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Abstract. We present a new methodology for computing approximate
Nash equilibria for two-person non-cooperative games based upon certain
extensions and specializations of an existing optimization approach pre-
viously used for the derivation of fixed approximations for this problem.
In particular, the general two-person problem is reduced to an indefi-
nite quadratic programming problem of special structure involving the
n × n adjacency matrix of an induced simple graph specified by the in-
put data of the game, where n is the number of players’ strategies. Using
this methodology and exploiting certain properties of the positive part
of the spectrum of the induced graph, we show that for any ε > 0 there
is an algorithm to compute an ε-approximate Nash equilibrium in time
nξ(m)/ε, where, ξ(m) =

∑m

i=1
λi/n and λ1, λ2, . . . , λm are the positive

eigenvalues of the adjacency matrix of the graph. For classes of games
for which ξ(m) is a constant, there is a PTAS. Based on the best upper
bound derived for ξ(m) so far, the worst case complexity of the method

is bounded by the subexponential n
√
m/ε.

1 Introduction and notation

It is well known that the problem of computing an exact Nash equilibrium
is PPAD-complete even for 2-player games. Furthermore, the seemingly easier
problem of computing an ε-approximate equilibrium for ε inversely proportional
to a polynomial in n is also PPAD-complete. These results are established in
[3] and [4]. For the definition and insight into the complexity class PPAD and
its connection with the more general Nash equilibrium problem, the interested
reader is referred to [8] and [5].

In view of such complexity results, attention has been focused in the past few
years on the problem of finding ε-approximate equilibria in polynomial time for
some constant ε. However, despite considerable efforts in this direction, it has
not been possible so far to achieve in polynomial time guaranteed constant ap-
proximations better than ε = 0.3393 for general bimatrix games and ε = 1/4 for
{0, 1} win-lose games. The latter approximation results are established in [9] and
[10] and have been achieved by using an optimization-based approach through
the application of a descent algorithm that computes a stationary point of an
appropriately defined non-convex regret function. This optimization approach
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has also been experimentally tested and has been proven effective in practice, as
demonstrated in [11].

In this paper we are extending the latter approach by further exploring the
special structure of the optimization problem that represents a game. At first,
the general problem of finding an approximate equilibrium of a bimatrix game
is reduced to a problem of finding an approximate symmetric equilibrium of a
symmetric bimatrix game. This leads to an indefinite quadratic programming
problem over the space of n-dimensional probability vectors involving a single
square nonnegative matrix A and a regret function fA(x) to be minimized. The
problem is further reduced to a {0, 1} win-lose game, where, the matrix A can
be considered as the adjacency matrix of a simple directed graph, called here the
induced graph and which is uniquely specified by the game problem. Next, we
consider a spectral representation of the optimization problem in terms of the
eigenvalues and eigenvectors of the adjacency matrix A + Aτ of the undirected
version of the induced graph. The results presented here are based on the spectral
properties of the graph in conjunction with the properties of stationary points
of the regret function.

We adopt the following notation throughout the paper:

– For any positive integer k, [k] denotes the set of integers from 1 to k. Also,
e denotes the column vector of appropriate dimension having all its entries
equal to 1.

– ∆k = {u : u ∈ <k, u ≥ 0, eτu = 1} is the k-dimensional standard simplex
(superscript τ denotes transpose). Alternatively, we refer to it as the set of
k-dimensional probability vectors.

– supp(u) = {i ∈ [k] : ui 6= 0} denotes the subset of integers (indices) in [k]
constituting the support of vector u ∈ <k.

– suppmax(u) = {i ∈ [k] : ui ≥ uj ∀j ∈ [k]} is the subset of indices in [k] for
which the corresponding entries of vector u ∈ <k are equal to the maximum
entry value of u.

– max(u) = {ui : ui ≥ uj , for allj} is the value of the maximum entry of vector
u.

– maxS(u) = {ui, i ∈ S : ui ≥ uj , for all j ∈ S} is the value of the maximum
entry of a vector u within an index subset S ⊂ [k].

