
Colored Hypergraph Isomorphism is Fixed

Parameter Tractable

V. Arvind1, Bireswar Das1, Johannes Köbler2, and Seinosuke Toda3

1 The Institute of Mathematical Sciences, Chennai 600 113, India, {arvind,bireswar}@imsc.res.in
2 Institut für Informatik, Humboldt Universität zu Berlin, Germany,

koebler@informatik.hu-berlin.de
3 Nihon University, Tokyo, Japan, toda@cssa.chs.nihon-u.ac.jp

Abstract. We describe a fixed parameter tractable (fpt) algorithm for Colored Hy-
pergraph Isomorphism which has running time 2O(b)NO(1), where the parameter b is
the maximum size of the color classes of the given hypergraphs and N is the input size.
We also describe fpt algorithms for certain permutation group problems that are used as
subroutines in our algorithm.

Topic classification: Fixed parameter tractability, fpt algorithms, graph isomorphism,
computational complexity.

1 Introduction

A hypergraph is an ordered pair X = (V,E) where V is the vertex set and E ⊆ 2V

is the edge set. Two hypergraphs X = (V,E) and X ′ = (V ′, E ′) are said to be
isomorphic, denoted X ∼= X ′, if there is a bijection ϕ : V → V ′ such that for
all e = {u1, · · · , ul} ⊆ V , e ∈ E if and only if ϕ(e) = {ϕ(u1), · · · , ϕ(ul)} ∈ E ′.
Given two hypergraphs X and X ′, the decision problem Hypergraph Isomor-
phism (HI) asks whether X ∼= X ′. Graph Isomorphism (GI) is obviously
polynomial-time reducible to HI. Conversely, HI is also known to be polynomial-
time reducible to GI: Given a pair of hypergraphs X = (V,E) and X ′ = (V ′, E ′)
as instance for HI, the reduced instance of GI consists of two corresponding bi-
partite graphs Y and Y ′ defined as follows. The graph Y has vertex set V]E and
edge set E(Y) = {{v, e} | v ∈ V, e ∈ E and v ∈ e}, and Y ′ is defined similarly.
Here, C]D denotes the disjoint union of the sets C and D. It is easy to verify
that Y ∼= Y ′ if and only if X ∼= X ′ assuming that V can be mapped only to V ′

and E can be mapped only to E ′. This latter condition is easy to enforce.
However, since the above reduction blows up the size of the vertex set in the

bipartite encoding, the Zemlyachenko-Luks-Babai graph isomorphism algorithm
[3–5, 24] that runs in time c

√
n logn, where n is the size of the vertex set of the

graph, does not yield a similar algorithm for hypergraph isomorphism. We note
here that the best known hypergraph isomorphism test due to Luks [15] has
running time cn.

Motivated by this situation, we explore the same algorithmic problem for
bounded color class hypergraphs. The input to Colored Hypergraph Iso-
morphism (CHI) is a pair of hypergraphs X = (V,E) and X ′ = (V ′, E ′) to-
gether with partitions V = C1] · · ·] Ck and V ′ = C ′1] · · ·] C ′k of their vertex

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 93 (2009)

sets into color classes Ci and C ′i, respectively. The problem is to decide if there is
an isomorphism ϕ that preserves the colors (meaning that v ∈ Ci ⇔ ϕ(v) ∈ C ′i).
Colored Graph Isomorphism (CGI) is the analogous problem where instead
of hypergraphs we have graphs as inputs.

CGI with color classes of size bounded by a constant is the first special case of
GI shown to be in polynomial time [2, 11] and which brought in the application of
permutation group theory to the problem. In fact, Babai [2] and Furst, Hopcroft
and Luks [11] even gave an fpt algorithm for CGI with running time O(b!)nO(1),
where the parameter b is the maximum size of the color classes and n is the number
of vertices of the input graphs. By using the “halving trick” as introduced in [4]
(see also [15]), the running time can be decreased to 2O(b)nO(1).

In [12] a complexity-theoretic study of some special cases of bounded color class
Graph Isomorphism has been done in connection to logarithmic space-bounded
complexity classes. This line of research is continued in [1], where special cases
of bounded color class Graph Isomorphism as well as Hypergraph Isomorphism
are studied from a complexity theory perspective.

In this paper our focus is on designing an efficient algorithm for CHI. Al-
though HI is polynomial time many-one reducible to GI, the reduction we de-
scribed above does not impose any bound on the size of the color classes of the
bipartite graphs Y and Y ′. More specifically, if the color classes of the hyper-
graphs X and X ′ have size at most b, then the vertices of the graphs Y and Y ′

that correspond to the edges of X and X ′ do not get partitioned into color classes
of size bounded by any function of b. Thus, the fpt algorithm for CGI cannot be
combined with the above reduction to get an fpt algorithm for CHI. Moreover,
even if b is bounded by a constant (say 2), the color classes in the resulting bipar-
tite graphs can have exponential size and hence, this approach would not even
give a polynomial time isomorphism algorithm for hypergraphs with color class
bound 2.

