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Abstract

Polynomial identity testing (PIT) is the problem of checking
whether a given arithmetic circuit is the zero circuit. PIT ranks as
one of the most important open problems in the intersection of alge-
bra and computational complexity. In the last few years, there has
been an impressive progress on this problem but a complete solution
might take a while. In this article we give a soft survey exhibiting the
ideas that have been useful.

1 Introduction

One learns a number of identities as part of Algebra in the school curriculum.
For example, the di�erence of squares identity (x+y)(x−y) = (x2−y2) or a
more impressive sum of four squares identity (probably �rst communicated
by Euler in a letter to Goldbach on May 4, 1748): (a2

1 + a2
2 + a2

3 + a2
4)(b

2
1 +

b2
2 + b2

3 + b2
4) = (a1b1 − a2b2 − a3b3 − a4b4)

2+ (a1b2 + a2b1 + a3b4 − a4b3)
2+

(a1b3 − a2b4 + a3b1 + a4b2)
2+ (a1b4 + a2b3 − a3b2 + a4b1)

2. There is of course
an easy way to test them: just completely expand the products and check
whether the monomials cancel in the resulting sum. This way you can easily
verify that the above two expressions are indeed identities. But the process of
expanding products blows up monomials and would be very expensive when
both the number of variables and the degree of the expression are increased.
Roughly, for n variables and d degree the number of monomials grows as(

n+d
d

)
which is small if one of n or d is small but exponentially large if both

n, d are large. So the question we ask is - can this identity or zero testing be
done in (nd)O(1) steps?

Notice that to formalize this question there seems to be a need of care-
fully de�ning the way the algebraic expression is given to us in the input.
Fortunately, there is already an object de�ned in computational complexity,
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called arithmetic circuit, that we could directly use [48]. An arithmetic cir-
cuit C, on say n variables and a �eld F, is a directed acyclic graph with input
variables at the leaves and output at the root. The internal nodes are called
gates, they are of two kinds - multiplication and addition - and perform the
respective operations over the �eld F. The edges or wires of C can have con-
stants on them from the �eld which get multiplied to the value at the tail of
the respective edge. It is easy to see that the value at the root of the circuit
C is just an n-variate polynomial and lives in F[x1, . . . , xn]. Thus a circuit is
a natural combinatorial way to capture algebraic computation. One might
want to consider the base object F to be a general ring instead of a �eld but
we will be more concerned with the latter in this survey. For the purposes of
identity testing we usually regard the operations in the �eld F to be doable
in unit time. The bulk of the computation in the identity testing algorithms
is seen as a function of the size of the input circuit, which is basically the
number of gates and wires in the circuit. Another useful parameter of a cir-
cuit is depth, which is the number of levels between the root and the leaves.
Fanin/Fanout refers to the maximum number of inputs/outputs a gate has
in the circuit, and a circuit with fanout 1 is called a formula. Finally, we use
the notation poly(s, t) to denote a positive-valued function whose asymptotic
behaviour is (s + t)O(1). The problem of identity testing is then:

Problem 1.1 (PIT). Given an arithmetic circuit C in the input that com-
putes a polynomial p(x1, . . . , xn) in F[x1, . . . , xn]. Find a deterministic al-
gorithm that tests if p is the zero polynomial, and uses only poly(size(C))
many F operations.

PIT is currently an open question and, as we will see in this survey,
an important question in complexity theory. But it has an easy �practical�
solution, i.e. there are randomized polynomial-time algorithms that are easy
to implement. The �rst randomized polynomial time algorithm was given
(independently) by Schwartz [39] and Zippel [49]. It simply evaluates the
input circuit at a randomly chosen point in Fn and outputs YES i� the speci�c
evaluation is zero. This idea works mainly because a nonzero polynomial
cannot have �too many� roots over a �eld:

Lemma 1.2 (Schwartz-Zippel). Let P ∈ F [x1, x2, . . . , xn] be a non-zero
polynomial of degree d ≥ 0 over a �eld F. Let S be a �nite subset of F. Then,

Probr1,...,rn∈S [P (r1, . . . , rn) = 0] ≤ d

|S|
.

Proof. The proof is by induction on n. For n = 1, P can have at most d
roots and hence the probability of hitting a root is at most d

|S| .



