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Abstract

We study the maximization version of the fundamental graph coloring problem. Here the
goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction of
edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring
properly colors an expected fraction 1 − 1

k
of edges. We prove that given a graph promised

to be k-colorable, it is NP-hard to find a k-coloring that properly colors more than a fraction
≈ 1− 1

33k
of edges. Previously, only a hardness factor of 1−O

(
1

k2

)
was known. Our result pins

down the correct asymptotic dependence of the approximation factor on k. Along the way, we
prove that approximating the Maximum 3-colorable subgraph problem within a factor greater
than 32

33
is NP-hard.

Using semidefinite programming, it is known that one can do better than a random coloring
and properly color a fraction 1− 1

k
+ 2 ln k

k2 of edges in polynomial time. We show that, assuming
the d-to-1 conjecture, it is hard to properly color (using k colors) more than a fraction 1 − 1

k
+

O
(

d
3/2

ln k

k2

)

of edges of a k-colorable graph.

∗Research supported in part by a Packard Fellowship. Email: guruswami@cmu.edu, asinop@cs.cmu.edu

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 99 (2009)



1 Introduction

1.1 Problem statement

A graph G = (V,E) is said to be k-colorable for some positive integer k if there exists a k-coloring
χ : V → {1, 2, . . . , k} such that for all edges (u, v) ∈ E, χ(u) 6= χ(v). For k > 3, finding a k-coloring
of a k-colorable graph is a classic NP-hard problem. The problem of coloring a graph with the
fewest number of colors has been extensively studied. In this paper, our focus is on hardness results
for the following maximization version of graph coloring: Given a k-colorable graph (for some fixed
constant k > 3), find a k-coloring that maximizes the fraction of properly colored edge. (We say
an edge is properly colored under a coloring if its endpoints receive distinct colors.) Note that for
k = 2 the problem is trivial — one can find a proper 2-coloring in polynomial time when the graph
is bipartite (2-colorable).

We will call this problem Max k-Colorable Subgraph. The problem is equivalent to partitioning
the vertices into k parts so that a maximum number of edges are cut. This problem is more
popularly referred to as Max k-Cut in the literature; however, in the Max k-Cut problem the input
is an arbitrary graph that need not be k-colorable. To highlight this difference that our focus is
on the case when the input graph is k-colorable, we use Max k-Colorable Subgraph to refer to this
variant. We stress that we will use this convention throughout the paper: Max k-Colorable Subgraph

always refers to the “perfect completeness” case, when the input graph is k-colorable.1 Since our
focus is on hardness results, we note that this restriction only makes our results stronger.

A factor α = αk approximation algorithm for Max k-Colorable Subgraph is an efficient algorithm
that given as input a k-colorable graph outputs a k-coloring that properly colors at least a fraction
α of the edges. We say that Max k-Colorable Subgraph is NP-hard to approximate within a factor
β if no factor β approximation algorithm exists for the problem unless P = NP. The goal is to
determine the approximation threshold of Max k-Colorable Subgraph: the largest α as a function of
k for which a factor α approximation algorithm for Max k-Colorable Subgraph exists.

1.2 Previous results

The algorithm which simply picks a random k-coloring, without even looking at the graph, properly
colors an expected fraction 1− 1/k of edges. Frieze and Jerrum [3] used semidefinite programming
to give a polynomial time factor 1− 1/k+ 2 ln k/k2 approximation algorithm for Max k-Cut, which
in particular means the algorithm will color at least this fraction of edges in a k-colorable graph.
This remains the best known approximation guarantee for Max k-Colorable Subgraph to date. Khot,
Kindler, Mossel, and O’Donnell [8] showed that obtaining an approximation factor of 1 − 1/k +
2 ln k/k2 +Ω(ln ln k/k2) for Max k-Cut is Unique Games-hard, thus showing that the Frieze-Jerrum
algorithm is essentially the best possible. However, due to the “imperfect completeness” inherent
to the Unique Games conjecture, this hardness result does not hold for Max k-Colorable Subgraph

when the input is required to be k-colorable.

For Max k-Colorable Subgraph, the best hardness known prior to our work was a factor 1 −
Θ(1/k2). This is obtained by combining an inapproximability result for Max 3-Colorable Subgraph

1While a little non-standard, this makes our terminology more crisp, as we can avoid repeating the fact that the

hardness holds for k-colorable graphs in our statements.
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due to Petrank [12] with a reduction from Papadimitriou and Yannakakis [11]. It is a natural
question whether there exists, for some absolute constant ε > 0, an efficient algorithm that can
properly color a fraction 1 − 1/k1+ε of edges given a k-colorable graph. The existing hardness
results do not rule out the possibility of such an algorithm.

For Max k-Cut, a better hardness factor was shown by Kann, Khanna, Lagergren, and Pan-
conesi [6] — for some absolute constants β > α > 0, they showed that it is NP-hard to distinguish
graphs that have a k-cut in which a fraction (1−α/k) of the edges cross the cut from graphs whose
Max k-cut value is at most a fraction (1 − β/k) of edges. The reduction is from the MaxCut prob-
lem, and the graph produced by the reduction is k-colorable only if the original MaxCut instance
is 2-colorable. As MaxCut is easy when the graph is 2-colorable, this reduction does not yield any
hardness for Max k-Colorable Subgraph.

1.3 Our results

Petrank [12] showed the existence of a γ0 > 0 such that it is NP-hard to find a 3-coloring that
properly colors more than a fraction (1 − γ0) of the edges of a 3-colorable graph. The value of γ0

in [12] was left unspecified and would be very small if calculated. The reduction in [12] was rather
complicated, involving expander graphs and starting from the weak hardness bounds for bounded
occurrence satisfiability. We prove that the NP-hardness holds with γ0 = 1

33 . In other words, it
is NP-hard to obtain an approximation ratio bigger than 32

33 for Max 3-Colorable Subgraph. The
reduction is from the constraint satisfaction problem corresponding to the adaptive 3-query PCP
with perfect completeness from [4].

By a reduction from Max 3-Colorable Subgraph, we prove that for every k > 3, the Max k-
Colorable Subgraph is NP-hard to approximate within a factor greater than ≈ 1− 1

33k (Theorem 4).
This identifies the correct asymptotic dependence on k of the best possible approximation factor for
Max k-Colorable Subgraph. The reduction is similar to the one in [6], though some crucial changes
have to be made in the construction and some new difficulties overcome in the soundness analysis
when reducing from Max 3-Colorable Subgraph instead of MaxCut.

In the quest for pinning down the exact approximability of Max k-Colorable Subgraph, we prove
the following conditional result. Assuming the so-called d-to-1 conjecture, it is hard to approximate
Max k-Colorable Subgraph within a factor 1 − 1

k + 3d3/2 ln k
k2 . In other words, the Frieze-Jerrum

algorithm is optimal up to lower order terms in the approximation ratio even for instances of Max

k-Cut where the graph is k-colorable.