2 Related results

In regard to the complexity result derived from the methodology we present here,
it is necessary to make a comparison with an existing subexponential algorithm
for computing approximate Nash equilibria presented in [7]. This algorithm is
based on an exhaustive search over all possible supports of size O(lnn/ε2) that
achieves an ε-approximate equilibrium in time nO(lnn/ε2). The proof of exis-
tence of the approximation is based on the probabilistic method. Considering as
performance indicators the two parameters representing the approximation to
a Nash equilibrium and the size of the game (i.e. the approximation parameter
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ε and the number of strategies n respectively), there is no uniform comparison
between the complexity bound of the latter method and the one presented here:
For a given ε, the result in [7] outperforms the result we present here for arbi-
trarily large n, larger than a threshold n0(ε). On the other hand, for a given n
our result outperforms the result in [7] for arbitrarily small ε, smaller than a
threshold ε0(n) = n−1

0 (n). By taking into account also the constants involved
in the exponents of the complexity bounds of the two methods (for the former
method the constant multiplying lnn/ε2 is 12 and for the method we present
here the corresponding constant is less than 1), the threshold curve is given
approximately by the equation ε ≈ 12 lnn/

√
n. The comparison of the two re-

sults are shown below in tabular form (m = number of positive eigenvalues < n):

Time Approximation
New method n

√
m/ε ε

Existing method n12 lnn/ε2 ε

It turns out that even for modest values of ε, the values of the threshold n0

(above which the method of [7] outperforms our method) are simply too large,
large enough to render any subexponential scheme totally unrealistic anyway.
Indicatively, for ε = 1/3 we have n0(1/3) ≈ 2 × 105 and for ε = 0.15 we have
n0(0.15) ≈ 1.2× 106 and this threshold increases very fast when ε becomes even
smaller. So, the method presented here is more efficient than the one presented
in [7] for all practical purposes.

3 Reduction to symmetric games

Let n be a positive integer and let A be a real square n× n matrix. We assume,
without loss of generality, that A is normalized so that its maximum entry is 1
and its minimum entry is 0. For any x ∈ ∆n we define the following function
mapping ∆n into [0, 1]:

fA(x) = max(Ax)− xτAx (1)

Minimizing fA(x) over x ∈ ∆n is equivalent to finding symmetric Nash equi-
libria of the symmetric game (A,Aτ ). It is also equivalent to finding Nash equi-
libria of the imitation game (A, I), where I is the n × n identity matrix. Since
for any game at least one Nash equilibrium exists, the value of the minimum of
fA(x) for x ∈ ∆n should be 0 and a probability vector x for which fA(x) = 0
is a symmetric Nash equilibrium of the symmetric game (A,Aτ ). Furthermore,
a probability vector x for which fA(x) ≤ ε is an ε-approximate symmetric equi-
librium of the same symmetric game.

Notice that the concept of a symmetric game is an entirely different thing
from the properties of the matrix A being symmetric or not. In fact, for any
nontrivial game, the matrix A should be nonsymmetric (i.e. we should have
A 6= Aτ ), since, in the opposite case, both players of the symmetric game (A,Aτ )

3



would have the same payoff matrix and trivial equilibria could then be easily
found.

It is pointed out that finding a solution x ∈ ∆n of the equation fA(x) = 0 is
equivalent to finding an x ∈ ∆n such that supp(x) ⊆ suppmax(Ax). Indeed, this
can be easily verified from the definition of fA(x) in equation (1) above. It turns
out that if we know the support of an equilibrium, then the precise probability
vector within that support can be found by solving a linear program. This is a
well known fact in the theory of equilibria of bimatrix games.

Given a non-cooperative two-person game with payoff matrices (R,C), the
problem of finding an exact Nash equilibrium can be reduced to the problem of
finding an exact symmetric equilibrium of a symmetric game, or, equivalently,
to the problem of finding a solution of an equation of the form fA(x) = 0 for an
appropriate choice of the (nonsymmetric) matrix A. The theorem below extends
this result to ε-approximate Nash equilibria as well, i.e. to the problem of finding
an x satisfying fA(x) ≤ ε for any positive ε.

Theorem 1. Given a procedure that for any (normalized) square n×n matrix A
and any ε > 0 returns an x ∈ ∆n such that fA(x) ≤ ε, then, an O(ε)-approximate
equilibrium for any bimatrix game (R,C) can be obtained in polynomial time.

Proof. Given a bimatrix game with payoff matrices (R,C) (entries of both ma-
trices are normalized in [0, 1]), let us define the constants c1 = minu maxv(vτRu)
and c2 = minv maxu(vτCu), where the min and max are taken over appropri-
ately dimensioned probability vectors v and u. Let l1, l2 be the number of rows
and columns of the game respectively.