Now, assume that the statement holds for all polynomials upto (n − 1)
variables. Wlog we can then consider P to be a polynomial in x1 by writing
it as,

P (x1, . . . , xn) =
d∑

i=0

xi
1Pi(x2, . . . , xn).

Since P is a nonzero polynomial, ∃i such that Pi is nonzero. Take the largest
such i, clearly degPi ≤ (d− i). Now we randomly pick r2, . . . , rn from S. By
the induction hypothesis, Prob[Pi(r2, . . . , rn) = 0] ≤ d−i

|S| . If Pi(r2, . . . , rn) 6=
0 then P (x1, r2, . . . , rn) is of degree i so by the univariate case:

Prob[P (r1, . . . , rn) = 0|Pi(r2, . . . , rn) 6= 0] ≤ i

|S|
By a lazy probability estimation we get:

Probr1,...,rn∈S [P (r1, . . . , rn) = 0] ≤ Prob[Pi(r2, . . . , rn) = 0] +

Prob[P (r1, . . . , rn) = 0|Pi(r2, . . . , rn) 6= 0]

≤ d− i

|S|
+

i

|S|

≤ d

|S|
Thus completing the proof by induction.

This lemma shows that as long as the �eld F has twice as many elements
as the degree of the input circuit, we have a good randomized algorithm that
has error probability at most 1

2
. In case F is too small compared to the degree

d of the input circuit C we go to a suitable extension of F and pick random
points there. The two issues here that are worth mentioning: (1) The degree
of the input polynomial can only be at most 2size(C). (2) A �eld extension of
F of degree O(size(C)) can either be found by a deterministic construction
of irreducible polynomials [8] or we can simply work over the cyclotomic
extension F[z]/(zr−1) for a �suitable� r = poly(size(C)). Finally, the actual
evaluation of C at a randomly chosen point (even from the extension algebra)
can be trivially simulated in poly(size(C)) many F operations.

Randomized algorithms that use fewer random bits and have lower error
probability (at the cost of time) were given by Chen & Kao [17], Lewin &
Vadhan [35], and Agrawal & Biswas [1]. As we care more about deterministic
methods in this survey, we will not discuss the details of these methods here.
These randomized algorithms show that PIT is in the complexity class BPP
which in turn is conjectured to be equal to P (see the survey [27] for the
theoretical evidence). Thus it seems to be a reasonable goal to derandomize
PIT.



Some applications of PIT

Being a fundamental problem it is not surprising that PIT appears in several
other seemingly unrelated problems. We see below an example each from
complexity theory, graph theory and number theory.

The idea of comparing two multivariate polynomials for equality by eval-
uating them at randomly chosen points was crucial in the proof of the com-
plexity result: IP=PSPACE [41]. The multivariate polynomial in that case
is the arithmetized version of a quanti�ed boolean formula (QBF) φ, and
using PIT it becomes possible to give an interactive protocol (IP) to verify
the truth of φ. Here PIT helped in upper bounding the complexity of QBF
problem, on the other hand, PIT also has several lower bound implications
(see Section 7)

Another, much older, application of PIT is due to the following theorem
proved by Tutte [47] in 1947: A graph has no perfect matching i� the deter-
minant of its Tutte matrix is zero. Recall that for a graph G = (V, E) on n
vertices its Tutte matrix is an n× n matrix A with its (i, j)th entry de�ned
as:

Ai,j :=


xi,j, if (i, j) ∈ E and i < j

−xj,i, if (i, j) ∈ E and i > j

0, otherwise

To use this theorem in a matching algorithm we will have to check whether
the multivariate polynomial det(A) is zero, which can be seen as a special case
of PIT. This formulation immediately gives a randomized algorithm which
has the added advantage of being in (randomized) NC, i.e. it is a highly
parallel algorithm since determinant has known fast parallel algorithms. It
is an open question to �nd a deterministic parallel algorithm for perfect
matching, and it appears that a derandomization of this special case of PIT
might be the way to go (see a related conjecture in [2] and a special case in
[5]).

