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Abstract

We study the maximization version of the fundamental graph coloring problem. Here the goal is to
color the vertices of ak-colorable graph withk colors so that a maximum fraction of edges are properly
colored (i.e. their endpoints receive different colors). Arandomk-coloring properly colors an expected
fraction1− 1

k
of edges. We prove that given a graph promised to bek-colorable, it is NP-hard to find ak-

coloring that properly colors more than a fraction≈ 1− 1

33k
of edges. Previously, only a hardness factor

of 1−O
(

1

k2

)
was known. Our result pins down the correct asymptotic dependence of the approximation

factor onk. Along the way, we prove that approximating the Maximum3-colorable subgraph problem
within a factor greater than32

33
is NP-hard.

Using semidefinite programming, it is known that one can do better than a random coloring and
properly color a fraction1 − 1

k
+ 2 ln k

k2 of edges in polynomial time. We show that, assuming the2-to-1
conjecture, it is hard to properly color (usingk colors) more than a fraction1 − 1

k
+ O

(
ln k

k2

)
of edges

of ak-colorable graph.
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1 Introduction

1.1 Problem statement

A graphG = (V,E) is said to bek-colorable for some positive integerk if there exists ak-coloring
χ : V → {1, 2, . . . , k} such that for all edges(u, v) ∈ E, χ(u) 6= χ(v). Fork > 3, finding ak-coloring of
ak-colorable graph is a classic NP-hard problem. The problem of coloring a graph with the fewest number
of colors has been extensively studied. In this paper, our focus is on hardness results for the following
maximization version of graph coloring: Given ak-colorable graph (for some fixed constantk > 3), find a
k-coloring that maximizes the fraction of properly colored edge. (We say an edge is properly colored under
a coloring if its endpoints receive distinct colors.) Note that fork = 2 the problem is trivial — one can find
a proper2-coloring in polynomial time when the graph is bipartite (2-colorable).

We will call this problemMax k-Colorable Subgraph. The problem is equivalent to partitioning
the vertices intok parts so that a maximum number of edges are cut. This problem is more popularly
referred to asMax k-Cut in the literature; however, in theMax k-Cut problem the input is an arbitrary
graph that need not bek-colorable. To highlight this difference that our focus is on the case when the
input graph isk-colorable, we useMax k-Colorable Subgraph to refer to this variant. We stress that we
will use this convention throughout the paper:Max k-Colorable Subgraph always refers to the “perfect
completeness” case, when the input graph isk-colorable.1 Since our focus is on hardness results, we note
that this restriction only makes our results stronger.

A factor α = αk approximation algorithm forMax k-Colorable Subgraph is an efficient algorithm
that given as input ak-colorable graph outputs ak-coloring that properly colors at least a fractionα of
the edges. We say thatMax k-Colorable Subgraph is NP-hard to approximate within a factorβ if no
factor β approximation algorithm exists for the problem unlessP = NP. The goal is to determine the
approximation threshold ofMax k-Colorable Subgraph: the largestα as a function ofk for which a factor
α approximation algorithm forMax k-Colorable Subgraph exists.

1.2 Previous results

The algorithm which simply picks a randomk-coloring, without even looking at the graph, properly colors
an expected fraction1 − 1/k of edges. Frieze and Jerrum [3] used semidefinite programming to give a
polynomial time factor1 − 1/k + 2 ln k/k2 approximation algorithm forMax k-Cut, which in particular
means the algorithm will color at least this fraction of edges in a k-colorable graph. This remains the
best known approximation guarantee forMax k-Colorable Subgraph to date. Khot, Kindler, Mossel, and
O’Donnell [7] showed that obtaining an approximation factor of 1−1/k+2 ln k/k2+Ω(ln ln k/k2) for Max
k-Cut is Unique Games-hard, thus showing that the Frieze-Jerrum algorithm is essentially the best possible.
However, due to the “imperfect completeness” inherent to the Unique Games conjecture, this hardness result
doesnot hold forMax k-Colorable Subgraph when the input is required to bek-colorable.

ForMax k-Colorable Subgraph, the best hardness known prior to our work was a factor1−Θ(1/k2).
This is obtained by combining an inapproximability result for Max 3-Colorable Subgraph due to Pe-
trank [11] with a reduction from Papadimitriou and Yannakakis [10]. It is a natural question whether is
an efficient algorithm that could properly color a fraction1 − 1/k1+ε of edges given ak-colorable graph
for some absolute constantε > 0. The existing hardness results do not rule out the possibility of such an
algorithm.

1While a little non-standard, this makes our terminology more crisp, as we can avoid repeating the fact that the hardness holds
for k-colorable graphs in our statements.
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ForMax k-Cut, a better hardness factor was shown by Kann, Khanna, Lagergren, and Panconesi [5] —
for some absolute constantsβ > α > 0, they showed that it is NP-hard to distinguish graphs that have a
k-cut in which a fraction(1−α/k) of the edges cross the cut from graphs whose Maxk-cut value is at most
a fraction(1 − β/k) of edges. SinceMaxCut is easy when the graph is2-colorable, this reduction does not
yield any hardness forMax k-Colorable Subgraph.

1.3 Our results

Petrank [11] showed the existence of aγ0 > 0 such that it is NP-hard to find a3-coloring that properly
colors more than a fraction(1 − γ0) of the edges of a3-colorable graph. The value ofγ0 in [11] was left
unspecified and would be very small if calculated. The reduction in [11] was rather complicated, involving
expander graphs and starting from the weak hardness bounds for bounded occurrence satisfiability. We
prove that the NP-hardness holds withγ0 = 1

33 . In other words, it is NP-hard to obtain an approximation
ratio bigger than32

33 for Max 3-Colorable Subgraph. The reduction is from the constraint satisfaction
problem corresponding to the adaptive3-query PCP with perfect completeness from [4].

