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Abstract

We study the maximization version of the fundamental gragbring problem. Here the goal is to
color the vertices of &-colorable graph withk colors so that a maximum fraction of edges are properly
colored (i.e. their endpoints receive different colors)tafvdomk-coloring properly colors an expected
fraction1 — % of edges. We prove that given a graph promised tb-belorable, it is NP-hard to find /&
coloring that properly colors more than a fraction — 33% of edges. Previously, only a hardness factor
of1— O(k%) was known. Our result pins down the correct asymptotic deéeece of the approximation
factor onk. Along the way, we prove that approximating the Maxim8g+oolorable subgraph problem
within a factor greater thaé% is NP-hard.

Using semidefinite programming, it is known that one can ditebe¢han a random coloring and
properly color a fraction — % + % of edges in polynomial time. We show that, assumingtte-1
conjecture, it is hard to properly color (usigcolors) more than a fraction — % +0 (“,;—2’“) of edges

of ak-colorable graph.
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1 Introduction
1.1 Problem statement

A graphG = (V,E) is said to bek-colorable for some positive integér if there exists ak-coloring
x:V — {1,2,...,k} such that for all edge&:,v) € E, x(u) # x(v). Fork > 3, finding ak-coloring of

a k-colorable graph is a classic NP-hard problem. The probleooloring a graph with the fewest number
of colors has been extensively studied. In this paper, ocmgas on hardness results for the following
maximization version of graph coloring: Giverkecolorable graph (for some fixed constant 3), find a
k-coloring that maximizes the fraction of properly coloratyje. (We say an edge is properly colored under
a coloring if its endpoints receive distinct colors.) Ndtattfork = 2 the problem is trivial — one can find

a proper2-coloring in polynomial time when the graph is bipartifeqolorable).

We will call this problemMax k-Colorable Subgraph. The problem is equivalent to partitioning
the vertices intok parts so that a maximum number of edges are cut. This proldemoire popularly
referred to asMax k-Cut in the literature; however, in thilax k-Cut problem the input is an arbitrary
graph that need not be-colorable. To highlight this difference that our focus is e case when the
input graph isk-colorable, we usdlax k-Colorable Subgraph to refer to this variant. We stress that we
will use this convention throughout the papé&fax k-Colorable Subgraph alwaysrefers to the “perfect
completeness” case, when the input grapl-solorable! Since our focus is on hardness results, we note
that this restriction only makes our results stronger.

A factor o = «y, approximation algorithm foMax k-Colorable Subgraph is an efficient algorithm
that given as input &-colorable graph outputs &coloring that properly colors at least a fractianof
the edges. We say thMax k-Colorable Subgraph is NP-hard to approximate within a factgrif no
factor g approximation algorithm exists for the problem unléss= NP. The goal is to determine the
approximation threshold dflax k-Colorable Subgraph: the largesty as a function ok for which a factor
« approximation algorithm foMax k-Colorable Subgraph exists.

1.2 Previous results

The algorithm which simply picks a randokacoloring, without even looking at the graph, properly ¢slo
an expected fraction — 1/k of edges. Frieze and Jerrum [3] used semidefinite progragtoirgive a
polynomial time factorl — 1/k + 21In k/k? approximation algorithm foMax k-Cut, which in particular
means the algorithm will color at least this fraction of esldge a k-colorable graph. This remains the
best known approximation guarantee kax k-Colorable Subgraph to date. Khot, Kindler, Mossel, and
O’Donnell [7] showed that obtaining an approximation faabl —1/k+21n k/k*4+Q(In1n k/k?) for Max
k-Cut is Unique Games-hard, thus showing that the Frieze-Jerlgonitam is essentially the best possible.
However, due to the “imperfect completeness” inherentédthique Games conjecture, this hardness result
doesnot hold for Max k-Colorable Subgraph when the input is required to Becolorable.

ForMax k-Colorable Subgraph, the best hardness known prior to our work was a fattel© (1/k2).
This is obtained by combining an inapproximability reswut Max 3-Colorable Subgraph due to Pe-
trank [11] with a reduction from Papadimitriou and YannakglO]. It is a natural question whether is
an efficient algorithm that could properly color a fractibn- 1/k'*¢ of edges given &-colorable graph
for some absolute constant> 0. The existing hardness results do not rule out the podgilaifisuch an
algorithm.

IWhile a little non-standard, this makes our terminology enarisp, as we can avoid repeating the fact that the hardméds h
for k-colorable graphs in our statements.



ForMax k-Cut, a better hardness factor was shown by Kann, Khanna, Lagergnd Panconesi [5] —
for some absolute constants> « > 0, they showed that it is NP-hard to distinguish graphs thaelza
k-cut in which a fraction1 — «/k) of the edges cross the cut from graphs whose Kaxt value is at most
a fraction(1 — 3/k) of edges. SincéaxCut is easy when the graph 2scolorable, this reduction does not
yield any hardness fdvlax k-Colorable Subgraph.

