, · · · , ρt}
of coset representatives of GΠ in G in time 2O(b)nO(1) together with a strong
generating set S for GΠ of size at most n2. Writing

Gz = GΠρ1z ] · · · ]GΠρtz,

the algorithm for RCST picks the uniquely determined coset GΠρiz that sends
Π to Π ′ and outputs the pair (S, ρiz) as a description of that coset (if none of
the cosets GΠρiz, 1 ≤ i ≤ t, sends Π to Π ′, the algorithm outputs the empty
set). ut
Remark 3. As the group GΠ that is output by the algorithm of Lemma 2 is a
subgroup of G, GΠ stabilizes any G-stable set.

Theorem 4. There is an fpt algorithm for CST running in time 2O(b)nO(1),
where b = max{|C1|, · · · , |Cm|} and n = |Ω|.
Proof. Let G0 = G and z0 = z and for i = 1, · · · ,m use the algorithm of Lemma 2
to compute

Gizi = (Gi−1zi−1)Πi→Π′i .

Notice that for each x ∈ Gmzm we have Πx
i = Π ′i for i = 1, . . . ,m, implying that

Gmzm = (Gz)Π1,...,Πm→Π′1,...,Π′m .
Furthermore, by Remark 3, each of the subgroups Gi stabilizes the sets Cj,

j = 1, · · · ,m. Thus, Lemma 2 implies that we can compute Gizi from Gi−1zi−1

in time 2O(b)nO(1), implying that the overall running time is also 2O(b)nO(1). ut
Before we consider the colored version of the coset intersection problem, we

state an immediate application of Theorem 4 to the set stabilizer problem.

Colored Set Stabilizer (CSS)

Input: A generating set for a group G ≤ Sym(Ω), a permutation z ∈
Sym(Ω), subsets Π1, . . . , Πm ⊆ Ω and a partition Ω = C1] · · · ]
Cm such that for each i, Ci is G-stable and Πi ⊆ Ci.

Parameter: b = max{|C1|, · · · , |Cm|}.
Output: (Gz)Π1,...,Πm = {x ∈ Gz | Πx

i = Πi for i = 1, . . . ,m}.

Since CSS is the special case of CST where Π ′i is set to Πi, Theorem 4 shows
that CSS is solvable by an fpt algorithm.
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Corollary 5. There is an fpt algorithm for CSS running in time 2O(b)poly(n).

The coset intersection problem is defined as follows.

Coset Intersection (CI)

Input: Generating sets for two groups G,H ≤ Sym(Ω) and x, y ∈ Sym(Ω).
Output: Gx ∩Hy.

GI is known to be polynomial-time reducible to CI, since the latter is polyno-
mial time many-one equivalent to Set Transporter [11]. However, the known
polynomial-time reduction between these problems is not an fpt reduction [5].
Therefore, we cannot invoke the algorithm for CST to get an fpt algorithm for
the parametrized version CCI of CI. Nevertheless we design an fpt algorithm
for CCI that we will use in the next section to solve Colored Hypergraph
Isomorphism.

Colored Coset Intersection (CCI)

Input: Generating sets for groups G,H ≤ Sym(Ω), permutations x, y ∈
Sym(Ω) and a partition Ω = C1 ] · · · ] Cm such that for each i,
Ci is G ∪H ∪ {x, y}-stable.

Parameter: b = max{|C1|, · · · , |Cm|}.
Output: Gx ∩Hy.

In the proof of the next theorem which provides an fpt algorithm for CCI we
make use of the following lemma where we consider a suitably chosen restricted
version of Colored Set Stabilizer. Here, the set Θ is only used to facilitate
an inductive proof. Later, we will apply Lemma 6 only with Θ set to C ×D.

Restricted CSS (RCSS)

Input: A generating set for a group L ≤ Sym(Ω1)× Sym(Ω2), a permu-
tation z ∈ Sym(Ω1 × Ω2) and subsets Π,Θ = Φ × Ψ ⊆ C × D,
where Ω1 = C ] U , Ω2 = D ] V and the two sets C ×D and Θ
are L-stable.