However, an algorithm for CHI running in timeNO(b) was shown in [18], where
b bounds the size of the color classes of the given hypergraphs and N is the input
size. Hence, if b is bounded by a constant, we have already a polynomial-time
algorithm for CHI. This algorithm basically applies Luks’s seminal result [14]
showing that the set stabilizer problem with respect to a class of permutation
groups Γd can be solved in time nO(d).

Parametrized complexity and isomorphism testing

Parametrized complexity is a fundamental strategy for coping with intractability.
Pioneered by Downey and Fellows in [7], it is a flourishing area of research (see,
e.g. the monographs [8, 10]). Fixed parameter tractability provides a notion of
feasible computation less restrictive than polynomial time. It provides a theoret-
ical basis for the design of new algorithms that are efficient and practically useful
for small parameter values.

2

Parametrized complexity theory deals with the study and design of algorithms
that have a running time of the form f(b)nO(1) where n is the input size, b is the
parameter and f is a computable function. If a problem is solvable by such an
algorithm it is called fixed parameter tractable (fpt).

Since no polynomial-time algorithm for GI is known, one approach is to design
fpt isomorphism testing algorithms with respect to natural graph parameters. For
example, the algorithm of Babai and Furst et al [2, 11] mentioned above is fpt with
respect to the color class size. For isomorphism testing of graphs with eigenvalue
multiplicity bounded by k, Evdokimov and Ponomarenko have designed a highly
nontrivial fpt algorithm with running time kO(k)nO(1) [9].

Apart from this, fpt algorithms have also been designed with respect to the
parameters tree-distance width [23] and the size of the simplicial components of
the input graphs [22]. Very recently, it is shown in [13] that Graph Isomorphism
for graphs with feedback vertex sets of size k is fixed parameter tractable, with
k as the parameter.

On the other hand, if we use the maximum degree [14], or the treewidth [6],
or the genus [17] of the input graphs as parameter b, the best known isomorphism
testing algorithms have a worst-case running time bound nO(b). It is an interesting
open question if GI has an fpt algorithm with respect to any of these three
parameters.

Our result

In this paper we present an fpt algorithm for Colored Hypergraph Isomor-
phism that runs in time 2O(b)NO(1), where b is the maximum size of the color
classes and N is the input size (which we can define as N = mn, where n is the
number of vertices and m is the number of hyperedges).

Broadly speaking, our algorithm is a combination of divide and conquer with
dynamic programming. We adapt ideas from [4, 15] which applies the halving
technique in combination with dynamic programming. Luks [15] gives a 2O(n)

time algorithm for Hypergraph Isomorphism. Our algorithm can be seen as a
generalization of Luks’s result.

We use as subroutines fpt algorithms for certain permutation group problems
(mainly, the coset intersection problem) parametrized by the size of the largest
color class of the group. While the parametrized complexity of permutation group
problems, for different parameters, is certainly interesting in its own right, it could
also be applicable to GI. For example, an fpt algorithm for Set Transporter
w.r.t. groups in Γd (with d as parameter) would result in an fpt algorithm for
testing isomorphism of graphs of degree ≤ d.

2 Preliminaries

In this section we recall some basic group theory. Let G be a finite group and let
Ω be a finite nonempty set. The action of the group G on Ω is defined by a map

3

α : Ω ×G→ Ω such that for all x ∈ Ω, (i) α(x, id) = x, i.e., the identity id ∈ G
fixes each x ∈ Ω, and (ii) α(α(x, g), h) = α(x, gh) for all g, h ∈ G. We write xg

instead of α(x, g) when the group action is clear from the context.
For x ∈ Ω, its G-orbit is the set xG = {y|y ∈ X, y = xg for some g ∈ G}.

When the group is clear from the context, we call xG the orbit of x. Notice that
the orbits form a partition of Ω.

We write H ≤ G when H is a subgroup of G. The symmetric group on
a finite set Ω consisting of all permutations on Ω is denoted by Sym(Ω). If
Ω = [n] = {1, · · · , n}, we write Sn instead of Sym([n]). A finite permutation
group G is a subgroup of Sym(Ω) for some finite set Ω.

The permutation group generated by a subset S ⊆ Sym(Ω) is the smallest
subgroup of Sym(Ω) containing S and is denoted by 〈S〉. Each element of the
group 〈S〉 is expressible as a product of elements of S.

The subgroup G(i) of G ≤ Sn that fixes each of {1, . . . , i} is called a pointwise
stabilizer of G. These subgroups form a tower

G = G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n−1) = {id}.

We notice that by the orbit-stabilizer lemma, the index [G(i−1) : G(i)] is at most
n. For each i, let Ri be a set of complete and distinct coset representatives of G(i)

in G(i−1). Then
⋃n−1
i=1 Ri generates G and is called a strong generating set for G.

Given a permutation π ∈ G it is easy to check if π ∈ G(i). It is also easy to check if
two permutations π, σ ∈ G(i) are in the same coset of G(i+1) in G(i). We just have
to test if π−1σ ∈ G(i+1). These observations yield a polynomial-time algorithm
[20, 21, 11] for computing a strong generating set of a permutation group G. This
algorithm can also be used to test in polynomial time if g ∈ Sn is in the group
〈S〉 ≤ Sn.

