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Abstract

The threshold degree of a Boolean function f W f0; 1gn ! f�1;C1g is
the least degree of a real polynomial p such that f .x/ � sgn p.x/: We
construct two halfspaces on f0; 1gn whose intersection has threshold degree
�.
p

n/; an exponential improvement on previous lower bounds. This solves
an open problem due to Klivans (2002) and rules out the use of perceptron-
based techniques for PAC learning the intersection of two halfspaces, a cen-
tral unresolved challenge in computational learning. We also prove that the
intersection of two majority functions has threshold degree ˝.log n/; which
is tight and settles a conjecture of O’Donnell and Servedio (2003).

Our proof consists of two parts. First, we show that for any nonconstant
Boolean functions f and g; the intersection f .x/ ^ g.y/ has threshold de-
gree O.d/ if and only if kf � F k∞ C kg � Gk∞ < 1 for some rational
functions F; G of degree O.d/: Second, we settle the least degree required
for approximating a halfspace and a majority function to any given accuracy
by rational functions.

Our technique further allows us to make progress on Aaronson’s chal-
lenge (2008) and contribute direct sum theorems for polynomial representa-
tions of composed Boolean functions of the form F.f1; :::; fn/: In particular,
we give an improved lower bound on the approximate degree of the AND-OR
tree.
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1 Introduction

Representations of Boolean functions by real polynomials play an important role
in theoretical computer science, with applications ranging from complexity theory
to quantum computing and learning theory. The surveys in [7, 40, 13, 43] offer
a glimpse into the diversity of these results and techniques. We study one such
representation scheme known as sign-representation. Specifically, fix a Boolean
function f WX ! f�1;C1g for some finite set X � Rn; such as the hypercube
X D f�1;C1gn: The threshold degree of f; denoted deg˙.f /; is the least degree
of a polynomial p.x1; : : : ; xn/ such that

f .x/ D sgn p.x/

for each x 2 X: In other words, the threshold degree of f is the least degree of a
real polynomial that represents f in sign.

The formal study of this complexity measure and of sign-representations in
general began in 1969 with the seminal work of Minsky and Papert [30], who
examined the threshold degree of several common functions. Since then, sign-
representations have found a variety of applications in theoretical computer sci-
ence. Paturi and Saks [35] and later Siu et al. [47] used Boolean functions with
high threshold degree to obtain size-depth trade-offs for threshold circuits. The
well-known result, due to Beigel et al. [9], that PP is closed under intersection is
also naturally interpreted in terms of threshold degree. In another development,
Aspnes et al. [6] used the notion of threshold degree and its relaxations to obtain
oracle separations for PP and to give an insightful new proof of classical lower
bounds for AC0: Krause and Pudlák [26, 27] used random restrictions to show that
the threshold degree gives lower bounds on the weight and density of perceptrons
and their generalizations, which are well-studied computational models.

Learning theory is another area in which the threshold degree of Boolean
functions is of considerable interest. Specifically, functions with low threshold
degree can be efficiently PAC learned under arbitrary distributions via linear pro-
gramming. The current fastest algorithm for PAC learning polynomial-size DNF
formulas, due to Klivans and Servedio [21], is an illustrative example: it is based
precisely on an upper bound on the threshold degree of this concept class.

The threshold degree has recently become a versatile tool in communication
complexity. The starting point in this line of work is the Degree/Discrepancy The-
orem [41, 42], which states that any Boolean function with high threshold degree
induces a communication problem with low discrepancy and thus high communi-
cation complexity in almost all models. This result was used in [41] to show the
optimality of Allender’s simulation of AC0 by majority circuits [4], thus solving an
open problem of Krause and Pudlák [26]. Known lower bounds on the threshold
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degree have played an important role in recent progress [44, 38] on unbounded-
error communication complexity, which is considerably more powerful than the
models above.

In summary, the threshold degree has a variety of applications in circuit com-
plexity, learning theory, and communication complexity. Nevertheless, analyzing
the threshold degree has remained a difficult task, and Minsky and Papert’s sym-
metrization technique from 1969 has been essentially the only method available.
Unfortunately, symmetrization only applies to symmetric Boolean functions and
certain derivations thereof. In a recent tutorial presented at the FOCS’08 confer-
ence, Aaronson [2] re-posed the challenge of developing new analytic techniques
for multivariate real polynomials that represent Boolean functions. We make sig-
nificant progress on this challenge in the context of sign-representation, contribut-
ing a number of direct sum theorems for the threshold degree. As an application,
we construct two halfspaces on f0; 1gn whose intersection has threshold degree
˝.
p

n/; which solves an open problem due to Klivans [19] and rules out the use
of perceptron-based techniques for PAC learning the intersection of even two half-
spaces (a central unresolved challenge in computational learning theory). We give
a detailed description of our results in Sections 1.1–1.3, followed by a discussion
of our techniques in Section 1.4.

1.1 Results for general compositions

Our first result is a general direct sum theorem for the threshold degree of com-
posed functions.

THEOREM 1.1 (THRESHOLD DEGREE). Consider functions f WX ! f�1;C1g

and F W f�1;C1gk ! f�1;C1g; where X � Rn is a finite set. Then

deg˙.F.f; : : : ; f // > deg˙.F / deg˙.f /:

Theorem 1.1 gives the best possible lower bound that depends on deg˙.F /

and deg˙.f / alone. In particular, the bound is tight whenever F D PARITY or
f D PARITY: To our knowledge, the only previous direct sum theorem of any
kind for the threshold degree was the XOR lemma in [33], which states that the
XOR of k copies of a given function f WX ! f�1;C1g has threshold degree
k deg˙.f /:

We are able to generalize Theorem 1.1 to the notion of ε-approximate degree
degε.F /; which is the least degree of a real polynomial p with kF � pk∞ 6 ε:
This notion plays a fundamental role in complexity theory, learning theory, and
quantum computing and was also re-posed as an analytic challenge in Aaronson’s
tutorial [2]. We have:
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THEOREM 1.2 (APPROXIMATE DEGREE). Fix functions f WX ! f�1;C1g and
F W f�1;C1gk ! f�1;C1g; where X � Rn is a finite set. Then for 0 < ε < 1;

degε.F.f; : : : ; f // > degε.F / deg˙.f /:

Again, Theorem 1.2 gives the best lower bound that depends on degε.F /

and deg˙.f / alone. For example, the stated bound is tight for any function F

when f D PARITY: In Section 3.1, we prove various other results involving
bounded-error and small-bias approximation, as well as compositions of the form
F.f1; : : : ; fk/ where f1; : : : ; fk may all be distinct.

We use Theorem 1.2 to obtain an improved lower bound on the approximate
degree of the well-studied AND-OR tree, given by

f .x/ D

n_
iD1

n̂

j D1

xij : (1.1)

Prior to this work, the best lower bound was ˝.n0:66:::/; due to Ambainis [5].
Preceding it were lower bounds of ˝.

p
n/ due to Nisan and Szegedy [32] and

˝.
p

n log n/ due to Shi [46]. We improve the standing lower bound from
˝.n0:66:::/ to ˝.n0:75/; the best upper bound being O.n/ due to Høyer et al. [16].

THEOREM 1.3 (AND-OR TREE). Define f W f�1;C1gn
2

! f�1;C1g by (1.1).
Then

deg1=3.f / D ˝.n0:75/:

Furthermore, the proof of Theorem 1.3 is simpler and more modular than the pre-
vious lower bound [5], which was based on the collision and element distinctness
problems.

1.2 Results for specific compositions

While Theorems 1.1 and 1.2 give the best lower bounds that depend on deg˙.F /;

deg˙.f /; and degε.F / alone, much stronger lower bounds can be derived in
some cases by exploiting additional structure of F and f: Consider the special
but illustrative case of the conjunction of two functions. In other words, we are
given functions f WX ! f�1;C1g and gWY ! f�1;C1g for some finite sets
X; Y � Rn and would like to determine the threshold degree of their conjunction,
.f ^ g/.x; y/ D f .x/^ g.y/: A simple and elegant method for sign-representing
f ^ g; due to Beigel et al. [9], is to use rational approximation. Specifically, let
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p1.x/=q1.x/ and p2.y/=q2.y/ be rational functions of degree d that approximate
f and g; respectively, in the following sense:

max
x2X

ˇ̌̌̌
f .x/ �

p1.x/

q1.x/

ˇ̌̌̌
C max

y2Y

ˇ̌̌̌
g.y/ �

p2.y/

q2.y/

ˇ̌̌̌
< 1: (1.2)

Letting �1 andC1 correspond to “true” and “false,” respectively, we obtain:

f .x/ ^ g.y/ � sgnf1C f .x/C g.y/g � sgn
�

1C
p1.x/

q1.x/
C

p2.y/

q2.y/

�
: (1.3)

Multiplying the last expression in braces by the positive quantity q1.x/2q2.y/2

gives

f .x/ ^ g.y/ � sgn
˚
q1.x/2q2.y/2

Cp1.x/q1.x/q2.y/2
C p2.y/q1.x/2q2.y/

	
;

whence deg˙.f ^ g/ 6 4d: In summary, if f and g can be approximated as in
(1.2) by rational functions of degree at most d; then the conjunction f ^ g has
threshold degree at most 4d:

It is natural to ask whether there exists a better construction. After all, given a
sign-representing polynomial p.x; y/ for f .x/^g.y/; there is no reason to expect
that p arises from the sum of two independent rational functions as in (1.3). Indeed,
x and y can be tightly coupled inside p.x; y/ and can interact in complicated ways.
Our next result is that, surprisingly, no such interactions can beat the simple con-
struction above. In other words, the sign-representation based on rational functions
always achieves the optimal degree, up to a small constant factor.

THEOREM 1.4 (CONJUNCTIONS OF FUNCTIONS). Let f WX ! f�1;C1g and
gWY ! f�1;C1g be given functions, where X; Y � Rn are arbitrary finite sets.
Assume that f and g are not identically false. Let d D deg˙.f ^ g/: Then there
exist degree-4d rational functions

p1.x/

q1.x/
;

p2.y/

q2.y/

that satisfy (1.2).

Via repeated applications of Theorem 1.4, we are able to obtain analogous
results for conjunctions f1^f2^� � �^fk for any Boolean functions f1; f2; : : : ; fk

and any k: Our results further extend to compositions F.f1; : : : ; fk/ for various F

other than F D AND; such as halfspaces and read-once AND/OR/NOT formulas.
We defer a more detailed description of these extensions to Section 3.4, limiting
this overview to the following representative special case.
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THEOREM 1.5 (EXTENSION TO MULTIPLE FUNCTIONS). Let f1; f2; : : : ; fk be
nonconstant Boolean functions on finite sets X1; X2; : : : ; Xk � Rn; respectively.
Let F W f�1;C1gk ! f�1;C1g be a halfspace or a read-once AND/OR/NOT
formula. Assume that F depends on all of its k inputs and that the composition
F.f1; f2; : : : ; fk/ has threshold degree d: Then there is a degree-D rational func-
tion pi=qi on Xi ; i D 1; 2; : : : ; k; such that

kX
iD1

max
xi 2Xi

ˇ̌̌̌
fi .xi / �

pi .xi /

qi .xi /

ˇ̌̌̌
< 1;

where D D 8d log 2k:

Theorem 1.5 is close to optimal. For example, when F D AND; the upper bound
on D is tight up to a factor of �.k log k/; for all F in the statement of the theorem,
it is tight up to a polynomial in k: See Remark 3.22 for details.

Theorems 1.4 and 1.5 contribute a strong technique for proving lower bounds
on the threshold degree, via rational approximation. Prior to this paper, it was
a substantial challenge to analyze the threshold degree even for compositions of
the form f ^ g: Indeed, we are only aware of the work in [30, 33], where the
threshold degree of f ^ g was studied for the special case f D g D MAJORITY:

The main difficulty in those previous works was analyzing the unintuitive inter-
actions between f and g: Our results remove this difficulty, even in the general
setting of compositions F.f1; f2; : : : ; fk/ for arbitrary f1; f2; : : : ; fk and various
combining functions F: Specifically, Theorems 1.4 and 1.5 make it possible to
study the base functions f1; f2; : : : ; fk individually, in isolation. Once their ratio-
nal approximability is understood, one immediately obtains lower bounds on the
threshold degree of F.f1; f2; : : : ; fk/:

1.3 Results for intersections of two halfspaces

As an application of our direct sum theorems in Section 1.2, we obtain the first
strong lower bounds on the threshold degree of intersections of halfspaces, i.e.,
intersections of functions of the form f .x/ D sgn.

P
αixi � θ/ for some reals

α1; : : : ;αn;θ: In light of Theorem 1.4, this task amounts to proving that rational
functions of low degree cannot approximate a given halfspace. We accomplish this
in the following theorem, where the notation rdegε.f / stands for the least degree
of a rational function A with kf � Ak∞ 6 ε:

THEOREM 1.6 (APPROXIMATION OF A HALFSPACE). Let f W f�1;C1gn
2

!
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f�1;C1g be given by

f .x/ D sgn

�
1C

nX
iD1

nX
j D1

2ixij

�
: (1.4)

Then for 1=3 < ε < 1;

rdegε.f / D �

�
1C

n

logf1=.1 � ε/g

�
:

Furthermore, for all ε > 0;

rdegε.f / 6 64ndlog2 ne C 1:

The function (1.4) is known as the canonical halfspace. Thus, Theorem 1.6
shows that a rational function of degree �.n/ is necessary and sufficient for ap-
proximating the canonical halfspace within 1=3: The upper bound in this theorem
follows readily from classical work by Newman [31], and it is the lower bound
that has required of us technical novelty and effort. The best previous degree lower
bound for constant-error approximation for any halfspace was ˝.log n= log log n/;

obtained implicitly in [33]. We complement Theorem 1.6 with a full solution for
another common halfspace, the majority function.

THEOREM 1.7 (APPROXIMATION OF MAJORITY). Let MAJnW f�1;C1gn !

f�1;C1g denote the majority function. Then

rdegε.MAJn/ D

†
�

�
log

�
2n

log.1=ε/

�
� log

1

ε

�
; 2�n < ε < 1=3;

�

�
1C

log n

logf1=.1 � ε/g

�
; 1=3 6 ε < 1:

Again, the upper bound in Theorem 1.7 is relatively straightforward. Indeed, an
upper bound of O.logf1=εg log n/ for 0 < ε < 1=3 was known and used in the
complexity literature long before our work [35, 47, 9, 20], and we only somewhat
tighten that upper bound and extend it to all ε: Our primary contribution in Theo-
rem 1.7, then, is a matching lower bound on the degree, which requires consider-
able effort. The closest previous line of research concerns continuous approxima-
tion of the sign function on Œ�1;�ε�[ Œε; 1�; which unfortunately gives no insight
into the discrete case. For example, the lower bound derived by Newman [31] in
the continuous setting is based on the integration of relevant rational functions with
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respect to a suitable weight function, which has no meaningful discrete analogue.
We discuss our solution in greater detail at the end of the introduction.

