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Abstract

In the context of proving lower bounds on proof space in k-DNF resolution, [Ben-Sasson and Nord-
ström 2009] introduced the concept of minimally unsatisfiable sets of k-DNF formulas and proved that a
minimally unsatisfiable k-DNF set with m formulas can have at most O

(
(mk)k+1

)
variables. They also

gave an example of such sets with Ω(mk2) variables.
In this paper we significantly improve the lower bound to Ω(m)k, which almost matches the upper

bound above. Furthermore, we show that this implies that the analysis of their technique for proving
time-space separations and trade-offs for k-DNF resolution is almost tight. This means that although
it is possible, or even plausible, that stronger results than in [Ben-Sasson and Nordström 2009] should
hold, a fundamentally different approach would be needed to obtain such results.

1 Introduction

A formula in conjunctive normal form, or CNF formula, is said to be minimally unsatisfiable if it is un-
satisfiable but deleting any clause makes the formula satisfiable. A well-known result by Tarsi [AL86],
reproven several times by various authors (see, for instance, [BET01, CS88, Kul00]), states that the number
of variables in any such CNF formula is always at most (m− 1), where m is the number of clauses.

Motivated by certain problems in proof complexity related to the space measure in the so-called k-DNF
resolution proof systems introduced by Krajı́ček [Kra01], Ben-Sasson and Nordström [BSN09a] developed
a generalization of the concept of minimal unsatisfiability to conjunctions of formulas in disjunctive normal
form where all terms in the disjunctions have size at most k, henceforth k-DNF formulas. We begin by
reviewing their definition.
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

Assume that D = {D1, . . . , Dm} is the set of k-DNF formulas appearing in our conjunction, and that D
itself is unsatisfiable. What should it mean that D is minimally unsatisfiable?

The first, naive, attempt at a definition would be to require, by analogy with the k = 1 case, that D
becomes satisfiable after removing any Di from it. However, the following simple example of two 2-DNF
formulas

{(x ∧ y1) ∨ . . . ∨ (x ∧ yn), (x̄1 ∧ y1) ∨ . . . ∨ (x̄ ∧ yn)} (1)

that is minimally unsatisfiable in this sense shows that we can not hope to get any meaningful analogue of
Tarsi’s lemma under this assumption only.

The reason for this is that the 2-DNF set (1) is not minimally unsatisfiable in the following sense: even
if we “weaken” a formula in the set (i.e., make it easier to satisfy) by removing any, or even all, y-variables,
then what remains is still an unsatisfiable set. This leads us to the stronger (and arguably more natural) notion
that the formula set should be minimally unsatisfiable not only with respect to removing DNF formulas but
also with respect to shrinking terms (i.e., conjunctions) in these formulas. Fortunately, this also turns out to
be just the right notion for the proof complexity applications given in [BSN09a] (for details, we refer either
to that paper or to Section 4 below). Therefore, following [BSN09a], we say that a set D of k-DNF formu-
las is minimally unsatisfiable if weakening any single term (i.e., removing from it any literal) appearing in
a k-DNF formula from D will make the “weaker” set of formulas satisfiable. This leads to the following
question:

How many variables (as a function of k and m) may appear in a minimally unsatisfiable set
{D1, . . . , Dm} of k-DNF formulas?

Tarsi’s lemma thus states that for k = 1 the answer is (m − 1). This result has a relatively elementary
proof based on Hall’s marriage theorem, but its importance to obtaining lower bounds on resolution length
and space is hard to overemphasize. For instance, the seminal lower bound on refutation length of random
CNF formulas in [CS88] makes crucial use of it, as does the proof of the “size-width trade-off” in [BSW01].
Examples of applications of this theorem in resolution space lower bounds include [ABSRW02, BSG03,
BSN08, BSN09b, NH08, Nor09a].