1.3 Our results

Petrank [11] showed the existence ofy@ > 0 such that it is NP-hard to find 3-coloring that properly
colors more than a fractiofi — ~) of the edges of &-colorable graph. The value of in [11] was left
unspecified and would be very small if calculated. The radaoah [11] was rather complicated, involving
expander graphs and starting from the weak hardness boondmidinded occurrence satisfiability. We
prove that the NP-hardness holds with= % In other words, it is NP-hard to obtain an approximation
ratio bigger than§’—§ for Max 3-Colorable Subgraph. The reduction is from the constraint satisfaction

problem corresponding to the adaptB«guery PCP with perfect completeness from [4].

By a reduction fronMax 3-Colorable Subgraph, we prove that for everg > 3, theMax k-Colorable
Subgraph is NP-hard to approximate within a factor greater than — ﬁ (Theorem 4). This identifies
the correct asymptotic dependence foof the best possible approximation factor fdax k-Colorable
Subgraph. The reduction is similar to the one in [5], though some alchanges have to be made in
the construction and some new difficulties overcome in thandoess analysis when reducing frouax
3-Colorable Subgraph instead ofMlaxCut.

In the quest for pinning down thexactapproximability ofMax k-Colorable Subgraph, we prove
the following conditionalresult. Assuming the so-calletdto-1 conjecture, it is hard to approximakéax
k-Colorable Subgraph within a factor1l — % + O (12—2’“) In other words, the Frieze-Jerrum algorithm is
optimal up to lower order terms in the approximation raven for instances dflax k-Cut where the graph
is k-colorable.

Unlike the Unique Games Conjecture (UGC), thn-1 conjecture allows perfect completeness, i.e.,
the hardness holds even for instances where an assignniisfiyisg all constraints exists. Thg-to-1
conjecture was used by Dinur, Mossel, and Regev [2] to prbaefor every constant, it is NP-hard to
color a4-colorable graph withe colors. We analyze a similar reduction for thecoloring case when the
objective is to maximize the fraction of edges that are prigpeolored by ak-coloring. Our analysis uses
some of the machinery developed in [2], which in turn extethésinvariance principle of [8]. The hardness
factor we obtain depends on the spectral gap of a cetfain k2 stochastic matrix.

Remark 1. In general it is far from clear which Unique Games-hardnessilts can be extended to hold
with perfect completeness by assuming, say,2tt@-1 (or some related) conjecture. In this vein, we also
mention the result of O’'Donnell and Wu [9] who showed a tightdness for approximating satisfiable
constraint satisfaction problems @nBoolean variables assuming theto-1 conjecture for any fixed!.
While the UGC assumption has led to a nearly complete urataistg of the approximability of constraint
satisfaction problems [12], the approximability sétisfiableconstraint satisfaction problems remains a
mystery to understand in any generality.

Remark 2. It has been shown by Crescenzi, Silvestri and Trevisan Ht]ahy hardness result for weighted
instances oMax k-Cut carries over to unweighted instances assuming the totelwdgght is polynomially
bounded. In fact, their reduction preservesolorability, so an inapproximability result for the whigd
Max k-Colorable Subgraph problem also holds for the unweighted version. Thereforew hardness
results hold for the unweightédax k-Colorable Subgraph problem.

2



2 Unconditional Hardness Results foiMax k-Colorable Subgraph

We will first prove a hardness result fiitax 3-Colorable Subgraph, and then reduce this problemNax
k-Colorable Subgraph.

2.1 Inapproximability result for Max 3-Colorable Subgraph

Petrank [11] showed th#lax 3-Colorable Subgraph is NP-hard to approximate within a factor @f— )

for some constanty > 0. This constanty, is presumably very small, since the reduction starts from
bounded occurrence satisfiability (for which only weak jmaximability results are known) and uses ex-
pander graphs. We prove a much better inapproximabilitiofamelow, via a simpler proof.

Theorem 1 (Max 3-Colorable Subgraph Hardness) The Max 3-Colorable Subgraph problem is NP-
hard to approximate within a factor (% + ¢ for any constant > 0.

Proof. For the proof of this theorem, we will use reduce from a hardpproximate constraint satisfaction
problem (CSP) underlying the adaptive 3-query PCP gived]inThis PCP has perfect completeness and
soundness /2 + ¢ for any desired constaat(which is the best possible f@rquery PCPs).

We first state the properties of the CSP. An instance of thewibRave variables partitioned into three
partsX’, ) and Z. Each constraint will be of the forrtx; V (Y; = z)) A (75 V (Y = 2)), wherez; € X,
2, 21 € Z are variables (unnegated) akis a literal (; € {y;,7;} for some variable;; € V). For YES
instances of the CSP, there will be a Boolean assignmensdiafiesall the constraints. For Ninstances,
every assignment to the variables will satisfy at most aifsag1/2 + <) of the constraints.

Remark 3. We remark the condition that the instance is tripartite, tad the variables it never appear
negated are not explicit in [4]. But these can be ensured bgaay modification to the PCP construction
in [4]. The PCP in [4] has a bipartite structure: the proofastipioned into two parts called thé-tables
and B-tables, and each test consists of probing onelbjt) from an A table and 3 bits3(g), B(g1), B(g2)
from the B table, and checkingA(f) Vv (B(g) = B(g1)) A (A(f) V (B(g) = B(gs)). Further these tables
arefoldedwhich is a technical condition that corresponds to the aete of negations in the CSP world.
If the queries at locationg; and g, are made in a parallel’-table, and even if th€’-table is not folded
(though theA and B tables need to be folded), one can verify that the analysiseoPCP construction still
goes through. This then translates to a CSP with the pregartaimed above.