By a reduction fromMax 3-Colorable Subgraph, we prove that for everyk > 3, theMax k-Colorable
Subgraph is NP-hard to approximate within a factor greater than≈ 1 − 1

33k (Theorem 4). This identifies
the correct asymptotic dependence onk of the best possible approximation factor forMax k-Colorable
Subgraph. The reduction is similar to the one in [5], though some crucial changes have to be made in
the construction and some new difficulties overcome in the soundness analysis when reducing fromMax
3-Colorable Subgraph instead ofMaxCut.

In the quest for pinning down theexactapproximability ofMax k-Colorable Subgraph, we prove
the following conditional result. Assuming the so-called2-to-1 conjecture, it is hard to approximateMax
k-Colorable Subgraph within a factor1 − 1

k + O
(

ln k
k2

)
. In other words, the Frieze-Jerrum algorithm is

optimal up to lower order terms in the approximation ratioeven for instances ofMax k-Cut where the graph
is k-colorable.

Unlike the Unique Games Conjecture (UGC), the2-to-1 conjecture allows perfect completeness, i.e.,
the hardness holds even for instances where an assignment satisfying all constraints exists. The2-to-1
conjecture was used by Dinur, Mossel, and Regev [2] to prove that for every constantc, it is NP-hard to
color a4-colorable graph withc colors. We analyze a similar reduction for thek-coloring case when the
objective is to maximize the fraction of edges that are properly colored by ak-coloring. Our analysis uses
some of the machinery developed in [2], which in turn extendsthe invariance principle of [8]. The hardness
factor we obtain depends on the spectral gap of a certaink2 × k2 stochastic matrix.

Remark 1. In general it is far from clear which Unique Games-hardness results can be extended to hold
with perfect completeness by assuming, say, the2-to-1 (or some related) conjecture. In this vein, we also
mention the result of O’Donnell and Wu [9] who showed a tight hardness for approximating satisfiable
constraint satisfaction problems on3 Boolean variables assuming thed-to-1 conjecture for any fixedd.
While the UGC assumption has led to a nearly complete understanding of the approximability of constraint
satisfaction problems [12], the approximability ofsatisfiableconstraint satisfaction problems remains a
mystery to understand in any generality.

Remark 2. It has been shown by Crescenzi, Silvestri and Trevisan [1] that any hardness result for weighted
instances ofMax k-Cut carries over to unweighted instances assuming the total edge weight is polynomially
bounded. In fact, their reduction preservesk-colorability, so an inapproximability result for the weighted
Max k-Colorable Subgraph problem also holds for the unweighted version. Therefore all our hardness
results hold for the unweightedMax k-Colorable Subgraph problem.
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2 Unconditional Hardness Results forMax k-Colorable Subgraph

We will first prove a hardness result forMax 3-Colorable Subgraph, and then reduce this problem toMax
k-Colorable Subgraph.

2.1 Inapproximability result for Max 3-Colorable Subgraph

Petrank [11] showed thatMax 3-Colorable Subgraph is NP-hard to approximate within a factor of(1−γ0)
for some constantγ0 > 0. This constantγ0 is presumably very small, since the reduction starts from
bounded occurrence satisfiability (for which only weak inapproximability results are known) and uses ex-
pander graphs. We prove a much better inapproximability factor below, via a simpler proof.

Theorem 1 (Max 3-Colorable Subgraph Hardness). TheMax 3-Colorable Subgraph problem is NP-
hard to approximate within a factor of3233 + ε for any constantε > 0.

Proof. For the proof of this theorem, we will use reduce from a hard toapproximate constraint satisfaction
problem (CSP) underlying the adaptive 3-query PCP given in [4]. This PCP has perfect completeness and
soundness1/2 + ε for any desired constantε (which is the best possible for3-query PCPs).

We first state the properties of the CSP. An instance of the CSPwill have variables partitioned into three
partsX ,Y andZ. Each constraint will be of the form(xi ∨ (Yj = zk)) ∧ (xi ∨ (Yj = zl)), wherexi ∈ X ,
zk, zl ∈ Z are variables (unnegated) andYj is a literal (Yj ∈ {yj, yj} for some variableyj ∈ Y). For YES

instances of the CSP, there will be a Boolean assignment thatsatisfiesall the constraints. For NO instances,
every assignment to the variables will satisfy at most a fraction (1/2 + ε) of the constraints.

Remark 3. We remark the condition that the instance is tripartite, andthat the variables inZ never appear
negated are not explicit in [4]. But these can be ensured by aneasy modification to the PCP construction
in [4]. The PCP in [4] has a bipartite structure: the proof is partitioned into two parts called theA-tables
andB-tables, and each test consists of probing one bitA(f) from anA table and 3 bitsB(g), B(g1), B(g2)
from theB table, and checking(A(f) ∨ (B(g) = B(g1)) ∧ (A(f) ∨ (B(g) = B(g2)). Further these tables
arefoldedwhich is a technical condition that corresponds to the occurrence of negations in the CSP world.
If the queries at locationsg1 andg2 are made in a parallelC-table, and even if theC-table is not folded
(though theA andB tables need to be folded), one can verify that the analysis ofthe PCP construction still
goes through. This then translates to a CSP with the properties claimed above.

Let I be an instance of such a CSP withm constraints of the above form on variablesV = X ∪ Y ∪ Z.
Let X = {x1, x2, . . . , xn1

}, Y = {y1, y2, . . . , yn2
} andZ = {z1, z2, . . . , zn3

}. From the instanceI we
create a graphG for the Max 3-Colorable Subgraph problem as follows. There is a nodexi for each
variablexi ∈ X , a nodezl for eachzl ∈ Z, and a pair of nodes{yj, yj} for the two literals corresponding to
eachyj ∈ Y. There are also three global nodes{R,T, F} representing boolean values which are connected
in a triangle with edge weightsm/2 (see Fig. 1).