To the best of our knowledge, the case k ≥ 2 had not been studied prior to [BSN09a]. That paper
established an O

(
(mk)k+1

)
upper bound and an Ω

(
mk2

)
lower bound on the number of variables. The gap

is large, and, as one of their open questions, the authors asked to narrow it.
In this paper, we give an almost complete answer to that question by proving an Ω(m)k lower bound

on the number of variables. Our construction is given in Section 3, following a little bit of preliminaries
in Section 2. Then, in Section 4, we discuss certain consequences of our result to proof complexity, the
bottom line here being that in order to improve on the space complexity bounds from [BSN09a], a different
approach would be needed. The paper is concluded with a few remarks and open problems in Section 5.

2 Preliminaries

Recall that a DNF formula is a disjunction of terms, or conjunctions, of literals, i.e., unnegated or negated
variables. If all terms have size at most k, then the formula is referred to as a k-DNF formula (where k
should be thought of as some arbitrary but fixed constant).

Definition 2.1 ([BSN09a]). A set of DNF formulas D is minimally unsatisfiable if it is unsatisfiable and
furthermore, replacing any single term T appearing in a single DNF formula D ∈ D with a proper subterm
of T makes the resulting set satisfiable.
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3 AN IMPROVED LOWER BOUND FOR MINIMALLY UNSATISFIABLE SETS

Note that this indeed generalizes the well-known notion of minimally unsatisfiable CNF formulas, where
a “proper subterm” of a literal is the empty term 1 that is always true and “weakening” a clause hence
corresponds to removing it from the formula.

We are interested in bounding the number of variables of a minimally unsatisfiable k-DNF set in terms
of the number of formulas in the set. For 1-DNF sets (i.e., CNF formulas), Tarsi’s lemma [AL86] states
that the number of variables must be at most the number of formulas (i.e., clauses) minus one for minimal
unsatisfiability to hold. This bound is easily seen to be tight by considering the example

{x1, x2, . . . , xn, x̄1 ∨ x̄2 ∨ . . . ∨ x̄n} . (2)

No such bound holds for general k, however, since there is an easy construction shaving off a factor k2.
Namely, denoting by Vars(D) the set of variables appearing somewhere in D, we have the following lemma.

Lemma 2.2 ([BSN09a]). There are arbitrarily large minimally unsatisfiable sets D of k-DNF formulas with
|Vars(D)| ≥ k2(|D| − 1).

Proof sketch. Consider any minimally unsatisfiable CNF formula consisting of n+1 clauses over n variables
(for example, the one given in (2)). Substitute every variable xi with(

x1
i ∧ x2

i ∧ · · · ∧ xk
i

)
∨

(
xk+1

i ∧ xk+2
i ∧ · · · ∧ x2k

i

)
∨ · · · ∨

(
xk2−k+1

i ∧ xk2−k+2
i ∧ · · · ∧ xk2

i

)
(3)

and expand every clause to a k-DNF formula. It is straightforward to verify that the result is a minimally
unsatisfiable k-DNF set, and this set has n + 1 formulas over k2n variables.

There is a big gap between this lower bound on the number of variables (in terms of the number of
formulas) and the upper bound obtained in [BSN09a], stated next.

Theorem 2.3 ([BSN09a]). Suppose that D is a minimally unsatisfiable k-DNF set containing m formulas.
Then |Vars(D)| ≤ (km)k+1.

A natural problem is to close, or at least narrow, the gap between Lemma 2.2 and Theorem 2.3. In this
work, we do so by substantially improving the bound in Lemma 2.2.

3 An Improved Lower Bound for Minimally Unsatisfiable Sets

In this section, we present our construction establishing that the number of variables in a minimally unsatis-
fiable k-DNF set can be at least the number of formulas raised to the kth power.

Theorem 3.1. There exist arbitrarily large minimally unsatisfiable k-DNF sets D with m formulas over
more than

(
m
4

(
1− 1

k

))k variables.

In particular, for any k ≥ 2 there are minimally unsatisfiable k-DNF sets with m formulas over (more
than) (m/8)k variables.

Very loosely, we will use the power afforded by the k-terms to construct a k-DNF set D consisting
of roughly m formulas that encode roughly mk−1 “parallel” instances of the minimally unsatisfiable CNF
formula in (2). These parallel instances will be indexed by coordinate vectors

(
x1

i1
, x2

i2
, . . . , xk−1

ik−1

)
. We

will add auxiliary formulas enforcing that only one coordinate vector
(
x1

i1
, x2

i2
, . . . , xk−1

ik−1

)
can have all

coordinates true. This vector identifies which instance of the formula (2) we are focusing on, and all other
parallel instances are falsified by their coordinate vectors not having all coordinates true.