LetZ be an instance of such a CSP withconstraints of the above form on variablés= XY U)Y U Z.
Let X = {x1,29,...,2n, }, Y = {y1,92,. -, Uny y @A Z = {21, 29,..., 25, }. From the instanc& we
create a grapldx for the Max 3-Colorable Subgraph problem as follows. There is a nodg for each
variablez; € X, a nodey; for eachz; € Z, and a pair of nodegy;, 7;} for the two literals corresponding to
eachy; € ). There are also three global nodg3, T, '} representing boolean values which are connected
in a triangle with edge weights/2 (see Fig. 1).

For each constraint of the CSP, we place the local gadgeifisptecthat constraint shown in Figure 2.
Note that there are 10 edges of unit weight in this gadget. nduesy;, 7; are connected to node by a

triangle whose edge weights equal = w. HereA(X) denotes the total number of edges going
from nodeX into all the local gadgets. The nodesandz; connected td? with an edge of weighf\ (x;) /2
andA(z;)/2 respectively. The proofs of the following lemmas appear ppéndix A.



Figure 1: Global gadget for truth value assign- Figure 2: Local gadget for each constraint of the
ments. BlocksX;, Y; andZ; are replicated for form (z; VY; = z) A (T; VY; = z). All edges

all vertices inX, Y and Z. Edge weights are have unit weight. Labelsl, A’, B, B’ refer to the
shown next to each edge. local nodes in each gadget.

Lemma 2 (Completeness)Given an assignment of variables: V — {0, 1} which satisfies at least of
the constraints, we can construcBBecoloring of G with at mostm — ¢ improperly colored edges (each of
weight 1).

Lemma 3 (Soundness)Given a 3-coloring of~, y, such that the total weight of edges that are not properly
colored byy is at mostr < m/2, we can construct an assignmerit: V — {0, 1} to the variables of the
CSP instance that satisfies at least—  constraints.

Returning to the proof of Theorem 1, the total weight of edges is

33
= —Z (i) + A@) = m.

3
10m +—m+
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m m 2m

By the completeness lemmag¥ instances of the CSP are mapped to graphisat are3-colorable. By
the soundness lemmaginstances of the CSP are mapped to grapissich that everg-coloring miscolors
at least afractloﬁlg/;fz6 1 25 of the total weight of edges. Sinee> 0 is an arbitrary constant, the proof
of Theorem 1 is complet%. O

2.2 Max k-Colorable Subgraph Hardness

Theorem 4. For every integerk > 3 and every= > 0, it is NP-hard to approximatéax k-Colorable
Subgraph within a factor ofl — m + e wherec, = k mod 3 < 2.
Proof. We will reduceMax 3-Colorable Subgraph to Max k-Colorable Subgraph and then apply The-
orem 1. Throughout the proof, we will assurhés divisible by3. At the end, we will cover the remaining
cases also. The reduction is inspired by the reduction frtamCut to Max k-Cut given by Kannet al.[5]
(see Remark 4). Some modifications to the reduction are degten we reduce froriMlax 3-Colorable

20ur reduction produced a graph with edge weights, but by Regahe same inapproximability factor holds for unweighte
graphs as well.



Subgraph, and the analysis has to handle some new difficulties. Tlalslef the reduction and its analysis
follow.

LetG = (V, E) be an instance d¥lax 3-Colorable Subgraph. By Theorem 1, it is NP-hard to tell &
is 3-colorable or everg-colors miscolors a fractio% — ¢ of edges. We will construct a grag such that
H is k-colorable wher( is 3-colorable, and &-coloring which miscolors at most a fractignof the total
weight of edges off implies a3-coloring of G with at most a fraction:k of miscolored edges. Combined
with Theorem 1, this gives us the claimed hardnedglax k-Colorable Subgraph.

Let K,Q/g denote the complete graph with loops k8 vertices. LetG’ be the tensor product graph
betweenk;, /3 andG, G’ = K;/3 ® G as defined by Weichsel [14]. Identify each nodé&ihwith (u, i), u €
V(G),i € {1,2,...,k/3}. The edges o’ are((u,1), (v,i")) for (u,v) € E and anyi,s € {1,...,k/3}.
Next we make3 copies ofG’, and identify the nodes wittw, 4, j), (u,i) € V(G'),j € {1,2,3}, then put
edges between all nodes of the fofm, j) and(u, ', ;) if eitheri = ¢’ or j # ;" with weight%du, where
d, is degree of node. The total weight of edges in this new constructidrequals

(HEEHORNEES

ueV

Lemma 5. If G is 3-colorable, thenH is k-colorable.