Finally, the problem of primality testing was solved in an elementary
way by working with a PIT formulation. It was observed by Agrawal &
Biswas [1] that a positive integer n is prime i� (x + 1)n = (xn + 1) (mod n),
and they exploited this simple binomial fact to design a new randomized
primality test. If we de�ne P (x) := (x + 1)n − (xn + 1) then the question
is that of testing whether P (x) is the zero polynomial over the ring Z/nZ,
which is just a special case of PIT. Note that although P (x) is a univariate
polynomial it has degree n which is exponential in the input size log n, and
so we cannot a�ord to completely expand P (x). The neat idea in [1] was to
test P (x) = 0 (mod n, Q(x)) for a randomly chosen polynomial Q of degree



O(log n). As Q has �small� degree we can do this in poly(log n) time, using
repeated squaring of (x + 1) and x. This randomized algorithm was later
derandomized by Agrawal, Kayal & Saxena [7] to get the �rst deterministic
polynomial time algorithm for primality testing. They essentially showed
that if P (x) = 0 (mod n, arxr − 1) for all 1 ≤ a, r ≤ (log n)5 then P (x) =
0 (mod n). It is astonishing that the zeroness of a polynomial of a high degree
can be determined by just looking modulo very few, very small polynomials!

Survey Overview

The goal of this survey is not to be exhaustive but to cover the main ideas
and to pose the closely related open questions. One of the interesting topics
related to PIT which we would not be discussing in this survey are: PIT
for circuits over general rings (see [44]), interpolation of polynomials (see
[15, 23, 42]) and learning arithmetic formulas (see [45, 33]). A brief overview
of the topics that we do cover in this survey now follows.

Sparse PIT. A circuit C that computes a polynomial which has at most m
nonzero monomials is called m-sparse. The problem of sparse PIT is to design
an algorithm that runs in poly(size(C), m) �eld operations. This problem
has several known solutions (see [30]). We will see the one by Agrawal [3] as
I �nd it the simplest conceptually.

Low Degree PIT. A circuit C(x1, . . . , xn) that computes a polynomial of
degree poly(n) is called a low degree circuit. The term low degree is used to
contrast with circuits that use repeated squaring to exponentially increase
the degree, for example the circuit P (x) that appears in the primality test
above is not low degree. It can be seen that formulas, circuits of constant
depth, and bounded fanin circuits of O(log n) depth; all compute a low degree
polynomial. Thus, it seems natural to study the problem of PIT for low
degree circuits and we call it low degree PIT.

It was shown by Agrawal & Vinay [10] that for the purposes of low degree
PIT it is enough, somewhat surprisingly, to just consider depth-4 circuits.
The main idea is to �shrink� any low degree circuit into a depth-4 circuit
by paying only a subexponential price in the circuit size. Thus if one solves
depth-4 PIT in deterministic polynomial time then one has solved low degree
PIT in subexponential time. I mainly see this as a strong evidence that PIT
for �shallow� circuits, i.e. those of depth 3 or 4, gives us enough clues to
tackle the bigger PIT problem.

Depth-3 PIT (Non Black-Box). Convinced that shallow circuits are
already interesting cases for PIT, we now focus on the PIT algorithms for
depths 2, 3 and 4. A depth 2 circuit is either a sum of monomials (ΣΠ) or a



product of linear polynomials (ΠΣ), both of which have obvious deterministic
polynomial time PIT algorithms if we can look �inside� the circuit (which is
why we use the term non black-box). A depth 3 circuit can either be a
product of sum of monomials or a sum of product of linear polynomials. As
the former case is again trivial to check for zeroness, we only worry about the
latter case. Thus, for us a depth-3 circuit C over a �eld F is C(x1, . . . , xn) =∑k

i=1 Ti, where Ti (a multiplication term) is a product of di linear polynomials
Li,j over F. Note that by homogenization we can assume wlog that Li,j's are
linear forms (i.e. linear polynomials with a zero constant coe�cient) and that
d1 = · · · = dk =: d. Such a circuit is referred to as a ΣΠΣ(n, k, d) circuit,
where k is the top fanin of C and d is the degree of C. Depth-3 circuits are
a good starting point and are under intense study from various viewpoints
[22, 19, 31, 9, 45, 32, 38, 42, 33, 34, 43].

It was shown by Kayal & Saxena [31] that if the top fanin k is small then
PIT is easy. Note that k = 2 is the trivial case (because F[x1, . . . , xn] is a
unique factorization domain) but k = 3 is already nontrivial. The main idea
of [31] was to look at C modulo several linear forms and use a generalized
form of Chinese remaindering. The cost of doing this grows like dk and hence
is meaningful when k is small even if d, n are arbitrarily large. As one needs
to look �inside� the circuit this algorithm we label as non black-box.