To avoid trivial cases we assume that no row of R is dominated by its other
rows (i.e. for every row of R there is a l1-dimensional probability vector whose
inner product with this row is greater than its inner product with any other
row of R) and, similarly, no column of C is dominated by the its other columns.
Indeed, if some row of R (or some column of C) is dominated, then we can
remove it from both matrices and reduce the dimensionality of the problem. In
such cases, any Nash equilibrium of the reduced problem is also an equilibrium of
the original game (notice that this procedure may eliminate some Nash equilibria
of the original game. However, it will retain at least one). Also, we assume that
no column of R has all its entries equal to 0 and no row of C has all its entries
equal to 0. Indeed, if, for example a column j of R is zero, then we can easily
construct a Nash equilibrium by having the column player play j and the row
player play a probability vector that makes j dominant among the columns of
C. A similar argument can be applied if a row of C is zero. Note that checking
for dominance of a row or column can be done in polynomial time by solving
linear feasibility problems.

Using the above assumptions, it is easy to see that the constants c1 and c2
satisfy: c1 > 0 and c2 > 0. Let us define the square n × n matrix A (where,
n = l1 + l2) as follows:

A =
[

0 Cτ

R 0

]
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Fix ε > 0 such that ε < 1
2min(c1, c2). Let x be an n-dimensional probability

vector such that fA(x) ≤ ε. Let xC and xR be the nonnegative vectors consisting
of the first l2 entries and the last l1 entries of x respectively, i.e. xτ = (xτC , x

τ
R).

Under the specified constraints, it can be verified that xC 6= 0 and xR 6= 0.
Normalize xC and xR to make each one of them a probability vector (we use
the same notation for simplicity). Let M1 = max(RxC) and M2 = max(CτxR).
Let fR(xR, xC) = M1 − xτRRxC and fC(xR, xC) = M2 − xτRCxC be the two
regret functions for the row and column player respectively. Selecting a new n-
dimensional vector xτ1 = 1

M1+M2
(M2x

τ
C ,M1x

τ
R), it can be verified that fA(x1) ≤

fA(x) ≤ ε. Expressing fA(x1) in terms of fR and fC and using the inequalities
c1 ≤M1 ≤ 1 and c2 ≤M2 ≤ 1, we obtain:

fR(xR, xC) + fC(xR, xC) ≤ (M1 +M2)2

M1M2
ε ≤ 2(

1
c1

+
1
c2

)ε

which proves the claim.
ut

Based on the above result we can focus our attention (without loss of gen-
erality) on the problem of approximating a minimum of a function of the form
fA(x) for square matrices A having the following properties:

– All entries are nonnegative in the interval [0, 1]
– Zero entries along the principal diagonal: Aii = 0
– No column of A is identically zero
– No row of A is dominated by the other rows

4 Stationary points and properties

Following the analysis, results and terminology of [9] and [10], adapted here for
the case of symmetric games (which makes things simpler, at least in terms of
notation), we define stationary points of the function fA(x) and summarize their
properties in a series of definitions and theorems below which we state without
proof.

Definition 1. The gradient DA(x′, x) of the function fA(x) = max(Ax) −
xτAx at x ∈ ∆n along a direction x′ ∈ ∆n is defined as follows:

DA(x′, x) ≡ lim
ε→0

1
ε

(fA((1− ε)x+ εx′)− fA(x))

Theorem 2. The limit in the above definition always exists for any x ∈ ∆n and
x′ ∈ ∆n. Furthermore, for given x it defines a convex function DA(x′, x) of x′,
involving the max(.) of an affine function of x′, given by the equation:

DA(x′, x) = max
suppmax(Ax)

(Ax′)− xτAx′ − (x′)τAx+ xτAx− fA(x)
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Definition 2. A probability vector x? ∈ ∆n is called a stationary point of the
function fA(x) = max(Ax)− xτAx, if DA(x, x?) ≥ 0,∀x ∈ ∆n.

Theorem 3. A stationary point always exists and can be approximated as closely
as desired in polynomial time through an iterative descent algorithm applied to
the function fA(x). The algorithm can start from an arbitrary x0 ∈ ∆n and in-
volves solving a linear programming problem of the form minx∈∆n(DA(x, xk)) at
each step k. Furthermore, every Nash equilibrium is a stationary point.

Definition 3. For any probability vector x ∈ ∆n, a probability vector w ∈ ∆n is
called an associated dual vector if it is a solution of the dual of the linear problem
minx′∈∆n

(DA(x′, x)), where all constraints are dualized except those specified by
x′ ∈ ∆n.

Theorem 4. For any probability vector x ∈ ∆n, the support of an associated
dual vector w ∈ ∆n satisfies supp(w) ⊆ suppmax(Ax).

Theorem 5. Let x? ∈ ∆n be a stationary point and define S(x?) ≡ suppmax(Ax?).
Let w? ∈ ∆n be an associated dual probability vector (which satisfies supp(w?) ⊆
S(x?) according to the previous theorem). Then, the following relationships (called
here stationarity conditions) hold:

max
S(x?)