Proof. Let x¢ : V(G) — {1,2,3} be a 3-coloring of5. Consider the following coloring function faf,
xg : V(H) — {1,2,...,k}. For node(u, i, j), let xu((u,i,7)) = 7/ (xc(uw)) + 3(i — 1). Herer is the
1 2 3

permutaﬂon( 5 3 1

), andr(z) = 7(... (w(z))). Equivalentlyr(z) = x mod 3 + 1.
%/_/
j times
Consider edges of the forfi{u, 4, j), (v,4', j)}. If i # 4/, then colors of the endpoints are different. Else
we havex((u,i,7))—x((v,4,7)) = x(u)—x(v) Z 0 mod 3. For edges of the forf\(u, 7, j), (u, ', j')}, if
i # ¢, clearly edge is satisfied. Wher= i, j # j/, x((u, 1, 7)) —x((u,i,5")) = 77 (u)—77 (u) = j—5 #£0
mod 3. ]

Lemma 6. If H has ak-coloring that properly colors a set of edges with at leastafion (1 — u) of the
total weight, therG has a3-coloring which colors at least a fractiofl — u:k) of its edges properly.

Proof. Let xz be the coloring off, Suggl, = {xm((u,4,7)) | 1 <i < k/3} andSugg, = |, Sugg),.
Denote the total weight of uncut edges in this solution as

2 .
Ctotal _ Z 5duC«;uzthm + Obetween’ (l)
ueV(G)

whereCwithin and Cbetween denotes the number of improperly colored edges within tiesoof nodeu
and between copies of different vertices € V(G) respectively. We have the following relations:
etween 3
Chet Zgﬂ ZuveE(G) Zl<i§i’<k/3 1XH((uvivj)):XH((vvilvj)) )
> =1 2wver(G) 1Su8sl N Sugg)|

Vol



Cithin — 3 g, (M (75 (B = {(u..)IVi. j})
= D ceSuge, ‘Buz’c‘2 -5 (Bue = Bu N x5'(0))
> osoea] (Zcesugg !Buc\)z ~ £ (Cauchy-Schwarz) @)
> (e 1) 2 SR > 2
Now we will find a (random)®-coloring x¢ for G. Picke from {1,2, ...k} uniformly at random. If

c ¢ Sugg,, selectyg(u) uniformly atrandom fron{1, 2, 3}. If ¢ € Sugg,,, setxc(u) = jif j is the smallest
index for whiche € Sugg’ (u). With this coloringxq(u), the probability that an edge:, v) € E(G) will
be improperly colored is:

3
. 1
Prxc(u) = xa(v)] < g Prc [c € Sugg], N Sugg) | + gPrc [c € Sugg,, ¢ € Sugg, |
=1

1 - 1
+ §Prc [c € Sugg,, c € Sugg,| + gPrc [c € Sugg,, ¢ € Sugg,

3 . .
EEIISuggiFWSugg%!%_!Suggu!%_ISUggv
p k 3k 3k

We can thus bound the expected number of miscolored edgks ootoringy s as follows.

Sugg?, fWSuggv! |Sugg,,| | |Sugg,|
El > 1xcuo:xc<w] > [(EEZ AT Y

(u,v)EE(G) uwekl

< p(crmeen s S isuggl) (using (2)
ueV(G)
etween 2du within Ototal
< glomeens ¥ Fpoper) =5
ueV(G)

This implies that there exists3acoloring of G for which the number of improperly colored edge<dris at
mostct:al . Therefore ifH has ak-coloring which improperly colors at most a total weighit?>m of edges,

then there is &-coloring of G which colors improperly at most a fractid%il—m = pk of its edges. O

This completes the proof of Theorem 4 whiers divisible by3. The other cases are easily handled by
addingk mod 3 extra nodes connected to all vertices by edges of suitabighiveSee Appendix D for
details. O

Remark 4 (Comparison to [5]) The reduction of Kanmt al [5] converts an instanc€& of MaxCut to the
instanceG’ = K, k2 ® G of Max k-Cut. Edge weights are picked so that the optirkalut of G’ will give a
setS,, of k/2 different colors to all vertices in eadly2 clique (u, ), 1 < i < k/2. This enables converting
ak-cut of G’ into a cut of G based on whether a random color fallssua or not. In the3-coloring case, we
make3 copies ofG’ in an attempt to enforce three “translates”%f, and use those to define3ecoloring
from ak-coloring. But we cannot ensure that edellique is properly colored, so these translates might
overlap and a more careful soundness analysis is needed.



3 Conditional Hardness Results forMax k-Colorable Subgraph

We will first review the (exact®-to-1 Conjecture, and then construct a noise operator, whickvallgs to
preservek-colorability. Then we will bound the stability of coloriniginctions with respect to this noise
operator. In the last section, we will give a PCP verifier iaigoncludes the hardness result.

3.1 Preliminaries
We begin by reviewing some definitions a#do-1 conjecture.

Definition 1. An instance of a bipartite Label Cover problem represented a- (U, V, E, W, Ry, Ry, 1)

consists of a weighted bipartite graph over node $étsnd V' with edges: = (u,v) € E of non-negative
real weightw. € W. Ry and Ry are integers withl < Ry < Ry. Il is a collection of projection
functions for each edgell = {m,, : {1,...,Ry} — {1,...,Ru}{u € U,v € V}. Alabeling?is a

mapping? : U — {1,...,Ry}, ¢ :V — {1,...,Ry}. Anedgee = (u,v) is satisfied by labelind if

me(¢(v)) = f(u). We define the value of a labeling as sum of weights of edgiesieshtby this labeling
normalized by the total weigh©pt(L£) is the maximum value over any labeling.