For each constraint of the CSP, we place the local gadget specific to that constraint shown in Figure 2.
Note that there are 10 edges of unit weight in this gadget. Thenodesyj , yj are connected to nodeR by a

triangle whose edge weights equalwj =
∆(yj)+∆(yj)

2 . Here∆(X) denotes the total number of edges going
from nodeX into all the local gadgets. The nodesxi andzl connected toR with an edge of weight∆(xi)/2
and∆(zl)/2 respectively. The proofs of the following lemmas appear in Appendix A.
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Figure 1: Global gadget for truth value assign-
ments. BlocksXi, Yj andZl are replicated for
all vertices inX , Y andZ. Edge weights are
shown next to each edge.

TF

xi zk zlYj

A′ B′

A B

Figure 2: Local gadget for each constraint of the
form (xi ∨ Yj = zk) ∧ (xi ∨ Yj = zl). All edges
have unit weight. LabelsA,A′, B,B′ refer to the
local nodes in each gadget.

Lemma 2 (Completeness). Given an assignment of variablesσ : V → {0, 1} which satisfies at leastc of
the constraints, we can construct a3-coloring ofG with at mostm − c improperly colored edges (each of
weight 1).

Lemma 3 (Soundness). Given a 3-coloring ofG, χ, such that the total weight of edges that are not properly
colored byχ is at mostτ < m/2, we can construct an assignmentσ′ : V → {0, 1} to the variables of the
CSP instance that satisfies at leastm− τ constraints.

Returning to the proof of Theorem 1, the total weight of edgesin G is

10m+
3m

2
+

n1∑

i=1

∆(xi)

2
︸ ︷︷ ︸

m

+

n2∑

j=1

3wj +

n3∑

l=1

∆(zl)

2
︸ ︷︷ ︸

m

=
27

2
m+

3

2

n2∑

j=1

(∆(yi) + ∆(yj))

︸ ︷︷ ︸

2m

=
33

2
m .

By the completeness lemma, YES instances of the CSP are mapped to graphsG that are3-colorable. By
the soundness lemma, NO instances of the CSP are mapped to graphsG such that every3-coloring miscolors
at least a fraction(1/2−ε)33/2 = 1−2ε

33 of the total weight of edges. Sinceε > 0 is an arbitrary constant, the proof

of Theorem 1 is complete.2

2.2 Max k-Colorable Subgraph Hardness

Theorem 4. For every integerk > 3 and everyε > 0, it is NP-hard to approximateMax k-Colorable
Subgraph within a factor of1 − 1

33(k+ck)+ck
+ ε whereck = k mod 3 6 2.

Proof. We will reduceMax 3-Colorable Subgraph to Max k-Colorable Subgraph and then apply The-
orem 1. Throughout the proof, we will assumek is divisible by3. At the end, we will cover the remaining
cases also. The reduction is inspired by the reduction fromMaxCut to Max k-Cut given by Kannet al. [5]
(see Remark 4). Some modifications to the reduction are needed when we reduce fromMax 3-Colorable

2Our reduction produced a graph with edge weights, but by Remark 2, the same inapproximability factor holds for unweighted
graphs as well.
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Subgraph, and the analysis has to handle some new difficulties. The details of the reduction and its analysis
follow.

LetG = (V,E) be an instance ofMax 3-Colorable Subgraph. By Theorem 1, it is NP-hard to tell ifG
is 3-colorable or every3-colors miscolors a fraction133 − ε of edges. We will construct a graphH such that
H is k-colorable whenG is 3-colorable, and ak-coloring which miscolors at most a fractionµ of the total
weight of edges ofH implies a3-coloring ofG with at most a fractionµk of miscolored edges. Combined
with Theorem 1, this gives us the claimed hardness ofMax k-Colorable Subgraph.

Let K ′
k/3 denote the complete graph with loops onk/3 vertices. LetG′ be the tensor product graph

betweenKk/3 andG,G′ = K ′
k/3⊗G as defined by Weichsel [14]. Identify each node inG′ with (u, i), u ∈

V (G), i ∈ {1, 2, . . . , k/3}. The edges ofG′ are((u, i), (v, i′)) for (u, v) ∈ E and anyi, i′ ∈ {1, . . . , k/3}.
Next we make3 copies ofG′, and identify the nodes with(u, i, j), (u, i) ∈ V (G′), j ∈ {1, 2, 3}, then put
edges between all nodes of the form(u, i, j) and(u, i′, j′) if either i 6= i′ or j 6= j′ with weight 2

3du, where
du is degree of nodeu. The total weight of edges in this new constructionH equals

∑

u∈V

((
k

2

)
2

3
du +

3

2

(
k

3

)2

du

)

6 k2m .

Lemma 5. If G is 3-colorable, thenH is k-colorable.

Proof. Let χG : V (G) → {1, 2, 3} be a 3-coloring ofG. Consider the following coloring function forH,
χH : V (H) → {1, 2, . . . , k}. For node(u, i, j), let χH((u, i, j)) = πj(χG(u)) + 3(i − 1). Hereπ is the

permutation

(
1 2 3
2 3 1

)

, andπj(x) = π(. . . (π(
︸ ︷︷ ︸

j times

x))). Equivalentlyπ(x) = x mod 3 + 1.

Consider edges of the form{(u, i, j), (v, i′ , j)}. If i 6= i′, then colors of the endpoints are different. Else
we haveχ((u, i, j))−χ((v, i, j)) ≡ χ(u)−χ(v) 6≡ 0 mod 3. For edges of the form{(u, i, j), (u, i′ , j′)}, if
i 6= i′, clearly edge is satisfied. Wheni = i′, j 6= j′,χ((u, i, j))−χ((u, i, j′)) ≡ πj(u)−πj

′

(u) ≡ j−j′ 6≡ 0
mod 3.

Lemma 6. If H has ak-coloring that properly colors a set of edges with at least a fraction (1 − µ) of the
total weight, thenG has a3-coloring which colors at least a fraction(1 − µk) of its edges properly.