Unlike the Unique Games Conjecture (UGC), the d-to-1 conjecture allows perfect completeness,
i.e., the hardness holds even for instances where an assignment satisfying all constraints exists. The
d-to-1 conjecture was used by Dinur, Mossel, and Regev [2] to prove that for every constant c, it
is NP-hard to color a 4-colorable graph with c colors. We analyze a similar reduction for the
k-coloring case when the objective is to maximize the fraction of edges that are properly colored
by a k-coloring. Our analysis uses some of the machinery developed in [2], which in turn extends
the invariance principle of [9]. The hardness factor we obtain depends on the spectral gap of a
certain kd × kd stochastic matrix. Although this matrix is reversible, it is not symmetric, which
was required by [2] (and implicitly in [8]) in order for their invariance theorem to hold. Therefore
we also extend the invariance principle to hold for general reversible stochastic matrices.
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1.4 Differences from the Conference Version

In the original conference version of this paper [5], we gave a hardness result which worked only
with 2-to-1 conjecture based on the construction of a symmetric reversible Markov operator, on
which we were able apply the results from [8, 2] directly. In this version, we introduce a small
extension to [2] which allows the use of any reversible Markov operator. Then we construct a
new Markov operator which works for general d, thus allowing us to use the more general d-to-1
conjecture instead of only 2-to-1.

Remark 1. In general it is far from clear which Unique Games-hardness results can be extended
to hold with perfect completeness by assuming, say, the d-to-1 (or some related) conjecture. In
this vein, we also mention the result of O’Donnell and Wu [10] who showed a tight hardness
for approximating satisfiable constraint satisfaction problems on 3 Boolean variables assuming
the d-to-1 conjecture for any fixed d. While the UGC assumption has led to a nearly complete
understanding of the approximability of constraint satisfaction problems [13], the approximability
of satisfiable constraint satisfaction problems remains a mystery to understand in any generality.

Remark 2. Also it is worth noting that there are (generally) better approximation algorithms for
problems with perfect completeness. Therefore, even if our results do not match the Max k-Cut

hardness, it is quite possible that for this problem, they might be tight.

Remark 3. It has been shown by Crescenzi, Silvestri and Trevisan [1] that any hardness result for
weighted instances of Max k-Cut carries over to unweighted instances assuming the total edge weight
is polynomially bounded. In fact, their reduction preserves k-colorability, so an inapproximability
result for the weighted Max k-Colorable Subgraph problem also holds for the unweighted version.
Therefore all our hardness results hold for the unweighted Max k-Colorable Subgraph problem.

2 Unconditional Hardness Results for Max k-Colorable Subgraph

We will first prove a hardness result for Max 3-Colorable Subgraph, and then reduce this problem
to Max k-Colorable Subgraph.

2.1 Inapproximability result for Max 3-Colorable Subgraph

Petrank [12] showed that Max 3-Colorable Subgraph is NP-hard to approximate within a factor of
(1 − γ0) for some constant γ0 > 0. This constant γ0 is presumably very small, since the reduction
starts from bounded occurrence satisfiability (for which only weak inapproximability results are
known) and uses expander graphs. We prove a much better inapproximability factor below, via a
simpler proof.

Theorem 1 (Max 3-Colorable Subgraph Hardness). The Max 3-Colorable Subgraph problem is NP-
hard to approximate within a factor of 32

33 + ε for any constant ε > 0.

Proof. For the proof of this theorem, we will use reduce from a hard to approximate constraint
satisfaction problem (CSP) underlying the adaptive 3-query PCP given in [4]. This PCP has perfect

4



completeness and soundness 1/2+ε for any desired constant ε (which is the best possible for 3-query
PCPs).

We first state the properties of the CSP. An instance of the CSP will have variables partitioned
into three parts X ,Y and Z. Each constraint will be of the form (xi ∨ (Yj = zk))∧ (xi ∨ (Yj = zl)),
where xi ∈ X , zk, zl ∈ Z are variables (unnegated) and Yj is a literal (Yj ∈ {yj, yj} for some variable
yj ∈ Y). For Yes instances of the CSP, there will be a Boolean assignment that satisfies all the
constraints. For No instances, every assignment to the variables will satisfy at most a fraction
(1/2 + ε) of the constraints.

Remark 4. We remark the condition that the instance is tripartite, and that the variables in Z
never appear negated are not explicit in [4]. But these can be ensured by an easy modification to
the PCP construction in [4]. The PCP in [4] has a bipartite structure: the proof is partitioned
into two parts called the A-tables and B-tables, and each test consists of probing one bit A(f)
from an A table and 3 bits B(g), B(g1), B(g2) from the B table, and checking (A(f) ∨ (B(g) =
B(g1))∧ (A(f)∨ (B(g) = B(g2)). Further these tables are folded which is a technical condition that
corresponds to the occurrence of negations in the CSP world. If the queries at locations g1 and g2
are made in a parallel C-table, and even if the C-table is not folded (though the A and B tables
need to be folded), one can verify that the analysis of the PCP construction still goes through.
This then translates to a CSP with the properties claimed above.

Zl
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m
2

m
2

m
2

yj ȳj

wj wj

wixi zl

∆(xi)/2 ∆(zl)/2

Xi Yj

Figure 1: Global gadget for truth value as-
signments. Blocks Xi, Yj and Zl are repli-
cated for all vertices in X , Y and Z. Edge
weights are shown next to each edge.

TF

xi zk zlYj

A′ B′

A B

Figure 2: Local gadget for each constraint of
the form (xi∨Yj = zk)∧(xi∨Yj = zl). All edges
have unit weight. Labels A,A′, B,B′ refer to
the local nodes in each gadget.

Let I be an instance of such a CSP with m constraints of the above form on variables V =
X ∪ Y ∪ Z. Let X = {x1, x2, . . . , xn1}, Y = {y1, y2, . . . , yn2} and Z = {z1, z2, . . . , zn3}. From the
instance I we create a graph G for the Max 3-Colorable Subgraph problem as follows. There is a
node xi for each variable xi ∈ X , a node zl for each zl ∈ Z, and a pair of nodes {yj , yj} for the
two literals corresponding to each yj ∈ Y. There are also three global nodes {R,T, F} representing
boolean values which are connected in a triangle with edge weights m/2 (see Fig. 1).

For each constraint of the CSP, we place the local gadget specific to that constraint shown in
Figure 2. Note that there are 10 edges of unit weight in this gadget. The nodes yj, yj are connected

to node R by a triangle whose edge weights equal wj =
∆(yj)+∆(yj)

2 . Here ∆(X) denotes the total
number of edges going from node X into all the local gadgets. The nodes xi and zl connected to
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R with an edge of weight ∆(xi)/2 and ∆(zl)/2 respectively.

Lemma 2 (Completeness). Given an assignment of variables σ : V → {0, 1} which satisfies at
least c of the constraints, we can construct a 3-coloring of G with at most m− c improperly colored
edges (each of weight 1).