In some applications there is an efficient algorithm for testing membership in
a subgroup H of G, where G ≤ Sn is given by a generating set but no generating
set for H is given. By [20, 21, 11] we can efficiently compute a generating set for
H provided that its index in G is polynomially bounded.

Theorem 1 (Schreier Generators). Let G = 〈S〉 ≤ Sn and H ≤ G. Then for
any set R of coset representatives of H in G, the set B = {r′xr−1 | r, r′ ∈ R, x ∈
S} ∩H generates H. The generators in B are called Schreier generators.

The proof of Theorem 1 also provides an algorithm for computing a suitable
set R of coset representatives by making m2|S| tests of membership in H, where
m = [G : H]. Though the set B of Schreier generators for H can be of size
polynomial in m, it is possible to convert it to a strong generating set for H of
size O(n2) [20, 21, 11].

For a permutation π ∈ Sym(Ω) and a subset C ⊆ Ω we use Cπ to denote the
set {xπ | x ∈ C}. For a set S of permutations, C is called S-stable if Cπ = C for
all π ∈ S. For a permutation group G ≤ Sym(Ω), the stabilizer subgroup of G is
defined as GC = {π ∈ G | Cπ = C}.

4

3 Permutation group problems

In this section we describe fpt algorithms for some permutation group problems
with respect to the color class bound as parameter. These algorithms are useful
subroutines for our main algorithm which will be described in the next section.

A permutation group G ≤ Sym(Ω) has color class bound b if Ω is a colored set
partitioned into color classes Ω = C1] · · ·]Ck such that |Ci| ≤ b for each i and
each Ci is G-stable. Equivalently, the maximum orbit size of G is bounded by b.
Since the orbits of G can be computed in |Ω|O(1) time (for G given by a generating
set S), we can determine in |Ω|O(1) time if G has color class bound b. We first
consider the following parametrized version of the set transporter problem.

Set Transporter

Input: A generating set for a group G ≤ Sym(Ω), a permutation
z ∈ Sym(Ω), subsets Π1, . . . , Πk, Π

′
1, . . . , Π

′
k ⊆ Ω and a parti-

tion Ω = C1] · · ·] Ck such that for each i, Ci is G-stable and
Πi, Π

′
i ⊆ Ci.

Parameter: b = max{|C1|, · · · , |Ck|}.
Output: A description of (Gz)Π1,...,Πk→Π′1,...,Π′k = {x ∈ Gz | Πx

i = Π ′i for
i = 1, . . . , k}.

The simple fpt algorithm for Set Transporter works by solving the prob-
lem for the first color class C1 by computing the subcoset G1z1 of Gz that maps
Π1 to Π ′1, then computing the subcoset G2z2 of G1z1 that maps Π2 to Π ′2 and so
on until all the color classes are dealt with. The following lemma shows how to
compute Gizi from Gi−1zi−1.

Lemma 2. There is an fpt algorithm running in time 2O(b)nO(1) that computes
the subcoset H ′y′ of the coset Hy that maps Πi to Π ′i, where Πi, Π

′
i ⊆ Ci.

Proof. Let HΠi
= {x ∈ H | Πx

i = Πi} be the subgroup of H that stabilizes Πi.
Let |Πi| = `. Since Ci is H-stable the set Πx

i is also a size ` subset of Ci. It follows
that

[H : HΠi
] ≤

(
b

`

)
≤ 2b.

Also note that given x ∈ H, it only takes O(n) time to check if x ∈ HΠi
. Applying

the algorithm given by Theorem 1 we can compute a set R = {ρ1, · · · , ρt} of coset
representatives of HΠi

in H in time 2O(b)nO(1) together with a strong generating
set S for HΠi

of size at most n2. Writing

Hy = HΠi
ρ1y] · · ·]HΠi

ρty,

the algorithm picks the uniquely determined coset HΠi
ρiy that sends Πi to Π ′i

and outputs the pair (S, ρiz) as a description of the coset HΠi
ρiy. If none of the

cosets HΠi
ρiz maps Πi to Π ′i, the algorithm outputs the empty set. ut

5

Theorem 3. There is an fpt algorithm for Set Transporter running in time
2O(b)nO(1), where b = max{|C1|, · · · , |Ck|} and n = |Ω|.

Proof. Let G0 = G and z0 = z and for i = 1, · · · , k use the algorithm of Lemma 2
to compute

Gizi = (Gi−1zi−1)Πi→Π′i .

Notice that for each x ∈ Gkzk we have Πx
i = Π ′i for i = 1, . . . , k, implying that

Gkzk = (Gz)Π1,...,Πk→Π′1,...,Π′k .
Furthermore, each of the subgroups Gi stabilizes the sets Cj, j = 1, · · · , k.