Definition 2. A projectionn : {1,..., Ry} — {1,..., Ry} is calledd-to-1 if for eachi € {1,..., Ry},
|7=1(i)| < d. Itis calledexactlyd-to-1 if |7~1(i)| = d for eachi € {1,2,..., Ry}.

Definition 3. A bipartite Label-Cover instancg is called d-to-1 Label-Cover if all projection functions,
w € II are d-to-1.

Conjecture 1 (d-to-1 Conjecture [6]) For any~ > 0, there exists al-to-1 Label-Cover instanc& with
Ry = R(v) and Ry < dRy many labels such that it is NP-hard to decide between twosc@ge (L) = 1
or Opt(£) > ~. Note that although the original conjecture involvégo-1 projection functions, we will
assume that it also holds fexactlyd-to-1 functions (saRy = dRy/), which is the case in [2].

Using the reductions from [2], it is possible to show that &eve conjecture still holds given that the
graph(U UV, E) is left-regular and unweighted, i.ev, = 1 foralle € E.

3.2 Noise Operators

For a positive integen/, we will denote by[)/] the set{0,1,..., M — 1}. We will identify elements of
[M?] with [M] x [M] in the obvious way, with the pai, b) € [M]? corresponding: + Mb € [M?].

Definition 4. A Markov operatofi is a linear operator which maps probability measures to offrebabil-
ity measures. In a finite discrete setting, it is defined byalsistic matrix whoseér, y)'th entry T'(z — y)
is the probability of transitioning from: to y. Such an operator is called symmetridifz — y) = T'(y —
x) = T(zey).

Definition 5. Givenp € [—1,1], the Beckner noise operatdf;, on [¢] is defined by ad),(z — z) =
e+ (1 - %) pandT,(z —y) = £(1 - p) foranyz # y.

Observation 1. All eigenvalues of the operatdi, are given byl = A\o(7,) > \i(T,) = ... = X\=1(T}) =
p- Any orthonormal basigg, o, . . . , ag—1 With oy being constant vector, is also a basis fy.



Lemma 7. For an integerq > 6, there exists a symmetric Markov operatBron [¢]?> whose diagonal
entries are allo and with eigenvalue$ = Ao > A1 > ... > A 2_; such that thespectral radiup(7) =
max{| A1, [Ap2_1|} is at most2;.

Proof. Consider the symmetric Markov operafbron [¢]? such that, forr = (21, 22),y = (y1,%2) € [q]?,

a if {z1, 22} N {y1,y2} = D andzy # 22,41 # yo,
B ifxz & {y1, 92} andzy = x0, 31 # Y2,
T(zey) = _
B ifyi & {z1, 22} andxy # xa,y1 = Yo,
0 else,
wherea = m andg = m It is clear thatl" is symmetric and doubly stochastic.

To bound the spectral radius @f, we will bound the second largest eigenvalg7?) of T2. No-
tice that7? is also a symmetric Markov operator. Moreove(T?) = A\?(T), therefore\,(72) >
max(\2(T), A2, (T)) > p(T)?.

Notice thatT?(z«y) > 0 for all pairsz,y € [¢]2. Consider the variational characterizationlof-
A (%) [13]:

Yoy V(@) — ¥y m(@) T (@ y) (@) (@ (@) — () T2 (@)
2 _

= min ¢*T%(zy)

P(y))*m(z)m(y) 2y

min > min min

v ey (W(@) = ¥(y))?(x)7(y) vowy o (Y(x)

For any two pairgx1,z2), (y1,%2) € [q]?, letl = |[¢] \ {z1, 72,91, y2}|. Then we have

Il - 1)52 > (q—2)(q— 3)52 if x1 = 29 andy; = yo,
(l—1DaB>(qg—3)(g—4) if = x9 andy; = yo,
T2((x1,x2)<—>(y1,y2)) — ( ) 6 (q )(q ) 6 - 17é 2 Y1 Y2
I(l=1)ap = (¢ —3)(q —4)ap if 21 = 29 andy; # v,
I(l=1)a?+16* > (g —4)(q —5)a® + (¢ — 4)B* if 21 # zo andy; # yo.
(q—5)(g—4)
(¢—3)2(q—2)(¢—1)
Sop(T) < VM) < |1 - Ry <3+ & < iy forg > 6 =

3.3 g¢-ary Functions, Influences, Noise stability

We define inner product on space of functions frigh’ to R as(f, g) = E, g~ [f(z)g(2)]. Herex ~ D
denotes sampling from distributid® andD = [¢]"¥ denotes the uniform distribution da] " .

Given a symmetric Markov operat@f andz = (xq,...,zy) € [q]V, let T®Vz denote the prod-
uct distribution on[g]" whosei" entry y; is distributed according t@(z;«y;). ThereforeT®N f(z) =

EyNT‘X’Nx [f(y)].

Definition 6. Letay, a1, ..., a,—1 be an orthonormal basis @? such thatwy is all constant vector. For

z € [q]N, we definer, € R?" as
Az = Qg @ ... Q Q-



Definition 7 (Fourier coefficients) For a functionf : [¢]V — R, definef(a,) = (f, ).