We now formalize this loose intuition. We first present the auxiliary formulas placing the constraints on
our coordinate vectors, which are the key to the whole construction.
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

3.1 A Weight Constraint k-DNF Formula Set

Let us write ~x =
(
x1, . . . , xm(k−1)

)
to denote a vector of variables of dimension m(k − 1). Let |~x| =∑m(k−1)

i=1 xi denote the Hamming weight of ~x, i.e., the number of ones in it. We want to construct a k-DNF
set Wm(~x) with O(m) formulas over x1, . . . , xm(k−1) and some auxiliary variables minimally expressing
that |~x| ≤ 1. That is, a vector ~x can be extended to a satisfying assignment for Wm(~x) if and only if |~x| ≤ 1
but if we weaken any formula in the set, then there are satisfying assignments with |~x| ≥ 2.

We define Wm(~x) to be the set of k-DNF formulas listed next. The intuition for the auxiliary variables
is that zj can be set to true only if the first j(k− 1) variables x1, . . . , xj(k−1) are all false, and wj can be set
to true only if at most one of the first j(k − 1) variables x1, . . . , xj(k−1) is true.

z1 ∨
(
x1 ∧ · · · ∧ xk−1

)
(4a)

z2 ∨
(
z1 ∧ xk ∧ · · · ∧ x2(k−1)

)
(4b)

...

zm−1 ∨
(
zm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

)
(4c)

w1 ∨ z1 ∨
k∨

i=1

k∧
i′=1
i′ 6=i

xi′ (4d)

w2 ∨ z2 ∨
(
w1 ∧ xk ∧ · · ·x2(k−1)

)
∨

2(k−1)∨
i=k

(
z1 ∧

2(k−1)∧
i′=k
i′ 6=i

xi′

)
(4e)

...

wm−1 ∨ zm−1 ∨
(
wm−2 ∧ x(m−2)(k−1)+1 ∧ · · · ∧ x(m−1)(k−1)

)
∨

(m−1)(k−1)∨
i=(m−2)(k−1)+1

(
zm−2 ∧

(m−1)(k−1)∧
i′=(m−2)(k−1)+1

i′ 6=i

xi′

)
(4f)

(
wm−1 ∧ x(m−1)(k−1)+1 ∧ · · · ∧ xm(k−1)

)
∨

m(k−1)∨
i=(m−1)(k−1)+1

(
zm−1 ∧

m(k−1)∧
i′=(m−1)(k−1)+1

i′ 6=i

xi′

)
. (4g)

The set of k-DNF formulas Wm contains 2m− 1 formulas. Let us see that Wm minimally expresses that ~x
has weight at most 1. For ease of notation, we will call the group of variables {x(j−1)(k−1)+1, . . . , xj(k−1)}
the jth block and denote it by Xj .

Every ~x with |~x| ≤ 1 can be extended to a satisfying assignment for Wm(~x). Since all x-variables
appear only negatively, we can assume without loss of generality that |~x| = 1, say all xi are false except for
a single variable in the j0th block Xj0 . We simply set zj to true for j < j0 and false for j ≥ j0, and we set
all wj to true.

Every satisfying assignment for Wm(~x) satisfies |~x| ≤ 1. Assume on the contrary that xi1 = xi2 = 1;
i1 ∈ Xj1 , i2 ∈ Xj2 ; j1 ≤ j2. We have that the truth of xi1 forces zj to false for all j ≥ j1, and then xi2 = 1
forces wj to false for all j ≥ j2. But this means that there is no way to satisfy the final formula (4g). So for
all satisfying assignments it must hold that |~x| ≤ 1.