Proof. Let χH be the coloring ofH, Suggju = {χH((u, i, j)) | 1 6 i 6 k/3} andSuggu =
⋃

j Suggju.
Denote the total weight of uncut edges in this solution as

Ctotal =
∑

u∈V (G)

2

3
duC

within
u +Cbetween, (1)

whereCwithinu andCbetween denotes the number of improperly colored edges within the copies of nodeu
and between copies of different verticesu, v ∈ V (G) respectively. We have the following relations:

Cbetween =
∑3

j=1

∑

uv∈E(G)

∑

16i6i′6k/3 1χH((u,i,j))=χH((v,i′,j))

>
∑3

j=1

∑

uv∈E(G) |Suggju ∩ Suggjv|
(2)
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Cwithinu =
∑

c∈Suggu

(|χ−1

H
(c)∩Bu|
2

)
(Bu = {(u, i, j)|∀i, j})

=
∑

c∈Suggu

|Bu,c|2

2 − k
2 (Bu,c = Bu ∩ χ

−1
H (c))

>
1

2|Suggu|

(
∑

c∈Suggu
|Bu,c|

)2
− k

2 (Cauchy-Schwarz)

> k
2

(
k

|Suggu|
− 1
)

> k
2
|Suggu|
|Suggu|

>
|Suggu|

2

(3)

Now we will find a (random)3-coloringχG for G. Pick c from {1, 2, . . . , k} uniformly at random. If
c /∈ Suggu, selectχG(u) uniformly at random from{1, 2, 3}. If c ∈ Suggu, setχG(u) = j if j is the smallest
index for whichc ∈ Suggj(u). With this coloringχG(u), the probability that an edge(u, v) ∈ E(G) will
be improperly colored is:

Pr [χG(u) = χG(v)] 6

3∑

j=1

Prc
[
c ∈ Suggju ∩ Suggjv

]
+

1

3
Prc
[
c ∈ Suggu, c ∈ Suggv

]

+
1

3
Prc
[
c ∈ Suggu, c ∈ Suggv

]
+

1

3
Prc
[
c ∈ Suggu, c ∈ Suggv

]

6

3∑

j=1

|Suggju ∩ Suggjv|

k
+

|Suggu|

3k
+

|Suggv|

3k

We can thus bound the expected number of miscolored edges in the coloringχG as follows.

E

[
∑

(u,v)∈E(G)

1χG(u)=χG(v)

]

6
∑

uv∈E

[( 3∑

j=1

|Suggju ∩ Suggjv|

k

)

+
|Suggu|

3k
+

|Suggv|

3k

]

6
1

k

(

Cbetween +
∑

u∈V (G)

du
3
|Suggu|

)

(using (2))

6
1

k

(

Cbetween +
∑

u∈V (G)

2du
3
Cwithinu

)

=
Ctotal

k

This implies that there exists a3-coloring ofG for which the number of improperly colored edges inG is at
mostC

total

k . Therefore ifH has ak-coloring which improperly colors at most a total weightµk2m of edges,

then there is a3-coloring ofG which colors improperly at most a fractionµk
2m
km = µk of its edges.

This completes the proof of Theorem 4 whenk is divisible by3. The other cases are easily handled by
addingk mod 3 extra nodes connected to all vertices by edges of suitable weight. See Appendix D for
details.

Remark 4 (Comparison to [5]). The reduction of Kannet al [5] converts an instanceG of MaxCut to the
instanceG′ = K ′

k/2 ⊗G of Max k-Cut. Edge weights are picked so that the optimalk-cut ofG′ will give a
setSu of k/2 different colors to all vertices in eachk/2 clique(u, i), 1 6 i 6 k/2. This enables converting
ak-cut ofG′ into a cut ofG based on whether a random color falls inSu or not. In the3-coloring case, we
make3 copies ofG′ in an attempt to enforce three “translates” ofSu, and use those to define a3-coloring
from ak-coloring. But we cannot ensure that eachk-clique is properly colored, so these translates might
overlap and a more careful soundness analysis is needed.
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3 Conditional Hardness Results forMax k-Colorable Subgraph

We will first review the (exact)2-to-1 Conjecture, and then construct a noise operator, which allows us to
preservek-colorability. Then we will bound the stability of coloringfunctions with respect to this noise
operator. In the last section, we will give a PCP verifier which concludes the hardness result.

3.1 Preliminaries

We begin by reviewing some definitions andd-to-1 conjecture.

Definition 1. An instance of a bipartite Label Cover problem represented asL = (U, V,E,W,RU , RV ,Π)
consists of a weighted bipartite graph over node setsU andV with edgese = (u, v) ∈ E of non-negative
real weightwe ∈ W . RU andRV are integers with1 6 RU 6 RV . Π is a collection of projection
functions for each edge:Π = {πvu : {1, . . . , RV } → {1, . . . , RU}

∣
∣u ∈ U, v ∈ V }. A labeling ℓ is a

mappingℓ : U → {1, . . . , RU}, ℓ : V → {1, . . . , RV }. An edgee = (u, v) is satisfied by labelingℓ if
πe(ℓ(v)) = ℓ(u). We define the value of a labeling as sum of weights of edges satisfied by this labeling
normalized by the total weight.Opt(L) is the maximum value over any labeling.

Definition 2. A projectionπ : {1, . . . , RV } → {1, . . . , RU} is calledd-to-1 if for eachi ∈ {1, . . . , RU},
|π−1(i)| 6 d. It is calledexactlyd-to-1 if |π−1(i)| = d for eachi ∈ {1, 2, . . . , RU}.

Definition 3. A bipartite Label-Cover instanceL is calledd-to-1 Label-Cover if all projection functions,
π ∈ Π ared-to-1.

Conjecture 1 (d-to-1 Conjecture [6]). For any γ > 0, there exists ad-to-1 Label-Cover instanceL with
RV = R(γ) andRU 6 dRV many labels such that it is NP-hard to decide between two cases,Opt(L) = 1
or Opt(L) > γ. Note that although the original conjecture involvesd-to-1 projection functions, we will
assume that it also holds forexactlyd-to-1 functions (soRU = dRV ), which is the case in [2].

Using the reductions from [2], it is possible to show that theabove conjecture still holds given that the
graph(U ∪ V,E) is left-regular and unweighted, i.e.,we = 1 for all e ∈ E.