Definition 8. Let f : [¢]Y — R be a function. Thanfluenceof i" variable onf, Inf;(f) is defined by

|nf2(f) = [Var [f(ﬂj‘)|33‘1, e s Li—1y Lj41y .- - ,JZ‘NH
wherez, ...,z are uniformly distributed. Equivalenthinf;(f) = Zx:xﬁéo fz(ozx).
Definition 9. Let f : [¢]Y — R be a function. Théow-level influenceof i variable of f is defined by
InfS() = Y o)
z:x,;7#0, |x|<t
Observation 2. For any functionf, >, InfS'(f) = Y.< f2(0w)la] < t32, f2(en) = tIfI3. If
flgN = [0,1], then| f]|3 < 1,505, InfS(f) < t.

Definition 10 (Noise stability) Let f be a function fronjg]¥ to R, and let—1 < p < 1. Define thenoise
stability of f at p as
Sp(f) = (L T"f) = Zp'“""ﬂ )

whereT, is the Beckner operator as in Definition 5.

A natural way to think about @coloring function is as a collection gfindicator variables summing to
1 at every point. To make this formal:

Definition 11. Define the uniy-simplex asd\, = {(z1,...,z,) € R?| > x; = 1,z; > 0}.

Observation 3. For positive integers), ¢ and any functiorf = (f1,..., f;) : [Q1Y — A, >, Infft(f) =
D220 InfEE () < X0 117 <t

We want to prove a lower bound on the stabilityedry functions with noise operatofs The following
proposition is generalization of Proposition 11.4 in [7hEneral symmetric Markov operatdfswith small
spectral radii. Its proof appears in Appendix B.

Proposition 1. For integers@,q > 3, and a symmetric Markov operatdr on [(Q)] with spectral radius
p(T) < 5, for somec > 0, there is a small enough = 6(¢) > 0 and¢ = t(¢g) > 0 such that for any

functionf = (f1,..., fy) : [QN — A, with Inf~'(f) < 4, for all 4, satisfies

Z fj,T®Nf] 1/q —2cIng/q®> — Clnlng/q?

j=1
for some universal constant < oco.
Definition 12 (Moving between domains)For anyz = (1, ..., z2n) € [¢/*V, denotez € [¢*]" as

T = ((z1,22),. .., (xan—-1,%2N)) -
Similarly fory = (y1,...,yn) € [¢*]", denotey € [¢]*" as
y= (yl,layl,% cee >yN,17yN,2)a

wherey; = y; 1+, 2q such thaty; 1, y; » € [g]. Forafunctionf on[g]*", definef on[¢?|N asf(y) = f(y).
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The relationship between influences of variables for fumstif and f are given by the following claim
(Claim 2.7 in [2]).

Clzﬂgn 1. For any functionf : [¢]*N — R,i € {1,...,N} and anyt > 1, InfS(F) < Inf5* (f) +
Inf5 (f).

3.4 PCP Verifier for Max k-Colorable Subgraph

This verifier uses ideas similar to tivax k-Cut verifier given in [7] and the-coloring hardness reduction
in[2]. Let £ = (U,V, E, R,2R,1I) be a2-to-1 bipartite, unweighted and left regular Label-Cover inst&an
as in Conjecture 1. Assume the proof is given as the Long Ceeig/g?" of the label of every vertex € V.
Below for a permutatiom on {1,...,n} and a vector € R", z o o denoteg (1), To(2); " * ;s To(n))- FOI
afunctionf onR", f o o is defined ag o o(x) = f(x 0 o).

e Picku uniformly at random fronU, u ~ U.

e Pickv,v" uniformly at random fromu’s neighbors. Letr, 7/ be the associated projection functions,
Xv, Xo be the (supposed) Long Codes for the labels,af respectively.

e Let T be the Markov operator djt]? given in Lemma 7. Pick ~ [k%]f andy ~ T®Fz. Leto,, o,
be two permutations of1, ..., 2R} such thatr(o; 1 (2i — 1)) = 7(0;1(2i)) = 7'(0,,' (2 — 1)) =
ﬂ’(ag,l(%)) (bothm andn’ are exactly2-to-1, so such permutations exist).

e Acceptiff x, o o,(z) andy, o o, (y) are different.

The proofs of the following two lemmas appear in Appendix C.

Lemma 8 (Completeness)If the original 2-to-1 Label-Cover instanc& has a labeling which satisfies alll
constraints, then there is a proof which makes the abovdieealways accept.

Lemma 9 (Soundness)There is a constant’ such that, if the above verifier passes with probability exee
ing 1 —1/k+ O(In k/k?), then there is a labeling of which satisfies’ = +/(k) fraction of the constraints
independent of label set size

Note that our PCP verifier make&-toloring” tests. By the standard conversion from PCP \arsfi
to CSP hardness, and Remark 2 about conversion to unweighaptis with the same inapproximability
factor, we conclude the main result of this section by comgil.emmas 8 and 9.