Depth-3 PIT (Black-Box). One might wish to develop algorithms for
PIT that do not even look inside a given circuit C, but merely evaluate C
at several points in F or algebraic extensions of F. Of course this is an
impossible dream if we do not have an a priori bound on size(C). But
with such a bound given in the input together with a black-box access to C,
the question of testing C = 0 in poly(size(C)) many F operations becomes
reasonable, as the randomized Schwartz-Zippel PIT algorithm does not look
inside the circuit at all! Intuitively it seems that to devise a black-box PIT
algorithm for a circuit family, one would need a very good understanding
about the structure of identities in that family. There is some progress in
that direction for ΣΠΣ(n, k, d) identities with constant top fanin k.

Note that a ΣΠΣ(n, k, d) identity C is composed of linear forms and hence
we can associate a natural notion of rank, which will be the rank of the vector
space that these linear forms span. It was �rst shown by Dvir & Shpilka [19]
that, under some mild assumptions on C, the rank of C is bounded by logk d.
For a constant k this is saying something nontrivial about the ΣΠΣ(n, k, d)
identities. Later Karnin & Shpilka [32] used this property to develop a black-
box PIT algorithm for ΣΠΣ(n, k, d) circuits that runs in time ∼ drank(C),

or dlogk d which is a subexponential complexity when k is constant. This
connection between rank and black-box PIT is quite encouraging, and has



already led to several improvements. Saxena & Seshadhri [43] showed a rank
bound of k3 log d which is almost optimal and translates into an improved
black-box PIT algorithm of complexity dk3 log d. Their main idea was to look
at C modulo various ideals and deduce lots of dependencies between the
various multiplication terms of the identity C.

It is believed that over the �elds of zero characteristic, especially complex
numbers, the identities should be even more restricted. Towards that goal,
Kayal & Saraf [34] showed a rank bound of kk over the �eld of reals. It
gives a corresponding black-box PIT algorithm of complexity dkk

, which is
polynomial time for constant k. Their main idea is to look at the linear
forms appearing in C as points in a higher dimensional space and then use
certain properties of real geometry [13] to rule out their arrangement in a
ΣΠΣ(n, k, d) identity.

Depth-4 PIT. PIT algorithms for circuits of depth higher than 3 are cur-
rently few [37, 9, 38, 45, 46]. The ones that are known are based on insights
obtained from depth-2 and depth-3 circuits and put further restrictions so
that those ideas could be lifted to higher depths. We will discuss the PIT
algorithms for noncommutative formulas [37] and depth-4 circuits with mul-
tiplication gates that only do powering [38].

A noncommutative formula is one that has noncommuting variables, i.e.
xixj 6= xjxi for all i 6= j ∈ [n]. The main idea of Raz & Shpilka [37] was
that a multiplication gate in a noncommutative formula can be gradually
opened-up without getting into the problem of monomial explosion. They
then used linear algebra to complete the PIT algorithm.

Saxena [38] solved the case of depth-4 circuits when each multiplica-
tion gate is just powering, i.e. an input p(x1, . . . , xn) is converted to
α · p(x1, . . . , xn)e for some α ∈ F and e ∈ N. The main idea was to transform
such a circuit to another one wherein each multiplication gate has factors
with unmixed variables. The PIT algorithm then follows an algebraic gener-
alization of the idea of [37].

General PIT and Lower Bounds. As seen above PIT is a fascinating
fundamental problem with direct connections to other problems. As if this
was not enough, Kabanets & Impagliazzo [29] further emphasized the impor-
tance of PIT by showing that a complete solution of PIT would imply circuit
lower bounds. They showed that if PIT is in P then either Permanent (the
naughtier sibling of Determinant) does not have polynomial sized arithmetic
circuits or NEXP does not have polynomial sized boolean circuits. Even
though we �believe� both the conclusions to be independently true, neverthe-
less, the connection with PIT is intriguing. Their main idea is to show that
low-degree-PIT∈P together with the existence of small circuits for perma-



nent and those for NEXP, implies NEXP⊆NP, which is a contradiction. In
the proof PIT is only used to test whether a small arithmetic circuit equals
the permanent function.

In a more explicit way, Agrawal [3] showed that if there are black-box PIT
algorithms for a circuit family then they also exhibit lower bounds for that
family.