After weakening any term in Wm(~x), the resulting set can be satisfied by an assignment giving
weight at least 2 to ~x. First we notice that weakening any of the unit terms (i.e., terms of size one) results
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3 AN IMPROVED LOWER BOUND FOR MINIMALLY UNSATISFIABLE SETS

in removing the formula in question altogether. This can only make it easier to satisfy the whole set than if
we just shrink a k-term. Hence, without loss of generality we can focus on shrinking the k-terms. Let us
consider the formulas in Wm(~x) one by one.

If we remove some literal xi in (4a)–(4c), we can set xi = 1 but still have z1 = · · · = zm−1 = 1. This
will allows us to set also xm(k−1) = 1 in (4g) and still satisfy the whole set of formulas although |~x| ≥ 2.

If we instead remove some zj (j ≤ m− 2) in these formulas, then we can set all xi = 1 for xi ∈ X1 ∪
. . . ∪Xj (that already gives us weight ≥ 2) and z1 = . . . = zj = 0, and then we set zj+1 = . . . = zm = 1
and xi = 0 for xi ∈ Xj+1 . . . ∪ . . . Xm. Note that j ≤ m − 2 implies that zm−1 = 1 which takes care
of (4g), and then (4d)–(4f) are satisfied simply be setting all wj to 0. This completes the analysis of the
formulas (4a)–(4c).

In formula (4d), if we remove some xi′ in
∧k

i′=1, i′ 6=i xi′ , then we can set xi = xi′ = w1 = 1 and extend
this to a satisfying assignment for the rest of the formulas.

For the corresponding terms zj−1 ∧
∧j(k−1)

i′=(j−1)(k−1)+1, i′ 6=i xj in (4e)–(4g), if we remove some xi′ , we
can again set xi = xi′ = 1 and set z1 = . . . = zj−1 = 1 and then wj = . . . = wm−1 = 1 to satisfy the
rest of the set, whereas removing zj−1 would allow us to assign to 1 all xi ∈ X1 ∪ . . . ∪Xj−1 and then still
assign wj = . . . = wm−1 = 1.

For the other kind of terms wj−1 ∧ x(j−1)(k−1)+1 ∧ · · · ∧ xj(k−1) in (4e)–(4g), if some xi with xi ∈ Xj

is removed, we can set this xi to true as well as an arbitrary xi′ ∈ X1 ∪ . . .∪Xj−1, whereas removing wj−1

would allow as again to set to 1 all variables in X1 ∪ . . . Xj−1. This proves the minimality of Wm(~x).

3.2 The Minimally Unsatisfiable k-DNF Set

Let us write ~xj =
(
xj

1, x
j
2, . . . , x

j
m(k−1)

)
, and let W j

m(~xj) be the k-DNF set with O(m) formulas constructed
above (over disjoint sets of variables for distinct j) minimally expressing that |~xj | ≤ 1. With this notation,
let Dk

m be the k-DNF set consisting of the following formulas:

W j
m(~xj) 1 ≤ j < k (5a)∨

(i1,i2,...,ik−1)∈[m(k−1)]k−1

(
x1

i1 ∧ x2
i2 ∧ · · · ∧ xk−1

ik−1
∧ yν

i1,i2,...,ik−1

)
1 ≤ ν ≤ m(k − 1) (5b)

ūν ∨
∨

(i1,i2,...,ik−1)∈[m(k−1)]k−1

(
x1

i1 ∧ x2
i2 ∧ · · · ∧ xk−1

ik−1
∧ yν

i1,i2,...,ik−1

)
1 ≤ ν ≤ m(k − 1) (5c)

u1 ∨ u2 ∨ · · · ∨ um(k−1). (5d)

It is worth noting that the range of the index ν does not have any impact on the following proof of minimal
unsatisfiability, and it was set to m(k − 1) only to get the best numerical results.

It is easy to verify that Dk
m consists of less than 4mk k-DNF formulas over more than (m(k − 1))k =(

1
4(4mk)

(
1 − 1

k

))k variables. We claim that Dk
m is minimally unsatisfiable, from which Theorem 3.1

follows.
To prove the claim, let us first verify that Dk

m is unsatisfiable. If the CNF formulas W j
m(~x) in (5a) are to

be satisfied for all j < k, then there exists at most one (k−1)-tuple (i∗1, i
∗
2, . . . , i

∗
k−1) ∈ [m(k − 1)]k−1 such

that x1
i∗1

, x2
i∗2

, . . . , xk−1
i∗k−1

are all true. This forces yj
(i∗1,i∗2,...,i∗k−1) to true for all ν to satisfy the formulas in (5b),

and then (5c) forces all uν to 0, so that (5d) is falsified. Contradiction.
Let us now argue that Dk

m is not only unsatisfiable, but minimally unsatisfiable in the sense of Defini-
tion 2.1. The proof is by case analysis over the different types of formulas in Dk

m.