Proof. We define the coloring χ : V (G) → [3] in the obvious way, with nodes T , R and F fixed to
different colors. Then define

χ(xi) =

{

χ(T ) if σ(xi) = 1,

χ(F ) else.

and similarly for the nodes yj, zl. Define

χ(yi) =

{

χ(F ) if σ(yj) = 1,

χ(T ) else.

Now, for the constraints satisfied by this assignment, (xi∨ (Yj = zk))∧ (xi ∨ (Yj = zl)), consider
the corresponding gadget. Let Sugg(A) = [3] \ {χ(xi), χ(T )} and Sugg(B) = [3] \ {χ(Yj), χ(zk)}
be the available colors to A and B which can properly color all edges incident to variables. Notice
that none of these sets are empty and since xi∨ (Yj = zk) is true, at least one of these sets Sugg(A)
and Sugg(B) has two elements in it. Hence there exists a coloring of A and B from sets Sugg(A)
and Sugg(B) such that χ(A) 6= χ(B). The same argument also holds for A′ and B′, therefore all
edges in this gadget are properly colored.

For the violated constraints, either Sugg(A) or Sugg(A′) has one element. Augmenting that set
with the color χ(xi) will cause only one edge to be violated.

Next we will prove the soundness of this construction.

Lemma 3 (Soundness). Given a 3-coloring of G, χ, such that the total weight of edges that are
not properly colored by χ is at most τ < m/2, we can construct an assignment σ′ : V → {0, 1} to
the variables of the CSP instance that satisfies at least m− τ constraints.

Proof. Since τ < m/2, the coloring χ must give three different colors to the nodes T , F , and R. If
χ(xi) = χ(R), then randomly choosing χ(xi) from {χ(T ), χ(F )} will, in expectation, make at most
half of the local gadget edges going out of xi improperly colored, which is exactly the value ∆(xi)/2
gained. So we can assume that χ(xi) ∈ {χ(T ), χ(F )} for each xi. A similar argument holds for the
nodes zl. Now consider the nodes yj and yj for a variable in Y . If χ(yj) = χ(R), χ(yj) = χ(R)
or χ(xj) = χ(yj), then randomly choosing (χ(yj), χ(yj)) from {(χ(T ), χ(F )), (χ(F ), χ(T ))} will, in
expectation, make at most half of the local gadget edges going out of nodes yj and yj improperly
colored, which is exactly the value wj gained.

To summarize, we can assume that nodes T ,F and R are colored differently, χ(xi), χ(Yj), χ(zl) ∈
{χ(T ), χ(F )} and χ(yj) 6= χ(yj). Thus all edges other than the edges inside the local gadgets are
properly colored by χ, and by assumption at most τ edges are miscolored by χ.

Now define the natural assignment σ′ that assigns a variable of V the value 1 if the associated
variable received the color χ(T ), and the value 0 if its color is χ(F ).
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Consider a local gadget, with all edges properly colored, corresponding to the constraint (xi ∨
(Yj = zk))∧ (xi ∨ (Yj = zl)). Assume σ′(xi) = 0, which implies χ(A) = χ(R). Then both neighbors
of B besides A must have the same color, therefore σ(Yj) = σ(zk). The other case when σ′(xi) = 1
is similar. Hence the assignment σ′ will satisfy this constraint.

Since the local gadgets corresponding to different constraints have disjoint sets of edges, it
follows that the number of constraints violated by the assignment σ′ is at most τ .

Returning to the proof of Theorem 1, the total weight of edges in G is

10m+
3m

2
+

n1∑

i=1

∆(xi)

2
︸ ︷︷ ︸

m

+

n2∑

j=1

3wj +

n3∑

l=1

∆(zl)

2
︸ ︷︷ ︸

m

=
27

2
m+

3

2

n2∑

j=1

(∆(yi) + ∆(yj))

︸ ︷︷ ︸

2m

=
33

2
m .

By the completeness lemma, Yes instances of the CSP are mapped to graphs G that are 3-
colorable. By the soundness lemma, No instances of the CSP are mapped to graphs G such that
every 3-coloring miscolors at least a fraction (1/2−ε)

33/2 = 1−2ε
33 of the total weight of edges. Since

ε > 0 is an arbitrary constant, the proof of Theorem 1 is complete.2

2.2 Max k-Colorable Subgraph Hardness

Theorem 4. For every integer k > 3 and every ε > 0, it is NP-hard to approximate Max k-Colorable

Subgraph within a factor of 1 − 1
33(k+ck)+ck

+ ε where ck = k mod 3 6 2.

Proof. We will reduce Max 3-Colorable Subgraph to Max k-Colorable Subgraph and then apply The-
orem 1. Throughout the proof, we will assume k is divisible by 3. At the end, we will cover the
remaining cases also. The reduction is inspired by the reduction from MaxCut to Max k-Cut given
by Kann et al. [6] (see Remark 5). Some modifications to the reduction are needed when we reduce
from Max 3-Colorable Subgraph, and the analysis has to handle some new difficulties. The details
of the reduction and its analysis follow.

Let G = (V,E) be an instance of Max 3-Colorable Subgraph. By Theorem 1, it is NP-hard to tell
if G is 3-colorable or every 3-colors miscolors a fraction 1

33 − ε of edges. We will construct a graph
H such that H is k-colorable when G is 3-colorable, and a k-coloring which miscolors at most a
fraction µ of the total weight of edges of H implies a 3-coloring of G with at most a fraction µk of
miscolored edges. Combined with Theorem 1, this gives us the claimed hardness of Max k-Colorable

Subgraph.

Let K ′
k/3 denote the complete graph with loops on k/3 vertices. Let G′ be the tensor product

graph between Kk/3 and G, G′ = K ′
k/3 ⊗ G as defined by Weichsel [15]. Identify each node in

G′ with (u, i), u ∈ V (G), i ∈ {1, 2, . . . , k/3}. The edges of G′ are ((u, i), (v, i′)) for (u, v) ∈ E and
any i, i′ ∈ {1, . . . , k/3}. Next we make 3 copies of G′, and identify the nodes with (u, i, j), (u, i) ∈
V (G′), j ∈ {1, 2, 3}, then put edges between all nodes of the form (u, i, j) and (u, i′, j′) if either

2Our reduction produced a graph with edge weights, but by Remark 3, the same inapproximability factor holds

for unweighted graphs as well.
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i 6= i′ or j 6= j′ with weight 2
3du, where du is degree of node u. The total weight of edges in this

new construction H equals

∑

u∈V

((
k

2

)
2

3
du +

3

2

(
k

3

)2

du

)

6 k2m .

Lemma 5. If G is 3-colorable, then H is k-colorable.

Proof. Let χG : V (G) → {1, 2, 3} be a 3-coloring of G. Consider the following coloring function for
H, χH : V (H) → {1, 2, . . . , k}. For node (u, i, j), let χH((u, i, j)) = πj(χG(u)) + 3(i − 1). Here π

is the permutation

(
1 2 3
2 3 1

)

, and πj(x) = π(. . . (π(
︸ ︷︷ ︸

j times

x))). Equivalently π(x) = x mod 3 + 1.