Thus, Lemma 2 implies that we can compute Gizi from Gi−1zi−1 in time
2O(b)nO(1), implying that the overall running time is also 2O(b)nO(1). ut

Next we consider the following parametrized version of the coset intersection
problem.

Coset Intersection (Coset-Inter)

Input: Generating sets for groups G,H ≤ Sym(Ω), permutations x, y ∈
Sym(Ω) and a partition Ω = C1] · · ·] Ck such that for each i,
Ci is G ∪H ∪ {x, y}-stable.

Parameter: b = max{|C1|, · · · , |Ck|}.
Output: Gx ∩Hy.

Applying well-known techniques from [4] we will design an fpt algorithm for
Coset-Inter. We will use this as a subroutine in the next section to solve
Colored Hypergraph Isomorphism. Our fpt algorithm for Coset-Inter
will require solving a subproblem which is a restricted version of the set stabilizer
problem.

Restricted Set Stabilizer (RSS)

Input: A generating set for a group L ≤ Sym(Ω1)× Sym(Ω2), a permu-
tation z ∈ Sym(Ω1 × Ω2) and subsets Π,Θ = Φ × Ψ ⊆ C × D,
where Ω1 = C] U , Ω2 = D] V and the two sets C ×D and Θ
are L-stable.

Parameter: b = max{|C|, |D|}.
Output: (Lz)Π [Θ] = {x ∈ Lz | (Π ∩Θ)x = Π ∩Θx}.

Lemma 4. There is an fpt algorithm for RSS running in time 2O(b)nO(1), where
b = max{|C|, |D|} and n = |Ω1|+ |Ω2|.

Proof. We use ideas from [15, Proposition 3.1] where the author describes an
algorithm for a version of the set transporter problem that can be easily adapted
to solve RSS. These ideas were first applied in [4]. We only have to slightly modify
Luks’s proof to suit the parametrized setting.

6

We can assume that |Φ| and |Ψ | are powers of 2 since otherwise we can add
some points to Φ and Ψ (as well as to C and D) and let L act trivially on these
points. This will increase the size of b and of the input only by a factor of 4.
Further, these extra points can be easily removed from the algorithm’s output.

Observe that since LΘ = L, we have Θx = Θz for all x ∈ Lz. If (Lz)Π [Θ] is
not empty then for x, y ∈ (Lz)Π [Θ] we have (Π ∩Θ)x = Π ∩Θz = (Π ∩Θ)y and
hence (Lz)Π [Θ] is a coset of LΠ∩Θ.

Clearly, if |Π ∩Θ| 6= |Π ∩Θz| then (Lz)Π [Θ] is empty. Next we consider the
case that |Π ∩ Θ| = |Π ∩ Θz| = 1. Let Π ∩ Θ = {u} and Π ∩ Θz = {v}. Let Lu
be the stabilizer of the point u which can be computed using the Schreier-Sims
method. Then we can express L as the disjoint union of cosets

L = Lux1] · · ·] Luxt

and consequently Lz as Lux1z]· · ·]Luxtz. Hence, it suffices to pick the uniquely
determined coset Luxiz that maps u to v (if there is any).

It remains to consider the case that |Π ∩ Θ| = |Π ∩ Θz| > 1. If |Φ| > 1
we partition Φ in two subsets Φ1 and Φ2 of equal size and let Θ1 = Φ1 × Ψ .
Otherwise, |Ψi| > 1 and we partition Ψ in two subsets Ψ1 and Ψ2 of equal size and
let Θ1 = Φ× Ψ1. In both cases we let Θ2 = Θ \Θ1.

Let k = max{|Φ|, |Ψ |} and let M = LΘ1 . Notice that [L : M] ≤
(
k
k/2

)
≤ 2b, no

matter which of the two sets Φ or Ψ we divide into two parts. Now we write L as
the disjoint union of cosets

L = My1] · · ·]Mys

of M , yielding Lz = My1z]· · ·]Mysz. As mentioned in the preliminary section,
this decomposition of Lz can be computed in time 2O(b)nO(1). Since M stabilizes
Θ1, we can use the equality

(Myiz)Π [Θ] = ((Myiz)Π [Θ1])Π [Θ2]

to set up the recursive calls. Finally we paste the answers to the subproblems
(Myiz)Π [Θ] together to get

(Lz)Π [Θ] = ∪ti=1(Myiz)Π [Θ].

It is easy to verify that the overall run-time of the algorithm is bounded by
2O(b)poly(n). ut

Theorem 5. There is an fpt algorithm for Coset-Inter running in time
2O(b)nO(1), where b = max{|C1|, · · · , |Ck|} and n = |Ω|.

Proof. Let L = G × H ≤ Sym(Ω) × Sym(Ω) and let z = (x, y) ∈ Sym(Ω) ×
Sym(Ω). Further, let Πi = {(a, a) | a ∈ Ci} and notice that (Lz)Π1,...,Πk

= {x ∈
Lz | Πx

i = Πi for i = 1, . . . , k} projected to the first (or second) coordinate is
Gx ∩Hy. Hence, it suffices to prove the following claim.