Our first application of these lower bounds for rational approximation is to
construct an intersection of two halfspaces with high threshold degree. In what
follows, the symbol f ^ f denotes the conjunction of two independent copies of
a given function f:

THEOREM 1.8 (INTERSECTION OF TWO HALFSPACES). Let f W f�1;C1gn
2

!

f�1;C1g be given by (1.4). Then

deg˙.f ^ f / D ˝.n/:

The lower bound in Theorem 1.8 is tight and matches the construction by
Beigel et al. [9]. Prior to our work, only an ˝.log n= log log n/ lower bound
was known on the threshold degree of the intersection of two halfspaces, due to
O’Donnell and Servedio [33], preceded in turn by anω.1/ lower bound of Minsky
and Papert [30]. Note that Theorem 1.8 requires the difficult part of Theorem 1.6,
namely, the lower bound for the rational approximation of a halfspace.

Theorem 1.8 solves an open problem in computational learning theory, due
to Klivans [19]. In more detail, recall that Boolean functions with low threshold
degree can be efficiently PAC learned under arbitrary distributions, by expressing
an unknown function as a perceptron with unknown weights and solving the asso-
ciated linear program [21, 20]. Now, a central challenge in the area is PAC learning
the intersection of two halfspaces under arbitrary distributions, which remains un-
resolved despite much effort and solutions to some restrictions of the problem,
e.g., [28, 48, 20, 23]. Prior to this paper, it was unknown whether intersections
of two halfspaces on f0; 1gn are amenable to learning via perceptron-based tech-
niques. Specifically, Klivans [19, �7] asked for a lower bound of ˝.log n/ or better
on the threshold degree of the intersection of two halfspaces. We solve this problem
with a lower bound of ˝.

p
n/; thereby ruling out the use of perceptron-based

techniques for learning the intersection of two halfspaces in subexponential time.
To our knowledge, Theorem 1.8 is the first unconditional, structural lower bound
for PAC learning the intersection of two halfspaces; all previous hardness results
for the problem were based on complexity-theoretic assumptions [10, 3, 25, 18].
We complement Theorem 1.8 as follows.

THEOREM 1.9 (MIXED INTERSECTION). Let f W f�1;C1gn
2

! f�1;C1g be
given by (1.4). Let gW f�1;C1gd

p
ne ! f�1;C1g be the majority function. Then

deg˙.f ^ g/ D �.
p

n/:
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In words, even if one of the halfspaces in Theorem 1.8 is replaced by a majority
function, the threshold degree will remain high, resulting in a challenging learning
problem. Finally, we have:

THEOREM 1.10 (INTERSECTION OF TWO MAJORITIES). Consider the majority
function MAJnW f�1;C1gn ! f�1;C1g: Then

deg˙.MAJn ^MAJn/ D ˝.log n/:

Theorem 1.10 is tight, matching the construction of Beigel et al. [9]. It set-
tles a conjecture of O’Donnell and Servedio [33], who gave a lower bound of
˝.log n= log log n/ with completely different techniques and conjectured that the
true answer was ˝.log n/: Theorems 1.8–1.10 are of course also valid for disjunc-
tions rather than conjunctions. Furthermore, Theorems 1.8 and 1.10 remain tight
with respect to conjunctions of any constant number of functions.

Finally, we believe that the lower bounds for rational approximation in The-
orems 1.6 and 1.7 are of independent interest. Rational functions are classical
objects with various applications in theoretical computer science [9, 35, 47, 20, 1],
and yet our ability to prove strong lower bounds for the rational approximation of
Boolean functions has seen little progress since the seminal work in 1964 by New-
man [31]. To illustrate some of the counterintuitive phenomena involved in rational
approximation, consider the familiar function ORnW f0; 1gn ! f�1;C1g; given by
ORn.x/ D 1, x D 0: A well-known result of Nisan and Szegedy [32] states that
deg1=3.f / D �.

p
n/; meaning that a polynomial of degree �.

p
n/ is required for

approximation within 1=3: At the same time, we claim that rdegε.f / D 1 for all
0 < ε < 1: Indeed, let

AM .x/ D
1 �M

P
xi

1CM
P

xi
:

Then kf � AMk∞ ! 0 as M ! ∞: This example illustrates that proving lower
bounds for rational functions can be a difficult and unintuitive task. We hope
that Theorems 1.6 and 1.7 in this paper will spur further progress on the rational
approximation of Boolean functions.

1.4 Our techniques

We use one set of techniques to obtain our direct sum theorems for the threshold
degree (Sections 1.1 and 1.2) and another, unrelated set of techniques to analyze
the rational approximation of halfspaces (Section 1.3). We will give a separate
overview of the technical development in each case.
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Direct sum theorems. In symmetrization, one takes an assumed multivariate poly-
nomial p that sign-represents a given symmetric function and converts p into a
univariate polynomial, which is amenable to direct analysis. No such approach
works for the function compositions of this paper, whose sign-representing poly-
nomials can have complicated structure and will not simplify in a meaningful way.
This leads us to pursue a completely different approach.

Specifically, our results are based on a thorough study of the linear program-
ming dual of the sign-representation problems at hand. The challenge in our work
is to bring out, through the dual representation, analytic properties that will obey
a direct sum theorem. Depending on the context (Theorem 1.1, 1.2, or 1.4), the
property in question can be nonnegativity, correlation, orthogonality, certain quo-
tient structure, or a combination of several of these. A strength of this approach
is that it works with the sign-representation problem itself (over which we have
considerable control) rather than an assumed sign-representing polynomial (whose
structure we can no longer control in a meaningful way). We are confident that this
approach will find other applications.

As a concrete illustration, we briefly describe the idea behind Theorem 1.4.
The dual object with which we work there is a certain problem of finding, in the
positive spans of two given matrices, two vectors whose corresponding entries have
comparable magnitude. By an analytic argument, we are able to prove that this
intermediate problem has the sought direct-sum property, giving the missing link
between sign-representation and rational approximation. Thus, by working with
the dual, we implicitly decompose any sign-representation p.x; y/ of the function
f .x/ ^ g.y/ into individual rational approximants for f and g; regardless of how
tightly the x and y parts are coupled inside p:

Rational approximation. Our proof of Theorem 1.6 is built around two key ideas.
The first is a new technique for placing lower bounds on the degree of a given
polynomial p 2 RŒx1; x2; : : : ; xn� with prescribed approximate behavior, whereby
one constructs a degree-nonincreasing linear map M WRŒx1; x2; : : : ; xn� ! RŒx�

and argues that Mp has high degree. This technique is crucial to proving The-
orem 1.6, which is not amenable to standard techniques such as symmetrization.
As applied in this work, the technique amounts to constructing random variables
x1; x2; : : : ; xn in Euclidean space that, on the one hand, satisfy the linear depen-
dence

P
2i xi � z for a suitably fixed vector z and, on the other hand, in expec-

tation look independent to any low-degree polynomial p 2 RŒx1; x2; : : : ; xn�: We
pass, then, from p to a univariate polynomial by observing that EŒp.x1; : : : ; xn/� D

q.z/ for some univariate polynomial q of degree no greater than the degree of p:

This technique is a substantial departure from previous methods and shows promise
on other problems involving approximation by polynomials or rational functions.
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Second, we are able to prove that the rational approximation of the sign func-
tion has a self-reducibility property on the discrete domain. More specifically, we
are able to give an explicit solution to the dual of the rational approximation prob-
lem by distributing the nodes as in known positive results. What makes this pro-
gram possible in the first place is our ability to zero out the dual object on the com-
plementary domain, which is where the above map M WRŒx1; x2; : : : ; xn�! RŒx�

plays a crucial role. This dual approach, too, departs entirely from previous analy-
ses. In particular, recall that Newman’s lower-bound analysis is specialized to the
continuous domain and does not extend to the setting of Theorem 1.7, let alone
Theorem 1.6.

Recent progress

A recent follow-up paper [45] proves that the intersection of two halfspaces on
f0; 1gn has threshold degree �.n/; improving on the lower bound of ˝.

p
n/

in this work. We have also learned that the inequality degε.F.f; : : : ; f // >
degε.F / deg˙.f / was derived independently by Lee [29] in a recent work on read-
once Boolean formulas.

2 Preliminaries

Throughout this work, the symbol t refers to a real variable, whereas u; v; w; x;

y; ´ refer to vectors in Rn and in particular in f�1;C1gn: We adopt the following
standard definition of the sign function:

sgn t D

�
�1; t < 0;

0; t D 0;

1; t > 0:

We will also have occasion to use the following modified sign function:

fsgn t D

(
�1; t < 0;

1; t > 0:

Equations and inequalities involving vectors in Rn; such as x < y or x > 0; are to
be interpreted component-wise, as usual.

Throughout this manuscript, we view Boolean functions as mappings f WX !

f�1;C1g for some finite set X; where �1 andC1 correspond to “true” and “false,”
respectively. If µ1; : : : ;µk are probability distributions on finite sets X1; : : : ; Xk;
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respectively, then µ1�� � ��µk stands for the probability distribution on X1�� � ��

Xk given by

.µ1 � � � � � µk/.x1; : : : ; xk/ D

kY
iD1

µi .xi /:

The majority function on n bits, MAJnW f�1;C1gn ! f�1;C1g; is given by

MAJn.x/ D

(
1;

P
xi > 0;

�1; otherwise.

The symbol Pk stands for the family of all univariate real polynomials of degree
up to k: The following combinatorial identity is well-known.

FACT 2.1. For every integer n > 1 and every polynomial p 2 Pn�1;

nX
iD0

 
n

i

!
.�1/ip.i/ D 0:

This fact can be verified by repeated differentiation of the real function

.t � 1/n
D

nX
iD0

 
n

i

!
.�1/n�i t i

at t D 1; as explained in [33].
For a real function f on a finite set X; we write kf k∞ D maxx2X jf .x/j: For

a subset X � Rn; we adopt the notation �X D f�x W x 2 Xg: We say that a
set X � Rn is closed under negation if X D �X: Given a function f WX ! R;

where X � Rn is closed under negation, we say that f is odd (respectively, even)
if f .�x/ D �f .x/ for all x 2 X (respectively, f .�x/ D f .x/ for all x 2 X ).

Given functions f WX ! f�1;C1g and gWY ! f�1;C1g; recall that the
function f ^ gWX � Y ! f�1;C1g is given by .f ^ g/.x; y/ D f .x/ ^ g.y/:

The function f _ g is defined analogously. Observe that in this notation, f ^ f

and f are completely different functions, the former having domain X � X and
the latter X: These conventions extend in the obvious way to any number of
functions. For example, f1 ^ f2 ^ � � � ^ fk is a Boolean function with domain
X1 �X2 � � � � �Xk; where Xi is the domain of fi : Generalizing further, we let the
symbol F.f1; : : : ; fk/ denote the Boolean function on X1�X2�� � ��Xk obtained
by composing a given function F W f�1;C1gk ! f�1;C1g with the functions
f1; f2; : : : ; fk : Finally, recall that the negated function f WX ! f�1;C1g is given
by f .x/ D �f .x/:

11



2.1 Sign-representation and approximation by polynomials

By the degree of a multivariate polynomial p on Rn; denoted deg p; we shall
always mean the total degree of p; i.e., the greatest total degree of any monomial of
p: The degree of a rational function p.x/=q.x/ is the maximum of deg p and deg q:

Given a function f WX ! f�1;C1g; where X � Rn is a finite set, the threshold
degree deg˙.f / of f is defined as the least degree of a multivariate polynomial
p such that f .x/p.x/ > 0 for all x 2 X: In words, the threshold degree of f

is the least degree of a polynomial that represents f in sign. Equivalent terms
in the literature include “strong degree” [6], “voting polynomial degree” [26],
“polynomial threshold function degree” [34], and “sign degree” [12]. Crucial to
understanding the threshold degree is the following result, which is a well-known
corollary to Gordan’s transposition theorem [15].

THEOREM 2.2 (GORDAN [15]). Let X � Rn be a finite set, f WX ! f�1;C1g

a given function. Then deg˙.f / > d if and only if there exists a probability
distribution µ on X such thatX

x2X

µ.x/f .x/p.x/ D 0

for every polynomial p of degree up to d: Equivalently, deg˙.f / > d if and only
if there exists a map ψWX ! R; ψ 6� 0; such that f .x/ψ.x/ > 0 on X andX

x2X

ψ.x/p.x/ D 0

for every polynomial p of degree up to d:

Theorem 2.2 has a short proof using linear programming duality, as explained
in [41, �2.2].

The threshold degree is closely related to another analytic notion. Let f WX !

f�1;C1g be given, for a finite subset X � Rn: The ε-approximate degree of f;

denoted degε.f /; is the least degree of a polynomial p such that jf .x/�p.x/j 6 ε
for all x 2 X: The relationship between the threshold degree and approximate
degree is an obvious one:

deg˙.f / D lim
ε%1

degε.f /: (2.1)

We will need the following dual characterization of the approximate degree.

12



THEOREM 2.3. Fix ε > 0: Let f WX ! f�1;C1g be given, X � Rn a finite set.
Then degε.f / > d if and only if there exists a function ψWX ! R such thatX

x2X

jψ.x/j D 1;X
x2X

ψ.x/f .x/ > ε;

and, for every polynomial p of degree up to d;X
x2X

ψ.x/p.x/ D 0:

Theorem 2.3 follows readily from linear programming duality, as explained
in [42, �3]. Theorem 2.2 can be derived from Theorem 2.3 in view of (2.1).

2.2 Approximation by rational functions

Consider a function f WX ! f�1;C1g; where X � Rn is an arbitrary set. For
d > 0; we define

R.f; d/ D inf
p;q

sup
x2X

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
;

where the infimum is over multivariate polynomials p and q of degree up to d such
that q does not vanish on X: In words, R.f; d/ is the least error in an approximation
of f by a multivariate rational function of degree up to d: We will also take an
interest in the related quantity

RC.f; d/ D inf
p;q

sup
x2X

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
;

where the infimum is over multivariate polynomials p and q of degree up to d such
that q is positive on X: These two quantities are related in a straightforward way:

RC.f; 2d/ 6 R.f; d/ 6 RC.f; d/: (2.2)

The second inequality here is trivial. The first follows from the fact that every ratio-
nal approximant p.x/=q.x/ of degree d gives rise to a degree-2d rational approx-
imant with the same error and a positive denominator, namely, fp.x/q.x/g=q.x/2:

The infimum in the definitions of R.f; d/ and RC.f; d/ cannot in general be re-
placed by a minimum [39], even when X is a finite subset of R: This is in contrast to
the more familiar setting of a finite-dimensional normed linear space, where least-
error approximants are guaranteed to exist. We now recall Newman’s classical
construction of a rational approximant to the sign function [31].
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THEOREM 2.4 (NEWMAN). Fix N > 1: Then for every integer k > 1; there is a
rational function S.t/ of degree k such that

max
16jt j6N

j sgn t � S.t/j 6 1 �N �1=k (2.3)

and the denominator of S is positive on Œ�N;�1� [ Œ1; N �:

Proof (adapted from Newman [31]). Consider the univariate polynomial

p.t/ D

kY
iD1

�
t CN .2i�1/=.2k/

�
:

By examining every interval ŒN i=.2k/; N .iC1/=.2k/�; where i D 0; 1; : : : ; 2k � 1;

one sees that

p.t/ >
N 1=.2k/ C 1

N 1=.2k/ � 1
jp.�t /j; 1 6 t 6 N: (2.4)

Letting

S.t/ D N �1=.2k/
�

p.t/ � p.�t /

p.t/C p.�t /
;

one has (2.3). The positivity of the denominator of S on Œ�N;�1� [ Œ1; N � is a
consequence of (2.4).