Consider edges of the form {(u, i, j), (v, i′ , j)}. If i 6= i′, then colors of the endpoints are
different. Else we have χ((u, i, j)) − χ((v, i, j)) ≡ χ(u) − χ(v) 6≡ 0 mod 3. For edges of the form
{(u, i, j), (u, i′ , j′)}, if i 6= i′, clearly edge is satisfied. When i = i′, j 6= j′, χ((u, i, j))−χ((u, i, j′)) ≡
πj(u) − πj

′

(u) ≡ j − j′ 6≡ 0 mod 3.

Lemma 6. If H has a k-coloring that properly colors a set of edges with at least a fraction (1−µ)
of the total weight, then G has a 3-coloring which colors at least a fraction (1 − µk) of its edges
properly.

Proof. Let χH be the coloring of H, Suggju = {χH((u, i, j)) | 1 6 i 6 k/3} and Suggu =
⋃

j Suggju.
Denote the total weight of uncut edges in this solution as

Ctotal =
∑

u∈V (G)

2

3
duC

within
u +Cbetween, (1)

where Cwithinu and Cbetween denotes the number of improperly colored edges within the copies of
node u and between copies of different vertices u, v ∈ V (G) respectively. We have the following
relations:

Cbetween =
∑3

j=1

∑

uv∈E(G)

∑

16i6i′6k/3 1χH((u,i,j))=χH((v,i′,j))

>
∑3

j=1

∑

uv∈E(G) |Suggju ∩ Suggjv|
(2)

Cwithinu =
∑

c∈Suggu

(|χ−1
H (c)∩Bu|

2

)
(Bu = {(u, i, j)|∀i, j})

=
∑

c∈Suggu

|Bu,c|2

2 − k
2 (Bu,c = Bu ∩ χ

−1
H (c))

> 1
2|Suggu|

(
∑

c∈Suggu
|Bu,c|

)2
− k

2 (Cauchy-Schwarz)

>
k
2

(
k

|Suggu|
− 1
)

>
k
2
|Suggu|
|Suggu|

>
|Suggu|

2

(3)

Now we will find a (random) 3-coloring χG for G. Pick c from {1, 2, . . . , k} uniformly at random.
If c /∈ Suggu, select χG(u) uniformly at random from {1, 2, 3}. If c ∈ Suggu, set χG(u) = j if j is
the smallest index for which c ∈ Suggj(u). With this coloring χG(u), the probability that an edge
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(u, v) ∈ E(G) will be improperly colored is:

Pr [χG(u) = χG(v)] 6

3∑

j=1

Prc
[
c ∈ Suggju ∩ Suggjv

]
+

1

3
Prc
[
c ∈ Suggu, c ∈ Suggv

]

+
1

3
Prc
[
c ∈ Suggu, c ∈ Suggv

]
+

1

3
Prc
[
c ∈ Suggu, c ∈ Suggv

]

6

3∑

j=1

|Suggju ∩ Suggjv|

k
+

|Suggu|

3k
+

|Suggv|

3k

We can thus bound the expected number of miscolored edges in the coloring χG as follows.

E

[
∑

(u,v)∈E(G)

1χG(u)=χG(v)

]

6
∑

uv∈E

[( 3∑

j=1

|Suggju ∩ Suggjv|

k

)

+
|Suggu|

3k
+

|Suggv|

3k

]

6
1

k

(

Cbetween +
∑

u∈V (G)

du
3
|Suggu|

)

(using (2))

6
1

k

(

Cbetween +
∑

u∈V (G)

2du
3
Cwithinu

)

=
Ctotal

k

This implies that there exists a 3-coloring of G for which the number of improperly colored edges
in G is at most Ctotal

k . Therefore if H has a k-coloring which improperly colors at most a total
weight µk2m of edges, then there is a 3-coloring of G which colors improperly at most a fraction
µk2m
km = µk of its edges.

This completes the proof of Theorem 4 when k is divisible by 3. The other cases are easily
handled by adding k mod 3 extra nodes connected to all vertices by edges of suitable weight. See
Appendix A for details.

Remark 5 (Comparison to [6]). The reduction of Kann et al [6] converts an instance G of MaxCut

to the instance G′ = K ′
k/2 ⊗G of Max k-Cut. Edge weights are picked so that the optimal k-cut of

G′ will give a set Su of k/2 different colors to all vertices in each k/2 clique (u, i), 1 6 i 6 k/2. This
enables converting a k-cut of G′ into a cut of G based on whether a random color falls in Su or not.
In the 3-coloring case, we make 3 copies of G′ in an attempt to enforce three “translates” of Su,
and use those to define a 3-coloring from a k-coloring. But we cannot ensure that each k-clique is
properly colored, so these translates might overlap and a more careful soundness analysis is needed.

3 Conditional Hardness Results for Max k-Colorable Subgraph

We will first review the (exact) d-to-1 Conjecture, and then construct a rapidly mixing Markov
chain which never produces edges whose both ends might have the same colors so as to preserve
k-colorability. Then we will bound the stability of coloring functions with respect to this noise
operator. In the last section, we will give a PCP verifier which concludes the hardness result.
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3.1 Preliminaries

We begin by reviewing some definitions and d-to-1 conjecture.

Definition 1. An instance of a bipartite Label Cover problem represented as L = (U, V,E,W,RU , RV ,Π)
consists of a weighted bipartite graph over node sets U and V with edges e = (u, v) ∈ E of non-
negative real weight we ∈ W . RU and RV are integers with 1 6 RU 6 RV . Π is a collection
of projection functions for each edge: Π = {πvu : {1, . . . , RV } → {1, . . . , RU}

∣
∣u ∈ U, v ∈ V }. A

labeling ℓ is a mapping ℓ : U → {1, . . . , RU}, ℓ : V → {1, . . . , RV }. An edge e = (u, v) is satisfied by
labeling ℓ if πe(ℓ(v)) = ℓ(u). We define the value of a labeling as sum of weights of edges satisfied
by this labeling normalized by the total weight. Opt(L) is the maximum value over any labeling.

Definition 2. A projection π : {1, . . . , RV } → {1, . . . , RU} is called d-to-1 if for each i ∈ {1, . . . , RU},
|π−1(i)| 6 d. It is called exactly d-to-1 if |π−1(i)| = d for each i ∈ {1, 2, . . . , RU}.

Definition 3. A bipartite Label-Cover instance L is called d-to-1 Label-Cover if all projection
functions, π ∈ Π are d-to-1.

Conjecture 1 (d-to-1 Conjecture [7]). For any γ > 0, there exists a d-to-1 Label-Cover instance L
with RV = R(γ) and RU 6 dRV many labels such that it is NP-hard to decide between two cases,
Opt(L) = 1 or Opt(L) 6 γ. Note that although the original conjecture involves d-to-1 projection
functions, we will assume that it also holds for exactly d-to-1 functions (so RU = dRV ), which is
the case in [2].