Parameter: b = max{|C|, |D|}.
Output: (Lz)Π [Θ] = {x ∈ Lz | (Π ∩Θ)x = Π ∩Θx}.

Lemma 6. There is an fpt algorithm for RCSS running in time 2O(b)nO(1), where
b = max{|C|, |D|} and n = |Ω1|+ |Ω2|.

Proof. We use ideas from [10, Proposition 3.1] where the author describes an al-
gorithm for a version of the set transporter problem that can be easily adapted to
solve RCSS. We only have to slightly modify Luks’ proof to suit the parametrized
setting.
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We can assume that |Φ| and |Ψ | are powers of 2 since otherwise we can add
some points to Φ and Ψ (as well as to C and D) and let L act trivially on these
points. This will increase the size of b and of the input only by a factor of 4.
Further, these extra points can be easily removed from the algorithm’s output.

Observe that since LΘ = L, we have Θx = Θz for all x ∈ Lz. If (Lz)Π [Θ] is
not empty then for x, y ∈ (Lz)Π [Θ] we have (Π ∩Θ)x = Π ∩Θz = (Π ∩Θ)y and
hence (Lz)Π [Θ] is a coset of LΠ∩Θ.

Clearly, if |Π ∩Θ| 6= |Π ∩Θz| then (Lz)Π [Θ] is empty. Next we consider the
case that |Π ∩ Θ| = |Π ∩ Θz| = 1. Let Π ∩ Θ = {u} and Π ∩ Θz = {v}. Let Lu
be the stabilizer of the point u which can be computed using the Schreier-Sims
method. Then we can express L as the disjoint union of cosets

L = Lux1 ] · · · ] Luxt

and consequently Lz as Lux1z]· · ·]Luxtz. Hence, it suffices to pick the uniquely
determined coset Luxiz that maps u to v (if there is any).

It remains to consider the case that |Π ∩ Θ| = |Π ∩ Θz| > 1. If |Φ| > 1
we partition Φ in two subsets Φ1 and Φ2 of equal size and let Θ1 = Φ1 × Ψ .
Otherwise, |Ψi| > 1 and we partition Ψ in two subsets Ψ1 and Ψ2 of equal size and
let Θ1 = Φ× Ψ1. In both cases we let Θ2 = Θ \Θ1.

Let k = max{|Φ|, |Ψ |} and let M = LΘ1 . Notice that [L : M ] ≤
(
k
k/2

)
≤ 2b, no

matter which of the two sets Φ or Ψ we divide into two parts. Now we write L as
the disjoint union of cosets

L = My1 ] · · · ]Myt

of M , yielding Lz = My1z]· · ·]Mytz. As mentioned in the preliminary section,
this decomposition of Lz can be computed in time 2O(b)nO(1). Since M stabilizes
Θ1, (Myiz)Π [Θ1] is a coset of M . Moreover, we can use the equality

(Myiz)Π [Θ] = ((Myiz)Π [Θ1])Π [Θ2]

to setup the recursive calls. Finally we paste the answers to the subproblems
(Myiz)Π [Θ] together to get

(Lz)Π [Θ] = ∪ti=1(Myiz)Π [Θ].

It is easy to verify that the overall run-time of the algorithm is bounded by
2O(b)poly(n). ut

Theorem 7. There is an fpt algorithm for CCI running in time 2O(b)nO(1), where
b = max{|C1|, · · · , |Cm|} and n = |Ω|.

Proof. Let L = G × H ≤ Sym(Ω) × Sym(Ω) and let z = (x, y) ∈ Sym(Ω) ×
Sym(Ω). Further, let Πi = {(a, a) | a ∈ Ci} and notice that (Lz)Π1,...,Πm = {x ∈
Lz | Πx

i = Πi for i = 1, . . . ,m} projected to the first (or second) coordinate is
Gx ∩Hy. Hence, it suffices to prove the following claim.
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Claim. (Lz)Π1,...,Πm is computable in time 2O(b)nO(1).