A useful consequence of Newman’s theorem is the following general statement
on decreasing the error in rational approximation.

THEOREM 2.5. Let f WX ! f�1;C1g be given, where X � Rn: Let d be a given
integer, ε D R.f; d/: Then for k D 1; 2; 3; : : : ;

R.f; kd/ 6 1 �

�
1 � ε
1C ε

�1=k

:

Proof. We may assume that ε < 1; the theorem being trivial otherwise. Let S be
the degree-k rational approximant to the sign function for N D .1C ε/=.1 � ε/;
as constructed in Theorem 2.4. Let A1; A2; : : : ; Am; : : : be a sequence of rational
functions on X of degree at most d such that supX jf �Amj ! ε as m! ∞: The
theorem follows by considering the sequence of approximants S.Am.x/=f1 � εg/
as m! ∞:
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2.3 Symmetrization

Let Sn denote the symmetric group on n elements. For σ 2 Sn and x 2 Rn, we
denote σx D .xσ.1/; : : : ; xσ.n// 2 Rn: The following is a generalized form of
Minsky and Papert’s symmetrization argument [30], as formulated in [38].

PROPOSITION 2.6 (CF. MINSKY AND PAPERT). Let n1; : : : ; nk be positive inte-
gers. Let φW f0; 1gn1 � � � � � f0; 1gnk ! R be a polynomial of degree d: Then there
is a polynomial p on Rk of degree at most d such that for all x in the domain of φ;

E
σ12Sn1

;:::;σk2Snk

�
φ
�
σ1x1; : : : ;σkxk

��
D p

�
: : : ; xi;1 C � � � C xi;ni

; : : :
�
:

We now obtain a form of the symmetrization argument for rational approxima-
tion.

PROPOSITION 2.7. Let n1; : : : ; nk be positive integers, and α;β distinct reals. Let
GW fα;βgn1�� � ��fα;βgnk ! f�1;C1g be a function such that G.x1; : : : ; xk/ �

G.σ1x1; : : : ;σkxk/ for all σ1 2 Sn1
; : : : ;σk 2 Snk

: Let d be a given integer. Then
for each ε > RC.G; d/; there exists a rational function p=q on Rk of degree at
most d such that for all x in the domain of G; one hasˇ̌̌̌

G.x/ �
p.: : : ; xi;1 C � � � C xi;ni

; : : : /

q.: : : ; xi;1 C � � � C xi;ni
; : : : /

ˇ̌̌̌
< ε

and q.: : : ; xi;1 C � � � C xi;ni
; : : : / > 0:

Proof. Clearly, we may assume that ε < 1: Using the linear bijection .α;β/ $

.0; 1/ if necessary, we may further assume that α D 0 and β D 1: Since ε >

RC.G; d/; there are polynomials P; Q of degree up to d such that for all x in the
domain of G; one has Q.x/ > 0 and

.1 � ε/Q.x/ < G.x/P.x/ < .1C ε/Q.x/:

By Proposition 2.6, there exist polynomials p; q on Rk of degree at most d such
that

E
σ12Sn1

;:::;σk2Snk

�
P
�
σ1x1; : : : ;σkxk

��
D p

�
: : : ; xi;1 C � � � C xi;ni

; : : :
�

and

E
σ12Sn1

;:::;σk2Snk

�
Q
�
σ1x1; : : : ;σkxk

��
D q

�
: : : ; xi;1 C � � � C xi;ni

; : : :
�

for all x in the domain of G: Then the required properties of p and q follow
immediately from the corresponding properties of P and Q:
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3 Direct sum theorems

In the several subsections that follow, we prove our direct sum theorems for poly-
nomial representations of composed Boolean functions. General compositions are
treated in Section 3.1, followed by a study of conjunctions and other specific com-
positions in Sections 3.2–3.5.

3.1 General compositions

We begin our study with general compositions of the form F.f1; : : : ; fk/: Our
focus in this section will be on results that depend only on the threshold or approxi-
mate degrees of F; f1; : : : ; fk : In later sections, we will exploit additional structure
of the functions involved. The following result settles Theorems 1.1 and 1.2 from
the Introduction.

THEOREM 3.1. Let f WX ! f�1;C1g and F W f�1;C1gk ! f�1;C1g be given
functions, where X � Rn is a finite set. Then for 0 < ε < 1;

degε.F.f; : : : ; f // > degε.F / deg˙.f /: (3.1)

In particular,

deg˙.F.f; : : : ; f // > deg˙.F / deg˙.f /: (3.2)

Proof. Recall that the threshold degree is a limiting case of the approximate degree,
as given by (2.1). Hence, one obtains (3.2) by letting ε % 1 in (3.1). In the
remainder of the proof, we focus on (3.1) alone.

Put D D degε.F / and d D deg˙.f /: By Theorem 2.3, there exists a map
Ψ W f�1;C1gk ! R such that X

´2f�1;C1gk

jΨ .´/j D 1; (3.3)

X
´2f�1;C1gk

Ψ .´/F.´/ > ε; (3.4)

and
P
Ψ .´/p.´/ D 0 for every polynomial p of degree less than D: By Theo-

rem 2.2, there exists a distribution µ on X such that
P
µ.x/f .x/p.x/ D 0 for

every polynomial p of degree less than d:

Now, define ζ WXk ! R by

ζ .: : : ; xi ; : : : / D 2kΨ .: : : ; f .xi /; : : : /

kY
iD1

µ.xi /:

16



We claim that X
Xk

ζ .: : : ; xi ; : : : /p.: : : ; xi ; : : : / D 0 (3.5)

for every polynomial p of degree less than Dd: By linearity, it suffices to consider
a polynomial p of the form p.: : : ; xi ; : : : / D

Q
pi .xi /; where

P
deg pi < Dd:

Since Ψ is orthogonal on f�1;C1gk to all polynomials of degree less than D; we
have the representation

Ψ .´/ D
X

S�f1;:::;kg;
jS j>D

OΨ .S/
Y
i2S

´i

for some reals OΨ .S/: As a result,X
Xk

ζ .: : : ; xi ; : : : /p.: : : ; xi ; : : : /

D 2k
X

jS j>D

OΨ .S/
Y
i2S

�X
xi 2X

µ.xi /f .xi /pi .xi /

�

�

Y
i…S

�X
xi 2X

µ.xi /pi .xi /

�
:

(3.6)

Since
P

deg pi < Dd; the pigeonhole principle implies that deg pi < d for more
than k�D indices i 2 f1; : : : ; kg: As a result, for each set S in the outer summation
of (3.6), at least one of the underbraced factors vanishes (recall that f is orthogonal
on X with respect to µ to all polynomials of degree less than d ). This gives (3.5).

We may assume that f is not a constant function, the theorem being trivial oth-
erwise. It follows that deg˙.f / > 1 and

P
X µ.x/f .x/ D 0: Now, define a prod-

uct distribution λ on Xk by λ.: : : ; xi ; : : : / D
Q
µ.xi /: Since

P
X µ.x/f .x/ D 0;

it follows that the string .: : : ; f .xi /; : : : / is distributed uniformly on f�1;C1gk

when .: : : ; xi ; : : : / � λ: As a result,X
Xk

jζ .: : : ; xi ; : : : /j D 2k E
´2f�1;C1gk

ŒjΨ .: : : ; ´i ; : : : /j� D 1; (3.7)

where the last equality holds by (3.3). Similarly,X
Xk

ζ .: : : ; xi ; : : : /F .: : : ; f .xi /; : : : /

D 2k E
´2f�1;C1gk

ŒΨ .: : : ; ´i ; : : : /F .: : : ; ´i ; : : : /� > ε; (3.8)
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where the inequality holds by (3.4). Now (3.1) follows from (3.5), (3.7), (3.8), and
Theorem 2.3.

REMARK. In Theorem 3.1 and elsewhere in this paper, we consider Boolean func-
tions on finite subsets of Rn; which is the setting of primary interest in compu-
tational complexity. It is useful to keep in mind, however, that approximation
and sign-representation problems on compact infinite sets and other well-behaved
infinite sets are easily reduced to the finite case.

We now consider the so-called AND-OR tree, given by f .x/ DWn
iD1

Vn
j D1 xij : We improve the standing lower bound on the approximate degree

of f from ˝.n0:66:::/ to ˝.n0:75/; the best upper bound being O.n/:

THEOREM 1.3 (RESTATED). Let f W f�1;C1gn
2

! f�1;C1g be given by f .x/ DWn
iD1

Vn
j D1 xij : Then

deg1=3.f / D ˝.n0:75/:

Proof. Without loss of generality, assume that n D 4m2 for some integer m:

Define gW f�1;C1g4m3

! f�1;C1g by

g.x/ D

m_
iD1

4m2^
j D1

xij :

Let GW f�1;C1g4m ! f�1;C1g be given by G.x/ D x1 _ � � � _ x4m: A well-
known result of Minsky and Papert [30] states that deg˙.g/ D m: Also, Nisan
and Szegedy [32] proved that deg1=3.G/ D �.

p
m/: Since f D G.g; : : : ; g/; it

follows by Theorem 3.1 that deg1=3.f / D ˝.m
p

m/; as desired.

We now further develop the ideas of Theorem 3.1 to obtain a more general
result on the approximation of composed functions by polynomials. This gen-
eralization is based on a combinatorial property of Boolean functions known as
certificate complexity. For a string x 2 f�1;C1gk and a set S � f1; 2; : : : ; kg

whose distinct elements are i1 < i2 < � � � < ijS j; we adopt the notation xjS D

.xi1
; xi2

; : : : ; xijSj
/ 2 f0; 1gjS j: For a Boolean function F W f�1;C1gk ! f�1;C1g

and a point x 2 f�1;C1gk; the certificate complexity of F at x; denoted Cx.F /;

is the minimum size of a subset S � f1; 2; : : : ; kg such that F.x/ D F.y/

for all y 2 f�1;C1gk with xjS D yjS : The certificate complexity of F; de-
noted C.F /; is the maximum Cx.F / over all x: In the degenerate case when
F is constant, we have C.F / D 0: At the other extreme, the parity function
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F W f�1;C1gk ! f�1;C1g satisfies C.F / D k; which is the maximum possible.
The following proposition is immediate from the definition of certificate complex-
ity.

PROPOSITION 3.2. Let F W f�1;C1gk ! f�1;C1g be a given Boolean function.
Let y 2 f�1;C1gk be a random string whose i th bit is set to �1 with probability
αi and toC1 otherwise, independently for each i: Then for every x 2 f�1;C1gk;

P
y

ŒF .x1; : : : ; xk/ D F.x1y1; : : : ; xkyk/� > min
i1<i2<���<iCx.F /

Cx.F /Y
j D1

.1 � αij /:

Proof. Fix a set S � f1; 2; : : : ; kg of cardinality Cx.F / such that F.x/ D F.y/

whenever xjS D yjS : Then clearly Py ŒF .: : : ; xi ; : : : / D F.: : : ; xiyi ; : : : /� >
Py ŒyjS D .1; 1; : : : ; 1/�; and the bound follows.

We can now state and prove the desired generalization of Theorem 3.1.

THEOREM 3.3. Let f WX ! f�1;C1g and F W f�1;C1gk ! f�1;C1g be given
functions, where X � Rn is a finite set. Then for each ε;δ > 0;

degεCη�2C2.1�δ/C.F /.F.f; : : : ; f // > degε.F / deg1�δ.f / (3.9)

for some η D η.ε; F / > 0:

REMARK 3.4. One recovers Theorem 3.1 by letting δ & 0 in (3.9). We also
note that (3.9) is considerably stronger than Theorem 3.1: functions f�1;C1gk !

f�1;C1g are known, such as ODD-MAX-BIT [8], with threshold degree 1 and
.1 � δ/-approximate degree k˝.1/ for δ as small as δ D expf�k˝.1/g: Another
advantage of Theorem 3.3 is that the .1�δ/-approximate degree is easier to bound
from below than the threshold degree [8, 49, 24, 36, 37], even for δ exponentially
small. For δ small, the .1 � δ/-approximate degree is essentially equivalent to a
notion known as perceptron weight [30, 8, 49, 27, 20, 22, 24, 12, 36, 37].

Proof of Theorem 3.3. Let D D degε.F / and d D deg1�δ.f / > 0: Theorem 2.3
provides a map Ψ W f�1;C1gk ! R such thatX

´2f�1;C1gk

jΨ .´/j D 1; (3.10)

X
´2f�1;C1gk

Ψ .´/F.´/ > εC η (3.11)
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for some η D η.ε; F / > 0; and
P

´2f�1;C1gk Ψ .´/p.´/ D 0 for every polynomial
p of degree less than D: Analogously, there exists a map ψWX ! R such thatX

x2X

jψ.x/j D 1; (3.12)X
x2X

ψ.x/f .x/ > 1 � δ; (3.13)

and
P

x2X ψ.x/p.x/ D 0 for every polynomial p of degree less than d:

Define ζ WXk ! R by

ζ .: : : ; xi ; : : : / D 2k Ψ .: : : ; fsgnψ.xi /; : : : /

kY
iD1

jψ.xi /j:

By the same argument as in Theorem 3.1, we haveX
Xk

ζ .: : : ; xi ; : : : /p.: : : ; xi ; : : : / D 0 (3.14)

for every polynomial p of degree less than Dd:

Let µ be the distribution on Xk given by µ.: : : ; xi ; : : : / D
Q
jψ.xi /j: Since

ψ is orthogonal to the constant polynomial 1; the string .: : : ; fsgnψ.xi /; : : : / is
distributed uniformly over f�1;C1gk when one samples .: : : ; xi ; : : : / according
to µ: As a result, X

Xk

jζ .: : : ; xi ; : : : /j D
X

´2f�1;C1gk

jΨ .´/j D 1; (3.15)

where the final equality uses (3.10).
Define AC1 D fx 2 X W ψ.x/ > 0; f .x/ D �1g and A�1 D fx 2 X W

ψ.x/ < 0; f .x/ D C1g: Since ψ is orthogonal to the constant polynomial 1; it
follows from (3.12) thatX

xWψ.x/<0

jψ.x/j D
X

xWψ.x/>0

jψ.x/j D
1

2
:

In light of (3.13), we see that
P

x2AC1
jψ.x/j < δ=2 and

P
x2A�1

jψ.x/j < δ=2:

Now, for any given ´ 2 f�1;C1gk; the following two random variables are identi-
cally distributed:

� the string .: : : ; f .xi /; : : : / when one chooses .: : : ; xi ; : : : / � µ and condi-
tions on the event that .: : : ; fsgnψ.xi /; : : : / D ´;
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� the string .: : : ; yi´i ; : : : /; where y 2 f�1;C1gk is a random string whose
i th bit independently takes on �1 with probability 2

P
x2A´i

jψ.x/j < δ:

Proposition 3.2 now implies that for each ´ 2 f�1;C1gk;ˇ̌̌̌
E
µ

h
F.: : : ; f .xi /; : : : / j .: : : ; fsgnψ.xi /; : : : / D ´

i
� F.: : : ; fsgnψ.xi /; : : : /

ˇ̌̌̌
6 2 � 2.1 � δ/C.F /: (3.16)

We are now prepared to complete the proof. We haveX
Xk

ζ .: : : ; xi : : : /F .: : : ; f .xi /; : : : /

D 2k E
µ

h
Ψ .: : : ; fsgnψ.xi /; : : : /F .: : : ; f .xi /; : : : /

i
>

X
´2f�1;C1gk

Ψ .´/F.´/ � 2f1 � .1 � δ/C.F /
g

X
´2f�1;C1gk

jΨ .´/j

> εC η � 2C 2.1 � δ/C.F /; (3.17)

where the last two inequalities use (3.16), (3.10), and (3.11). In view of Theo-
rem 2.3, the exhibited properties (3.14), (3.15), and (3.17) of ζ force (3.9).