2 Sparse PIT

A lot of papers have focused on the case of circuits that compute a sparse
polynomial. In this case we are given a circuit C together with an upper
bound m on the number of nonzero monomials in the computed polynomial,
and the goal is to devise a poly(size(C), m) time PIT algorithm. Notice that
this is a �benign� goal as usually in PIT a given circuit would produce an
exponential (in size(C)) number of nonzero monomials.

There exist a host of solutions for this case and also for the seemingly
more general problem of interpolating such circuits [15, 23, 16, 30, 3, 5, 12].
All these algorithms are based on the idea of evaluating the given circuit at
cleverly chosen points so that a speci�c nonzero monomial gets isolated. Since
there are �few� nonzero monomials one of them can be e�ciently isolated by
just doing evaluations, hence these tend to be black-box algorithms. We
exhibit one such algorithm, following Agrawal [3]. The basic idea is to go to
a cyclotomic extension and evaluate the circuit at the virtual roots of unity
available in this extension algebra.

Theorem 2.1. Let p(x1, . . . , xn) be a nonzero polynomial (over a �eld F)
whose degree in each variable is less than d and the number of monomi-
als is at most m. Then there exists an 1 ≤ r ≤ (mn lg d)2 such that,
p(y, yd, . . . , ydn−1

) 6= 0 (mod yr − 1).

Proof. Consider the polynomial q(y) := p(y, yd, . . . , ydn−1
) in F[y]. Note that

a monomial xi1
1 · · ·xin

n in p is mapped to the monomial yi1+i2d+···+indn−1
in q.

Since we have assumed i1, . . . , in < d, observe that the map is one-to-one.
Consequently, q(y) 6= 0. Say ya is a monomial with nonzero coe�cient in q.
Now we look at q(y) modulo (yr − 1).

If q(y) = 0 (mod yr − 1), then there ought to be another monomial
yb 6= ya with nonzero coe�cients in q(y) such that yb = ya (mod yr − 1).
This is possible i� r|(b − a). Thus, to avoid picking such a �bad� r we need
one that satis�es:

r 6 |
∏

yb∈q(y),b6=a

(b− a) =: R.



Clearly, integer R can be at most (dn)m in value. Since R has at most lg R
prime factors and since we would encounter at least (lg R + 1) primes in the
range 1 < r ≤ (lg R)2 = (mn lg d)2, it is clear that we have the required
(prime) r for which q(y) 6= 0 (mod yr − 1).

Algorithm. The above property immediately gives a black-box PIT algo-
rithm for sparse polynomials. Given an m-sparse circuit C(x1, . . . , xn) over
F, �x d := 2size(C) and for every 1 ≤ r ≤ (mn lg d)2: compute d, d2, . . . , dn−1

modulo r using repeated squaring and then evaluate C(y, yd, . . . , ydn−1
) over

the extension algebra F[y]/(yr − 1). Finally, we declare C to be an identity
i� all these evaluations are zero. It is routine to verify that this is a correct
algorithm with time complexity poly(size(C), m).

Open. One might wonder what happens if we replace the parameter
(mn lg d)2 in the above analysis by a milder parameter like poly(size(C))? If
we could still prove the statement in Theorem 2.1 then we would get a con-
ceptually simple black-box algorithm for general PIT! Such a generalization
of Theorem 2.1 is currently an open question, even for the �smallest� case
of depth-3 circuits. (Note that the theorem trivially applies to the case of
depth-2 circuits.) It is conjectured by Agrawal [3] that Theorem 2.1 should
be true if we replace (mn lg d)2 by size(C)depth(C), thus, solving PIT at least
for constant depth circuits.

3 Low Degree PIT

The circuit model is a very expressive representation for polynomials, for
example, in size s it is possible to achieve degree 2s by repeated squaring
(although the number of monomials produced remains singly-exponential in
s and not doubly-exponential). What if we reduce the expressive nature of
a circuit, say, by restricting the degree of the computed polynomial to be
�only� poly(s)? Intuitively, PIT for these circuits should be easier.

It was shown by Agrawal & Vinay [10] that a low degree circuit
C(x1, . . . , xn), i.e. of degree poly(n), can be shrunk to a depth-4 circuit
by a reasonable blowup in the size. We will now see the main idea of the
proof. As we can always add some useless variables to C, we can assume
wlog that C(x1, . . . , xn) is computing a polynomial of degree d = O(n). Fur-
thermore, as any n variate, d degree polynomial can be trivially computed
by a depth-2 circuit of size ∼

(
n+d

d

)
∼ 2d lg n

d , it is only reasonable to assume

that C has size 2o(d lg n
d
) (note the small o in the exponent). In that case the

theorem of [10] states:



Theorem 3.1. If a polynomial P (x1, . . . , xn) of degree d = O(n) has a circuit
C of size 2o(d lg n

d
) then there is a depth-4 circuit C ′ of size 2o(d lg n

d
). Moreover,

it can be explicitly constructed in 2o(d lg n
d
) time, given C in the input.