Using the reductions from [2], it is possible to show that the above conjecture still holds given
that the graph (U ∪ V,E) is left-regular and unweighted, i.e., we = 1 for all e ∈ E.

3.2 Rapidly Mixing Markov Operator for Coloring

For a positive integer M , we will denote by [M ] the set {0, 1, . . . ,M − 1}. We will identify ele-
ments of [Md] with [M ] × [M ] × . . .× [M ]

︸ ︷︷ ︸

d many

in the obvious way, with the tuple (a1, . . . , ad) ∈ [M ]d

corresponding to
∑d

i=1 aiM
i−1 ∈ [Md].

Definition 4. A Markov operator T is a linear operator which maps probability measures to other
probability measures. In a finite discrete setting, it is defined by a stochastic matrix whose (x, y)’th
entry T (x 7→ y) is the probability of transitioning from x to y. Such an operator is called ergodic
if there exists a stationary distribution µ such that µT = µ, aperiodic if there exists a t > 1 such
that for any x, T t

′

(x 7→ x) > 0, ∀t′ > t and irreducible if for any x, y, there exists a t such that
T t(x 7→ y) > 0.

Following is a classical theorem in stochastic processes:

Theorem 7. Any finite, irreducible, aperiodic Markov chain is ergodic with a unique stationary
distribution µ.

We also need a second definition that is useful for relating the noise-stability of a Markov
operator to its spectral properties on some suitable inner product space.
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Definition 5. A Markov operator T with stationary distribution µ is reversible if it satisfies the
detailed balance conditions, ie. for all x, y,

T (x 7→ y)µ(x) = T (y 7→ x)µ(y).

Definition 6. Spectral radius of a finite reversible Markov operator T , ρ(T ) is defined as

ρ(T ) = sup
f

∣
∣
∣
∣

Covx∼µ,y∼Tx [f(x), f(y)]

Varx∼µ [f(x)]

∣
∣
∣
∣

which is equivalent to

ρ(T ) =

∣
∣
∣
∣
∣

sup
〈f,1〉µ=0

〈f, Tf〉µ
〈f, f〉µ

∣
∣
∣
∣
∣

in inner-product space L2(µ)

〈f, g〉µ =
∑

x

µ(x)f(x)g(x).

The main technical proposition for the conditional hardness result in our paper is the construc-
tion of a Markov operator, T on [q]d × [d]d with very small spectral radius. The choice of T is
constrained in the following ways: In our hardness reduction, the queries (x, y) ∈ [q]d × [q]d (edges
in the resulting graph) will be based on this distribution, with the answers expected to be one of
the coordinates xi (and yj). Moreover this operator should have a small spectral radius, which
translates to a better inapproximability. In other words, given an x, we should expect to see an
(almost) uniform distribution on the set of coordinates of y, otherwise it might be possible to cheat
on the answer to y.

In the following part, we give a construction for such an operator T , which satisfies the above
conditions and we bound its spectral radius by directly comparing it against a perfectly mixing
Markov operator.

Proposition 1. For every integer 2 6 d and all integers q > 3d, there exists a reversible Markov

operator T on [qd] (equivalently [q]d) with spectral radius ρ(T ) < 3d3/2

q−1 such that if T (x 7→ y) 6= 0

for x, y ∈ [q]d, then xi 6= yj,∀i, j.

Proof. First, we define some notations. For a given x ∈ [q]d, let Set(x) = {xi|1 6 i 6 d} be the
set of distinct elements used by x. For a set L, denote Bi(L) = {x|x ∈ Ld, |Set(x)| = i}. Also let

(i)d = i · (i− 1) · . . . · (i− d+ 1) =
∏d
j=0(i− j). Finally let β

(i)
p = |Bi([p])|. Just as a side note, bear

in mind β
(i)
p has no simple closed form expression and it changes wildly between i = 1 and i = d.

We will design our operator T in a way that only estimates for β
(d)
p will be used.

We state the following observations which will be used repetitively in the proof. In all cases,
we assume 0 6 u, v 6 i 6 d 6 q/3 and 1 6 d.

11



β
(d)
q−u = (q − u)d = qd

d−1∏

j=0

(

1 −
u+ j

q

)

> qd exp



−
∑

j

u+ j

q
−
∑

j

(u+ j)2

q2



 (since 1 − x > e−x−x
2

for 0 6 x 6 2/3)

> qd exp

(

−
du+ d2/2 − d/2

q

−
du2 + d2u− u+ d3/3

q2

)

> qd exp

(
d

2q
−
du

q
−
d2

2q
−

7d3

3q2

)

(4)

β
(d)
q−u 6 qd exp

(
d

2q
−
du

q
−
d2

2q

)

(since 1 − x 6 e−x for 0 6 x 6 1) (5)

β
(i)
q−u

β
(i)
q−v

=

(q−u
i

)
β

(i)
i

(q−v
i

)
β

(i)
i

=
(q − u)i
(q − v)i

> exp

(
i

2q
−
iu

q
−
i2

2q
−

7i3

3q2
−

i

2q
+
iv

q
+
i2

2q

)

(by combining above inequalities)

> exp

(

−
i(u− v)

q
−

7i3

3q2

)

(6)

Consider the following Markov operator, T with given x ∈ [q]d:

1. Select j such that if |Set(x)| = d, j = k ∈ [d] with probability θk, else j = d. Here θd =

exp
[

7d3
(

1
q2 − 1

(q−1)2

)]

< 1 and θk = 1−θd
d−1 for k < d.

2. Pick y uniformly at random from all sets in Bj([q] \ Set(x)).

Formally;

T (x 7→ y) =







θj

β
(j)
q−d

if |Set(x)| = d, |Set(y)| = j and Set(x) ∩ Set(y) = ∅,

1

β
(d)
q−i

if |Set(x)| = i < d, |Set(y)| = d and Set(x) ∩ Set(y) = ∅,

0 else.

T is invariant under permutations of [q], so it can be described by |Set(x)| instead of x. From
now on, we will use T (i 7→ j), µ(i) instead of T (x 7→ y), µ(x) where i = |Set(x)| and j = |Set(y)|.
Since T is ergodic, there exists a unique stationary distribution µ such that µT = µ, which implies
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µ(i) = µ(d)β
(d)
q−iT (d 7→ i) =

µ(d)θjβ
(d)
q−i

β
(j)
q−d

. It is easy to check that this satisfies detailed balance

conditions, so T is reversible.