Theorems 3.1 and 3.3 complement known upper bounds for the approximation
of composed functions. The following theorem is due to Buhrman et al. [11], who
studied the approximation of Boolean functions with perturbed inputs. We include
the proof from [11] and slightly generalize it to any given parameters.

THEOREM 3.5 (CF. BUHRMAN ET AL.). Fix functions F W f�1;C1gk ! f�1;C1g

and f WX ! f�1;C1g; where X � Rn is finite. Then for all �;δ > 0;

degη.�;δ/.F.f; : : : ; f // 6 deg�.F / degδ.f /; (3.18)

where

η.�;δ/ D �C 2 � 2

�
1 �

δ
1C δ

�C.F /

: (3.19)

In particular,

deg1=3.F.f; : : : ; f //

6 deg1=3.F / deg1=3.f / �O.logf1C deg1=3.F /g/: (3.20)
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Proof (adapted from Buhrman et al.). Fix polynomials P and p on f�1;C1gk and
X; respectively. As usual, P may be assumed to be multilinear in view of its
domain. Define ˚ WXk ! R by

˚.: : : ; xi ; : : : / D P

�
: : : ;

1

1C kf � pk∞

p.xi /; : : :

�
:

Fix any input .: : : ; xi ; : : : / 2 Xk and consider a random variable y 2 f�1;C1gk

whose i th bit takes on �1 with probability

αi D
1

2
�

f .xi /p.xi /

2.1C kf � pk∞/
6
kf � pk∞

1C kf � pk∞

;

independently for each i: Then

j˚.: : : ; xi ; : : : / � F.: : : ; f .xi /; : : : /j

D

ˇ̌̌̌
E
y

ŒP.: : : ; yif .xi /; : : : / � F.: : : ; f .xi /; : : : /�

ˇ̌̌̌
6 kP � F k∞ C

ˇ̌̌̌
E
y

ŒF .: : : ; yif .xi /; : : : / � F.: : : ; f .xi /; : : : /�

ˇ̌̌̌
6 kP � F k∞ C 2 � 2

�
1 �

kf � pk∞

1C kf � pk∞

�C.F /

;

where the first and last steps in the derivation follow by the multilinearity of P and
by Proposition 3.2, respectively. This completes the proof of (3.18).

Taking � D 1=6 and δ D 1=.12C.F // in (3.18) gives

deg1=3.F.f; : : : ; f // 6 deg1=6.F / deg1=.12C.F //.f /:

Basic approximation theory [14] shows that for each ε > 0; there exists a univariate
polynomial of degree O.log 1

ε / that sends Œ�4
3
;�2

3
� ! Œ�1 � ε;�1 C ε� and

Œ2
3
; 4

3
�! Œ1 � ε; 1C ε�: As a result, we obtain

deg1=3.F.f; : : : ; f // 6 deg1=3.F / deg1=3.f / �O.logf1C C.F /g/;

which is equivalent to (3.20) because C.F / is known to be within a polynomial of
deg1=3.F / for every Boolean function F W f�1;C1gk ! f�1;C1g; as discussed in
detail in the survey article [13].
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Compositions with k distinct functions. We now consider compositions of the
form F.f1; : : : ; fk/; where the functions f1; : : : ; fk may all be distinct. For a
function F W f�1;C1gk ! R and a vector v D .v1; : : : ; vk/ of nonnegative inte-
gers, define the .ε; v/-approximate degree degε;v.F / to be the least D for which
there is a polynomial P.x1; : : : ; xk/ with

P 2 span

(Y
i2S

xi W S � f1; 2; : : : ; kg;
X
i2S

vi 6 D

)
and kF � P k∞ 6 ε: Note that the ε-approximate degree of F is the .ε; v/-
approximate degree of F for v D .1; 1; : : : ; 1/: It is clear that

degε;v.F / > min
i1<i2<���<idegε.F /

fvi1
C vi2

C � � � C videgε.F /
g;

with an arbitrary gap achievable between the right and left members of the in-
equality. We will also need the following generalized version of Theorem 2.3, due
to Ioffe and Tikhomirov [17].

THEOREM 3.6 (IOFFE AND TIKHOMIROV). Let X be a finite set. Fix any family
˚ of functions X ! R and an additional function f WX ! R: Then

min
φ2span.˚/

kf � φk∞ D max
ψ

(X
x2X

f .x/ψ.x/

)
;

where the maximum is over all functions ψWX ! R such thatX
x2X

jψ.x/j 6 1

and, for each φ 2 ˚; X
x2X

φ.x/ψ.x/ D 0:

A short proof of Theorem 3.6 can be found, e.g., in [42, �3]. With this setup in
place, we obtain the following analogues of Theorems 3.3 and 3.5 for compositions
of the form F.f1; : : : ; fk/:

THEOREM 3.7. Fix nonconstant functions F W f�1;C1gk ! f�1;C1g and
fi WXi ! f�1;C1g; i D 1; 2; : : : ; k; where each Xi � Rn is finite. Then for
ε;δ > 0; one has

degεCη�2C2.1�δ/C.F /.F.f1; : : : ; fk// > degε;v.F / (3.21)

for some η D η.ε; F / > 0; where v D .deg1�δ.f1/; : : : ; deg1�δ.fk//:
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Proof. Let D D degε;v.F / and di D deg1�δ.fi /: Theorem 3.6 provides a map
Ψ W f�1;C1gk ! R such that X

´2f�1;C1gk

jΨ .´/j D 1; (3.22)

X
´2f�1;C1gk

Ψ .´/F.´/ > εC η

for some η D η.ε; F / > 0; and

Ψ .´/ D
X

S2S

OΨ .S/
Y
i2S

´i

for some reals OΨ .S/; where S D fS � f1; 2; : : : ; kg W
P

i2S di > Dg: Analo-
gously, there are maps ψi WXi ! R; i D 1; 2; : : : ; k; such thatX

xi 2Xi

jψi .xi /j D 1;

X
xi 2Xi

ψi .xi /fi .xi / > 1 � δ;

and
P

xi 2Xi
ψi .xi /p.xi / D 0 for every polynomial p of degree less than di :

Define ζ WX1 � � � � �Xk ! R by

ζ .: : : ; xi ; : : : / D 2k Ψ .: : : ; fsgnψi .xi /; : : : /

kY
iD1

jψi .xi /j:

By an argument analogous to that in Theorem 3.1, we haveX
X1�����Xk

ζ .: : : ; xi ; : : : /p.: : : ; xi ; : : : / D 0 (3.23)

for every polynomial p of degree less than D:

Let µ be the distribution on X1 � � � � � Xk given by µ.: : : ; xi ; : : : / DQ
jψi .xi /j: Since each ψi is orthogonal to the constant polynomial 1; the string

.: : : ; fsgnψi .xi /; : : : / is distributed uniformly over f�1;C1gk when one samples

.: : : ; xi ; : : : / according to µ: As a result,X
X1�����Xk

jζ .: : : ; xi ; : : : /j D
X

´2f�1;C1gk

jΨ .´/j D 1; (3.24)
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where the final equality uses (3.22).
By an argument analogous to that in Theorem 3.3, we obtainX

X1�����Xk

ζ .: : : ; xi : : : /F .: : : ; fi .xi /; : : : / > εC η � 2C 2.1 � δ/C.F /: (3.25)

In view of Theorem 2.3, the exhibited properties (3.23), (3.24), and (3.25) of ζ
complete the proof.

REMARK 3.8. Analogous to the earlier development, taking δ & 0 in Theo-
rem 3.7 yields the lower bound degε.F.f1; : : : ; fk// > degε;v.F / for each ε > 0;

where v D .deg˙.f1/; : : : ; deg˙.fk//:

THEOREM 3.9. Fix functions F W f�1;C1gk ! f�1;C1g and fi WXi !

f�1;C1g; i D 1; 2; : : : ; k; where each Xi � Rn is finite. Then for all �;δ > 0;

degη.�;δ/.F.f1; : : : ; fk// 6 deg�;v.F /;

where v D .degδ.f1/; : : : ; degδ.fk// and

η.�;δ/ D �C 2 � 2

�
1 �

δ
1C δ

�C.F /

: (3.26)

In particular,

deg1=3.F.f1; : : : ; fk// D deg1=3;v.F / �O.logf1C deg1=3.F /g/ (3.27)

for v D .deg1=3.f1/; : : : ; deg1=3.fk//:

Proof. Fix a real polynomial P on f�1;C1gk and polynomials pi on Xi ; respec-
tively. As usual, P may be assumed to be multilinear in view of its domain. Define
˚ WX1 � � � � �Xk ! R by

˚.: : : ; xi ; : : : / D P

�
: : : ;

1

1C kfi � pik∞

pi .xi /; : : :

�
:

The remainder of the proof is analogous to that of Theorem 3.5, with the obvious
notational changes and an optimal choice of approximants P; p1; : : : ; pk :

Bounds using block sensitivity. Several results above can be sharpened some-
what using the notion of block sensitivity, denoted bs.F / for a function
F W f�1;C1gk ! f�1;C1g and defined as the maximum number of nonempty
disjoint subsets S1; S2; S3; � � � � f1; 2; : : : ; kg such that on some input x 2

f�1;C1gk; flipping the bits in any one set Si changes the value of the function.
We have:
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PROPOSITION 3.10. Let F W f�1;C1gk ! f�1;C1g be a given Boolean function.
Let y 2 f�1;C1gk be a random string whose i th bit is set to �1 with probability
at most α; independently for each i: Then for every x 2 f�1;C1gk;

P
y

ŒF .x1; : : : ; xk/ ¤ F.x1y1; : : : ; xkyk/� 6 2α bs.F /:

Proof. By monotonicity, we may assume that each bit of y takes on�1 with proba-
bility exactly α: For a fixed integer r and a uniformly random string y 2 f�1;C1gk

with jfi W yi D �1gj D r; the probability that F.: : : ; xi ; : : : / ¤ F.: : : ; xiyi ; : : : /

is clearly at most bs.F /=bk=rc 6 2r bs.F /=k: Averaging over r gives the sought
bound.

Since by definition C.F / > bs.F / for every function F W f�1;C1gk !

f�1;C1g; use of Proposition 3.10 instead of Proposition 3.2 can lead to sharper
bounds in some results of this section. Specifically, Theorems 3.3, 3.5, 3.7, and 3.9
remain valid with (3.9) replaced by

degεCη�4δ bs.F /.F.f; : : : ; f // > degε.F / deg1�δ.f /I (3.28)

with (3.19) and (3.26) replaced by

η.�;δ/ D �C
4δ bs.F /

1C δ
I (3.29)

and with (3.21) replaced by

degεCη�4δ bs.F /.F.f1; : : : ; fk// > degε;v.F /: (3.30)

In particular, we obtain from Theorem 3.3 that

deg1=3.F.f; : : : ; f // > deg2=3.F / deg1�.12 bs.F //�1.f /

> deg1=3.F / deg1=3.f / �˝

�
1

1C bs.F /

�
:

3.2 Auxiliary results on rational approximation

In this section, we prove a number of auxiliary facts about uniform approximation
and sign-representation. This preparatory work will set the stage for our analysis of
conjunctions of functions. We start by spelling out the exact relationship between
the rational approximation and sign-representation of a Boolean function.

THEOREM 3.11. Let f WX ! f�1;C1g be a given function, where X � Rn is
finite. Then for every integer d;

deg˙.f / 6 d , RC.f; d/ < 1:
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Proof. For the forward implication, let p be a polynomial of degree at most d

such that f .x/p.x/ > 0 for every x 2 X: Letting M D maxx2X jp.x/j and
m D minx2X jp.x/j; we have

RC.f; d/ 6 max
x2X

ˇ̌̌̌
f .x/ �

p.x/

M

ˇ̌̌̌
6 1 �

m

M
< 1:

For the converse, fix a degree-d rational function p.x/=q.x/ with q.x/ > 0 on
X and maxX jf .x/ � fp.x/=q.x/gj < 1: Then clearly f .x/p.x/ > 0 on X:

Our next observation amounts to reformulating the rational approximation of
Boolean functions in a way that is more analytically pleasing.

THEOREM 3.12. Let f WX ! f�1;C1g be a given function, where X � Rn is
finite. Then for every integer d > deg˙.f /; one has

RC.f; d/ D inf
c>1

c2 � 1

c2 C 1
;

where the infimum is over all c > 1 for which there exist polynomials p; q of degree
up to d such that 0 < 1

c
q.x/ 6 f .x/p.x/ 6 cq.x/ on X:

Proof. In view of Theorem 3.11, the quantity RC.f; d/ is the infimum over all
ε < 1 for which there exist polynomials p and q of degree up to d such that
0 < .1� ε/q.x/ 6 f .x/p.x/ 6 .1C ε/q.x/ on X: Equivalently, one may require
that

0 <
1 � ε
p

1 � ε2
q.x/ 6 f .x/p.x/ 6

1C ε
p

1 � ε2
q.x/:

Letting c D c.ε/ D
p

.1C ε/=.1 � ε/; the theorem follows.

We will now show that if a degree-d rational approximant achieves error ε
in approximating a given Boolean function, then a degree-2d approximant can
achieve error as small as ε2: Note that this result is a refinement of Theorem 2.5
for small k:

THEOREM 3.13. Let f WX ! f�1;C1g be a given function, where X � Rn: Let
d be a given integer. Then

RC.f; 2d/ 6

� ε

1C
p

1 � ε2

�2

;

where ε D R.f; d/:
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Proof. The theorem is clearly true for ε D 1: For 0 6 ε < 1; consider the
univariate rational function

S.t/ D
4
p

1 � ε2

1C
p

1 � ε2
�

t

t2 C .1 � ε2/
:

Calculus shows that

max
1�ε6jt j61Cε

j sgn t � S.t/j D

� ε

1C
p

1 � ε2

�2

:

Fix a sequence A1; A2; : : : of rational functions of degree at most d such that
supx2X jf .x/ � Am.x/j ! ε as m ! ∞: Then S.A1.x//; S.A2.x//; : : : is the
sought sequence of approximants to f; each a rational function of degree at most
2d with a positive denominator.

COROLLARY 3.14. Let f WX ! f�1;C1g be a given function, where X � Rn:

Then for all integers d > 1 and reals t > 2;

RC.f; td/ 6 R.f; d/t=2:

Proof. If t D 2k for some integer k > 1; then repeated applications of Theo-
rem 3.13 yield RC.f; 2kd/ 6 R.f; 2k�1d/2 6 � � � 6 R.f; d/2k

: The general case
follows because 2blog tc > t=2:

3.3 Conjunctions of functions

In this section, we prove our direct sum theorems for conjunctions of Boolean func-
tions. Recall that a key challenge will be, given a sign-representation φ.x; y/ of a
composite function f .x/ ^ g.y/; to suitably break down φ and recover individual
rational approximants of f and g: We now present an ingredient of our solution,
namely, a certain fact about pairs of matrices based on Farkas’ Lemma. For the
time being, we will formulate this fact in a clean and abstract way.