Proof Sketch: The depth reduction is done in two stages. The �rst stage
reduces the depth to O(lg d) by an e�cient construction of Allender, Jiao,
Mahajan and Vinay [6]. The second stage is more expensive but it reduces
the depth to 4.

The main idea in the �rst stage is to look at certain intermediate polyno-
mials [g, h] computed inside the circuit C: for any gate g in C and any gate
h in the subtree rooted at g, [g, h] is de�ned to be the polynomial computed
at the node g if the subtree at h is replaced by a leaf labelled 1. This imme-
diately gives us the simple relation: C(x1, . . . , xn) =

∑
i[root(C), xi]xi. Next

the polynomial [g, h] is recursively expanded wrt the multiplication gates p
in the subtree (rooted at g) for which the degree ≥ 1

2
deg(gh) > degree of the

children of p. This expansion is then used to construct a circuit C ′′ whose
gates correspond to [g, h], for �all� gates g, h in C. A clever argument in [6]
shows that every multiplication gate in C ′′ has at least a doubling e�ect on
the degree of its children, hence, the depth of C ′′ can be at most O(lg d).
Also, size(C ′′) remains at most a polynomial in size(C).

Let s be the size of C ′′ and de�ne a parameter ` su�ciently smaller than
d lg n

d

lg s
. The second stage has an even simpler idea: cut C ′′ into two parts,

the top has exactly t := lg ` layers of multiplication gates and the rest of the
layers form the bottom. Let g1, . . . , gk (where k ≤ s) be the output gates
of the bottom part. Thus, we can think of the top part as computing a
polynomial Ptop in new variables y1, . . . , yk and each of the gi computing a
polynomial Pi in the input variables x1, . . . , xn. The polynomial computed
by the circuit C ′′ then equals: Ptop(P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn)). Since
the top half consists of t levels of multiplication gates deg(Ptop) is bounded by
2t. And since the degree drops by a factor of two across multiplication gates,
we also have deg(Pi) ≤ d

2t . Expressing Ptop and Pi's as a sum of product, we
have a depth-4 circuit C ′ computing the same polynomial as C ′′. The size of
this circuit C ′ is:

∼
(

k + 2t

k

)
+ k ·

(
n + d

2t

n

)
An easy calculation shows that the dominating terms above are: s` + (n`)

d
` .

Both of which, by the choice of `, are smaller than 2o(d lg n
d
). This completes

the proof.

This theorem already suggests that a PIT algorithm for depth-4 circuits
would imply a nontrivial one for low degree circuits. [10] goes a step further



and shows that a black-box polynomial time algorithm for depth-4 PIT gives
an nlg n time algorithm for low degree PIT!

Open. The above proof has an interesting byproduct: if we could prove an
exponential lower bound for a low degree polynomial for depth-4 circuits then
it implies an exponential lower bound for general circuits! For example, we
know that permanent (on n× n matrices) has a depth-4 circuit of size 2O(n).
But whether it has depth-4 circuits of size 2o(n) is not known. Such a lower
bound would now imply that permanent does not have (general) arithmetic
circuits of size 2o(

√
n).

4 Depth-3 PIT (Non Black-Box)

The case of depth-2 being too easy (it has a black-box polynomial time PIT
algorithm) and that of depth-4 being too general (its PIT algorithm will also
give a nontrivial one for low degree circuits), leaves us with the intermediate
case of depth-3 PIT. There are a host of results for it but the case is still
not completely solved. Here we will sketch the idea of the best known PIT
algorithm [31]. It is a non black-box algorithm as it needs to look at the
input circuit to use the linear polynomials that occur in it.