3.2 Noise Operators

For a positive integerM , we will denote by[M ] the set{0, 1, . . . ,M − 1}. We will identify elements of
[M2] with [M ] × [M ] in the obvious way, with the pair(a, b) ∈ [M ]2 correspondinga+Mb ∈ [M2].

Definition 4. A Markov operatorT is a linear operator which maps probability measures to other probabil-
ity measures. In a finite discrete setting, it is defined by a stochastic matrix whose(x, y)’th entryT (x→ y)
is the probability of transitioning fromx to y. Such an operator is called symmetric ifT (x→ y) = T (y →
x) = T (x↔y).

Definition 5. Givenρ ∈ [−1, 1], the Beckner noise operator,Tρ on [q] is defined by asTρ(x → x) =
1
q +

(

1 − 1
q

)

ρ andTρ(x→ y) = 1
q (1 − ρ) for anyx 6= y.

Observation 1. All eigenvalues of the operatorTρ are given by1 = λ0(Tρ) > λ1(Tρ) = . . . = λq−1(Tρ) =
ρ. Any orthonormal basisα0, α1, . . . , αq−1 with α0 being constant vector, is also a basis forTρ.
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Lemma 7. For an integerq > 6, there exists a symmetric Markov operatorT on [q]2 whose diagonal
entries are all0 and with eigenvalues1 = λ0 > λ1 > . . . > λq2−1 such that thespectral radiusρ(T ) =
max{|λ1|, |λq2−1|} is at most 4

q−1 .

Proof. Consider the symmetric Markov operatorT on [q]2 such that, forx = (x1, x2), y = (y1, y2) ∈ [q]2,

T (x↔y) =







α if {x1, x2} ∩ {y1, y2} = ∅ andx1 6= x2, y1 6= y2,

β if x1 6∈ {y1, y2} andx1 = x2, y1 6= y2,

β if y1 6∈ {x1, x2} andx1 6= x2, y1 = y2,

0 else,

whereα = 1
(q−1)(q−3) andβ = 1

(q−1)(q−2) . It is clear thatT is symmetric and doubly stochastic.

To bound the spectral radius ofT , we will bound the second largest eigenvalueλ1(T
2) of T 2. No-

tice thatT 2 is also a symmetric Markov operator. Moreoverλi(T 2) = λ2
i (T ), thereforeλ1(T

2) >

max(λ2
1(T ), λ2

q2−1(T )) > ρ(T )2.

Notice thatT 2(x↔y) > 0 for all pairsx, y ∈ [q]2. Consider the variational characterization of1 −
λ1(T

2) [13]:

min
ψ

∑

x,y(ψ(x) − ψ(y))2π(x)T 2(x↔y)
∑

x,y(ψ(x) − ψ(y))2π(x)π(y)
> min

ψ
min
x,y

π(x)(ψ(x) − ψ(y))2T 2(x↔y)

(ψ(x) − ψ(y))2π(x)π(y)
= min

x,y
q2T 2(x↔y)

For any two pairs(x1, x2), (y1, y2) ∈ [q]2, let l = |[q] \ {x1, x2, y1, y2}|. Then we have

T 2((x1, x2)↔(y1, y2)) =







l(l − 1)β2 > (q − 2)(q − 3)β2 if x1 = x2 andy1 = y2,

l(l − 1)αβ > (q − 3)(q − 4)αβ if x1 6= x2 andy1 = y2,

l(l − 1)αβ > (q − 3)(q − 4)αβ if x1 = x2 andy1 6= y2,

l(l − 1)α2 + lβ2 > (q − 4)(q − 5)α2 + (q − 4)β2 if x1 6= x2 andy1 6= y2.

>
(q − 5)(q − 4)

(q − 3)2(q − 2)(q − 1)

Soρ(T ) 6
√

λ1(T 2) 6

√

1 − (q−5)(q−4)q2

(q−3)2(q−2)(q−1) 6
3
q + 8

q2 6
4
q−1 for q > 6.

3.3 q-ary Functions, Influences, Noise stability

We define inner product on space of functions from[q]N to R as〈f, g〉 = Ex∼[q]N [f(x)g(x)]. Herex ∼ D

denotes sampling from distributionD andD = [q]N denotes the uniform distribution on[q]N .

Given a symmetric Markov operatorT andx = (x1, . . . , xN ) ∈ [q]N , let T⊗Nx denote the prod-
uct distribution on[q]N whoseith entry yi is distributed according toT (xi↔yi). ThereforeT⊗Nf(x) =
Ey∼T⊗Nx [f(y)].

Definition 6. Letα0, α1, . . . , αq−1 be an orthonormal basis ofRq such thatα0 is all constant vector. For
x ∈ [q]N , we defineαx ∈ R

qN
as

αx = αx1
⊗ . . . ⊗ αxN

.
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Definition 7 (Fourier coefficients). For a functionf : [q]N → R, definef̂(αx) = 〈f, αx〉.

Definition 8. Letf : [q]N → R be a function. Theinfluenceof ith variable onf , Infi(f) is defined by

Infi(f) = E [Var [f(x)|x1, . . . , xi−1, xi+1, . . . , xN ]]

wherex1, . . . , xN are uniformly distributed. Equivalently,Infi(f) =
∑

x:xi 6=0 f̂
2(αx).

Definition 9. Letf : [q]N → R be a function. Thelow-level influenceof ith variable off is defined by

Inf
6t
i (f) =

∑

x:xi 6=0, |x|6t

f̂2(αx).

Observation 2. For any functionf ,
∑

i Inf
6t
i (f) =

∑

x:|x|6t f̂
2(αx)|x| 6 t

∑

x f̂
2(αx) = t‖f‖2

2. If

f : [q]N → [0, 1], then‖f‖2
2 6 1, so

∑

i Inf
6t
i (f) 6 t.

Definition 10 (Noise stability). Let f be a function from[q]N to R, and let−1 6 ρ 6 1. Define thenoise
stability of f at ρ as

Sρ(f) = 〈f, T⊗n
ρ f〉 =

∑

x

ρ|x|f̂2
i (αx)

whereTρ is the Beckner operator as in Definition 5.