THEOREM 3.15. Fix matrices A; B 2 Rm�n and a real c > 1: Consider the
following system of linear inequalities in u; v 2 Rn:

1

c
Au 6Bv 6 cAu;

u > 0;

v > 0:

ƒ

(3.31)

If u D v D 0 is the only solution to (3.31), then there exist vectors w > 0 and
´ > 0 such that

wTAC ´TB > c.´TAC wTB/:
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Proof. If u D v D 0 is the only solution to (3.31), then linear programming
duality implies the existence of vectors w > 0 and ´ > 0 such that wTA > c´TA

and ´TB > cwTB: Adding the last two inequalities completes the proof.

For clarity of exposition, we first prove the main result of this section for the
case of two Boolean functions at least one of which is odd. While this case seems
restricted, we will see that it captures the full complexity of the problem.

THEOREM 3.16. Let f WX ! f�1;C1g and gWY ! f�1;C1g be given functions,
where X; Y � Rn are arbitrary finite sets. Assume that f 6� 1 and g 6� 1: Let
d D deg˙.f ^ g/: If f is odd, then

RC.f; 2d/CRC.g; d/ < 1:

Proof. We first collect some basic observations. Since f 6� 1 and g 6� 1; we have
deg˙.f / 6 d and deg˙.g/ 6 d: Therefore, Theorem 3.11 implies that

RC.f; d/ < 1; RC.g; d/ < 1: (3.32)

In particular, the theorem holds if RC.g; d/ D 0: In the remainder of the proof,
we assume that RC.g; d/ D ε; where 0 < ε < 1:

By hypothesis, there exists a degree-d polynomial φ such that f .x/^ g.y/ D

sgnφ.x; y/ for all x 2 X; y 2 Y: Define

X�
D fx 2 X W f .x/ D �1g:

Since X is closed under negation and f is odd, we have f .x/ D 1, �x 2 X�:

We will make several uses of this fact in what follows, without further mention.
Put

c D

s
1C .1 � δ/ε
1 � .1 � δ/ε

;

where δ 2 .0; 1/ is sufficiently small. Since RC.g; d/ > .c2 � 1/=.c2 C 1/; we
know by Theorem 3.12 that there cannot exist polynomials p; q of degree up to d

such that
0 <

1

c
q.y/ 6 g.y/p.y/ 6 cq.y/; y 2 Y: (3.33)

We claim, then, that there cannot exist reals ax > 0; x 2 X; not all zero, such that

1

c

X
x2X�

a�xφ.�x; y/ 6 g.y/
X

x2X�

axφ.x; y/ 6 c
X

x2X�

a�xφ.�x; y/; y 2 Y:
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Indeed, if such reals ax were to exist, then (3.33) would hold for the polynomials
p.y/ D

P
x2X� axφ.x; y/ and q.y/ D

P
x2X� a�xφ.�x; y/: In view of the

nonexistence of the ax; Theorem 3.15 applies to the matricesh
φ.�x; y/

i
y2Y; x2X�

;
h
g.y/φ.x; y/

i
y2Y; x2X�

and guarantees the existence of nonnegative reals λy ;µy for y 2 Y such thatX
y2Y

λyφ.�x; y/C
X
y2Y

µyg.y/φ.x; y/

> c

 X
y2Y

µyφ.�x; y/C
X
y2Y

λyg.y/φ.x; y/

!
; x 2 X�: (3.34)

Define polynomials α;β on X by

α.x/ D
X

y2g�1.�1/

fλyφ.�x; y/ � µyφ.x; y/g;

β.x/ D
X

y2g�1.1/

fλyφ.�x; y/C µyφ.x; y/g:

Then (3.34) can be restated as

α.x/Cβ.x/ > cf�α.�x/Cβ.�x/g; x 2 X�:

Both members of this inequality are nonnegative, and thus fα.x/ C β.x/g2 >

c2f�α.�x/Cβ.�x/g2 for x 2 X�: Since in addition α.�x/ 6 0 andβ.�x/ > 0

for x 2 X�; we have

fα.x/Cβ.x/g2 > c2
fα.�x/Cβ.�x/g2; x 2 X�:

Letting γ .x/ D fα.x/Cβ.x/g2; we see that

RC.f; 2d/ 6 max
x2X

ˇ̌̌̌
f .x/ �

c2 C 1

c2
�
γ .�x/ � γ .x/

γ .�x/C γ .x/

ˇ̌̌̌
6

1

c2
< 1 � ε;

where the final inequality holds for all δ 2 .0; 1/ small enough.

REMARK. In Theorem 3.16 and elsewhere in this paper, the degree of a multi-
variate polynomial p.x1; x2; : : : ; xn/ is defined as the greatest total degree of any
monomial of p: A related notion is the partial degree of p; which is the maximum
degree of p in any one of the variables x1; x2; : : : ; xn: One readily sees that the
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proof of Theorem 3.16 applies unchanged to this alternate notion. Specifically, if
the conjunction f .x/ ^ g.y/ can be sign-represented by a polynomial of partial
degree d; then there exist rational functions F.x/ and G.y/ of partial degree 2d

such that kf �F k∞Ckg�Gk∞ < 1: In the same way, the program of Section 3.4
carries over, with cosmetic changes, to the notion of partial degree. Analogously,
our proofs apply to hybrid definitions of degree, such as partial degree over blocks
of variables. Other, more abstract notions of degree can also be handled. In the
remainder of the paper, we will maintain our focus on total degree and will not
elaborate further on its generalizations.

As promised, we will now remove the assumption, made in Theorem 3.16,
about one of the functions being odd. The result that we are about to prove settles
Theorem 1.4 from the Introduction.

THEOREM 3.17. Let f WX ! f�1;C1g and gWY ! f�1;C1g be given functions,
where X; Y � Rn are arbitrary finite sets. Assume that f 6� 1 and g 6� 1: Let
d D deg˙.f ^ g/: Then

RC.f; 4d/CRC.g; 2d/ < 1 (3.35)

and, by symmetry,

RC.f; 2d/CRC.g; 4d/ < 1:

Proof. It suffices to prove (3.35). Define X 0 � RnC1 by X 0 D f.x; 1/; .�x;�1/ W

x 2 Xg: It is clear that X 0 is closed under negation. Let f 0WX 0 ! f�1;C1g be the
odd Boolean function given by

f 0.x; b/ D

(
f .x/; b D 1;

�f .�x/; b D �1:

Let φ be a polynomial of degree no greater than d such that f .x/ ^ g.y/ �

sgnφ.x; y/: Fix an input Qx 2 X such that f . Qx/ D �1: Then f 0.x; b/ ^ g.y/ �

sgn
˚
K.1C b/φ.x; y/C φ.�x; y/φ. Qx; y/

	
for a large enough constant K � 1;

whence
deg˙.f 0

^ g/ 6 2d:

Theorem 3.16 now yields RC.f 0; 4d/ C RC.g; 2d/ < 1: Since RC.f; 4d/ 6
RC.f 0; 4d/ by definition, the proof is complete.

Finally, we obtain an analogue of Theorem 3.17 for a conjunction of three and
more functions.
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THEOREM 3.18. Let f1; f2; : : : ; fk be given Boolean functions on finite sets
X1; X2; : : : ; Xk � Rn; respectively. Assume that fi 6� 1 for i D 1; 2; : : : ; k:

Let d D deg˙.f1 ^ f2 ^ � � � ^ fk/: Then

kX
iD1

RC.fi ; D/ < 1

for D D 8d log 2k:

Proof. Since f1; f2; : : : ; fk 6� 1; it follows that for each pair of indices i < j; the
function fi ^ fj is a subfunction of f1 ^ f2 ^ � � � ^ fk : Theorem 3.17 now shows
that for each i < j;

RC.fi ; 4d/CRC.fj ; 4d/ < 1: (3.36)

Without loss of generality, RC.f1; 4d/ D maxiD1;:::;k RC.fi ; 4d/: Abbreviate
ε D RC.f1; 4d/: By (3.36),

RC.fi ; 4d/ < min
�

1 � ε;
1

2

�
; i D 2; 3; : : : ; k:

Now Corollary 3.14 implies that

kX
iD1

RC.fi ; D/ 6 εC
kX

iD2

RC.fi ; 4d/1Clog k < 1:

3.4 Other combining functions

As we will now see, the development in Section 3.3 applies to many combining
functions other than conjunctions. Disjunctions are an illustrative starting point.
Consider two Boolean functions f WX ! f�1;C1g and gWY ! f�1;C1g; where
X; Y � Rn are finite sets and f; g 6� �1: Let d D deg˙.f _ g/: Then, we claim
that

RC.f; 4d/CRC.g; 4d/ < 1: (3.37)

To see this, note first that the function f _ g has the same threshold degree as its
negation, f ^ g: Applying Theorem 3.17 to the latter function shows that

RC.f ; 4d/CRC.g; 4d/ < 1:

This is equivalent to (3.37) since approximating a function is the same as approxi-
mating its negation: RC.f ; 4d/ D RC.f; 4d/ and RC.g; 4d/ D RC.g; 4d/: As
in the case of conjunctions, (3.37) can be strengthened to

RC.f; 2d/CRC.g; 2d/ < 1
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if at least one of f; g is known to be odd. These observations carry over to disjunc-
tions of multiple functions, f1 _ f2 _ � � � _ fk :

The above discussion is still too specialized. In what follows, we consider
composite functions h.f1; f2; : : : ; fk/; where hW f�1;C1gk ! f�1;C1g is any
given Boolean function. We will shortly see that the results of the previous sections
hold for various h other than h D AND and h D OR:

We start with some notation and definitions. Let f; hW f�1;C1gk ! f�1;C1g

be given Boolean functions. Recall that f is called a subfunction of h if for some
fixed strings y; ´ 2 f�1;C1gk; one has

f .x/ D h.: : : ; .xi ^ yi / _ ´i ; : : : /

for each x 2 f�1;C1gk : In words, f can be obtained from h by replacing some of
the variables x1; x2; : : : ; xk with fixed values (�1 orC1).

DEFINITION 3.19. A function F W f�1;C1gk ! f�1;C1g is AND-reducible if for
each pair of indices i; j; where 1 6 i 6 j 6 k; at least one of the eight functions

xi ^ xj ;

xi ^ xj ;

xi ^ xj ;

xi ^ xj ;

xi _ xj ;

xi _ xj ;

xi _ xj ;

xi _ xj

is a subfunction of F.x/:

THEOREM 3.20. Let f1; f2; : : : ; fk be nonconstant Boolean functions on finite
sets X1; X2; : : : ; Xk � Rn; respectively. Let F W f�1;C1gk ! f�1;C1g be an
AND-reducible function. Put d D deg˙.F.f1; f2; : : : ; fk//: Then

kX
iD1

RC.fi ; D/ < 1

for D D 8d log 2k:

Proof. Since F is AND-reducible, it follows that for each pair of indices i < j;

one of the following eight functions is a subfunction of F.f1; : : : ; fk/:

fi ^ fj ;

fi ^ fj ;

fi ^ fj ;

fi ^ fj ;

fi _ fj ;

fi _ fj ;

fi _ fj ;

fi _ fj :
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By Theorem 3.17 (and the opening remarks of this section),

RC.fi ; 4d/CRC.fj ; 4d/ < 1:

The remainder of the proof is identical to the proof of Theorem 3.18, starting at
equation (3.36).

In summary, the development in Section 3.3 naturally extends to compositions
F.f1; f2; : : : ; fk/ for various F: For a function F W f�1;C1gk ! f�1;C1g to
be AND-reducible, F must clearly depend on all of its inputs. This necessary
condition is often sufficient, for example when F is a read-once AND/OR/NOT
formula or a halfspace. Hence, Theorem 1.5 from the Introduction is a corollary of
Theorem 3.20.

REMARK. If more information is available about the combining function F; The-
orem 3.20 can be generalized to let some of f1; : : : ; fk be constant functions. For
example, some or all of the functions f1; : : : ; fk in Theorem 3.18 can be identically
true. Another direction for generalization is as follows. In Definition 3.19, one
considers all the

�
k
2

�
distinct pairs of indices .i; j /: If one happens to know that

f1 is harder to approximate than f2; : : : ; fk; then one can relax Definition 3.19 to
examine only the k � 1 pairs .1; 2/; .1; 3/; : : : ; .1; k/: We do not formulate these
extensions as theorems, the fundamental technique being already clear.

3.5 Additional observations

Analogous to Section 3.1, our results here can be viewed as a technique for proving
lower bounds on the threshold degree of composite functions F.f1; f2; : : : ; fk/:

We make this view explicit in the following statement, which is the contrapositive
of Theorem 3.20.

THEOREM 3.21. Let f1; f2; : : : ; fk be nonconstant Boolean functions on finite
sets X1; X2; : : : ; Xk � Rn; respectively. Let F W f�1;C1gk ! f�1;C1g be an
AND-reducible function. Suppose that

P
RC.fi ; D/ > 1 for some integer D:

Then
deg˙.F.f1; f2; : : : ; fk// >

D

8 log 2k
: (3.38)

REMARK 3.22 (ON THE TIGHTNESS OF THEOREM 3.21). Theorem 3.21 is close
to optimal. For example, when F D AND; the lower bound in (3.38) is tight up to
a factor of �.k log k/: This can be seen by the well-known argument [9] described
in the Introduction. Specifically, fix an integer D such that

P
RC.fi ; D/ < 1:
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Then there exists a rational function pi .xi /=qi .xi / on Xi ; for i D 1; 2; : : : ; k;

such that qi is positive on Xi and

kX
iD1

max
xi 2Xi

ˇ̌̌̌
fi .xi / �

pi .xi /

qi .xi /

ˇ̌̌̌
< 1:

As a result,

k̂

iD1

fi .xi / � sgn

 
k � 1C

kX
iD1

fi .xi /

!
� sgn

 
k � 1C

kX
iD1

pi .xi /

qi .xi /

!
:

Multiplying by
Q

qi .xi / yields

k̂

iD1

fi .xi / � sgn

�
.k � 1/

kY
iD1

qi .xi /C

kX
iD1

pi .xi /
Y

j 2f1;:::;kgnfig

qj .xj /

�
;

whence deg˙.f1^f2^� � �^fk/ 6 kD: This settles our claim regarding F D AND:

For arbitrary AND-reducible functions F W f�1;C1gk ! f�1;C1g; a similar argu-
ment (cf. Theorem 31 of Klivans et al. [20]) shows that the lower bound in (3.38)
is tight up to a polynomial in k:

We close this section with one additional result.

THEOREM 3.23. Let f WX ! f�1;C1g be a given function, where X � Rn is
finite. Then for every integer k > 2;

deg˙. f ^ f ^ � � � ^ fœ
k

/ 6 .8k log k/ � deg˙.f ^ f /: (3.39)

Proof. Put d D deg˙.f ^ f /: Theorem 3.17 implies that RC.f; 4d/ < 1=2;

whence RC.f; 8d log k/ < 1=k by Corollary 3.14. By the argument in Re-
mark 3.22, this proves the theorem.