1. If we shrink any term in (5a)—say, in W 1
m(~x1), then by the minimality property in Section 3.1 we can

set some x1
i′1

= x1
i′′1

= 1 for i′1 6= i′′1 and then fix some x2
i∗2

= . . . = xk−1
i∗k−1

= 1 without violating the
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ON MINIMAL UNSATISFIABILITY AND TIME-SPACE TRADE-OFFS

remaining clauses in W 1
m(~x1), . . . ,W k−1

m (~xk−1). This allows us to satisfy the formulas in (5b) and
(5c) by setting yν

(i′1,i∗2...,i∗k−1) = 1 and yj
(i′′1 ,i∗2...,i∗k−1)

= 0 for all ν, respectively. Finally, set any uj to
true to satisfy (5d). This satisfies the whole k-DNF set.

2. Next, suppose that we shrink some term x1
i∗1
∧x2

i∗2
∧· · ·∧xk−1

i∗k−1
∧yν

(i∗1,...,i∗k−1) in the νth k-DNF formula
in (5b). There are two subcases:

(a) Some x-variable is removed, say, the variable x1
i∗1

. Set x1
i∗1

= 0 and x2
i∗2

= . . . = xk−1
i∗k−1

=
yν
(i∗1,i∗2,...,i∗k−1) = 1. This satisfies the νth formula in (5b). Then pick some i′1 6= i∗1 and set

x1
i′1

= 1. All this can be done in a way that satisfies all clauses in (5a) since the weight of every

~xj is one. Set uν = 1 and uν′ = 0 for all ν ′ 6= ν to satisfy (5d) and then yν
(i′1,i∗2,...,i∗k−1) = 0 to

satisfy the νth formula in (5c) (all others are satisfied by literals ūν′ , ν ′ 6= ν). The νth formula
in (5b) was satisfied above, and for all other ν ′ 6= ν we set yν

(i′1,i∗2,...,i∗k−1) = 1 to satisfy the rest
of the formulas in (5b). This satisfies the whole k-DNF set.

(b) The variable yν
(i∗1,...,i∗k−1) is eliminated. If so, set x1

i∗1
= . . . = xk−1

i∗k−1
= 1 to satisfy the νth formula

in (5b), uν = 1 and yν
(i∗1,...,i∗k−1) = 0 to satisfy (5d) and the νth formula in (5c), and uν′ = 0 and

yν′

(i∗1,...,i∗k−1) = 1 for all ν ′ 6= ν to satisfy the rest of the formulas in (5b) and (5c). This is easily
extended to an assignment satisfying (5a) as well.

3. For the νth formula in (5c), we may assume, for the same reasons as in Section 3.1, that we shrink a
non-trivial k-term. Then we again have two subcases, treated similarly.

(a) Some x-variable is removed, say x1
i∗1

. Set uν = 1, x1
i∗1

= 0, x2
i∗2

= . . . = xk−1
i∗k−1

= 1, and

yν
(i∗1,i∗2,...,i∗k−1) = 0. This satisfies (5d) and the νth formula in (5c). Setting uν′ = 0 for ν ′ 6= ν

takes care of the rest of (5c). To satisfy (5b), we pick some i′1 6= i∗1 and set x1
i′1

= 1, and then set

yν′

(i′1,i∗2,...,i∗k−1) = 1 for all ν ′. All this can be done in a way that satisfies the weight constraints
in (5a).