7

Claim. (Lz)Π1,...,Πk
is computable in time 2O(b)nO(1).

We will repeatedly use Lemma 4 to solve the problem in time 2O(b)nO(1) as
in the above claim. To start off we let L0z0 = Lz. Then we compute Lizi =
(Li−1zi−1)Πi

from Li−1zi−1 for i = 1, · · · , k. We claim that for all i, Lizi =
(Lz)Π1,...,Πi

. This follows from the fact that ((Lz)Π1,...,Πi−1
)Πi

= (Lz)Π1,...,Πi
. Thus

at the end of the computation we have Lkzk = (Lz)Π1,...,Πk
. Furthermore, by

Lemma 4 it follows that the time needed for computing Lizi from Li−1zi−1 is
2O(b)nO(1), implying that the overall running time is also 2O(b)nO(1). ut

4 Fpt algorithms for Colored Hypergraph Isomorphism

In this section, we use a dynamic programming approach to design an fpt algo-
rithm for finding the automorphism group Aut(X) (i.e., a set of generators for
Aut(X)) of a given hypergraph X which has running time 2O(b)NO(1).

Theorem 6. Let X = (V,E) be a colored hypergraph of size N with V = C1]
· · ·] Ck where |Ci| ≤ b for all i. Given X as input there is an algorithm that
computes Aut(X) in time 2O(b)NO(1).

Proof. The algorithm first partitions the hyperedges into different subsets that we
call blocks. More formally, we say that two hyperedges e1, e2 ∈ E are i-equivalent
and write e1 ≡i e2, if

e1 ∩ Cj = e2 ∩ Cj for j = 0, . . . , i,

where we let C0 = ∅. We call the corresponding equivalence classes (i)-blocks.

Notice that for i ≥ j, i-equivalence is a refinement of j-equivalence. Thus,
if e1 and e2 are in the same (i)-block then they are in the same (j)-block for
all j = 0, 1, . . . , i − 1. The algorithm proceeds in stages i = k, k − 1, . . . , 0,
where in stage i the algorithm considers (i)-blocks. More precisely, in stage i
the algorithm computes for each pair of (i)-blocks A,A′ the coset ISO(Y, Y ′)
of all isomorphisms between the hypergraphs Y and Y ′ induced by A and A′,
respectively, on Vi = Ci ∪ · · · ∪ Ck and stores this coset in a table T .

Stage k: Let A,A′ be two (k)-blocks and let Y, Y ′ be the corresponding hyper-
graphs on the vertex set Ck as defined above. Since A and A′ are (k)-blocks,
the sets E(Y) = {e∩Ck | e ∈ A} and E(Y ′) = {e∩Ck | e ∈ A′} only contain
a single hyperedge a and a′, respectively.

Clearly, ISO(Y, Y ′) = ∅ if |a| 6= |a′|. Otherwise, ISO(Y, Y ′) ⊆ Sym(Ck) is the
coset of Aut(Y) = Sym(Ck)a that maps a to a′ which can be easily computed
in time O(N) and stored in the table entry T [A,A′].

8

Stage i < k: Let A,A′ be two (i)-blocks and let Y, Y ′ be the corresponding
hypergraphs on the vertex set Vi. We explain how to compute the entry
T [A,A′] = ISO(Y, Y ′).
Let a and a′ be the unique subsets of Ci such that for all e ∈ A, e ∩ Ci = a
and for all e′ ∈ A′, e′ ∩ Ci = a′. Clearly ISO(Y, Y ′) is empty if the sizes of
a and a′ or the sizes of the hyperedge sets E(Y) = {e ∩ Vi | e ∈ A} and
E(Y ′) = {e ∩ Vi | e ∈ A′} differ. Otherwise, let S1 = {ϕ ∈ Sym(Ci) | aϕ = a′}
be the set containing all permutations in Sym(Ci) that map a to a′ and let S2

be the set of all permutations on Vi+1 that map Y to Y ′ isomorphically when
restricted to Vi+1. Crucially, since A and A′ are both (i)-blocks it follows that
ISO(Y, Y ′) = S1 × S2.
Clearly, S1 can be easily computed as explained above. The crux of the algo-
rithm is in computing the set S2. We first explain a naive method that takes
time (b!)2O(b)NO(1) (later we will explain the more complicated 2O(b)NO(1)

algorithm for computing S2).
To compute S2, we partition the (i)-blocks A and A′ into (i + 1)-blocks
A1, · · · , A` and A′1, · · · , A′`′ , respectively. Since S2 is empty if ` 6= `′ we assume
` = `′. For each j = 1, . . . , `, let Zj and Z ′j be the hypergraphs induced by the
(i + 1)-blocks Aj and A′j, respectively, on the vertex set Vi+1. Now it is easy
to see that

S2 =
⋃
π∈S`

⋂̀
j=1

ISO(Zj, Z
′
π(j)),

where the sets ISO(Zj, Z
′
π(j)) are already stored in the table T . Now, observe

that instead of cycling through all π ∈ S` it suffices to cycle through all
ρ ∈ Sym(Ci+1) and check whether {{e ∩ Ci+1 | e ∈ A}}ρ = {{e′ ∩ Ci+1 | e′ ∈
A′}}. For each such ρ the corresponding induced permutation π ∈ S` with
{{e ∩ Ci+1 | e ∈ Aj}}ρ = {{e′ ∩ Ci+1 | e′ ∈ A′π(j)}} can be easily derived.