To illustrate, let C be a given class of functions on f�1;C1gn; such as half-
spaces. Theorem 3.23 shows that the task of constructing a sign-representation
for the intersections of up to k members from C reduces to the case k D 2: In
other words, solving the problem for k D 2 essentially solves it for all k: The
dependence on k in (3.39) is tight up to a factor of 16 log k; even in the simple case
when f is the OR function [30].
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4 Rational approximation of a halfspace

In this section, we determine how well a rational function of any given degree can
approximate the canonical halfspace. The lower bounds in Theorem 1.6, the main
result to be proved in this section, are considerably more involved than the upper
bounds. To help build some intuition in the former case, we first obtain the upper
bounds (Section 4.1) and only then prove the lower bounds (Sections 4.2 and 4.3).

4.1 Upper bounds

As shown in the Introduction, the OR function on n bits has RC.OR; 1/ D 0: A
similar example is the ODD-MAX-BIT function f W f0; 1gn ! f�1;C1g; due to
Beigel [8], defined by

f .x/ D sgn

 
1C

nX
iD1

.�2/ixi

!
:

Indeed, letting

AM .x/ D
1C

Pn
iD1.�M/ixi

1C
Pn

iD1 M ixi

;

we have kf �AMk∞ ! 0 as M ! ∞: Thus, RC.f; 1/ D 0: With this construction
in mind, we now turn to the canonical halfspace. We start with an auxiliary result
that generalizes the argument just given.

LEMMA 4.1. Let f W f0;˙1;˙2gn ! f�1;C1g be the function given by f .´/ D

sgn.1C
Pn

iD1 2i´i /: Then

RC.f; 64/ D 0:

Proof. Consider the deterministic finite automaton in Figure 1. The automaton
has two terminal states (labeled “C” and “�”) and three nonterminal states (the
start state and two additional states). We interpret the output of the automaton to
be C1 and �1 at the two terminal states, respectively, and 0 otherwise. A string
´ D .´n; ´n�1; : : : ; ´1; 0/ 2 f0;˙1;˙2gnC1; when read by the automaton left
to right, forces it to output exactly sgn.

Pn
iD1 2i´i /: If the automaton is currently

at a nonterminal state, this state is determined uniquely by the last two symbols
read. Hence, the output of the automaton on input ´ D .´n; ´n�1; : : : ; ´1; 0/ 2

f0;˙1;˙2gnC1 is given by

sgn

 
nX

iD0

2iα.´iC2; ´iC1; ´i /

!
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Figure 1: Finite automaton for the proof of Lemma 4.1.

for a suitable map αW f0;˙1;˙2g3 ! f0;�1;C1g; where we adopt the shorthand
´nC1 D ´nC2 D ´0 D 0: Put

AM .´/ D
1C

Pn
iD0 M iC1α.´iC2; ´iC2; ´i /

1C
Pn

iD0 M iC1jα.´iC2; ´iC2; ´i /j
:

By interpolation, the numerator and denominator of AM can be represented by
polynomials of degree no more than 4 � 4 � 4 D 64: On the other hand, we have
kf � AMk∞ ! 0 as M ! ∞:

We are now prepared to prove our desired upper bounds for halfspaces.

THEOREM 4.2. Let f W f�1;C1gnk ! f�1;C1g be the function given by

f .x/ D sgn

0@1C

nX
iD1

kX
j D1

2ixij

1A : (4.1)

Then

RC.f; 64kdlog ke C 1/ D 0: (4.2)

In addition, for all integers d > 1;

RC.f; d/ 6 1 � .k2nC1/�1=d : (4.3)

In particular, Theorem 4.2 settles all upper bounds on rdegε.f / in Theorem 1.6.

Proof of Theorem 4.2. Theorem 2.4 immediately implies (4.3) in view of the rep-
resentation (4.1). It remains to prove (4.2). In the degenerate case k D 1; we have
f � xn1 and thus (4.2) holds. In what follows, we assume that k > 2 and put
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� D dlog ke: We adopt the convention that xij � 0 for i > n: For ` D 0; 1; 2; : : : ;

define

S` D

�X
iD1

kX
j D1

2i�1x`�Ci;j :

Then

nX
iD1

kX
j D1

2i�1xij D
�
S0 C 22�S2 C 24�S4 C 26�S6 C � � �

�
C
�
2�S1 C 23�S3 C 25�S5 C 27�S7 C � � �

�
: (4.4)

Now, each S` is an integer in Œ�22�C1; 22��1� and therefore admits a represen-
tation as

S` D ´`;1 C 2´`;2 C 22´`;3 C � � � C 22��1´`;2�;

where ´`;1; : : : ; ´`;2� 2 f�1; 0;C1g: Furthermore, each S` only depends on k� of
the original variables xij ; whence ´`;1; : : : ; ´`;2� can all be viewed as polynomials
of degree at most k� in the original variables. Rewriting (4.4),

nX
iD1

kX
j D1

2i�1xij D

0@X
i>1

2i�1´`.i/;j.i/

1AC
0@ X

i>�C1

2i�1´`0.i/;j 0.i/

1A
for appropriate indexing functions `.i/; `0.i/; j.i/; j 0.i/: Thus,

f .x/ � sgn

0@1C

�X
iD1

2i ´`.i/;j.i/˜C

X
i>�C1

2i
�
´`.i/;j.i/ C ´`0.i/;j 0.i/

�
Ÿ

1A :

Since the underbraced expressions range in f0;˙1;˙2g and are polynomials of
degree at most k� in the original variables, Lemma 4.1 implies (4.2).

4.2 Preparatory work

This section sets the stage for our rational approximation lower bounds with some
preparatory results about halfspaces. It will be convenient to establish some ad-
ditional notation, for use in this section only. Here, we typeset real vectors in
boldface (x1; x2; z; v) to better distinguish them from scalars. The i th component
of a vector x 2 Rn is denoted by .x/i ; while the symbol xi is reserved for an-
other vector from some enumeration. In keeping with this convention, we let ei
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denote the vector with 1 in the i th component and zeroes everywhere else. For
x; y 2 Rn; the vector xy 2 Rn is given by .xy/i � .x/i .y/i : More generally, for a
polynomial p on Rk and vectors x1; : : : ; xk 2 Rn; we define p.x1; : : : ; xk/ 2 Rn

by .p.x1; : : : ; xk//i D p..x1/i ; : : : ; .xk/i /: The expectation of a random vari-
able x 2 Rn is defined componentwise, i.e., the vector EŒx� 2 Rn is given by
.EŒx�/i � EŒ.x/i �:

For convenience, we adopt the notational shorthand α0 D 1 for all α 2 R:

In particular, if x 2 Rn is a given vector, then x0 D .1; 1; : : : ; 1/ 2 Rn: A scalar
α 2 R; when interpreted as a vector, stands for .α;α; : : : ;α/: This shorthand allows
one to speak of spanf1; z; z2; : : : ; zkg; for example, where z 2 Rn is a given vector.

THEOREM 4.3. Let N and m be positive integers. Then reals α0;α1; : : : ;α4m

exist with the following property: for each b 2 f0; 1gN ; there is a probability
distribution µb on f0;˙1; : : : ;˙mgN such that

E
v�µb

Œ.2vC b/d � D .αd ;αd ; : : : ;αd /; d D 0; 1; 2; : : : ; 4m:

Proof. Let λ0 and λ1 be the distributions on f0;˙1; : : : ;˙mg given by

λ0.t/ D 16�m

 
4mC 1

2mC 2t

!
; λ1.t/ D 16�m

 
4mC 1

2mC 2t C 1

!
:

Then for d D 0; 1; : : : ; 4m; one has

E
t�λ0

Œ.2t/d � � E
t�λ1

Œ.2t C 1/d �

D 16�m
4mC1X

tD0

.�1/t

 
4mC 1

t

!
.t � 2m/d

D 0; (4.5)

where (4.5) holds by Fact 2.1. Now, let µb D λ.b/1
� λ.b/2

� � � � � λ.b/N
:

Then in view of (4.5), the theorem holds by letting αd D Eλ0
Œ.2t/d � for d D

0; 1; 2; : : : ; 4m:

Using the previous theorem, we will now establish another auxiliary result
pertaining to halfspaces.

THEOREM 4.4. Put z D .�2n;�2n�1; : : : ;�20; 20; : : : ; 2n�1; 2n/ 2 R2nC2:

There are random variables x1; x2; : : : ; xnC1 2 f0;˙1;˙2; : : : ;˙.3nC 1/g2nC2

such that:
nC1X
iD1

2i�1xi � z (4.6)
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and

E

"
nY

iD1

xdi

i

#
2 spanf.1; 1; : : : ; 1/g (4.7)

for d1; : : : ; dn 2 f0; 1; : : : ; 4ng:

Proof. Let

xi D 2yi � yi�1 C enC1Ci � enC2�i ; i D 1; 2; : : : ; nC 1;

where y0; y1; : : : ; ynC1 are suitable random variables with y0 � ynC1 � 0: Then
property (4.6) is immediate. We will construct y0; y1; : : : ; ynC1 such that the re-
maining property (4.7) holds as well.

Let N D 2nC 2 and m D n in Theorem 4.3. Then reals α0;α1; : : : ;α4n exist
with the property that for each b 2 f0; 1g2nC2; a probability distribution µb can be
found on f0;˙1; : : : ;˙ng2nC2 such that

E
v�µb

Œ.2vC b/d � D αd .1; 1; : : : ; 1/; d D 0; 1; : : : ; 4n: (4.8)

Now, we will specify the distribution of y0; y1; : : : ; yn by giving an algorithm for
generating yi from yi�1: First, recall that y0 � ynC1 � 0: The algorithm for
generating yi given yi�1 .i D 1; 2; : : : ; n/ is as follows.

(1) Let u be the unique integer vector such that 2u�yi�1C enC1Ci � enC2�i 2

f0; 1g2nC2:

(2) Draw a random vector v � µb; where b D 2u � yi�1 C enC1Ci � enC2�i :

(3) Set yi D vC u:

One easily verifies that y0; y1; : : : ; ynC1 2 f0;˙1; : : : ;˙3ng2nC2:

Let R denote the resulting joint distribution of .y0; y1; : : : ; ynC1/: Let i 6 n:

Then conditioned on any fixed value of .y0; y1; : : : ; yi�1/ in the support of R; the
random variable xi is by definition independent of x1; : : : ; xi�1 and is distributed
identically to 2vC b; for some fixed vector b 2 f0; 1g2nC2 and a random variable
v � µb: In view of (4.8), we conclude that

E

"
nY

iD1

xdi

i

#
D .1; 1; : : : ; 1/

nY
iD1

αdi

for all d1; d2; : : : ; dn 2 f0; 1; : : : ; 4ng; which establishes (4.7). It remains to note
that x1; x2; : : : ; xn 2 f�2n;�2nC 1; : : : ;�1; 0; 1; : : : ; 2n; 2nC 1g2nC2; whereas
xnC1 D �yn C e2nC2 � e1 2 f0;˙1; : : : ;˙.3nC 1/g2nC2:
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At last, we arrive at the main theorem of this section, which will play a crucial
role in our analysis of the rational approximation of halfspaces.

THEOREM 4.5. For i D 0; 1; 2; : : : ; n; define

Ai D

˚
.x1; : : : ; xnC1/ 2 f0;˙1; : : : ;˙.3nC 1/gnC1

W

nC1X
j D1

2j �1xj D 2i

	
:

Let p.x1; : : : ; xnC1/ be a real polynomial with sign .�1/i throughout Ai .i D

0; 1; 2; : : : ; n/ and sign .�1/iC1 throughout �Ai .i D 0; 1; 2; : : : ; n/: Then

deg p > 2nC 1:

Proof. For the sake of contradiction, suppose that p has degree no greater than
2n: Put z D .�2n;�2n�1; : : : ;�20; 20; : : : ; 2n�1; 2n/: Let x1; : : : ; xnC1 be the
random variables constructed in Theorem 4.4. By (4.7) and the identity xnC1 �

2�nz �
Pn

iD1 2i�n�1xi ; we have

EŒp.x1; : : : ; xnC1/� 2 spanf1; z; z2; : : : ; z2n
g;

whence EŒp.x1; : : : ; xnC1/� D q.z/ for a univariate polynomial q 2 P2n: In view
of (4.6) and the assumed sign behavior of p; we have sgn q.2i / D .�1/i and
sgn q.�2i / D .�1/iC1; for i D 0; 1; 2; : : : ; n: Therefore, q has at least 2n C 1

roots. Since q 2 P2n; we arrive at a contradiction. It follows that the assumed
polynomial p does not exist.

REMARK 4.6. The passage p 7! q in the proof of Theorem 4.5 is precisely
the linear degree-nonincreasing map M WRŒx1; x2; : : : ; xnC1� ! RŒx� described
previously in the Introduction.

4.3 Lower bounds

The purpose of this section is to prove that the canonical halfspace cannot be
approximated well by a rational function of low degree. A starting point in our
discussion is a criterion for inapproximability by low-degree rational functions,
which is applicable not only to halfspaces but any odd Boolean functions on Eu-
clidean space.

THEOREM 4.7 (CRITERION FOR INAPPROXIMABILITY). Fix a nonempty finite
subset S � Rm with S \ �S D ∅: Define f WS [ �S ! f�1;C1g by

f .x/ D

(
C1; x 2 S;

�1; x 2 �S:
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Let ψ be a real function such that

ψ.x/ > δjψ.�x/j; x 2 S; (4.9)

for some δ 2 .0; 1/ and X
S[�S

ψ.x/u.x/ D 0 (4.10)

for every polynomial u of degree at most d: Then

RC.f; d/ >
2δ

1C δ
:

Proof. Fix polynomials p; q of degree at most d such that q is positive on S [�S:

Put

ε D max
S[�S

ˇ̌̌̌
f .x/ �

p.x/

q.x/

ˇ̌̌̌
:

We assume that ε < 1 since otherwise there is nothing to show. For x 2 S;

.1 � ε/q.x/ 6 p.x/ 6 .1C ε/q.x/ (4.11)

and

.1 � ε/q.�x/ 6 �p.�x/ 6 .1C ε/q.�x/: (4.12)

Consider the polynomial u.x/ D q.x/Cq.�x/Cp.x/�p.�x/: Equations (4.11)
and (4.12) show that for x 2 S; one has u.x/ > .2 � ε/fq.x/ C q.�x/g and
ju.�x/j 6 εfq.x/C q.�x/g; whence

u.x/ >

�
2

ε
� 1

�
ju.�x/j; x 2 S: (4.13)

We also note that

u.x/ > 0; x 2 S: (4.14)

Since u has degree at most d; we have by (4.10) thatX
x2S

fψ.x/u.x/C ψ.�x/u.�x/g D
X

S[�S

ψ.x/u.x/ D 0;

whence

ψ.x/u.x/ 6 jψ.�x/u.�x/j
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for some x 2 S: At the same time, it follows from (4.9), (4.13), and (4.14) that

ψ.x/u.x/ > δ
�

2

ε
� 1

�
jψ.�x/u.�x/j; x 2 S:

We immediately obtain δ.f2=εg � 1/ < 1; as was to be shown.

REMARK 4.8. The method of Theorem 4.7 amounts to reformulating (4.13) and
(4.14) as a linear program and exhibiting a solution to its dual. The presentation
above does not explicitly use the language of linear programs or appeal to duality,
however, because our goal is solely to prove the correctness of our method and not
its completeness.