(Ax)− (x?)τAx− xτAx? + (x?)τAx? − fA(x?) ≥ 0,∀x ∈ ∆n

(w?)τAx− (x?)τAx− xτAx? + (x?)τAx? − fA(x?) ≥ 0,∀x ∈ ∆n

The first relationship in the above theorem yields:

fA(x?)− fA(x) + (max(Ax)− max
S(x?)

(Ax)) ≤ (x− x?)τA(x− x?),∀x ∈ ∆n (2)

Also, setting x = w? in the second relationship of the above theorem we
obtain:

fA(x?) ≤ (w? − x?)τA(w? − x?) (3)

or, equivalently, since supp(w?) ⊂ S(x?):

2fA(x?) + fA(w?) ≤ max(Aw?)− (x?)τAw? (4)

From the above equation we get:

Theorem 6. Given a stationary point x? and associated dual w?, either fA(x?)
or fA(w?) should be ≤ 1

3 .

Another result which is a direct consequence of previous relationships involv-
ing stationary points is summarized in the theorem below.

Theorem 7. For any two stationary points x?1, x
?
2, the following relationship

holds:
|fA(x?1)− fA(x?2)| ≤ (x?1 − x?2)τA(x?1 − x?2) (5)
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As we will see later, equation (5) above is important as it provides an upper
bound on the quality of approximate Nash equilibria in terms of a symmetric
quadratic form of the difference between stationary points. Notice that a similar
relationship holds more generally for any pair of points x1, x2 ∈ ∆n satisfying
the condition that neither x1 defines a descent direction for fA(.) at x2 nor x2

defines a descent direction for fA(.) at x1, or equivalently, both DA(x1, x2) and
DA(x2, x1) are ≥ 0. If one of the two points, say x1, is a Nash equilibrium and
at the same time it does not define a descent direction for fA(.) at the other
point x2, then, fA(x2) ≤ (x1 − x2)τA(x1 − x2). So, if any point x2 is close to
a Nash equilibrium in the squared metric defined by the symmetric quadratic
form, then, it will either be an approximate equilibrium of the same quality, or
there will be a descent direction from it. The above remarks are being used later
in Section 7 to establish the approximation result.

Definition 4. For a given convex set K ⊂ ∆n, a probability vector x? ∈ K is
called a constrained stationary point of the function fA(x) = max(Ax) −
xτAx, if DA(x, x?) ≥ 0,∀x ∈ K.

A constrained stationary point can be obtained in a similar way by start-
ing from any x0 ∈ K and solving a linear programming problem of the form
minx∈K(DA(x, xk)) at each step k until convergence. In other words, we have
additional constraints to deal with at each step of the descent algorithm. It is
pointed out here that the rate of convergence of the descent algorithm to a
(constrained) stationary point is not essentially affected by the additional con-
straints. The additional constraints affect the descent direction while the rate of
convergence depends primarily on the stepsize given a descent direction. This can
be verified by an overview of the convergence analysis presented in [9] and [10].
Therefore, a constrained stationary point can also be obtained in polynomial
time.

5 Spectral representation

Consider the spectral representation of the matrix A + Aτ . Since this matrix
is symmetric, all its eigenvalues are real and the eigenvectors are mutually or-
thogonal. Let λ1, λ2, . . . , λm be the m positive eigenvalues of A + Aτ (m < n)
and −|λm+1|,−|λm+2|, . . . ,−|λn| the negative ones. Let zi, i = 1, 2, . . . , n be the
corresponding normalized eigenvectors satisfying ‖zi‖ = 1 for all i ∈ [n] and
zτi zj = 0 for all i, j such that i 6= j. By ‖.‖ we denote the usual Euclidean
L2 norm. Assume that the eigenvalues are indexed in descending order, i.e.
λ1 ≥ λ2 ≥ . . . ≥ λn.

Considering the representation of A + Aτ in terms of its eigenvalues and
eigenvectors

A+Aτ =
m∑
i=1

λiziz
τ
i −

n∑
j=m+1

|λj |zjzτj (6)
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the function fA(x) can be written as follows:

fA(x) = max(Ax) +
1
2

n∑
j=m+1

|λj |(zτj x)2 − 1
2

m∑
i=1

λi(zτi x)2 (7)