Now we can apply Theorem 5 to compute for each ρ ∈ Sym(Ci+1) which
corresponds to some π ∈ S` as explained above the coset intersection Hρσρ =⋂`
j=1 ISO(Zj, Z

′
π(j)) which is either empty or a coset. As ` ≤ 2b, this takes

time bounded by 2O(b)NO(1). Now the algorithm can compute

S2 =
⋃

ρ∈Sym(Ci+1)

Hρσρ

which again is either empty or a coset and stores the set S1 × S2 in T [A,A′].

Since there is a single (0)-block E, we can find Aut(X) = T (E,E) in the table.
It remains to analyze the running time of the algorithm. The number of blocks
at any stage is bounded by the number of edges of X. Thus, the i-th stage takes
time bounded by b!2O(b)NO(1), where the b! factor is because we cycle through all
the ρ ∈ Sym(Ci+1).

9

In order to obtain the improved 2O(b)NO(1) time bound, it suffices to give a
2O(b)NO(1) time algorithm for computing the coset S2 of all permutations on Vi+1

that map Y to Y ′ isomorphically when restricted to Vi+1.

Claim. There is a 2O(b)NO(1) time algorithm for computing S2.

We will compute S2 with a dynamic programming strategy that will involve
solving 2O(b) many subproblems and 2O(b) many coset intersection instances for
which we can invoke Theorem 5. We use ideas from Luks’s dynamic program-
ming algorithm in [15]. For each subset ∆ ⊆ Ci+1 and Σ ⊆ Ci+1 \ ∆ we define
hypergraphs

Y ∆,Σ = {e ∩ Vi+1 | e ∈ Y, e ∩ (Ci+1 \∆) = Σ}, and

Y ′∆
′,Σ′ = {e′ ∩ Vi+1 | e′ ∈ Y ′, e′ ∩ (Ci+1 \∆′) = Σ ′}.

Notice that Y projected on Vi+1 is Y Ci+1,∅ and that Y ′ projected on Vi+1 is
Y ′Ci+1,∅, and we are interested in computing S2 = ISO(Y Ci+1,∅, Y ′Ci+1,∅). Further-
more, notice that for different subsets Σ and Σ ′ the hypergraphs Y ∅,Σ and Y ∅,Σ

′

are the hypergraphs induced by the different (i + 1)-blocks. Observe that in the
(i+1)st stage we have already computed the cosets ISO(Y ∅,Σ, Y ′∅,Σ

′
) for different

Σ and Σ ′ (as these correspond to the different (i + 1)-blocks). Our goal is to
compute all the cosets

ISO(∆,Σ,∆′, Σ ′),

consisting of all isomorphisms π from the hypergraph Y ∆,Σ to the hypergraph
Y ′∆

′,Σ′ that map ∆ to ∆′ and Σ to Σ ′. To this end we actually compute for
different subsets Γ ⊆ ∆ and Γ ′ ⊆ ∆′ the cosets

ISO(∆,Σ, Γ,∆′, Σ ′, Γ ′) = ISO(∆,Σ,∆′, Σ ′) ∩ Coset(Γ, Γ ′), (1)

where Coset(Γ, Γ ′) denotes the coset of all permutations on Vi+1 that map Γ to Γ ′.
Notice that Coset(Γ, Γ ′) can be easily computed in time O(N). To complete the
description of the dynamic programming algorithm, we consider different cases
for |Γ | and |Γ ′|. Clearly, if |Γ | 6= |Γ ′| then the corresponding coset intersection
of Equation 1 is the empty set.

Suppose |Γ | = |Γ ′| = ` > 1. In this case, we fix a subset Γ1 of Γ of size d`/2e
and cycle through all possible subsets Γ ′1 of Γ ′ of size d`/2e. Clearly, we can write

ISO(∆,Σ, Γ,∆′, Σ ′Γ ′) =⋃
Γ ′1⊂Γ ′

(ISO(∆,Σ, Γ1, ∆
′, Σ ′, Γ ′1) ∩ ISO(∆,Σ, Γ \ Γ1, ∆

′, Σ ′, Γ ′ \ Γ ′1)),

where the union runs over subsets of size d`/2e. Computing this union as a coset
essentially involves solving at most 2b many coset intersections, each of which
takes 2O(b)NO(1) time, assuming that the dynamic programming table entries for
Γ1 and Γ ′1 are already there. Finally, we turn to the case when |Γ | = |Γ ′| = 1.