Theorem 10. For any constantt > 3, assuming2-to-1 Conjecture, it is NP-hard to approximatdax
k-Colorable Subgraph within a factor ofl — 1/k + O(In k/k?).
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A Proofs from Section 2.1

A.1 Proof of Lemma 2

Proof. We define the coloring : V(G) — [3] in the obvious way, with nod€eE, R andF’ fixed to different

colors. Then define
T if o xX;) = 1,
R COR R
Xx(F) else.
and similarly for the nodeg;, z;. Define

. Jx(F) ifo(y;) =1,
(@) = {X(T) else. ’



Now, for the constraints satisfied by this assignmént,v (Y; = z;)) A (z; V (Y; = z)), consider
the corresponding gadget. LSgg(A) = [3] \ {x(x:), x(T)} andSugg(B) = [3] \ {x(¥;), x(z1)} be the
available colors tad and B which can properly color all edges incident to variables.titééothat none of
these sets are empty and singev (Y; = z;) is true, at least one of these s8isgg(A) andSugg(B) has
two elements in it. Hence there exists a coloring4oénd B from setsSugg(A) andSugg(B) such that
X(A) # x(B). The same argument also holds féfrand B, therefore all edges in this gadget are properly
colored.

For the violated constraints, eith®ugg(A) or Sugg(A’) has one element. Augmenting that set with the
color x(x;) will cause only one edge to be violated. O

A.2 Proof of Lemma 3

Proof. Sincer < m/2, the coloringyx must give three different colors to the nodEs F’, and R. If
x(x;) = x(R), then randomly choosing(z;) from {x(T"), x(F)} will, in expectation, make at most half
of the local gadget edges going out:gfimproperly colored, which is exactly the valug(z;)/2 gained.
So we can assume thatx;) € {x(7T), x(F)} for eachz;. A similar argument holds for the nodes Now
consider the nodeg; andy; for a variable inY. If x(y;) = x(R), x(¥;) = x(R) or x(z;) = x(7;), then
randomly choosingx(y;), x(;)) from {(x(T"), x(¥)), (x(F), x(T))} will, in expectation, make at most
half of the local gadget edges going out of nogesndy; improperly colored, which is exactly the value
w; gained.

To summarize, we can assume that nodes and R are colored differently,(x;), x(Y;), x(z1) €
{x(T),x(F)} andx(y;) # x(7;). Thus all edges other than the edges inside the local gadgefsoperly
colored byy, and by assumption at mostedges are miscolored by

Now define the natural assignmeritthat assigns a variable ®f the valuel if the associated variable
received the colox(7"), and the valu® if its color is x (F').

Consider a local gadget, with all edges properly coloredresponding to the constraift; v (Y; =
z,)) A (T V (Y; = #z)). Assumeo’(z;) = 0, which impliesy(A) = x(R). Then both neighbors aB
besidesA must have the same color, therefer@’;) = o(z;). The other case whefl (z;) = 1 is similar.
Hence the assignmeat will satisfy this constraint.

Since the local gadgets corresponding to different comssraaave disjoint sets of edges, it follows that
the number of constraints violated by the assignmaéig at mostr. O

B Proof of Proposition 1

Proof. Lett = 4, f; : [Q]Y — [0,1] denote thei'™ coordinate function off, and letu; = E [f;]. Let
ap, - . ., ag—1 be an orthonormal set of eigenvectorsTowith corresponding eigenvalueg > ... > A\p_1,
with p = p(T) < q_Ll being the spectral radius @f. Notice thatT is symmetric so\ = 1 anday is a

constant vector. Therefoie[f;] = fi(ao) = u;. Then (using the notation from [2]):
TN, = (H A'fla)ax
a#0
and hence

TN =Y (T A1) filaw) .

*  a#0
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At this point, consider the Beckner operat®}, on [Q]. Sinceay is the uniform distribution, it is a

constant vector, thusg, a1, . . ., ag—1 is also an orthonormal basis f@f. Consequently,
TP fy = D (] ") fE e Zp‘x‘ﬂ (o) = S,(£)
*  a#0
Thus

(s TN ) = fiao) = fflao) + ) (T A5 ()
T a#0

—_——
> —pltl i |z #£ 0,
=1 else.
> 2pf =) P ee) = 2 = Y PR ae) = D P o)
x z:|z| <4 x:|z|>4
> 20— > Pfa
z:|z| <4
> i - ) pf ) —q7?
x:|z| <4

At this point, letf;(z) = 2wl <a Loz /\f‘“)ﬁ(aw)aw be the function having the same low-level coef-
ficients with f;(x) and0 for the higher-levels. It is easy to verify thEt[fi] = wi, Infi(f;) = Infi(f;) =
InfS*(f) andS,,(ij) =3 ujaj<a P17 f2 (0. In particular, our assumption; Inf(f;) = 3, InfS*(f;) <
6 implies ), Inf;(f;) <6

Let  be a small enough constant such tﬁa%(ﬁ-) < I'_e_(p;) + € for some smalk < qig from

the Majority is Stablest Theorem [8]. In [7],, (1) is used forl', (1) and we will follow that convention
instead. Below, for a real, [z]" denotesnax{z,0}. Then

ST > 3 (om0 o

% 7

> > |2 —Sqfcl(fz')] -
> > |2m - A

+
(ﬂi)} —2¢7?
1 2612nq 0 <lnl2nq>
q q q
The last inequality is proved in the same way as Propositios ih [7]. The only difference is that we have