Let A+ =
∑m
i=1 λiziz

τ
i be the symmetric nonnegative definite n×n matrix of

rank m that defines the last term of the above equation involving the m positive
eigenvalues. The complexity of finding a solution of the problem minx∈∆n

fA(x)
is due exclusively to this term since this term is responsible for the non-convexity
of the problem. In particular, the complexity is driven by the geometry of the
orthogonal projection of the feasible region of probability vectors ∆n onto the
m-dimensional linear subspace spanned by the eigenvectors zi, i = 1, 2, . . . ,m
(that correspond to the positive eigenvalues) endowed with a distance metric
d(., .) defined by d2(a, b) =

∑m
i=1 λi(z

τ
i (a − b))2, i.e. the metric induced by the

matrix A+. Expressing the distance between stationary points in terms of this
metric, we notice that equation (5) implies that for any two stationary points
x?1, x

?
2 the following is true:

|fA(x?1)− fA(x?2)| ≤ 1
2
d2(x?1, x

?
2) (8)

We notice that the problem can be treated as an indefinite quadratic pro-
gramming problem with linear constraints. A general result for such problems,
obtained from [12], states that there is an algorithm to find an ε-approximate
solution in O

(
K(n)

(n(n+1)√
ε

)m) steps, where K(n) denotes the time to solve a
convex quadratic problem of size n. An immediate consequence is that if the
number m of positive eigenvalues of A+Aτ is a small number, then there is an
FPTAS for finding a Nash equilibrium. However, in such cases (where the num-
ber m of positive eigenvalues is fixed) there is more structure in a game problem
that can be exploited: Notice that m is bounded by the rank of the matrix and
as pointed out in [13] if the rank is fixed then there is a strongly polynomial
algorithm to compute a Nash equilibrium.

The special structure of the game problem can generally be exploited to
yield better results than the ones that can be obtained for an arbitrary indefi-
nite quadratic programming problem. As we will see, it is not only the special
properties of the feasible region (the set of n-dimensional probability vectors)
that can be exploited, but also the properties of the eigenvalues and eigenvectors
of nonnegative matrices and, more specifically, the spectral properties of adja-
cency matrices of simple graphs. The following theorem, known as the Perron-
Frobenius theorem, states some basic facts about the principal eigenvalue and
eigenvector of a nonnegative matrix:

Theorem 8. Any nonnegative square matrix has a nonnegative real eigenvalue
λ1 with maximum absolute value among all eigenvalues and a nonnegative real
eigenvector z1 corresponding to this eigenvalue. If the matrix has no block tri-
angular decomposition, then λ1 has multiplicity 1 and the entries of the corre-
sponding eigenvector z1 are strictly positive.
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In the sequel we will frequently make use of certain results of spectral graph
theory, including the above mentioned theorem of Perron-Frobenius which is
generally applicable to nonnegative matrices. For the basic theory and results of
graph spectra the interested reader is referred to [2] and [6].

In the next section we further explore the specific characteristics of a game
as an indefinite quadratic programming problem in the context of win-lose {0, 1}
games. Considering win-lose games provides an explicit link of the game problem
with the spectral properties of simple graphs.

6 Win-lose games and induced graphs

The analysis and results in the preceding sections are generally applicable to
games with arbitrary payoffs. In this section we restrict attention to win-lose
games where each payoff entry is either 0 or 1.

Considering win-lose games is no loss of generality in terms of the complexity
of computing Nash equilibria. In [1] it is proven that the computation of Nash
equilibria for two-player games with rational payoffs is polynomially related to
the computation of Nash equilibria for win-lose games, i.e. there is a polynomial
time reduction of the Nash equilibrium problem from two-player games with
rational payoffs to win-lose {0, 1} games. Therefore, finding a Nash equilibrium
for {0, 1} games is also PPAD complete.

In order to avoid trivial cases (for example, cases where pure Nash equilibria
exist), it is necessary to impose additional conditions on the matrix A (in addi-
tion to those of Section 3): Aij + Aji ≤ 1, i.e. that Aij and Aji cannot be both
equal to 1. Under this condition, the matrix A can be considered as the adja-
cency matrix of a simple directed graph and, consequently, the matrix A + Aτ

can be considered as the adjacency matrix of the undirected version of the same
simple graph. We call this graph the induced graph of the game specified by
the matrix A and we denote it by G = (V,E) with nodes the set of pure strate-
gies V = [n] and edges E = {(i, j) : Aij = 1} ⊂ V × V the payoffs. Assume that
the direction of each edge (in the directed version of the induced graph) is from
a row to a column of matrix A, i.e. if (i, j) is an edge, it is outgoing from i and
incoming to j.