A natural way to think about aq-coloring function is as a collection ofq-indicator variables summing to
1 at every point. To make this formal:

Definition 11. Define the unitq-simplex as∆q = {(x1, . . . , xq) ∈ R
q |
∑
xi = 1, xi > 0}.

Observation 3. For positive integersQ, q and any functionf = (f1, . . . , fq) : [Q]N → ∆q,
∑

i Inf
6t
i (f) =

∑

i

∑

j Inf
6t
i (fj) 6 t

∑

j ‖fj‖
2 6 t.

We want to prove a lower bound on the stability ofq-ary functions with noise operatorsT . The following
proposition is generalization of Proposition 11.4 in [7] togeneral symmetric Markov operatorsT with small
spectral radii. Its proof appears in Appendix B.

Proposition 1. For integersQ, q > 3, and a symmetric Markov operatorT on [Q] with spectral radius
ρ(T ) 6

c
q−1 , for somec > 0, there is a small enoughδ = δ(q) > 0 and t = t(q) > 0 such that for any

functionf = (f1, . . . , fq) : [Q]N → ∆q with Inf
6t
i (f) 6 δ, for all i, satisfies

q
∑

j=1

〈fj, T
⊗Nfj〉 > 1/q − 2c ln q/q2 −C ln ln q/q2

for some universal constantC <∞.

Definition 12 (Moving between domains). For anyx = (x1, . . . , x2N ) ∈ [q]2N , denotex ∈ [q2]N as

x = ((x1, x2), . . . , (x2N−1, x2N )) .

Similarly for y = (y1, . . . , yN ) ∈ [q2]N , denotey ∈ [q]2N as

y = (y1,1, y1,2, . . . , yN,1, yN,2),

whereyi = yi,1+yi,2q such thatyi,1, yi,2 ∈ [q]. For a functionf on [q]2N , definef on [q2]N asf(y) = f(y).
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The relationship between influences of variables for functions f andf are given by the following claim
(Claim 2.7 in [2]).

Claim 1. For any functionf : [q]2N → R, i ∈ {1, . . . , N} and anyt > 1, Inf
6t
i (f) 6 Inf

62t
2i−1(f) +

Inf
62t
2i (f).

3.4 PCP Verifier for Max k-Colorable Subgraph

This verifier uses ideas similar to theMax k-Cut verifier given in [7] and the4-coloring hardness reduction
in [2]. Let L = (U, V,E,R, 2R,Π) be a2-to-1 bipartite, unweighted and left regular Label-Cover instance
as in Conjecture 1. Assume the proof is given as the Long Code over [k]2R of the label of every vertexv ∈ V .
Below for a permutationσ on{1, . . . , n} and a vectorx ∈ R

n, x ◦ σ denotes(xσ(1), xσ(2), · · · , xσ(n)). For
a functionf onR

n, f ◦ σ is defined asf ◦ σ(x) = f(x ◦ σ).

• Picku uniformly at random fromU , u ∼ U .

• Pick v, v′ uniformly at random fromu’s neighbors. Letπ, π′ be the associated projection functions,
χv, χv′ be the (supposed) Long Codes for the labels ofv, v′ respectively.

• Let T be the Markov operator on[k]2 given in Lemma 7. Pickx ∼ [k2]R andy ∼ T⊗Rx. Letσv, σv′
be two permutations of{1, . . . , 2R} such thatπ(σ−1

v (2i − 1)) = π(σ−1
v (2i)) = π′(σ−1

v′ (2i − 1)) =
π′(σ−1

v′ (2i)) (bothπ andπ′ are exactly2-to-1, so such permutations exist).

• Accept iff χv ◦ σv(x) andχv′ ◦ σv′(y) are different.

The proofs of the following two lemmas appear in Appendix C.

Lemma 8 (Completeness). If the original 2-to-1 Label-Cover instanceL has a labeling which satisfies all
constraints, then there is a proof which makes the above verifier always accept.

Lemma 9 (Soundness). There is a constantC such that, if the above verifier passes with probability exceed-
ing 1− 1/k+O(ln k/k2), then there is a labeling ofL which satisfiesγ′ = γ′(k) fraction of the constraints
independent of label set sizeR.

Note that our PCP verifier makes “k-coloring” tests. By the standard conversion from PCP verifiers
to CSP hardness, and Remark 2 about conversion to unweightedgraphs with the same inapproximability
factor, we conclude the main result of this section by combining Lemmas 8 and 9.

Theorem 10. For any constantk > 3, assuming2-to-1 Conjecture, it is NP-hard to approximateMax
k-Colorable Subgraph within a factor of1 − 1/k +O(ln k/k2).
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A Proofs from Section 2.1

A.1 Proof of Lemma 2

Proof. We define the coloringχ : V (G) → [3] in the obvious way, with nodesT ,R andF fixed to different
colors. Then define

χ(xi) =

{

χ(T ) if σ(xi) = 1,

χ(F ) else.

and similarly for the nodesyj, zl. Define

χ(yi) =

{

χ(F ) if σ(yj) = 1,

χ(T ) else.
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Now, for the constraints satisfied by this assignment,(xi ∨ (Yj = zk)) ∧ (xi ∨ (Yj = zl)), consider
the corresponding gadget. LetSugg(A) = [3] \ {χ(xi), χ(T )} andSugg(B) = [3] \ {χ(Yj), χ(zk)} be the
available colors toA andB which can properly color all edges incident to variables. Notice that none of
these sets are empty and sincexi ∨ (Yj = zk) is true, at least one of these setsSugg(A) andSugg(B) has
two elements in it. Hence there exists a coloring ofA andB from setsSugg(A) andSugg(B) such that
χ(A) 6= χ(B). The same argument also holds forA′ andB′, therefore all edges in this gadget are properly
colored.

For the violated constraints, eitherSugg(A) or Sugg(A′) has one element. Augmenting that set with the
colorχ(xi) will cause only one edge to be violated.