10

Let Γ = {γ} and Γ ′ = {γ′}. Let ∆1 = ∆ \ {γ} and ∆′1 = ∆′ \ {γ′}. It is easy to
see that

ISO(∆,Σ, {γ}, ∆′, Σ ′, {γ′}) = Coset({γ}, {γ′})
∩ ISO(∆1, Σ ∪ {γ}, ∆1, ∆

′
1, Σ

′ ∪ {γ′}, ∆′1) ∩ ISO(∆1, Σ,∆1, ∆
′
1, Σ

′, ∆′1),

which is again a coset intersection instance for table entries already computed
since they correspond to smaller size sets ∆1 and ∆′1.

To complete the proof (of both the claim and the theorem), notice that we
compute the table entries for increasing sizes of ∆. For each ∆ we compute the
entries for differentΣ and increasing sizes of Γ . Finally, the base case for which the
cosets in the table are already computed is when ∆ is the empty set. For different
subsets Σ these correspond to the (i+ 1)-blocks. This proves the correctness and
the running time bound follows from the fact that the number of subproblems
is 2O(b)NO(1), each of which involves 2O(b)NO(1) many coset intersections which
takes 2O(b)NO(1) time by Theorem 5. ut

The algorithm in the above theorem can be easily modified to give an isomorphism
algorithm for colored hypergraphs without changing the running time. In fact,
let X = (V,E) and X ′ = (V ′, E ′) be two colored hypergraphs. Without loss of
generality we assume V = V ′ = C1] · · ·]Ck. As before the algorithm computes
for each pair of (i)-blocks A,A′ the set ISO(Y, Y ′), where Y and Y ′ are the
hypergraphs induced by A and A′, respectively, with the only difference that now
the block A comes from the hypergraph X and A′ comes from X ′. Thus, in stage
0 the algorithm computes the set ISO(X,X ′) of isomorphisms from X to X ′.

Corollary 7. Let X = (V,E) and X ′ = (V,E ′) be two colored hypergraphs of
size N with V = C1] · · ·]Ck where |Ci| ≤ b for all i. Given X and X ′ as input
there is an algorithm that computes the set ISO(X,X ′) of isomorphisms from X
to X ′ in time 2O(b)NO(1).

5 Discussion

We now briefly address the complexity of the canonization problem associated
with CHI. We first recall the definition of canonization. Let K denote the set of
all instances of CHI. A mapping f : K → K is a canonizing function for K if for
all pairs of isomorphic instances X and X ′ in K, f(X) = f(X ′) and f(X) ∼= X.
We say that f assigns a canonical form to each isomorphism class of K.

It is often the case that canonization and isomorphism testing for a class
of structures have the same complexity. However, for CHI we do not know a
canonization procedure even with running time (b!)2O(b)nO(1). Indeed, we do not
know if the problem is fixed parameter tractable. The following result is the best
we know which follows easily by applying known techniques [5].

11

Theorem 8. The canonization problem associated with CHI has an NO(b) time
algorithm, where N is the input size and b bounds the size of the color classes.

Proof Sketch. Let X = (V,E) be an input instance of CHI, where |E| = m and
|V | = n. Then, by definition, the size of X is N = mn. Let V =

⋃k
i=1Ci be

the partition of the vertex set into color classes Ci, where |Ci| ≤ b for each i.
Let Xi = (Vi, Ei) denote the multi-hypergraph obtained from X by projecting
the hyperedges e ∈ E to the set Vi = Ci ∪ . . . ∪ Ck. The canonization algorithm
proceeds inductively. Suppose we have computed the canonical labeling coset Gσ
of the multi-hypergraph Xi+1. It suffices to give an mO(b) algorithm for canonizing
the multi-hypergraph Xi obtained by projecting E on Vi = Ci ∪ Vi+1, given the
canonical labeling coset Gσ for Xi+1. Clearly, it suffices to canonize Xi under the
action of the coset Sym(Ci) × Gσ, where Sym(Ci) is the group of the (at most
b! many) permutations acting on the color class Ci. Applying the standard orbit
finding algorithm for permutation groups [16, 19] we can compute the hypergraph
X ′i with vertex set Vi and multiset E ′i consisting of all hyperedges E ′i = {{eπ |
e ∈ Ei and π ∈ Sym(Ci)×Gσ}}. Since Gσ canonizes Xi+1, it follows that |E ′i| ≤
2b ·|Ei|. Thus, X ′i can be easily computed in time poly(2b,m, n). Notice that every
permutation π ∈ Sym(Ci) × Gσ maps Xi to a subgraph Xπ

i of the hypergraph
X ′i. Furthermore, notice that the automorphism group Aut(X ′i) of X ′i is precisely

Sym(Ci) × σ−1Gσ. Define Yi = X
(id,σ)
i , where id is the identity permutation in

Sym(Ci). Then, Yi is clearly a subgraph of X ′i, and canonizing Xi under the
action of the coset Sym(Ci)×Gσ is equivalent to canonizing Yi under the action
of Aut(X ′i) = Sym(Ci)× σ−1Gσ. Now, we write the multiset E ′i as

E ′i = {(e1, n1), (e2, n2), . . . , (er, nr)},

where the edges ej are the distinct edges (with corresponding multiplicity nj),
lexicographically ordered. Since Sym(Ci)× σ−1Gσ is Aut(X ′i), each permutation
in Sym(Ci) × σ−1Gσ uniquely defines a permutation on the set {e1, e2, . . . , er}.
Thus Sym(Ci)×σ−1Gσ gives rise to a subgroupHi contained in Sym({e1, . . . , er}).
Let E(Yi) = {ei1 , ei2 , . . . , eik}. The hypergraph Yi, as a subgraph of X ′i, can be
represented by a colored binary string x ∈ {0, 1}r, whose jth bit xj = 1 iff
ej ∈ E(Yi), and xj is colored by its multiplicity nj.