Using the reduction to symmetric games obtained in Section 3 and the form
of the matrix A in the general case, we can consider only bipartite graphs with-
out loss of generality. For bipartite graphs, the spectrum is symmetric, i.e. the
number of positive eigenvalues is equal to the number of negative ones and each
negative eigenvalue is equal in absolute value with a positive eigenvalue. How-
ever, the derivations and results presented here do not make explicit use of the
bipartite nature of the underlying graph.

Now, in order to avoid other less trivial cases (for example, cases where
the problem can be reduced to smaller dimension by a polynomial procedure)
another condition on matrix A should be imposed, if we take into consideration
the Perron-Frobenius theorem, stated in the previous section. Specifically, the
existence of a block triangular decomposition of the adjacency matrix implies
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that the induced graph G is disconnected. In such a case we can decompose the
game into subgames of smaller dimension, where, each subgame is represented
by a principal submatrix of A (a sumbatrix formed by a subset of rows and
the corresponding subset of columns of A). Evidently, if we pick any subgame
and find a Nash equilibrium of it, then, this equilibrium will also be a Nash
equilibrium for the original game. Therefore, we assume that the game specified
by A cannot be decomposed, or, equivalently, the induced graph is connected
(if this is not true, then we reduce the problem to lower dimension). Notice
that we can check in polynomial time whether or not a graph is connected
by solving a min-cut problem. Furthermore, as a consequence of the Perron-
Frobenius theorem, if the induced graph is connected then the largest eigenvalue
of A has multiplicity 1 and the corresponding eigenvector is strictly positive.

Based on the above remarks, we summarize below the assumptions that we
make on matrix A, without loss of generality as far as win-lose games are con-
cerned:

1. Each entry of A is either 0 or 1 and every column of A contains at least one
1.

2. The entries of the principal diagonal are all 0: Aii = 0,∀i ∈ [n].
3. The entries Aij and Aji cannot be both equal to 1, i.e. Aij +Aji ≤ 1,∀i, j ∈

[n], i 6= j.
4. The set of neighbors of any row of A (the positions of 1’s in the row) is no

subset of the set of neighbors of any other row.
5. The undirected graph with adjacency matrix A+Aτ is connected.

As a corollary of the preceding discussion, we can express the following the-
orem:

Theorem 9. The problem of computing a Nash equilibrium for any bimatrix
game can be polynomially reduced to a problem of computing a minimum of a
function of the form fA(x) = max(Ax)−xτAx, where A is the adjacency matrix
of a simple directed graph having properties 1− 5 above.

Recall that in case where any of the properties 1−5 is not satisfied, the problem
can be either reduced polynomially to a smaller one or there will be trivial Nash
equilibria.

7 Approximating an equilibrium

In order to approximate an equilibrium, one can take advantage of the prop-
erties of stationary points (in particular equation (5)) as well as the spectral
representation of the function fA(x) and the properties of the eigenvalues and
eigenvectors of simple graphs. In principle, a grid of points can be appropriately
constructed and using each point in the grid as a starting point, a stationary
point can be computed using the descent algorithm mentioned in Section 4. If
the grid is dense enough in a well defined sense, then, one of the stationary
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points produced should be close to an equilibrium. The important issue is how
close one can get as a function of the price that has to be paid in terms of the
density of the grid (hence the complexity of the algorithm).

Consider the linear m-dimensional subspace ∈ <n spanned by the eigenvec-
tors zi, i = 1, 2, . . . ,m that correspond to the positive eigenvalues and the metric
d(., .): d2(a, b) =

∑m
i=1 λi(z

τ
i (a− b))2 defined on this subspace. Consider the or-

thogonal projection of the feasible region ∆n on this subspace and denote it
by Pm(∆n). Denote by Pm(x) the projection on this subspace of an x ∈ ∆n.
It can be shown that Pm(∆n) is the convex hall of the projections of all the n
vertices of ∆n on the subspace. In general, the number of vertices of the convex
hall should be less than or equal to n. Notice that the projection of any prob-
ability vector in ∆n on the subspace is an m-dimensional vector that can be
expressed as a convex combination of at most m+ 1 vertices of the convex hall
(by Caratheodory’s theorem). Also, notice that the vertices of the convex hall
can all be computed in polynomial time.