In order to bound the spectral radius of T , we will first consider T 2. This is because λ2
i (T ) 6

λ1(T
2) for 1 6 i 6 qd−1. In order to bound λ2

1(T ), we will examine the variational characterization
of 1 − λ1(T

2) [14]:

min
ψ

∑

x,y(ψ(x) − ψ(y))2µ(x)T 2(x 7→ y)
∑

x,y(ψ(x) − ψ(y))2µ(x)µ(y)
> min

ψ,x,y

µ(x)(ψ(x) − ψ(y))2T 2(x 7→ y)

(ψ(x) − ψ(y))2µ(x)µ(y)

> min
x,y

T 2(x 7→ y)

µ(y)
(7)

Notice that due to reversibility, we have T 2(x 7→y)
µ(y) = T 2(y 7→x)

µ(x) . For any x, y:

T 2(x 7→ y) >
∑

z

T (x 7→ z)T (z 7→ y)

=
d∑

k=1

β
(k)
q−|Set(y)∪Set(z)|T (i 7→ k)T (k 7→ j)

>

d∑

k=1

β
(k)
q−i−jT (i 7→ k)T (k 7→ j)

︸ ︷︷ ︸

define as T 2(i7→j)

. (8)

where we introduced the function T 2(i 7→ j) as the least probability of transitioning from any x to

any y (with i = |Set(x)| and j = |Set(y)|.) Similarly we will use Q(i, j) = T 2(i7→j)
µ(j) .

In order to lower bound µ(y)−1 term in Eq. 7, we will consider the property of µ being a

probability distribution,
∑

x µ(x) =
∑d

i=1 µ(i)β
(i)
q = 1:
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1 =

d∑

i=1

µ(i)β(i)
q =

d−1∑

i=1

µ(d)θiβ
(d)
q−i

β
(i)
q

β
(i)
q−d

+ µ(d)β
(d)
q−d

>

d∑

i=1

µ(d)θiβ
(d)
q−i

β
(i)
q

β
(i)
q−d

(since θd < 1)

µ(d)−1
>

d∑

i=1

θiq
d exp

(
d

2q
−
di

q
−
d2

2q
−

7d3

3q2
+
di

q
−

7i3

3q2

)

(using Eq. 4 and Eq. 6 on
β

(i)
q

β
(i)
q−d

)

µ(d)−1q−d >

d∑

i=1

θi exp

(
d

2q
−

7(i3 + d3)

3q2
−
d2

2q

)

> exp

(
d

2q
−
d2

2q
−

7d3

3q2

) d∑

i=1

θi exp

(

−
7i3

3q2

)

> exp

(
d

2q
−
d2

2q
−

14d3

3q2

)

(since θi > 0 and
∑

i θi = 1)

(9)

We will now lower bound Q(i, j) by a case analysis. Due to symmetry of Q, there are three
cases to consider:

1. i < j < d:

Q(i, j) =

d∑

k=1

β
(k)
q−i−jT (i 7→ k)T (k 7→ j)

µ(j)
(only T (i 7→ d) is non-zero)

=
β

(d)
q−i−jT (i 7→ d)T (d 7→ j)

µ(j)
=
β

(d)
q−i−jT (i 7→ d)T (j 7→ d)

µ(j)

µ(j)

µ(d)

=
β

(d)
q−i−j

β
(d)
q−iβ

(d)
q−jµ(d)

> exp

(

−
d

2q
+
di

q
+
d2

2q
−
di

q
−

7d3

3q2
+

d

2q
−
d2

2q
−

14d3

3q2

)

> exp

(

−
7d3

q2

)

2. i < j = d:
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Q(i, d) =
d∑

k=1

β
(k)
q−i−dT (i 7→ k)T (k 7→ d)

µ(d)
(only T (i 7→ d) is non-zero)

=
β

(d)
q−i−dT (i 7→ d)T (d 7→ d)

µ(d)

=
β

(d)
q−i−dθd

β
(d)
q−iβ

(d)
q−dµ(d)

> exp

(

−
7d3

q2

)

θd (using the estimate we have for Q(i, j))

> exp

(

−
7d3

(q − 1)2

)

3. i = j = d:

Q(d, d) =
d∑

k=1

β
(k)
q−2dT (d 7→ k)T (k 7→ d)

µ(d)

=
1

µ(d)

d∑

k=1

β
(k)
q−2dθk

β
(k)
q−dβ

(d)
q−k

>
1

µ(d)qd

d∑

k=1

θk exp

(

−
kd

q
−

7k3

3q2
−

d

2q
+
dk

q
+
d2

2q

)

(using Eq. 4 and Eq. 6 on
β

(k)
q−2d

β
(k)
q−d

)

>

d∑

k=1

θk exp

(
d

2q
−
d2

2q
−

14d3

3q2
−

7k3

3q2
−

d

2q
+
d2

2q

)

>

d∑

k=1

θk exp

(

−
7d3

q2

)

= exp

(

−
7d3

q2

)

(since
∑

i θi = 1)

Therefore we have

1 − λ1(T
2) > exp

(

−6
d3

(q − 1)2

)

> 1 −
7d3

(q − 1)2

which implies

ρ(T ) = max(λ1(T ), |λqd−1(T )|) 6

√

1 −

(

1 −
7d3

(q − 1)2

)

<
3d3/2

q − 1

for d 6
q
3 .
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3.3 q-ary Functions, Influences, Noise stability

In this section, we reiterate some of the definitions given in [2] with respect to any reversible Markov
operator.

Assume T is a reversible Markov operator T with stationary distribution µ on [q]. As we did
in Definition 6, we define the inner product in this space as 〈f, g〉µ = Ex∼µ [f(x)g(x)] and the
corresponding inner product space with L2(µ). Also we define

〈f, Tg〉µ = Ex∼µ,y∼Tx [f(x)g(y)]

Unless stated otherwise, all inner products and norms will be in this space. For any x = (x1, . . . , xn) ∈
[q]n, let µ1⊗ . . .⊗µn and (T1 ⊗ . . .⊗ Tn)x denote the product distributions on [q]n whose jth entry
yj is distributed according to µj(yj) and Tj(xj 7→ yj) respectively.

Definition 7. Let α0 = 1, α1, . . . , αq−1 be an orthonormal basis of R
q in L2(µ). For x ∈ [q]n, we

define αx ∈ R
qn

as
αx = αx1 ⊗ . . .⊗ αxn .

Definition 8 (Fourier coefficients). For a function f : [q]n → R, define f̂(αx) = 〈f, αx〉µ.

If α0, . . . , αq−1 are an orthonormal set of eigenvectors for T (with eigenvalues λ0, . . . , λq−1), we
have

T⊗nαx =




∏

a6=0

λ|x|aa



αx

and hence

T⊗nf =




∏

a6=0

λ|x|aa



 f̂(αx)αx.

Definition 9. Let f : [q]n → R be a function. The low-level influence of ith variable of f is defined
by

Inf
6t
i (f) =

∑

x:xi 6=0, |x|6t

f̂2(αx).

The following observation from [2] allows us to bound the number of influential coordinates a
function can have.

Observation 1. For any function f ,
∑

i Inf
6t
i (f) =

∑

x:|x|6t f̂
2(αx)|x| 6 t

∑

x f̂
2(αx) = t‖f‖2

2. If

f : [q]n → [0, 1], then ‖f‖2
2 6 1, so

∑

i Inf
6t
i (f) 6 t.

A natural way to think about a k-coloring function is as a collection of k-indicator variables
summing to 1 at every point. To make this formal:

Definition 10. Define the unit k-simplex as ∆k = {(x1, . . . , xk) ∈ R
q |
∑
xi = 1, xi > 0}.