Since computing (Lz)Π1,...,Πi
is an instance of CSS we could use Corollary 5 to

do it. Unfortunately, this approach would take time 2O(b2)nO(1), since the group L
has color class bound b2 (and not b). Nevertheless, by repeatedly using Lemma 6
we can still solve the problem in time 2O(b)nO(1).

To start off we let L0z0 = Lz. Then we compute Lizi = (Li−1zi−1)Πi
from

Li−1zi−1 for i = 1, · · · ,m.
We claim that for all i, Lizi = (Lz)Π1,...,Πi

. This follows from the fact that
((Lz)Π1,...,Πi−1

)Πi
= (Lz)Π1,...,Πi

. Thus at the end of the computation we have
Lmzm = (Lz)Π1,...,Πm .

Furthermore, by Lemma 6 it follows that the time needed for computing
Lizi from Li−1zi−1 is 2O(b)nO(1), implying that the overall running time is also
2O(b)nO(1). ut

4 Fpt algorithms for the colored hypergraph
automorphism and isomorphism problems

In this section, we use a dynamic programming approach to design an fpt algo-
rithm for finding the automorphism group Aut(X) (i.e., a set of generators for
Aut(X)) of a given hypergraph X which has running time (b!)2O(b)NO(1), where b
is the color class bound and N is the input size. The subproblems of this dynamic
programming algorithm will involve multi-hypergraphs. For this reason we begin
with a multihypergraph X = (V,E) as input, where V is partitioned into color
classes C1, · · · , Cm such that |Ci| ≤ b for all i.

Theorem 8. Let X = (V,E) be a colored multi-hypergraph with V = C1 ] · · · ]
Cm where |Ci| ≤ b for all i. Let N be the total number of vertices and edges
of X. Given X as input there is an algorithm that computes Aut(X) in time
b!2O(b)NO(1).

Proof. The algorithm first partitions the hyperedges into different multisets that
we call blocks. More formally, we say that two hyperedges e1, e2 ∈ E are i-
equivalent and write e1 ≡i e2, if

e1 ∩ Cj = e2 ∩ Cj for j = 0, . . . , i,

where we let C0 = ∅. We call the corresponding equivalence classes (i)-blocks.
Notice that for i ≥ j, i-equivalence is a refinement of j-equivalence. Thus, if

e1 and e2 are in the same (i)-block then they are in the same (j)-block for all
j = 0, 1, . . . , i−1. The algorithm proceeds in stages i = m,m−1, . . . , 0, where in
stage i the algorithm considers (i)-blocks. More precisely, in stage i the algorithm
computes for each pair of (i)-blocks A,A′ the set ISO(Y, Y ′) of all isomorphisms
between the multihypergraphs Y and Y ′ induced by A and A′, respectively, on
the vertex set Ci ∪ · · · ∪ Cm and stores this set in a table T .
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Stage m: Let A,A′ be two (m)-blocks and let Y, Y ′ be the corresponding mul-
tihypergraphs on the vertex set Cm as defined above. Since A and A′ are
(m)-blocks, the multisets E(Y ) = {{e∩Cm | e ∈ A}} and E(Y ′) = {{e∩Cm |
e ∈ A′}} only contain a single hyperedge a and a′ with multiplicity |A| and
|A′|, respectively.
Clearly, ISO(Y, Y ′) = ∅ if |A| 6= |A′| or |a| 6= |a′|. Otherwise, ISO(Y, Y ′) ⊆
Sym(Cm) is the coset of Aut(Y ) = Sym(Cm)a that maps a to a′ wich can be
easily computed in time 2O(b) by Theorem 4 and stored in T [A,A′].