Let ε be a positive approximation parameter and assume that 1/ε is integer
smaller than m. Let us consider a set of regions in Pm(∆n) each consisting of
convex combinations of no more that 1/ε vertices of Pm(∆n). Since each vertex
is the projection of some vertex of ∆n, the set of such regions consist of the
projections of all n-dimensional probability vectors with support no more than
1/ε. The total number of such subsets of vertices of Pm(∆n) is ≤ n1/ε and so is
the total number of the corresponding regions. Let us denote the set of all such
regions byH(ε). This set of regions thus constructed constitute an approximation
architecture of all points in Pm(∆n). The crucial question is how well does it
approximate the entire Pm(∆n), i.e. what is the largest distance of a point in
Pm(∆n) from the union of all sets in H(ε) in the metric d(., .). In regard to this
question we can express the following theorem:
Theorem 10. For any y ∈ ∆n, the closest, in the metric d(., .), point x ∈ ∆n

whose projection belongs to
⋃
H(ε) satisfies the relationship: d2(Pm(x), Pm(y)) ≤

εξ(m), where, ξ(m) =
∑m
i=1 λi/n.

Proof. Consider the matrix A+ =
∑m
i=1 λiziz

τ
i . This is a nonnegative definite

symmetric n × n matrix with rank m which represents the positive part of the
spectrum of A + Aτ . For a given y ∈ ∆n with large support (of the order of
m (but no more than m + 1) to ensure that its projection Pm(y) is as far as
possible from any convex combination of a subset of 1/ε vertices of Pm(∆n)),
and x ∈ ∆n such that Pm(x) ∈

⋃
H(ε) (i.e. the projection Pm(x) of x is a

convex combination of no more than 1/ε vertices of Pm(∆n)), we should have
the relationship:

d2(Pm(x), Pm(y)) = (x− y)τA+(x− y) (9)

Let the scalars z̄i for i = 1, 2, . . . , n be defined as z̄i = zτi y. Define a new
symmetric nonnegative definite matrix A′+ =

∑m
i=1 λi(zi − z̄ie)(zi − z̄ie)τ =

(I − eyτ )A+(I − yeτ ) (e is the all 1’s vector). Then, given that x and y are
probability vectors we can write the previous equation as:

d2(Pm(x), Pm(y)) = xτA′+x (10)

11



Let µ1, µ2, . . . be the eigenvalues of A′+. By construction, the sum of µi’s (that is
to say the trace of the matrix A′+) should be ≤ than

∑m
i=1 λi (the trace of matrix

A+). Notice that the set supp(x) can be any subset of size |supp(x)| ≤ 1/ε. So,
the minimum of d2(Pm(x), Pm(y)) with respect to x is over all principal subma-
trices of A′+ of size 1/ε × 1/ε. Let S(ε) be a subset of indices in (1, n) defining
such a submatrix and let G(ε) be the submatrix itself. Then, d2(Pm(x), Pm(y)) =
xτG(ε)x. It can be verified that, given an S(ε), the minimum of the latter ex-
pression with respect to x ∈ ∆n with supp(x) ⊂ S(ε) is given by an expression of
the form 1/eτG−1

ε e, where, e here is the all 1’s vector with support S(ε) and G−1
ε

is the inverse of a principal submatrix of A′+ of size 1/ε×1/ε if it exists, or it can
be replaced by the pseudo inverse (generalized inverse) without loss of generality.
It turns out that d2(Pm(x), Pm(y)) can be bounded by an expression of the form
1/
∑
i∈S(ε)

1
µ′

i
, where, µ′i, i ∈ S(ε) are the eigenvalues of the submatrix G(ε). Us-

ing the harmonic-arithmetic mean inequality, the latter expression is bounded
from above by

∑
i∈S(ε) µ

′
i/|S(ε)|2 = ε

∑
i∈S(ε) µ

′
i/|S(ε)| = εtr(Gε)/|S(ε)|. Since

all submatrices Gε of size 1/ε × 1/ε are considered, there is one whose aver-
age trace is minimum, which implies tr(Gε)/|S(ε)| ≤ tr(A′+)/n. So, the bound
becomes:

d2(Pm(x), Pm(y)) ≤ εtr(A′+)/m ≤ ε
m∑
i=1

λi/n = εξ(m) (11)

Finally, the claim of the theorem follows from the last relationship.
ut

Based on the above theorem, we have the following result:

Theorem 11. For any ε > 0, there is an algorithm to find an ε-approximate
Nash equilibrium in time nξ(m)/ε, where, ξ(m) =

∑m
i=1 λi/n.

Proof. Since all points y in Pm(∆n) can be covered by balls of the form d2(x, y) ≤
εξ(m), for x ∈ H(ε), we can consider all n1/ε points of H(ε) as starting points
for the descent algorithm and compute constrained stationary points within each
such ball. One of them will be εξ(m)-close to a Nash equilibrium.

Also, since the parameter ε can be chosen arbitrarily, one can choose ε/ξ(m)
in its place to get an ε-approximation in nξ(m)/ε time.

ut

As an immediate consequence of the above theorems, we can express the
following:

Theorem 12. For a class of games for which the positive eigenvalues satisfy
the relationship

∑m
i=1 λi/n = constant, then there is a PTAS for this class.