(b) The literal yν
(i∗1,...,i∗k−1) is eliminated. If so, set x1

i∗1
= . . . = xk−1

i∗k−1
= 1 to satisfy the νth formula

in (5c) and uν = 1 to satisfy (5d). Setting uν′ = 0 for ν ′ 6= ν takes care of the rest of (5c). Now
we can satisfy all of (5b) by setting yν

(i∗1,...,i∗k−1) = 1 for all ν, and it is once again easy to see that
the weight constraints in (5a) are also satisfied.

4. (5d) is removed. Set all uν to 0, and set all yν
i1,...,ik

to 1, then (5a)–(5b) become easy to satisfy.

This completes the proof that Dk
m is minimally unsatisfiable as claimed, and Theorem 3.1 hence follows.

4 Implications for Time-Space Trade-offs for k-DNF Resolution

Let us start this section by a quick review of the relevant proof complexity context. The k-DNF resolution
proof systems were introduced by Krajı́ček [Kra01] as an intermediate step between resolution and depth-2
Frege. Roughly speaking, the kth member of this family, denoted henceforth by R(k), is a system for
reasoning in terms of k-DNF formulas. For k = 1, the lines in the proof are hence disjunctions of literals,
and the system R(1) is standard resolution. At the other extreme, R(∞) is equivalent to depth-2 Frege.

Informally, we can think of an R(k)-proof as being presented on a blackboard. The allowed derivation
steps are to write on the board a clause of the CNF formula being refuted, to deduce a new k-DNF formula

6



4 IMPLICATIONS FOR TIME-SPACE TRADE-OFFS FOR k-DNF RESOLUTION

from the formulas currently on the board, or to erase formulas from the board. The length of an R(k)-proof
is the total number of formulas appearing on the board (counted with repetitions) and the (formula) space is
the maximal number of formulas simultaneously on the board at any time during the proof.

A number of works [AB04, ABE02, Ale05, JN02, Raz03, SBI04, Seg05] have shown superpolynomial
lower bounds on the length of k-DNF refutations. It has also been established in [SBI04, Seg05] that the
R(k)-family forms a strict hierarchy with respect to proof length. Just as in the case for standard resolution,
however, our understanding of space complexity in k-DNF resolution has remained more limited. Esteban
et al. [EGM04] established essentially optimal space lower bounds for R(k) and also proved that the family
of tree-like R(k) systems form a strict hierarchy with respect to space. They showed that there are formulas
Fn of size n that can be refuted in tree-like (k + 1)-DNF resolution in constant space but require space
Ω(n/ log2 n) to be refuted in tree-like k-DNF resolution. It should be pointed out, however, that tree-like
R(k) for any k ≥ 1 is strictly weaker than standard resolution, so the results in [EGM04] left open the
question of whether there is a strict space hierarchy for (non-tree-like) k-DNF resolution or not.

Recently, the first author in joint work with Ben-Sasson [BSN09a] proved that Krajı́ček’s family of R(k)
systems do indeed form a strict hierarchy with respect to space. However, the parameters of the separation
were much worse than for the tree-like systems in [EGM04], namely that the R(k + 1)-proofs have constant
space but any R(k)-proof requires space Ω

(
k+1
√

n/ log n
)
. It is not clear that there has to be a (k + 1)st

root in this bound. No matching upper bounds are known, and indeed for the special case of R(2) versus
R(1) the lower bound is Ω

(
n/ log n

)
by [BSN09b], i.e., without a square root. Also, combining [BSN09a]

with results in [BSN09b] one can derive strong length-space trade-offs for k-DNF resolution, but again a
(k + 1)st root is lost in the analysis compared to the corresponding results for standard resolution R(1).

Returning now to the minimally unsatisfiable k-DNF sets, the reason for studying this concept in
[BSN09a] was that is was an interesting special case of a more general problem arising in their proof anal-
ysis, and that is was hoped that better upper bounds for this special case would translate into improvements
for the general case. Although there appears to be no such obvious translation of lower bounds from the
special to the general case, by using the ideas from the previous section we can show that the analysis of
the particular proof technique employed in [BSN09a] is almost tight. Thus, any further substantial improve-
ments of the bounds in that paper would have to be obtained by other methods.