16



Observation 2. For positive integers q, k and any function f = (f1, . . . , fk) : [q]n → ∆k,
∑

i Inf
6t
i (f) =

∑

i

∑

j Inf
6t
i (fj) 6 t

∑

j ‖fj‖
2 6 t.

Let γ denote the standard Gaussian measure on R
n . We denote by E[γ] = 〈·, ·〉γ , the inner

product on L2(Rn, γ). Notice that Ex∼γ [f(x)] = 〈f,1〉γ where 1 is the constant 1 function. For
ρ ∈ [−1, 1], denote by Uρ the Ornstein-Uhlenbeck operator, which acts on L2(R, γ) by

Uρf(x) = Ey∼γ

[

f(ρx+
√

1 − ρ2y)
]

Finally, for 0 < µ < 1, let Fµ : R → {0, 1} denote the function Fµ(x) = 1x<t where t is chosen
in such a way that Eγ [Fµ] = µ. Let Λρ(µ) = 〈Fµ, UρFµ〉γ .

In order to obtain stability bounds for a function f : [q]n → [0, 1], we need the analogue of
Theorem 3.1 in [2]. Although Dinur et al.’s argument is only given for symmetric Markov operators
(for which the stationary distribution is all constant vector,) it is oblivious to the underlying inner-
product space. In fact, modifying Claim 3.6 of [2] suffices. We introduce the prerequisite definitions
first:

Definition 11. (Gaussian analogue of an operator) We define Gaussian analogue of T as the
operator T̃ on L2(Rq−1, γ) given by

T̃ = Uλ1 ⊗ . . . ⊗ Uλq−1

where λi is the ith eigenvalue of T in L2(µ).

Definition 12. (Real analogue of a function) Let f : [q]n → R be a function with decomposition

f =
∑

f̂(αx)αx

Consider the (q−1)n variables z1
1 , . . . , z

1
q−1, . . . , z

n
1 , . . . , z

n
q−1 and let Γx =

∏n
i=1,xi 6=0 z

i
xi

. Define the

real analogue of f to be the function f̃ : R
n(q−1) → R given by

f̃ =
∑

f̂(αx)Γx.

Claim 1. For any two functions f, g : [q]n → R and operator T on [q]n,

〈f, g〉µ = 〈f̃ , g̃〉γ

〈f, T⊗ng〉µ = 〈f̃ , T̃⊗ng̃〉γ .

Proof. Both claims follow just as in original proof by noting that αx, Γx form an orthonormal
basis with respect to L2(µ), L2(γ) and are eigenvectors of T⊗n and T̃⊗n with same eigenvalues,
respectively.

The rest of proof in [2] follows directly, leading to the following result:
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Proposition 2. Let q > 2 be a fixed integer, and let T be a reversible Markov operator on [q]
with spectral radius ρ = ρ(T ) < 1. Then for any ε > 0, there exist δ > 0 and t ∈ N such that if
f, g : [q]n → [0, 1] are two functions satisfying

min(Inf6t(f), Inf6t(g)) < δ

for all i, then it holds that

〈FEµ[f ], Uρ(1 − F1−Eµ[g])〉γ − ε 6 〈f, T⊗ng〉µ 6 〈FEµ[f ], UρFEµ[g]〉γ + ε.

Corollary 8. Let q, k > 2 be fixed integers. For any reversible Markov operator T on [q] with
spectral radius ρ = ρ(T ) 6

C
k−1 6

1
ln3(k)

and any ε > 0, the following holds: There exist δ =

δ(ε, k) > 0 and t ∈ N such that any function f : [q]n → ∆k with Inf
6t
i (f) 6 δ (for all i) satisfies

k∑

i=1

〈fi, T fi〉µ >
1

k
− 2C

ln k

k2
−O(ln ln k)/k2.

Proof. We have

〈fi, T fi〉µ =
∑

x




∏

a6=0

λ|x|aa



 f̂2(αx)

> 2µ2
i −

∑

x




∏

a6=0

ρ(T )|x|



 f̂2(αx)

> 2µ2
i − Λρ(µi) +

1

q3
(by Proposition 2 for ε = 1/q3)

which is the same expression in the proof of Proposition 11.4 in [8]. The rest of the proof follows
the same.

3.4 d-to-1 Hardness for Max k-Colorable Subgraph

3.4.1 Moving between domains

Our hardness reduction will rely on bounding the stability of a function f : [qd]n → ∆q with respect
to the operator T from Proposition 1. However, in order to find a good labeling, we need to find
the influential coordinate of a function defined on [q]dn. The following definition and claims allow
us to move between former and latter easily.

Definition 13 (Moving between domains). For any x = (x1, . . . , xdn) ∈ [q]dn, denote x ∈ [qd]n as

x = ((x1, . . . , xd), . . . , (xdn−d+1, xdn)) .

Similarly for y = (y1, . . . , yn) ∈ [qd]n, denote y ∈ [q]dn as

y = (y1,1, . . . , y1,d, . . . , yn,1, . . . , yn,d),

where yi =
∑d

j=1 yi,jq
j−1 such that yi,j ∈ [q]. For a function f on [q]dn, define f on [qd]n as

f(y) = f(y).
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The relationship between influences of variables for functions f and f are given by the following
claim (Claim 2.7 in [2]).

Claim 2. For any function f : [q]dn → R, i ∈ {1, . . . , n} and any t > 1, Inf
6t
i (f) 6

∑d
j=1 Inf

6dt
di−d+j(f).

In the next section, we will use k (instead of q) to denote the number of colors.

3.4.2 PCP Verifier for Max k-Colorable Subgraph

This verifier uses the same idea with Max k-Cut verifier given in [8], presented here for clarity.
Let L = (U, V,E,R, dR,Π) be a d-to-1 bipartite, unweighted and left regular Label-Cover instance
as in Conjecture 1. Assume the proof is given as the Long Code over [k]dR of the label of every
vertex v ∈ V . Below for a permutation σ on {1, . . . , n} and a vector x ∈ R

n, x ◦ σ denotes
(xσ(1), xσ(2), . . . , xσ(n)). For a function f on R

n, f ◦ σ is defined as f ◦ σ(x) = f(x ◦ σ).

• Pick u uniformly at random from U , u ∼ U .

• Pick v, v′ uniformly at random from u’s neighbors. Let π, π′ be the associated projection
functions, χv, χv′ be the (supposed) Long Codes for the labels of v, v′ respectively.

• Let T be the Markov operator on [k]d given in Lemma 1. Moreover let µ be its stationary
distribution. Pick x ∼ µ⊗R and y ∼ T⊗Rx. Let σv, σv′ be two permutations of {1, . . . , dR}
such that π(σ−1

v (di− j)) = π′(σ−1
v′ (di− j′)) for all 0 6 j, j′ 6 d−1. (both π and π′ are exactly

d-to-1, so such permutations exist).

• Accept iff χv ◦ σv(x) and χv′ ◦ σv′(y) are different.