Stage i < m: Let A,A′ be two (i)-blocks and let Y, Y ′ be the corresponding mul-
tihypergraphs on the vertex set Ci∪· · ·∪Cm. We explain how the computation
of T [A,A′] = ISO(Y, Y ′) is done.
Let a and a′ be the unique subsets of Ci such that for all e ∈ A, e∩Ci = a and
for all e′ ∈ A′, e′ ∩Ci = a′. Clearly ISO(Y, Y ′) is empty if the sizes of a and a′

or the sizes of the hyperedge multisets E(Y ) = {{e∩ (Ci∪· · ·∪Cm) | e ∈ A}}
and E(Y ′) = {{e∩ (Ci ∪ · · · ∪Cm) | e ∈ A′}} differ. Otherwise, let S1 = {ϕ ∈
Sym(Ci) | aϕ = a′} be the set containing all permutations in Sym(Ci) that
map a to a′. If S is empty then so is ISO(Y, Y ′). Otherwise, let S2 be the set
of all permutations on Ci+1 ∪ · · · ∪Cm that map Y to Y ′ isomorphically when
restricted to the color classes Ci+1, · · · , Cm. Crucially, since A and A′ are both
(i)-blocks it follows that ISO(Y, Y ′) = S1 × S2.
Clearly, S1 can be easily computed as explained in stage m. To compute
S2, we partition the (i)-blocks A and A′ into (i + 1)-blocks A1, · · · , Ak and
A′1, · · · , A′k′ , respectively. Since S2 is empty if k 6= k′ we assume k = k′. For
each j = 1, . . . , k, let Zj and Z ′j be the multihypergraphs induced by the
(i+ 1)-blocks Aj and A′j, respectively, on the vertex set Ci+1, · · · , Cm. Now it
is easy to see that

S2 =
⋃
π∈Sk

k⋂
j=1

ISO(Zj, Z
′
π(j)),

where the sets ISO(Zj, Z
′
π(j)) are already stored in the table T . Notice that

instead of cycling through all π ∈ Sk it suffices to cycle through all ρ ∈
Sym(Ci+1) and check whether {{e∩Ci+1 | e ∈ A}}ρ = {{e′ ∩Ci+1 | e′ ∈ A′}}.
For each such ρ the corresponding permutation π ∈ Sk with {{e ∩ Ci+1 | e ∈
Aj}}ρ = {{e′ ∩ Ci+1 | e′ ∈ A′π(j)}} can be easily derived.

Now we apply Theorem 7 to compute for each ρ ∈ Sym(Ci+1) which cor-
responds to some π ∈ Sk as explained above the intersection Hρσρ =⋂k
j=1 ISO(Zj, Z

′
π(j)) which is either empty or a coset. As k ≤ 2b, this takes

time bounded by 2O(b)NO(1). Next the algorithm computes

S2 =
⋃

ρ∈Sym(Ci+1)

Hρσρ

which again is either empty or a coset and stores the set S1 × S2 in T [A,A′].
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Since there is a single (0)-block E, we can find Aut(X) = T (E,E) in the table.
It remains to analyze the running time of the algorithm. The number of blocks
at any stage is bounded by the number of edges of X. Thus, the i-th stage takes
time bounded by b!2O(b)NO(1), where the b! factor is because we cycle through all
the ρ ∈ Sym(Ci+1). ut

Next we indicate how the above algorithm can be easily modified to give an
isomorphism algorithm for colored hypergraphs without changing the running
time. Let X = (V,E) and X ′ = (V ′, E ′) be two colored hypergraphs. Without
loss of generality we assume V = V ′ = C1 ] · · · ] Cm. As before the algorithm
computes for each pair of (i)-blocks A,A′ the set ISO(Y, Y ′), where Y and Y ′ are
the multihypergraphs induced by A and A′, respectively, with the only difference
that now the block A comes from the hypergraph X and A′ comes from X ′. Thus,
in stage 0 the algorithm computes the set ISO(X,X ′) of isomorphisms from X
to X ′.

Corollary 9. Let X = (V,E) and X ′ = (V,E ′) be two colored hypergraphs with
V = C1 ] · · · ]Cm where |Ci| ≤ b for all i. Let N be the total number of vertices
and edges of X. Given X and X ′ as input there is an algorithm that computes
the set ISO(X,X ′) of isomorphisms from X to X ′ in time b!2O(b)NO(1).
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