A.2 Proof of Lemma 3

Proof. Sinceτ < m/2, the coloringχ must give three different colors to the nodesT , F , andR. If
χ(xi) = χ(R), then randomly choosingχ(xi) from {χ(T ), χ(F )} will, in expectation, make at most half
of the local gadget edges going out ofxi improperly colored, which is exactly the value∆(xi)/2 gained.
So we can assume thatχ(xi) ∈ {χ(T ), χ(F )} for eachxi. A similar argument holds for the nodeszl. Now
consider the nodesyj andyj for a variable inY . If χ(yj) = χ(R), χ(yj) = χ(R) or χ(xj) = χ(yj), then
randomly choosing(χ(yj), χ(yj)) from {(χ(T ), χ(F )), (χ(F ), χ(T ))} will, in expectation, make at most
half of the local gadget edges going out of nodesyj andyj improperly colored, which is exactly the value
wj gained.

To summarize, we can assume that nodesT ,F andR are colored differently,χ(xi), χ(Yj), χ(zl) ∈
{χ(T ), χ(F )} andχ(yj) 6= χ(yj). Thus all edges other than the edges inside the local gadgetsare properly
colored byχ, and by assumption at mostτ edges are miscolored byχ.

Now define the natural assignmentσ′ that assigns a variable ofV the value1 if the associated variable
received the colorχ(T ), and the value0 if its color isχ(F ).

Consider a local gadget, with all edges properly colored, corresponding to the constraint(xi ∨ (Yj =
zk)) ∧ (xi ∨ (Yj = zl)). Assumeσ′(xi) = 0, which impliesχ(A) = χ(R). Then both neighbors ofB
besidesA must have the same color, thereforeσ(Yj) = σ(zk). The other case whenσ′(xi) = 1 is similar.
Hence the assignmentσ′ will satisfy this constraint.

Since the local gadgets corresponding to different constraints have disjoint sets of edges, it follows that
the number of constraints violated by the assignmentσ′ is at mostτ .

B Proof of Proposition 1

Proof. Let t = 4, fi : [Q]N → [0, 1] denote theith coordinate function off , and letµi = E [fi]. Let
α0, . . . , αQ−1 be an orthonormal set of eigenvectors forT with corresponding eigenvaluesλ0 > . . . > λQ−1,
with ρ = ρ(T ) 6 c

q−1 being the spectral radius ofT . Notice thatT is symmetric soλ0 = 1 andα0 is a

constant vector. ThereforeE [fi] = f̂i(α0) = µi. Then (using the notation from [2]):

T⊗Nαx = (
∏

a6=0

λ|x|aa )αx

and hence
T⊗Nfi =

∑

x

(
∏

a6=0

λ|x|aa )f̂i(αx)αx.
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At this point, consider the Beckner operator,Tρ on [Q]. Sinceα0 is the uniform distribution, it is a
constant vector, thusα0, α1, . . . , αQ−1 is also an orthonormal basis forTρ. Consequently,

〈fi, T
⊗N
ρ fi〉 =

∑

x

(
∏

a6=0

ρ|x|a)f̂2
i (αx) =

∑

x

ρ|x|f̂2
i (αx) = Sρ(fi)

Thus

〈fi, T
⊗Nfi〉 = f̂2

i (α0) − f̂2
i (α0) +

∑

x

(
∏

a6=0

λ|x|aa )

︸ ︷︷ ︸
8

>

<

>

:

> −ρ|x| if |x| 6= 0,

= 1 else.

f̂2
i (αx)

> 2µ2
i −

∑

x

ρ|x|f̂2
i (αx) = 2µ2

i −
∑

x:|x|64

ρ|x|f̂2
i (αx) −

∑

x:|x|>4

ρ|x|f̂2
i (αx)

> 2µ2
i −

∑

x:|x|64

ρ|x|f̂2
i (αx) − ρ4

> 2µ2
i −

∑

x:|x|64

ρ|x|f̂2
i (αx) − q−3

At this point, letf̃i(x) =
∑

x:|x|64(
∏

a6=0 λ
|x|a
a )f̂i(αx)αx be the function having the same low-level coef-

ficients withfi(x) and0 for the higher-levels. It is easy to verify thatE

[

f̃i

]

= µi, Infi(fj) > Infi(f̃j) =

Inf
64
i (fj) andSρ(f̃j) =

∑

x:|x|64 ρ
|x|f̂2

i (αx). In particular, our assumption
∑

j Inf
6t
i (fj) =

∑

j Inf
64
i (fj) 6

δ implies
∑

j Infi(f̃j) 6 δ.

Let δ be a small enough constant such thatS c
q−1

(f̃i) 6 Γ c
q−1

(µi) + ε for some smallε 6
1
q3 , from

the Majority is Stablest Theorem [8]. In [7],Λη(µ) is used forΓη(µ) and we will follow that convention
instead. Below, for a realx, [x]+ denotesmax{x, 0}. Then

∑

i

〈fi, T
⊗Nfi〉 >

∑

i

[

2µ2
i − Sρ(f̃i)

]

− q−2

>
∑

i

[

2µ2
i − S c

q−1

(f̃i)
]

− q−2

>
∑

i

[

2µ2
i − Λ c

q−1

(µi)
]+

− 2q−2

>
1

q
−

2c ln q

q2
−O

(
ln ln q

q2

)

The last inequality is proved in the same way as Proposition 11.4 in [7]. The only difference is that we have

F (µi) = µ2
i +

c

q − 1
2µ2

i ln(1/µi) ·

(

1 + C
ln ln q

ln q

)

and
q
∑

i=1

[

2µ2
i − Λ c

q−1

(µi)
]+

>

q
∑

i=1

(2µ2
i − F (µi))
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which is convex becauseµi 6 (1/q)1/10 and minimized atµi = 1/q. In this case, we have
q
∑

i=1

(2µ2
i − F (µi)) > q

(
q−2 − 2cq−3 ln q(1 + C ln ln q/ ln q

)

from which the above claim follows.