The problem of canonizing Xi under Sym(Ci) × σ−1Gσ action reduces to
canonize the binary string x ∈ {0, 1}r under the action of the group Hi. Since
Sym(Ci)× σ−1Gσ is a group with composition width [5] bounded by b, it follows
that Hi also has composition width bounded by b. Hence, by invoking the Babai-
Luks canonization procedure [5] we can compute the canonical form for Xi and
the canonical labeling coset in NO(b) time. This completes the proof sketch.

12

References

1. V. Arvind and J. Köbler. Hypergraph isomorphism testing for bounded color classes. In Proc.
23rd Symposium on Theoretical Aspects of Computer Science, volume 3884 of Lecture Notes in
Computer Science, pages 384–395. Springer-Verlag, 2006.

2. L. Babai. Monte Carlo algorithms for graph isomorphism testing. Technical Report 79-10, Dép.
Math. et Stat., Univ. de Montréal, 1979.

3. L. Babai. Moderately exponential bounds for graph isomorphism. In Proc. International Sympo-
sium on Fundamentals of Computing Theory 81, volume 117 of Lecture Notes in Computer Science,
pages 34–50. Springer-Verlag, 1981.

4. L. Babai, W. Kantor, and E. M. Luks. Computational complexity and the classification of finite
simple groups. In Proc. 24th IEEE Symposium on the Foundations of Computer Science, pages
162–171. IEEE Computer Society Press, 1983.

5. L. Babai and E. M. Luks. Canonical labeling of graphs. In Proc. 15th ACM Symposium on Theory
of Computing, pages 171–183, 1983.

6. H. Bodlaender. Polynomial algorithm for graph isomorphism and chromatic index on partial k-
trees. Journal of Algorithms, 11(4):631–643, 1990.

7. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness I: Basic results.
SIAM Journal on Computing, 24(4):873–921, 1995.

8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
9. S. Evdokimov and I. Ponomarenko. Isomorphism of colored graphs with slowly increasing multi-

plicity of Jordan blocks. Combinatorica, 19(3):321–333, 1999.
10. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
11. M. Furst, J. Hopcroft, and E. M. Luks. Polynomial time algorithms for permutation groups.

In Proc. 21st IEEE Symposium on the Foundations of Computer Science, pages 36–41. IEEE
Computer Society Press, 1980.

12. B. Jenner, J. Köbler, P. McKenzie, and J. Torán. Completeness results for graph isomorphism.
Journal of Computer and System Sciences, 66:549–566, 2003.

13. S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex set number is
fixed-parameter tractable, 2009.

14. E. M. Luks. Isomorphism of bounded valence can be tested in polynomial time. Journal of
Computer and System Sciences, 25:42–65, 1982.

15. E. M. Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In Proc.
31st ACM Symposium on Theory of Computing, pages 652–658. ACM Press, 1999.

16. E. M. Luks. Permutation groups and polynomial time computations. In L. Finkelstein and W. M.
Kantor, editors, Groups and Computation, volume 11 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 139–175. American Mathematical Society, 1993.

17. G. L. Miller. Isomorphism testing for graphs of bounded genus. In Proc. 12th ACM Symposium
on Theory of Computing, pages 225–235. ACM Press, 1980.

18. G. L. Miller. Isomorphism of k-contractible graphs. A generalization of bounded valence and
bounded genus. Information and Computation, 56(1/2):1–20, 1983.

19. Á. Seress. Permutation Group Algorithms. Cambridge University Press, 2003.
20. C. C. Sims. Computational methods in the study of permutation groups. In J. Leech, editor,

Computational problems in abstract algebra, Proc. Conf. Oxford, 1967, pages 169–183. Pergamon
Press, 1970.

21. C. C. Sims. Some group theoretic algorithms. In A. Dold and B. Eckmann, editors, Topics in
Algebra, volume 697 of Lecture Notes in Mathematics, pages 108–124. Springer-Verlag, 1978.

22. S. Toda. Computing automorphism groups of chordal graphs whose simplicial components are of
small size. IEICE Transactions, 89-D(8):2388–2401, 2006.

23. K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism for graphs of
bounded distance width. Algorithmica, 24(2):105–127, 1999.

24. V. N. Zemlyachenko, N. Konienko, and R. I. Tyshkevich. Graph isomorphism problem (Russian).
The Theory of Computation I, Notes Sci. Sem. LOMI 118, 1982.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