We do not go into details of the proof construction in [BSN09a] here, since it is rather elaborate. Suffice
it to say that the final step of the proof boils down to studying k-DNF sets that imply Boolean functions
with a particular structure, and proving lower bounds on the size of such DNF sets in terms of the number of
variables in these Boolean functions. Having come that far in the construction, all that remains is a purely
combinatorial problem, and no reference to space proof complexity or k-DNF resolution is needed.

For concreteness, below we restrict our attention to the case where the Boolean functions are exclusive
or. More general functions can be considered, and have been studied in [BSN09a, BSN09b], and everything
that will be said below applies to such Boolean functions with appropriate (and simple) modifications.
Hence, from now on let us focus on DNF sets that minimally imply a particular kind of formulas that we
will refer to as

(
∧∨⊕k

)
-block formulas. A

(
∧∨⊕k

)
-block formula is a CNF formula in which every variable

x is replaced by
⊕k

i=1 xi, where x1, . . . , xk are new variables not appearing in the original formula. Thus,
literals turn into unnegated or negated XORs, every XOR applies to exactly one “block” of k variables, and
no XOR mixes variables from different blocks. Let us write this down as a formal definition.

Definition 4.1. A
(
∧∨⊕k

)
-block formula G is a conjunction of disjunctions of negated or unnegated exclu-

sive ors. The variables of G are divided into disjoint blocks x1, . . . , xk, y1, . . . , yk, z1, . . . , zk et cetera, of
k variables each, and every XOR or negated XOR is over one full block of variables.

The key behind the lower bounds on space in [BSN09a] is the result that if a k-DNF set D implies a(
∧∨⊕k+1

)
-block formula G with many variables, then D must also be large.

7
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Theorem 4.2 ([BSN09a]). Let k be some fixed but arbitrary positive integer. Suppose that D is a k-DNF
set and that G is a

(
∧∨⊕k+1

)
-block formula such that D implies G, and furthermore that G is minimal in

the sense that if we remove a single XOR or negated XOR from G (thus making the formula stronger), it no
longer holds that D implies G. Then |Vars(G)| = O

(
|D|k+1

)
.

Using this theorem, one can get the k+1
√

n/ log n space separation mentioned above between k-DNF
resolution and (k+1)-DNF resolution. Any improvement in the exponent in the bound in Theorem 4.2
would immediately translate into an improved space separation, and would also improve the time-space
trade-offs one can get when transferring the results in [BSN09b] from resolution to k-DNF resolution.

Prior to the current paper, the best lower bound giving limits on what one could hope to achieve in
Theorem 4.2 was linear, i.e., |Vars(G)| = Ω(|D|). Namely, let G be a conjunction of XORs (

⊕k+1
i=1 xi) ∧

(
⊕k+1

i=1 yi)∧ (
⊕k+1

i=1 zi)∧ · · · and let D be the union of the expansions of every
⊕k+1

i=1 xi as a CNF formula.
For this particular structure of G it is also easy to prove that |Vars(G)| = O(|D|) for any choice of D, but
it has been an open question what happens when we consider general formulas G.

For k = 1, [BSN09b] proved that a linear bound O(|D|) in fact holds for any set of clauses D and any(
∧∨⊕2

)
-block formula G, but all attempts to extend the techniques used there to the case k > 1 have failed.

And indeed, they have failed for a good reason, since building on the construction in Section 3 we can show
that this failure is due to the fact that the best one can hope for in Theorem 4.2 is |Vars(G)| = O

(
|D|k

)
.

Theorem 4.3. For any k > 1 there are arbirarily large k-DNF sets D of size |D| = m and
(
∧∨⊕k+1

)
-block

formulas G such that D implies G, this implication is “precise” in the sense that if we remove a single
XOR or negated XOR from G it no longer holds that D implies the strengthened formula, and |Vars(G)| ≥
(k + 1)

[
m

k+2

(
1− 1

k

)]k ≥ k
(

m
4k

)k.