We conclude with the theorem below that establishes a general upper bound
on ξ(m) for all instances of games and corresponding induced graphs.

12



Theorem 13. The following relationship holds:

ξ(m) =
m∑
i=1

λi/n ≤
√
m (12)

Proof. Since the λi’s are the eigenvalues of the adjacency matrix A+Aτ of the
induced undirected graph, the sum of squares of the λi’s is equal to the trace of
the matrix (A + Aτ )2 which is equal to the number of walks of length 2 in the
graph for each node, i.e. twice the number of edges which is ≤ n(n−1)/2. Using
this fact and standard inequalities we obtain:

(
m∑
i=1

λi)2 ≤ m(
m∑
i=1

λ2
i ) ≤ m(

n∑
i=1

λ2
i ) ≤ mn2 (13)

which implies that:
m∑
i=1

λi/n ≤
√
m (14)

ut

As a result of the last theorem, an ε-approximate equilibrium can be com-
puted in time bounded by n

√
m/ε, where m is the number of positive eigenvalues

of the matrix A+Aτ .

8 Discussion and future work

In this work it was demonstrated that the general problem of computing an
approximate Nash equilibrium of a bimatrix game can be reduced to a problem
of computing an approximate symmetric equilibrium of a symmetric {0, 1} win-
lose game involving a single n× n matrix A which is the adjacency matrix of a
simple directed graph. The complexity of the problem is due to the positive part
of the spectrum of the symmetric matrix A+Aτ (which is the adjacency matrix
of the undirected version of the graph), i.e. to the eigenspace corresponding to
the positive eigenvalues λ1, λ2, . . . , λm. In particular, the geometry of the pro-
jection of the n-dimensional simplex ∆n onto the positive eigenspace (denoted
here by Pm(∆n)) plays an important role in the analysis. As analyzed in Section
7, for any ε > 0, Pm(∆n) can be covered by balls of squared radius ε

∑m
i=1 λi/n

centered at certain grid points in Pm(∆n) whose number does not exceed n1/ε.
Based on this and using the properties of stationary points as summarized in
Section 4, it is shown that by running the descent algorithm at most n1/ε times
independently, each starting from a distinct point of the grid, one of the sta-
tionary points thus obtained is ε

∑m
i=1 λi/n-close to an equilibrium. Finally, by

appropriate choice of the parameters, it turns out that it is possible to achieve an
ε-approximate equilibrium in time less than nξ(m)/ε, where ξ(m) =

∑m
i=1 λi/n.

There are some issues that can be further investigated to improve the results.
At first, the grid that was used to subdivide Pm(∆n) basically consists of the
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projections on the positive eigenspace of all n-dimensional probability vectors
whose entries are integer multiples of a given ε. The question is: Is it possible to
further exploit the structure of Pm(∆n) and to use a different grid containing
less points that could yield better results?

Secondly, and more importantly, the complexity as a function of the positive
eigenvalues depends on the quantity ξ(m) =

∑m
i=1 λi/n which is always ≤

√
m

(which implies our subexponential complexity result in this paper). However, the√
m bound for ξ(m) is not tight. In fact, the equality holds only if all positive

eigenvalues are equal (i.e. the multiplicity of λ1 is m) which in turn implies that
the induced graph is not connected (this is a consequence of the Perron-Frobenius
theorem and a standard result in spectral graph theory). But if the graph is not
connected, the game problem can be reduced in dimension as analysed in Section
6. The question is: Is there a better upper bound in any significant way for ξ(m)
that explicitly takes into account the connectivity of the induced graph?

As pointed out in Theorem 12, if for some class of games the expression ξ(m)
is a constant, then our approach leads to a PTAS for this class. In general, it
appears that the study of the positive spectrum of the adjacency matrix A+Aτ

can elucidate several aspects of an equilibrium problem (notice that eigenvalues
and eigenvectors can be computed in polynomial time). The expression ξ(m) can
be used to characterize classes of game problems according to the difficulty in
approximating equilibria.

The distribution of the principal graph eigenvalues and corresponding eigen-
vectors are already being heavily used in a variety of applications such as in
expander graphs, spectral partitioning algorithms, page ranking algorithms, etc.
It is conjectured that further study of the principal eigenvalues and eigenvectors
of graphs with an eye on game problems can yield improved results and algorith-
mic approaches for the computation of approximate and exact game equilibria
as well.

Acknowledgements: We wish to thank C. H. Papadimitriou, X. Deng and
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