Let the input circuit C be computing over a �eld F. As discussed before
we can assume wlog that C looks like: C(x1, . . . , xn) = T1 + · · ·+ Tk, where
Ti is a product of linear polynomials Li,1, . . . , Li,d, i.e. each Li,j = (ai,j,0 +
ai,j,1x1 + · · · + ai,j,nxn) for some constant a's from F. Note that the case of
k = 2 is trivial as checking T1 + T2 = 0 entails comparing the linear factors
of T1 and T2, which we know explicitly. Thus, k = 3 is the �rst bona�de case
and indeed therein lies the main idea of [31]. So we sketch the algorithm only
for the case C = T1 + T2 + T3.

Chinese Remaindering. The starting idea is to study C modulo linear
polynomials. So pick (d+1) coprime linear polynomials p1, . . . , pd+1 from the
set {Li,j | i ∈ [3], j ∈ [d]}. Note that by elementary algebra, C = 0 i� for all
i ∈ [d + 1], C = 0 (mod pi). The latter conditions are easy to check because
C modulo pi is just a sum of two multiplication gates, say C = T1 + T2

(mod pi). Now we can further simplify the situation by mapping pi 7→ x1 by
applying a suitable invertible linear transformation τ on x1, . . . , xn (i.e. it
replaces xi by a linear combination of the x's). It is easy to see that C = 0
(mod pi) i� C(τ(x1), . . . , τ(xn)) = 0 (mod x1). The latter can be tested by
simply comparing the linear factors of τ(T1) and τ(T2) after �xing x1 = 0 in
them.

Thus, zero testing of C just boils down to picking the right set of linear
polynomials amongst the ones that appear in the de�nition of C. But the



above idea fails if the set {Li,j | i ∈ [3], j ∈ [d]} does not have (d+1) coprime
linear polynomials. This could easily happen, for example when C = x9

1 +
x5

2x
4
3 − (x1 + x2 + x3)

9 we have only 4 coprime linear polynomials while we
need 10. In that case we require more algebra:

Chinese Remaindering over Ideals. The idea that �nally works is to
study C modulo �nice looking� ideals. Formally, pick coprime linear poly-
nomials p1, . . . , p` from the set {Li,j | i ∈ [3], j ∈ [d]} such that there exist
exponents e1, . . . , e` satisfying:

1) every pei
i divides some Tj.

2) e1 + · · ·+ e` > d.

A simple calculation shows that such powers of linear polynomials pe1
1 , . . . , pe`

`

always exist (unless the multiplication terms in C are not distinct). Also
C = 0 i� for all i ∈ [`], C = 0 (mod pei

i ). But how do we check the latter
condition? We can again �rst simplify it to pi 7→ x1 by applying an invertible
linear map τ on x1, . . . , xn. Then C = 0 (mod pei

i ) i� C(τ(x1), . . . , τ(xn))
vanishes over the algebra F[x1]/(x

ei
1 ). Since τ(C) (mod xei

1 ) is a sum of two
multiplication gates, say τ(T1) + τ(T2), testing τ(T1) + τ(T2) = 0 modulo
the ideal (xei

1 ) boils down to a more sophisticated comparison of the linear
factors of τ(T1) and τ(T2).

Algorithm & Complexity. The �nal PIT algorithm for a ΣΠΣ(n, k, d)
circuit C = T1 + · · ·+Tk thus identi�es a set I of nice looking ideals, namely,

I := {(f1, . . . , f`) | ` ∈ [k − 1],∀i ∈ [`], fi is a maximal factor of some Tj s.t.

fi is not a zero-divisor modulo (0, f1, . . . , fi−1) and

fi is power of a linear polynomial modulo the radical of (0, f1, . . . , fi−1)}.

Actually, the ideals useful for the algorithm of [31] are a subset of I but this
set captures the most important properties of the ideals. The PIT algorithm
just checks C = 0 (mod I), for every I ∈ I, and that implies the zeroness of
C. The test C = 0 (mod I) is easy to do because C(mod I) is basically just
one multiplication gate. Morever, since |I| < dk and the dimension of the
factor-algebra of any ideal in I is also at most dk, the algorithm has time
complexity poly(n, dk).

5 Depth-3 PIT (Black-Box)

The depth-3 PIT algorithm seen above is inherently non black-box as it uses
the linear polynomials that de�ne the input circuit. It is more desirable to



have a black-box PIT algorithm as it will imply circuit lower bounds (see
[3, 10]) and it tends to be useful in learning algorithms [23, 33]. Note that
the randomized PIT algorithm based on Schwartz-Zippel lemma is black-box,
hence, by the conditional derandomizations of BPP [27] such a deterministic
polynomial-time black-box PIT algorithm is conjectured to exist.