Proof. We utilize all the previous notation and start with the CNF formula∧
ν∈[m(k−1)]

∨
(i1,...,ik−1)∈[m(k−1)]k−1

yν
i1,...,ik−1

(6)

and substitute an exclusive or over variables yν,r
i1,...,ik−1

, r = 1, . . . , k + 1, for every variable yν
i1,...,ik−1

. This
results in the formula

G =
∧

ν∈[m(k−1)]

∨
(i1,...,ik−1)∈[m(k−1)]k−1

k+1⊕
r=1

yj,r
i1,...,ik−1

(7)

which will be our
(
∧∨⊕k+1

)
-block formula. Clearly, G contains (k + 1) · (m(k− 1))k variables. We claim

that the following easy modification of the k-DNF set from Section 3.2 “precisely” implies G in the sense
of Theorem 4.3:

W j
m(~xj) 1 ≤ j < k (8a)∨

(i1,...,ik−1)∈[m]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1

∧ yν,1
i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1) (8b)

∨
(i1,...,ik−1)∈[m]k−1

(
x1

i1 ∧ · · · ∧ xk−1
ik−1

∧ yν,r
i1,...,ik−1

)
1 ≤ ν ≤ m(k − 1), 2 ≤ r ≤ k + 1 (8c)

It is straightforward to verify that D consists of less than m(k − 1)(k + 1) + 2mk ≤ mk(k + 2) k-DNF
formulas. D implies G since once we have picked which variables x1

i∗1
, x2

i∗2
, . . . , xk−1

i∗k−1
should be satisfied,

8
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D will force all XOR blocks
⊕k+1

r=1 yν,r
i∗1,...,i∗k−1

, j ∈ [m(k − 1)] to true by requiring the variable yν,1
i∗1,...,i∗k−1

to

be true and all other variables yν,r
i∗1,...,i∗k−1

, r ≥ 2, to be false. Finally, it is also easy to verify that D implies

G “precisely” in the sense that if a single XOR block
⊕k+1

r=1 yν,r
i∗1,...,i∗k−1

is removed from G, then we can
satisfy D but falsify the rest of the formula G (the proof is very similar to the one given in Section 3.2).
Theorem 4.3 follows.

5 Concluding Remarks and Open Problems

We conclude this paper by discussing two remaining open problems.
Firstly, the most obvious problem still open is to close the gap between Ω(m)k and O

(
(mk)k+1

)
for

the number of variables that can appear in a minimally unsatisfiable k-DNF set with m formulas. There
is a strongly expressed intuition in [BSN09a] that it should be possible to bring down the exponent from
k + 1 to k. Hence we have the following conjecture, where for simplicity we fix k to remove it from the
asymptotic notation.

Conjecture 1. Suppose that D is a minimally unsatisfiable k-DNF set for some arbitrary but fixed positive
integer k. Then the number of variables in D is at most O(|D|)k.

Proving this conjecture would establish asymptotically tight bounds for minimally unsatisfiable k-DNF
sets (ignoring factors involving the constant k).

Secondly, we again stress that the result in Theorem 4.3 does not per se imply any restrictions (that
we are aware of) on what space separations or time-space trade-offs are possible for k-DNF resolution.
The reason for this is that our improved lower bound only rules out a particular approach for proving
better separations and trade-offs, but it does not say anything to the effect that the k-DNF resolution proof
systems are strong enough to match this lower bound. It would be very interesting to understand better the
strength of k-DNF resolution in this respect. Hence we have the following open problem (where we refer to
[BSN09b] or [Nor09b] for the relevant formal definitions).

Open Problem 2. Let Pebk+1
G [⊕] be the XOR-pebbling contradiction over some directed acyclic graph G.

Is it possible that k-DNF resolution can refute Pebk+1
G [⊕] in space asymptotically better than the black-

white pebbling price BW-Peb(G) of G?

We remark that for standard resolution, i.e., 1-DNF resolution, the answer to this question is that XOR-
pebbling contradictions over two or more variables cannot be refuted in space less than the black-white
pebbling price, as proven in [BSN09b]. For k-DNF resolution with k > 1, however, the best known lower
bound is Ω

(
k+1
√

BW-Peb(G)
)
, as shown in [BSN09a]. There is a wide gap here between the upper and

lower bounds since, as far as we are aware, there are no known k-DNF resolution proofs that can do better
than space linear in the (black) pebbling price (which is achievable by standard resolution).
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