Lemma 9 (Completeness). If the original d-to-1 Label-Cover instance L has a labeling which
satisfies all constraints, then there is a proof which makes the above verifier always accept.

Proof. Let ℓ : V → {1, . . . , dR} be a labeling for L satisfying all constraints in Π. Pick χv as the
Long Code encoding of ℓ(v). Given any pair of vertices v, v′ ∈ V which share a common neighbor
u ∈ U , and x, y ∈ [k]dR pairs such that

Pr
[
y ∼ T⊗R(x)

]
=
∏

i

T ((xdi−d+1, . . . , xdi) 7→ (ydi−d+1, . . . , ydi)) > 0 ,

let π, π′ be the projection functions and σv, σv′ be the permutations as defined in the description of
the verifier. We have χv(x ◦ σv) = xσ(ℓ(v)) and χv′(y ◦ σv′) = yσ′(ℓ(v′)). Since π(ℓ(v)) = π′(ℓ(v′)),
this implies σv(ℓ(v)), σv′ (ℓ(v

′)) ∈ {di− d+ 1, . . . , di} for some i 6 R. But

T ((xdi−d+1, . . . , xdi) 7→ (ydi−d+1, . . . , ydi)) > 0 =⇒ {xdi−d+1, . . . , xdi} ∩ {ydi−1, . . . , ydi} = ∅ ,

therefore χv ◦ σv(x) = xσv(ℓ(v)) 6= yσv′ (ℓ(v
′)) = χv′ ◦ σv′(y). So the verifier always accepts.

Lemma 10 (Soundness). There is a constant C such that, if the above verifier passes with prob-
ability exceeding 1 − 1/k + O(d3/2 ln k/k2), then there is a labeling of L which satisfies γ′ = γ′(k)
fraction of the constraints independent of label set size R.
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Proof. For each node v ∈ V , let f v : [k]dR → ∆k be the function f v(x) = eχv(x) where ei is the

indicator vector of the ith coordinate. Let Γ(u) denote the set of vertices adjacent to u in the Label
Cover graph.

After arithmetizing, we can write the verifier’s acceptance probability as

Pr [acc] = Eu,v,v′

[

1 −
∑

j〈f
v
j ◦ σv, T

⊗R(f v
′

j ◦ σv′)〉µ
]

= 1 − Eu

[
∑

j Ev,v′

[

〈f vj ◦ σv, T
⊗R(f v

′

j ◦ σv′)〉µ
]]

= 1 − Eu

[
∑

j〈Ev
[

f vj ◦ σv

]

, T⊗R
Ev′

[

f v
′

j ◦ σv′
]

〉µ
]

= 1 − Eu

[
∑

j〈g
u
j , T

⊗Rguj 〉µ
] (

guj = Ev∼Γ(u)

[

f vj ◦ σv
])

> 1 − 1/k + C ln k/k2

where gu : [kd]R → ∆k, C = 3d3/2, 〈f, g〉 = Ex∼π⊗n [
∑

i fi(x)gi(x)] (stationary distribution of T )
and T⊗ng(x) = E [g(y)|T⊗nx = y]. By averaging, for at least a fraction δ = (ε/2) ln k/k2 of vertices
in U , we have

∑

j

〈guj , T
⊗Rguj 〉µ 6 1/k − C ln k/k2

Let these be “good” vertices. For a good vertex, by Corollary 8, there exist constants δ = δ(k),
t = t(k) and i such that Inf

6t
i (gu) > δ. Let Suggu = {i|i ∈ {1, . . . , R} ∧ Inf

6t
i (gu) > δ}, so

|Suggu| > 1. By Observation 2, |Suggu| 6 t/δ. For a good vertex u, and j ∈ Suggu:

δ 6 Inf
6t
j (gu) = Ev∼Γ(u)

[

Inf
6t
j

(
f v ◦ σv

)]

Therefore, for at least a fraction δ/2 of neighbors v of u, Inf
6t
j (f v ◦ σv) > δ/2. For such v and j,

by Claim 2,
∑d

k=1 Inf
62t
dj−d+k(f

v ◦ σv) > δ/2. Therefore for some j ∈ [dR], Inf
62t
j (f v) > δ/4. Let

Suggv = {j|j ∈ {1, . . . , dR} ∧ Inf
62t
j (f v) > δ/4}. Again, Suggv is not empty and |Suggv| 6 8t/δ.

Following the decoding procedure in [8], we deduce that it is possible to satisfy a fraction
γ′ = γ′(δ, t) = γ′(k) of the constraints.

Note that our PCP verifier makes “k-coloring” tests. By the standard conversion from PCP
verifiers to CSP hardness, and Remark 3 about conversion to unweighted graphs with the same
inapproximability factor, we conclude the main result of this section by combining Lemmas 9 and
10.

Theorem 11. For any constant k > 3, assuming d-to-1 Conjecture for any d 6

(
k−1
ln3 k

)2/3
, it is

NP-hard to approximate Max k-Colorable Subgraph within a factor of 1 − 1/k +O(d3/2 ln k/k2).
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A Handling k not divisible by 3 in Theorem 4

We now argue how to handle the case when k mod 3 6= 0 in the statement of Theorem 4. Assume
k is of the form K+L, where K ≡ 0 (mod 3) and L = k mod 3 ∈ {1, 2}. We will give a reduction
from Max K-Colorable Subgraph, which we already showed to be NP-hard to approximate within a
factor 1 − 1

33K + ε, to Max k-Colorable Subgraph.
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Let GK be an (unweighted) instance of Max K-Colorable Subgraph with M edges. Construct a
graph H by adding L new vertices u1, . . . , uL to GK . Each ui is connected by an edge of weight dv

K
to each vertex v ∈ V (GK), where dv is the degree of v in GK . If L > 1, (u1, u2) is an edge in H
with weight M

33K . The total weight of edges in H equals

M ′ = M +
2LM

K
+
M(L− 1)

33K
.

Clearly if GK is K-colorable, then H is k-colorable. For the soundness part, suppose every

K-coloring of GK miscolors at least
(

1
33K − ε

)

M edges. Let χ be an optimal k-coloring of H. We

will prove that χ miscolors edges with total weight at least M( 1
33K − ε). This will certainly be the

case if L > 1 and χ(u1) = χ(u2). So we can assume χ uses L colors for the newly added vertices ui.
If χ(v) = χ(ui) for some v ∈ V (GK), we can change χ(v) to one of the K colors not used to color
{u1, . . . , uL} so that the weight of miscolored edges does not increase. Therefore, we can assume
that χ uses only K colors to color the GK portion of H. But this implies at least M( 1

33K −ε) edges
are miscolored by χ, as desired.

Thus every k-coloring of H miscolors at least a fraction

M(1/(33K) − ε)

M ′
=

(1/(33K) − ε)

1 + 2L/K + (L− 1)/(33K)
>

1

33(k + L) + (L− 1)
− ε

of the total weight of edges in H. Since L = k mod 3, the bound stated in Theorem 4 holds.
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