Inlng
Flu) = 12+ —5—22In(1/w) - (1
(i) e L n(1/pq) <+C nq>

and

Zq: [m

=1

q
} > (2u -
=1
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which is convex because < (1/¢)'/'° and minimized aj; = 1/¢. In this case, we have

q

> @i = F(ui) = q(¢7% = 2cg *Ing(1+ Clnlng/Inq)
i=1

from which the above claim follows. O

C Analysis of PCP verifier for Max k-Colorable Subgraph

C.1 Proof of Lemma 8

Proof. Let? : V — {1,...,2R} be a labeling forl satisfying all constraints ifl. Pick y, as the Long
Code encoding of(v). Given any pair of vertices, v’ € V which share a common neighboere U, and
z,y € [k]*F pairs such that

Pry~ T®R(E)] = HT((in_1,$2i)<_>(y2i—layZi)) >0,

let 7, 7" be the projection functions ang,, o, be the permutations as defined in the description of the
verifier. We havey,(z o 0,) = Z4(g()) @A Xy (Y © 0w) = Yor(ury)- Sincen(€(v)) = 7' (£(v")), this
implieso, (£(v)), o (€(v")) € {2i — 1,2i} for somei < R. But

T((w2i-1,72i) > (Y2i—1,¥2:)) > 0 = {@oi_1, 2} N {y2i—1,y2:} =0,

thereforex, o 0, () = 4, (¢()) 7 Yo, (ev')) = Xor © 0w (y). SO the verifier always accepts. O

C.2 Proof of Lemma 8

Proof. For each node € V, let f : [k]*! — Ay, be the functionf”(z) = e, (,) Wheree; is the indicator
vector of thei" coordinate. Lel'(u) denote the set of vertices adjacenutin the Label Cover graph.
After arithmetizing, we can write the verifier's acceptapecebability as

Priacd = Eyuu |1- X770 o0, TOR(f 0 0,))]
1= By |5, Eow [(7 0 00, TR} 0 o))
= 1-Eu [S,0E, [J7 0 00| ToRE |17 0 ou])]
= 1-E,|); <g§%T®Rg;*>] (g]” = Eyor) [W])
> 1-1/k+Clnk/k?

whereg® : [k?]® — A, and some constardt. By averaging, for at least a fractign= (¢/2) In k/k? of
vertices inU, we have

> (g}, T®Rgy) < 1/k — Clnk/k’
J
Let these be “good” vertices. For a good vertex, by Propwsiti, there exist constants= (&), t = t(k)
andi such thatinf~(g*) > 4. LetSugg, = {ili € {1,..., R} A InfS'(g") > 6}, so|Sugg,| > 1. By

Observation 3|Sugg,, | < t/6. For a good vertex, andj € Sugg,,:

5 < Inf(g") = Epurq) [lnfft (77 o_Jv)]
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Therefore, for at least a fractiafy2 of neighborsv of u, Infft(fv ooy,) = 6/2. For suchv andj, by

Claim 1,Inf5* | (f* 0 ) + InfS (¥ 0 o) > /2. Therefore for somg € [2R], InfS*(f?) > §/4. Let

Sugg, = {jlj € {1,...,2R} A Inff%(f”) > 0/4}. Again,Sugg, is not empty andSugg, | < 8¢/9.
Following the decoding procedure in [7], we deduce thatpoissible to satisfy a fractiof = +/(4,t) =

+'(k) of the constraints. O

D Handling £ not divisible by 3 in Theorem 4

We now argue how to handle the case wiemmod 3 # 0 in the statement of Theorem 4. Assurés
of the formK + L, whereK = 0 (mod 3) andL = k mod 3 € {1,2}. We will give a reduction from
Max K-Colorable Subgraph, which we already showed to be NP-hard to approximate withfactor
1-— ﬁ + ¢, to Max k-Colorable Subgraph.

Let Gi be an (unweighted) instance Mfax K-Colorable Subgraph with M edges. Construct a graph
H by addingL new verticesy, .. ., ur, to Gx. Eachu; is connected by an edge of weig%v{to each vertex
v € V(Gk), whered, is the degree of in Gx. If L > 1, (uy,us) is an edge i with weight%. The
total weight of edges it equals

2LM  M(L—1)

M =M
+ K * 33K

Clearly if Gk is K-colorable, therf is k-colorable. For the soundness part, suppose eifecploring
of G miscolors at Ieas<3?+K — s)M edges. Lety be an optimak-coloring of H. We will prove that

x miscolors edges with total weight at Iedﬂt(%LK — ¢). This will certainly be the case it. > 1 and
x(u1) = x(u2). So we can assume usesL colors for the newly added vertices. If x(v) = x(u;) for

somev € V(Gg), we can changeg(v) to one of theK colors not used to colofu,, ..., ur} so that the
weight of miscolored edges does not increase. Thereforeawassume that uses onlyK colors to color

the Gk portion of H. But this implies at IeasM(%LK — ¢) edges are miscolored by, as desired.

Thus everyk-coloring of H miscolors at least a fraction

M@1/(33K) —¢) (1/(33K) —¢) . 1
M’  1+2L/K+(L—-1)/(33K) ~ 33(k+ L)+ (L—1)

of the total weight of edges if. Sincel, = k mod 3, the bound stated in Theorem 4 holds.
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