Using the criterion of Theorem 4.7 and our preparatory work in Section 4.2,
we now establish a key lower bound for the rational approximation of halfspaces
within constant error.

THEOREM 4.9. Let f W f0;˙1; : : : ;˙.3nC 1/gnC1 ! f�1;C1g be given by

f .x/ D sgn

 
1C

nC1X
iD1

2ixi

!
:

Then

RC.f; n/ D ˝.1/:

Proof. Let A0; A1; : : : ; An be as defined in Theorem 4.5. Put A D
S

Ai and
define gWA [ �A! f�1;C1g by

g.x/ D

(
.�1/i ; x 2 Ai ;

.�1/iC1; x 2 �Ai :

Then deg˙.f / > 2n by Theorem 4.5. As a result, Theorem 2.2 guarantees the
existence of a function φWA [ �A! R; not identically zero, such that

φ.x/g.x/ > 0; x 2 A [ �A; (4.15)

and X
A[�A

φ.x/u.x/ D 0 (4.16)
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for every polynomial u of degree at most 2n: Put

p.x/ D

n�1Y
j D0

 
�2j
p

2C

nC1X
iD1

2i�1xi

!

and

ψ.x/ D .�1/n
fφ.x/ � φ.�x/gp.x/:

Define S D Anψ�1.0/: Then S ¤ ∅ by (4.15) and the fact thatφ is not identically
zero on A [ �A: For x 2 S; we have ψ.�x/ ¤ 0 and

jψ.x/j

jψ.�x/j
D
jp.x/j

jp.�x/j
>

 
∞Y

iD1

2i=2 � 1

2i=2 C 1

!2

> exp.�9
p

2/;

where the final step uses the bound .a � 1/=.a C 1/ > exp.�2:5=a/; valid for
a >

p
2: It follows from (4.15) and the definition of p that ψ is positive on S:

Hence,

ψ.x/ > exp.�9
p

2/ jψ.�x/j; x 2 S: (4.17)

For any polynomial u of degree no greater than n; we infer from (4.16) thatX
S[�S

ψ.x/u.x/ D .�1/n
X

A[�A

fφ.x/ � φ.�x/gu.x/p.x/ D 0: (4.18)

Since f is positive on S and negative on �S; the proof is now complete in view of
(4.17), (4.18), and Theorem 4.7.

We have reached the main result of this section, which extends Theorem 4.9 to
any subconstant approximation error and to halfspaces on the hypercube.

THEOREM 4.10. Let F W f�1;C1gm
2

! f�1;C1g be given by

F.x/ D sgn

 
1C

mX
iD1

mX
j D1

2ixij

!
:

Then for d < m=14;

R.F; d/ > 1 � 2��.m=d/: (4.19)

Observe that Theorem 4.10 settles the lower bounds in Theorem 1.6 from the
Introduction.
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Proof of Theorem 4.10. We may assume that m > 14; the claim being trivial oth-
erwise. Consider the function GW f�1;C1g.nC1/.6nC2/ ! f�1;C1g given by

G.x/ D sgn

�
1C

nC1X
iD1

6nC2X
j D1

2ixij

�
;

where n D b.m � 2/=6c: For every ε > RC.G; n/; Proposition 2.7 provides a
rational function A on RnC1 of degree at most n such that, on the domain of G;ˇ̌̌̌

ˇ̌G.x/ � A

�
: : : ;

6nC2X
j D1

xij ; : : :

�ˇ̌̌̌
ˇ̌ < ε

and the denominator of A is positive. Letting f be the function in Theorem 4.9,
it follows that jf .x1; : : : ; xnC1/ � A.2x1; : : : ; 2xnC1/j < ε on the domain of f;

whence

RC.G; n/ D ˝.1/: (4.20)

We now claim that either G.x/ or �G.�x/ is a subfunction of F: For example,
consider the following substitution for the variables xij for which i > n C 1 or
j > 6nC 2:

xmj  .�1/j ; .1 6 j 6 m/;

xij  .�1/j C1; .nC 1 < i < m; 1 6 j 6 m/;

xij  .�1/j C1; .1 6 i 6 nC 1; j > 6nC 2/:

After this substitution, F is a function of the remaining variables xij and is equiva-
lent to G.x/ if m is even, and to �G.�x/ if m is odd. In either case, (4.20) implies
that

RC.F; n/ D ˝.1/: (4.21)

Theorem 2.5 shows that

R.F; n=2/ 6 1 �

�
1 �R.F; d/

2

�1=bn=.2d/c

for d D 1; 2; : : : ; bn=2c; which yields (4.19) in light of (2.2) and (4.21).

45



5 Rational approximation of the majority function

The goal of this section is to determine RC.MAJn; d / for each integer d; i.e., to
determine the least error to which a degree-d multivariate rational function can ap-
proximate the majority function. As is frequently the case with symmetric Boolean
functions such as majority, the multivariate problem of analyzing RC.MAJn; d / is
equivalent to a univariate question. Specifically, given an integer d and a finite set
S � R; we define

RC.d; S/ D inf
p;q

max
t2S

ˇ̌̌̌
sgn t �

p.t/

q.t/

ˇ̌̌̌
;

where the infimum ranges over p; q 2 Pd such that q is positive on S: In other
words, we study how well a rational function of a given degree can approximate
the sign function over a finite support. We give a detailed answer to this question
in the following theorem:

THEOREM 5.1 (RATIONAL APPROXIMATION OF MAJORITY). Let n; d be positive
integers. Abbreviate R D RC.d; f˙1;˙2; : : : ;˙ng/: For 1 6 d 6 log n;

exp
�
��

�
1

n1=.2d/

��
6 R < exp

�
�

1

n1=d

�
:

For log n < d < n;

R D exp
�
��

�
d

log.2n=d/

��
:

For d > n;

R D 0:

Moreover, the rational approximant is constructed explicitly in each case.

Theorem 5.1 is the main result of this section. We establish it in the next
two subsections, giving separate treatment to the cases d 6 log n and d > log n

(see Theorems 5.3 and 5.8, respectively). In the concluding subsection, we give
the promised proof that RC.d; f˙1; : : : ;˙ng/ and RC.MAJn; d / are essentially
equivalent.

5.1 Low-degree approximation

We start by specializing the criterion of Theorem 4.7 to the problem of approxi-
mating the sign function on the set f˙1;˙2; : : : ;˙ng:
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THEOREM 5.2. Let d be an integer, 0 6 d 6 2n � 1: Fix a nonempty subset
S � f1; 2; : : : ; ng: Suppose that there exists a real δ 2 .0; 1/ and a polynomial
r 2 P 2n�d�1 that vanishes on f�n; : : : ; ng n .S [ �S/ and obeys

.�1/tr.t/ > δjr.�t /j; t 2 S: (5.1)

Then

RC.d; S [ �S/ >
2δ

1C δ
: (5.2)

Proof. Define f WS [ �S ! f�1;C1g by f .t/ D sgn t: Define ψWS [ �S ! R
by ψ.t/ D .�1/t

�
2n

nCt

�
r.t/: Then (5.1) takes on the form

ψ.t/ > δjψ.�t /j; t 2 S: (5.3)

For every polynomial u of degree at most d; we haveX
S[�S

ψ.t/u.t/ D

nX
tD�n

.�1/t

 
2n

nC t

!
r.t/u.t/ D 0 (5.4)

by Fact 2.1. Now (5.2) is immediate from (5.3), (5.4), and Theorem 4.7.

Using Theorem 5.2, we will now determine the optimal error in the approxima-
tion of the majority function by rational functions of degree up to log n: The case
of higher degrees will be settled in the next subsection.

THEOREM 5.3 (LOW-DEGREE RATIONAL APPROXIMATION OF MAJORITY). Let
d be an integer, 1 6 d 6 log n: Then

exp
�
��

�
1

n1=.2d/

��
6 RC.d; f˙1;˙2; : : : ;˙ng/ < exp

�
�

1

n1=d

�
:

Proof. The upper bound is immediate from Newman’s Theorem 2.4. For the lower
bound, put � D bn1=d c > 2 and S D f1; �; �2; : : : ; �d g: Define r 2 P 2n�d�1

by

r.t/ D .�1/n
d�1Y
iD0

.t ��i
p

�/
Y

i2f�n;:::;ngn.S[�S/

.t � i/:

For j D 0; 1; 2; : : : ; d;

jr.�j /j

jr.��j /j
D

j �1Y
iD0

�j ��i
p

�

�j C�i
p

�

d�1Y
iDj

�i
p

� ��j

�i
p

�C�j
>

 
∞Y

iD1

�i=2 � 1

�i=2 C 1

!2

> exp

(
�5

∞X
iD1

1

�i=2

)
> exp

�
�

18
p

�

�
;
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where we used the bound .a�1/=.aC1/ > exp.�2:5=a/; valid for a >
p

2: Since
sgn r.t/ D .�1/t for t 2 S; we conclude that

.�1/tr.t/ > exp
�
�

18
p

�

�
jr.�t /j; t 2 S:

Since in addition r vanishes on f�n; : : : ; ngn.S[�S/; we infer from Theorem 5.2
that RC.d; S [ �S/ > expf�18=

p
�g:

5.2 High-degree approximation

In the previous subsection, we determined the least error in approximating the
majority function by rational functions of degree up to log n: Our goal here is to
solve the case of higher degrees.

We start with some preparatory work. First, we need to accurately estimate
products of the form

Q
i .�

i C 1/=.�i � 1/ for all � > 1: A suitable lower bound
was already given by Newman [31, Lem. 1]:

LEMMA 5.4 (NEWMAN). For all � > 1;

nY
iD1

�i C 1

�i � 1
> exp

�
2.�n � 1/

�n.� � 1/

�
:

Proof. Immediate from the bound .aC 1/=.a� 1/ > exp.2=a/; which is valid for
a > 1:

We will need a corresponding upper bound:

LEMMA 5.5. For all � > 1;

∞Y
iD1

�i C 1

�i � 1
< exp

�
4

� � 1

�
:

Proof. Let k > 0 be an integer. By the binomial theorem, �i > .� � 1/i C 1 for
integers i > 0: As a result,

kY
iD1

�i C 1

�i � 1
6

kY
iD1

1

i

�
i C

2

� � 1

�
6

 
k C

˙
2

��1

�
k

!
:

Also,
∞Y

iDkC1

�i C 1

�i � 1
<

∞Y
iD0

�
1C

2

.�kC1 � 1/�i

�
< exp

�
2�

.�kC1 � 1/.� � 1/

�
:
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Setting k D k.�/ D
�

2
��1

˘
; we conclude that

∞Y
iD1

�i C 1

�i � 1
< exp

�
C

� � 1

�
;

where

C D sup
�>1

(
.� � 1/ ln

 
k.�/C

˙
2

��1

�
k.�/

!
C

2�

�k.�/C1 � 1

)
< 4:

We will also need the following binomial estimate.

LEMMA 5.6. Put p.t/ D
Qn

iD1

�
t � i � 1

2

�
: Then

max
tD1;2;:::;nC1

ˇ̌̌̌
p.�t /

p.t/

ˇ̌̌̌
6 �.16n/:

Proof. For t D 1; 2; : : : ; nC 1; we have

jp.t/j D
.2t � 2/Š.2n � 2t C 2/Š

4n.t � 1/Š.n � t C 1/Š
; jp.�t /j D

t Š.2nC 2t C 1/Š

4n.2t C 1/Š.nC t /Š
:

As a result,

ˇ̌̌̌
p.�t /

p.t/

ˇ̌̌̌
D

t

2t C 1
�

 
2nC 2t C 1

2t

! 
2nC 1

nC t

!
 

2t � 2

t � 1

! 
2n � 2t C 2

n � t C 1

! 6

�

�
24n

p
n

�
�

�
22n

p
n

�
�

�
22n

n

� ;

which gives the sought bound.

Our construction requires one additional ingredient.

LEMMA 5.7. Let n; d be integers, 1 6 d 6 n=55: Consider the polynomial
p.t/ D

Qd�1
iD1 .t � d�i

p
�/; where � D .n=d/1=d : Then

min
j D1;:::;d

ˇ̌̌̌
p.bd�j c/

p.�bd�j c/

ˇ̌̌̌
> exp

�
�

4 ln 3d

ln.n=d/
�

8
p

� � 1

�
:

Proof. Fix j D 1; 2; : : : ; d: Then for each i D 1; 2; : : : ; j � 1;

d�j
� d�i

p
� > d

�
�j �i� 1

2 � 1
�

>
1

2
.j � i/ ln

n

d
;
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and thus

j �1Y
iD1

�
1 �

1

d�j � d�i
p

�

�
> exp

(
�

4

ln.n=d/

j �1X
iD1

1

j � i

)

> exp
�
�

4 ln 3d

ln.n=d/

�
: (5.5)

For brevity, let ξ stand for the final expression in (5.5). Since 1 6 d 6 n=55; we
have bd�j c � d�j �1

p
� > 1: As a result,ˇ̌̌̌

p.bd�j c/

p.�bd�j c/

ˇ̌̌̌
>

j �1Y
iD1

d�j � 1 � d�i
p

�

d�j C d�i
p

�

d�1Y
iDj

d�i
p

� � d�j

d�i
p

�C d�j

> ξ
j �1Y
iD1

d�j � d�i
p

�

d�j C d�i
p

�

d�1Y
iDj

d�i
p

� � d�j

d�i
p

�C d�j
by (5.5)

> ξ

 
∞Y

iD1

�i=2 � 1

�i=2 C 1

!2

> ξ exp
�
�

8
p

� � 1

�
;

where the last inequality holds by Lemma 5.5.

We have reached the main result of this subsection.