C Analysis of PCP verifier for Max k-Colorable Subgraph

C.1 Proof of Lemma 8

Proof. Let ℓ : V → {1, . . . , 2R} be a labeling forL satisfying all constraints inΠ. Pickχv as the Long
Code encoding ofℓ(v). Given any pair of verticesv, v′ ∈ V which share a common neighboru ∈ U , and
x, y ∈ [k]2R pairs such that

Pr
[
y ∼ T⊗R(x)

]
=
∏

i

T ((x2i−1, x2i)↔(y2i−1, y2i)) > 0 ,

let π, π′ be the projection functions andσv, σv′ be the permutations as defined in the description of the
verifier. We haveχv(x ◦ σv) = xσ(ℓ(v)) andχv′(y ◦ σv′) = yσ′(ℓ(v′)). Sinceπ(ℓ(v)) = π′(ℓ(v′)), this
impliesσv(ℓ(v)), σv′ (ℓ(v′)) ∈ {2i− 1, 2i} for somei 6 R. But

T ((x2i−1, x2i)↔(y2i−1, y2i)) > 0 =⇒ {x2i−1, x2i} ∩ {y2i−1, y2i} = ∅ ,

thereforeχv ◦ σv(x) = xσv(ℓ(v)) 6= yσv′ (ℓ(v
′)) = χv′ ◦ σv′(y). So the verifier always accepts.

C.2 Proof of Lemma 8

Proof. For each nodev ∈ V , let f v : [k]2R → ∆k be the functionf v(x) = eχv(x) whereei is the indicator
vector of theith coordinate. LetΓ(u) denote the set of vertices adjacent tou in the Label Cover graph.

After arithmetizing, we can write the verifier’s acceptanceprobability as

Pr [acc] = Eu,v,v′

[

1 −
∑

j〈f
v
j ◦ σv, T

⊗R(f v
′

j ◦ σv′)〉
]

= 1 − Eu

[
∑

j Ev,v′

[

〈f vj ◦ σv, T
⊗R(f v

′

j ◦ σv′)〉
]]

= 1 − Eu

[
∑

j〈Ev
[

f vj ◦ σv

]

, T⊗R
Ev′

[

f v
′

j ◦ σv′
]

〉
]

= 1 − Eu

[
∑

j〈g
u
j , T

⊗Rguj 〉
] (

guj = Ev∼Γ(u)

[

f vj ◦ σv
])

> 1 − 1/k +C ln k/k2

wheregu : [k2]R → ∆k and some constantC. By averaging, for at least a fractionδ = (ε/2) ln k/k2 of
vertices inU , we have ∑

j

〈guj , T
⊗Rguj 〉 6 1/k − C ln k/k2

Let these be “good” vertices. For a good vertex, by Proposition 1, there exist constantsδ = δ(k), t = t(k)
andi such thatInf

6t
i (gu) > δ. Let Suggu = {i|i ∈ {1, . . . , R} ∧ Inf

6t
i (gu) > δ}, so |Suggu| > 1. By

Observation 3,|Suggu| 6 t/δ. For a good vertexu, andj ∈ Suggu:

δ 6 Inf
6t
j (gu) = Ev∼Γ(u)

[

Inf
6t
j

(
f v ◦ σv

)]
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Therefore, for at least a fractionδ/2 of neighborsv of u, Inf
6t
j (f v ◦ σv) > δ/2. For suchv and j, by

Claim 1,Inf
62t
2j−1(f

v ◦ σv) + Inf
62t
2j (f v ◦ σv) > δ/2. Therefore for somej ∈ [2R], Inf

62t
j (f v) > δ/4. Let

Suggv = {j|j ∈ {1, . . . , 2R} ∧ Inf
62t
j (f v) > δ/4}. Again,Suggv is not empty and|Suggv| 6 8t/δ.

Following the decoding procedure in [7], we deduce that it ispossible to satisfy a fractionγ′ = γ′(δ, t) =
γ′(k) of the constraints.

D Handling k not divisible by 3 in Theorem 4

We now argue how to handle the case whenk mod 3 6= 0 in the statement of Theorem 4. Assumek is
of the formK + L, whereK ≡ 0 (mod 3) andL = k mod 3 ∈ {1, 2}. We will give a reduction from
Max K-Colorable Subgraph, which we already showed to be NP-hard to approximate withina factor
1 − 1

33K + ε, to Max k-Colorable Subgraph.

LetGK be an (unweighted) instance ofMax K-Colorable Subgraph withM edges. Construct a graph
H by addingL new verticesu1, . . . , uL toGK . Eachui is connected by an edge of weightdv

K to each vertex
v ∈ V (GK), wheredv is the degree ofv in GK . If L > 1, (u1, u2) is an edge inH with weight M

33K . The
total weight of edges inH equals

M ′ = M +
2LM

K
+
M(L− 1)

33K
.

Clearly ifGK isK-colorable, thenH is k-colorable. For the soundness part, suppose everyK-coloring

of GK miscolors at least
(

1
33K − ε

)

M edges. Letχ be an optimalk-coloring ofH. We will prove that

χ miscolors edges with total weight at leastM( 1
33K − ε). This will certainly be the case ifL > 1 and

χ(u1) = χ(u2). So we can assumeχ usesL colors for the newly added verticesui. If χ(v) = χ(ui) for
somev ∈ V (GK), we can changeχ(v) to one of theK colors not used to color{u1, . . . , uL} so that the
weight of miscolored edges does not increase. Therefore, wecan assume thatχ uses onlyK colors to color
theGK portion ofH. But this implies at leastM( 1

33K − ε) edges are miscolored byχ, as desired.

Thus everyk-coloring ofH miscolors at least a fraction

M(1/(33K) − ε)

M ′
=

(1/(33K) − ε)

1 + 2L/K + (L− 1)/(33K)
>

1

33(k + L) + (L− 1)
− ε

of the total weight of edges inH. SinceL = k mod 3, the bound stated in Theorem 4 holds.
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