THEOREM 5.8 (HIGH-DEGREE RATIONAL APPROXIMATION OF MAJORITY). Let
d be an integer, log n < d 6 n � 1: Then

RC.d; f˙1;˙2; : : : ;˙ng/ D exp
�
��

�
d

log.2n=d/

��
:

Also,
RC.n; f˙1;˙2; : : : ;˙ng/ D 0:

Proof. The final statement in the theorem follows at once by considering the ratio-
nal function fp.t/ � p.�t /g=fp.t/C p.�t /g; where p.t/ D

Qn
iD1.t C i/:

Now assume that log n < d < n=55: Let

k D

�
d

log.n=d/

�
; � D

�n

d

�1=d

:
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Define sets

S1 D f1; 2; : : : ; kg;

S2 D fbd�i
c W i D 1; 2; : : : ; dg;

S D S1 [ S2:

Consider the polynomial

r.t/ D .�1/nr1.t/r2.t/
Y

i2f�n;:::;ngn.S[�S/

.t � i/;

where

r1.t/ D

kY
iD1

�
t � i �

1

2

�
; r2.t/ D

d�1Y
iD1

.t � d�i
p

�/:

We have:

min
t2S

ˇ̌̌̌
r.t/

r.�t /

ˇ̌̌̌
> min

iD1;:::;kC1

ˇ̌̌̌
r1.i/

r1.�i/

ˇ̌̌̌
� min

iD1;:::;d

ˇ̌̌̌
r2.bd�ic/

r2.�bd�ic/

ˇ̌̌̌
> exp

�
�

Cd

log.n=d/

�
by Lemmas 5.6 and 5.7, where C > 0 is an absolute constant. Since sgn p.t/ D

.�1/t for t 2 S; we can restate this result as follows:

.�1/tr.t/ > exp
�
�

Cd

log.n=d/

�
jr.�t /j; t 2 S:

Since r vanishes on f�n; : : : ; ngn .S [�S/ and has degree 6 2n�1�d; we infer
from Theorem 5.2 that RC.d; S [�S/ > exp f�Cd= log.n=d/g: This proves the
lower bound for the case log n < d < n=55:

To handle the case n=55 6 d 6 n � 1; a different argument is needed. Let

r.t/ D .�1/n t

dY
iD1

�
t � i �

1

2

� nY
iDdC2

.t2
� i2/:

By Lemma 5.6, there is an absolute constant C > 1 such thatˇ̌̌̌
r.t/

r.�t /

ˇ̌̌̌
> C �d ; t D 1; 2; : : : ; d C 1:

Since sgn r.t/ D .�1/t for t D 1; 2; : : : ; d C 1; we conclude that

.�1/tr.t/ > C �d
jr.�t /j; t D 1; 2; : : : ; d C 1:

51



Since the polynomial r vanishes on f�n; : : : ; ng n f˙1;˙2; : : : ;˙.d C 1/g and
has degree 2n � 1 � d; we infer from Theorem 5.2 that

RC.d; f˙1;˙2; : : : ;˙.d C 1/g/ > C �d :

This settles the lower bound for the case n=55 6 d 6 n � 1:

It remains to prove the upper bound for the case log n < d 6 n � 1: Here we
always have d > 2: Letting k D bd=2c and � D .n=k/1=k; define p 2 P 2k by

p.t/ D

kY
iD1

.t C i/

kY
iD1

.t C k�i /:

Fix any point t 2 f1; 2; : : : ; ng with p.�t / ¤ 0: Letting i� be the integer with
k�i�

< t < k�i�C1; we have:

p.t/

jp.�t /j
>

i�Y
iD0

k�i�C1 C k�i

k�i�C1 � k�i

kY
iDi�C1

k�i C k�i�

k�i � k�i� >
kY

iD1

�i C 1

�i � 1

> exp
�

2.�k � 1/

�k.� � 1/

�
;

where the last inequality holds by Lemma 5.4. Substituting � D .n=k/1=k and
recalling that k > �.log n/; we obtain p.t/ > Ajp.�t /j for t D 1; 2; : : : ; n;

where

A D exp
�

�

�
k

log.n=k/

��
:

As a result, RC.2k; f˙1;˙2; : : : ;˙ng/ 6 2A=.A2 C 1/; the approximant in
question being

A2 � 1

A2 C 1
�

p.t/ � p.�t /

p.t/C p.�t /
:

5.3 Equivalence of the majority and sign functions

It remains to prove the promised equivalence of the majority and sign functions,
from the standpoint of approximating them by rational functions on the discrete
domain. We have:

THEOREM 5.9. For every integer d;

RC.MAJn; d / 6 RC.d � 2; f˙1;˙2; : : : ;˙dn=2eg/; (5.6)

RC.MAJn; d / > RC.d; f˙1;˙2; : : : ;˙bn=2cg/: (5.7)
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Proof. We prove (5.6) first. Fix a degree-.d � 2/ approximant p.t/=q.t/ to sgn t

on S D f˙1; : : : ;˙dn=2eg; where q is positive on S: For small δ > 0; define

Aδ.t/ D
t2p.t/ � δ
t2q.t/C δ

:

Then Aδ is a rational function of degree at most d whose denominator is positive
on S [ f0g: Finally, we have Aδ.0/ D �1 and

lim
δ!0

max
t2S
j sgn t � Aδ.t/j D max

t2S

ˇ̌̌̌
sgn t �

p.t/

q.t/

ˇ̌̌̌
:

Then Aδ.1
2

P
.xiC1/�bn=2c/ is the desired approximant for MAJn.x1; : : : ; xn/:

We now turn to the lower bound, (5.7). For every ε > RC.MAJn; d /; Propo-
sition 2.7 gives a univariate rational function p.t/=q.t/ of degree at most d such
that for all x 2 f�1;C1gn; one hasˇ̌̌̌

MAJn.x/ �
p.
P

xi /

q.
P

xi /

ˇ̌̌̌
< ε

and q.
P

xi / > 0: Then

max
tD˙1;˙2;:::;˙bn=2c

ˇ̌̌̌
sgn t �

p.2t C n � 2bn=2c/

q.2t C n � 2bn=2c/

ˇ̌̌̌
< ε;

completing the proof of (5.7).

Note that (2.2) and Theorems 5.3, 5.8, and 5.9 immediately imply Theorem 1.7
from the Introduction.

REMARK 5.10. The proof that we gave for the upper bound, (5.6), illustrates a
useful property of univariate rational approximants A.t/ D p.t/=q.t/ on a finite
set S: Specifically, given such an approximant and a point t� … S; there exists
an approximant A0 with A0.t�/ D a for any prescribed value a and A0 � A

everywhere on S: One such construction is

A0.t/ D
.t � t�/p.t/C aδ
.t � t�/q.t/C δ

for an arbitrarily small constant δ > 0: Note that A0 has degree only 1 higher than
the degree of the original approximant, A: This phenomenon is in sharp contrast to
approximation by polynomials, which do not possess this corrective ability.
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6 Intersections of halfspaces

In this section, we prove our main theorems on the sign-representation of inter-
sections of halfspaces and majority functions. In the two subsections that follow,
we give results for the threshold degree as well as threshold density, another key
complexity measure of a sign-representation.

6.1 Lower bounds on the threshold degree

We start by formalizing the elegant observation due to Beigel et al. [9], already
described briefly in the Introduction.

THEOREM 6.1 (BEIGEL, REINGOLD, AND SPIELMAN). Let f WX ! f�1;C1g

and gWY ! f�1;C1g be given functions, where X; Y � Rn are finite sets. Let d

be an integer with RC.f; d/CRC.g; d/ < 1: Then

deg˙.f ^ g/ 6 2d:

Proof. Fix rational functions p1.x/=q1.x/ and p2.y/=q2.y/ of degree at most d

such that q1 and q2 are positive on X and Y; respectively, and

max
x2X

ˇ̌̌̌
f .x/ �

p1.x/

q1.x/

ˇ̌̌̌
Cmax

y2Y

ˇ̌̌̌
g.y/ �

p2.y/

q2.y/

ˇ̌̌̌
< 1:

Then

f .x/ ^ g.y/ � sgnf1C f .x/C g.y/g � sgn
�

1C
p1.x/

q1.x/
C

p2.y/

q2.y/

�
:

Multiplying the last expression by the positive quantity q1.x/q2.y/; we obtain
f .x/ ^ g.y/ � sgnfq1.x/q2.y/C p1.x/q2.y/C p2.y/q1.x/g:

Recall that Theorem 3.17 gives an essentially exact converse to Theorem 6.1.
We are now in a position to prove our main results on the threshold degree.

THEOREM 6.2 (RESTATEMENT OF THEOREMS 1.8 AND 1.10). Consider the
function f W f�1;C1gn

2

! f�1;C1g given by

f .x/ D sgn

 
1C

nX
iD1

nX
j D1

2ixij

!
:

Let gW f�1;C1gn ! f�1;C1g be the majority function on n bits. Then

deg˙.f ^ f / D ˝.n/; (6.1)

deg˙. g ^ g / D ˝.log n/: (6.2)
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Proof. By Theorem 4.10, we have RC.f; εn/ > 1=2 for some constant ε > 0;

which settles (6.1) in view of Theorem 3.17.
Analogously, Theorems 5.1 and 5.9 show that RC.g; ε log n/ > 1=2 for some

constant ε > 0; which settles (6.2) in view of Theorem 3.17.

REMARK 6.3. The lower bounds (6.1) and (6.2) are tight and match the con-
structions due to Beigel et al. [9]. These matching upper bounds can be seen as
follows. By Theorem 4.2, we have RC.f; C n/ < 1=2 for some constant C > 0;

which shows that deg˙.f ^ f / D O.n/ in view of Theorem 6.1. Analogously,
Theorems 5.1 and 5.9 imply that RC.g; C log n/ < 1=2 for some constant C > 0;

which shows that deg˙.g ^ g/ D O.log n/ in view of Theorem 6.1.
Furthermore, Theorem 6.1 generalizes immediately to conjunctions of k D

3 and more functions. In particular, the lower bounds in (6.1) and (6.2) remain
tight for intersections f ^ f ^ � � � ^ f and g ^ g ^ � � � ^ g featuring any constant
number of functions.

We give one additional result, featuring the intersection of the canonical half-
space with a majority function.
THEOREM 1.9 (RESTATED). Let f W f�1;C1gn

2

! f�1;C1g be given by

f .x/ D sgn

 
1C

nX
iD1

nX
j D1

2ixij

!
:

Let gW f�1;C1gd
p

ne ! f�1;C1g be the majority function on d
p

ne bits. Then

deg˙.f ^ g / D �.
p

n/: (6.3)

Proof. We prove the lower bound first. Let ε > 0 be a suitably small constant. By
Theorem 4.10, we have RC.f; ε

p
n/ > 1 � 2�

p
n: By Theorems 5.1 and 5.9, we

have RC.g; ε
p

n/ > 2�
p

n: In view of Theorem 3.17, these two facts imply that
deg˙.f ^ g / D ˝.

p
n/:

We now turn to the upper bound. It is clear that RC.g; d
p

ne/ D 0 and
RC.f; 1/ < 1: It follows by Theorem 6.1 that deg˙.f ^ g/ D O.

p
n/:

6.2 Lower bounds on the threshold density

In addition to threshold degree, several other complexity measures are of inter-
est when sign-representing Boolean functions by real polynomials. One such
complexity measure is density, i.e., the number of distinct monomials in any
polynomial that sign-represents a given function. Formally, for a given function
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f W f�1;C1gn ! f�1;C1g; the threshold density dns.f / is the minimum k such
that

f .x/ � sgn

�
kX

iD1

λi

Y
j 2Si

xj

�

for some sets S1; : : : ; Sk � f1; 2; : : : ; ng and some reals λ1; : : : ;λk : We will show
that intersections of two halfspaces not only have high threshold degree but also
high threshold density.

We start with the conjunction of two majority functions. Constructions in [9]
show that the function f .x; y/ D MAJn.x/ ^MAJn.y/ can be sign-represented
by a linear combination of nO.log n/ monomials, namely, the monomials of degree
up to O.log n/: Klivans and Sherstov [24, Thm. 1.2] complement this with a lower
bound of n˝.log n= log log n/ on the number of distinct monomials needed. Our next
result improves this lower bound to a tight n�.log n/:

THEOREM 6.4. Let f W f�1;C1gn � f�1;C1gn ! f�1;C1g be given by
f .x; y/ D MAJn.x1; : : : ; xn/ ^MAJn.y1; : : : ; yn/: Then

dns.f / D n˝.log n/:

Proof. Identical to the proof of Klivans and Sherstov [24, �3.3, Thm. 1.2], with the
only difference that Theorem 1.10 should be invoked in place of O’Donnell and
Servedio’s earlier result [33] that deg˙.f / D ˝.log n= log log n/:

We will now derive an exponential lower bound on the threshold density
of the intersection of two halfspaces. For this, we recall an elegant procedure
for converting Boolean functions with high threshold degree into Boolean func-
tions with high threshold density, discovered by Krause and Pudlák [26]. Their
construction maps a given function f W f�1;C1gn ! f�1;C1g to the function
f KPW .f�1;C1gn/3 ! f�1;C1g given by

f KP.x; y; ´/ D f .: : : ; .´i ^ xi / _ .´i ^ yi /; : : : /:

We have:

THEOREM 6.5 (KRAUSE AND PUDLÁK [26, PROP. 2.1]). For every function
f W f�1;C1gn ! f�1;C1g;

dns.f KP/ > 2deg˙.f /:

Another ingredient in our analysis is the following observation.
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LEMMA 6.6 (KLIVANS AND SHERSTOV [24]). Let f W f�1;C1gn ! f�1;C1g

be a given function. Consider any function F W f�1;C1gm ! f�1;C1g given by
F.x/ D f .χ1.x/; : : : ;χn.x//; where each χi is a parity function f�1;C1gm !

f�1;C1g or the negation of a parity function. Then

dns.f / > dns.F /:

Proof (Klivans and Sherstov [24]). Immediate from the definition of threshold
density and the fact that the product of parity functions is another parity func-
tion.

We are now in a position to prove the desired result for halfspaces.

THEOREM 6.7. Let fnW f�1;C1gn
2

! f�1;C1g be given by

fn.x/ D sgn

�
1C

nX
iD1

nX
j D1

2ixij

�
:

Then

dns.fn ^ fn/ D expf˝.n/g; (6.4)

dns.fn ^MAJd
p

ne/ D expf˝.
p

n/g: (6.5)

REMARK 6.8. In the proof below, it will be useful to keep in mind the following
straightforward observation. Fix functions f; gW f�1;C1gk ! f�1;C1g and de-
fine functions f 0; g0W f�1;C1gk ! f�1;C1g by f 0.x/ D �f .�x/ and g0.y/ D

�g.�y/: Then we have f 0.x/^g0.y/ � �.f .�x/^g.�y//f .�x/g.�y/; whence
dns.f 0 ^ g0/ 6 dns.f ^ g/ dns.f / dns.g/ and thus

dns.f ^ g/ >
dns.f 0 ^ g0/

dns.f / dns.g/
: (6.6)

Similarly, we have f .x/ ^ g0.y/ � .f .x/ ^ g.�y//f .x/; whence

dns.f ^ g/ >
dns.f ^ g0/

dns.f /
: (6.7)

To summarize, (6.6) and (6.7) allow one to analyze the threshold density of f ^ g

by analyzing the threshold density of f 0 ^ g0 or f 0 ^ g instead. Such a transition
will be helpful in our case.
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Proof of Theorem 6.7. Put m D bn=4c: The function fm
KP
W .f�1;C1gm

2

/3 !

f�1;C1g has the representation

fm
KP.x; y; ´/ D sgn

�
1C

mX
iD1

mX
j D1

2i .xij C yij C xij ´ij � yij ´ij /

�
:

As a result,

dns.f4m ^ f4m/ > dns.fm
KP
^ fm

KP/ by Lemma 6.6

D dns..fm ^ fm/KP/

> 2deg˙.fm^fm/ by Theorem 6.5

> expf˝.m/g by Theorem 6.2.

By the same argument as in Theorem 4.10, the function f4m is a subfunction of
fn.x/ or �fn.�x/: In the former case, (6.4) is immediate from the lower bound
on dns.f4m ^ f4m/: In the latter case, (6.4) follows from the lower bound on
dns.f4m ^ f4m/ and Remark 6.8.

The proof of (6.5) is entirely analogous.

Krause and Pudlák’s method in Theorem 6.5 naturally generalizes to lin-
ear combinations of conjunctions rather than parity functions. In other
words, if a function f W f�1;C1gn ! f�1;C1g has threshold degree d and
f KP.x; y; ´/ � sgn.

PN
iD1 λiTi .x; y; ´// for some conjunctions T1; : : : ; TN of the

literals x1; y1; ´1; : : : ; xn; yn; ´n;:x1;:y1;:´1; : : : ;:xn;:yn;:´n; then N >
2˝.d/: With this remark in mind, Theorems 6.4 and 6.7 and their proofs adapt
easily to this alternate definition of density.
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