The black-box version of depth-3 PIT is the one in which we are given a
black-box C(x1, . . . , xn) with the promise that C computes a depth-3 circuit
over a known �eld F and has a known size bound size(C). This question has
received a fair amount of attention [32, 43, 34, 46] but is not yet completely
solved. The known black-box methods are successful, to a varying degree,
only in the case of ΣΠΣ(n, k, d) circuits when the top fanin k is �small�.
We discuss in this survey techniques that are based on the notion of rank
of a depth-3 circuit, i.e. the dimension of the vector space spanned by the
linear polynomials that appear in its multiplication terms. For a ΣΠΣ(n, k, d)
identity a trivial bound on the rank is kd. It is not immediately clear whether
the rank of an identity should be signi�cantly smaller than kd, but it is and
this property helps in developing the black-box PIT algorithms. To show the
rank bounds we need to put certain �mild� conditions on the circuits:

De�nition 5.1. (Minimal and Simple circuits) A ΣΠΣ(n, k, d) circuit C =
T1 + · · ·+ Tk is said to be minimal if no proper subset of {Ti}1≤i≤k sums to
zero.

The circuit is said to be simple if there is no non-trivial common factor
dividing all the Ti's.

It was �rst shown by Dvir & Shpilka [19] that a minimal, simple
ΣΠΣ(n, k, d) identity has rank at most logk d. If k is small then this is a
much better bound than the trivial bound of kd. For larger k's this bound is
an overkill, and was improved to a more optimal-looking k3 log d by Saxena
& Seshadhri [43]. We will sketch the idea of the latter rank bound but �rst
we discuss how a rank bound implies a black-box PIT algorithm.

5.1 Rank Bounds entail Black-box PIT

Karnin & Shpilka [32] showed that if we have a rank bound of R(k, d) for
minimal, simple ΣΠΣ(n, k, d) identities then black-box PIT can be done in
poly(n, dR(k,d)) many �eld operations. Their idea was to come up with a small
set of linear transformations such that: (1) for each non-zero ΣΠΣ(n, k, d)
circuit, at least one of the linear transformations continues to keep it non-
zero, and (2) these linear transformations map the n variables to R(k, d)
variables. It is easy to see that once we have such a linear transformation
τ , we can compose it with the given black-box for C to get a new black-box



computing C ′(x1, . . . , xm) := C(τ(x1), . . . , τ(xn)). Since C ′ now has �fewer�
variables (m = R(k, d)) and is still of degree at most d, we could just apply
a brute-force version of Schwartz-Zippel to test it for zeroness. This entails
evaluating C ′ on (d+1)m points in Fm (an extension of it, if required), hence
it gives an overall complexity of poly(n, dR(k,d)).

These linear transformations τ are inspired from the Fourier transform
matrix and they preserve the rank of arbitrary subspaces. The following
lemma by Gabizon & Raz [24] (which they used to construct extractors for
a�ne sources) tells us how to identify such transformations.

Lemma 5.2. Let W1, . . . ,Ws ⊆ Fn be �xed subspaces, each of dimension at
most t. Consider the linear transformation (for some α ∈ F),

φα,n,t(x1, . . . , xn) := ((αi(j−1)))1≤i≤t,1≤j≤n · [x1 · · ·xn]T .

Then there are at most snt2 elements α ∈ F for which the dimension of some
Wi drops, i.e. dim(φα,n,t(Wi)) < dim(Wi).

Proof. The proof idea is to capture all the �bad� α's in a univariate equation,
then its degree upper bounds their number.

Whenever the dimension of the image of Wi under φα,n,t drops, it means
that the top-left dim(Wi)×dim(Wi) submatrix of (the matrix de�ning) φα,n,t

is singular. Thus, its determinant gives us a (nonzero) univariate equation in
α of degree at most nt2. Doing this for all Wi's gives us the promised bound
of snt2.

Now, following [32], we give the construction of the subspaces Wi's for
the case of ΣΠΣ(n, k, d) circuits assuming a rank bound of R(k, d) for the
minimal simple identities.

Theorem 5.3. Let C be a ΣΠΣ(n, k, d) circuit and S ⊆ F be of size at least
n2kd2R(k, d)2. If C is a nonzero circuit then there is an α ∈ S such that
φα,n,R(k,d)(C) is also nonzero.

Proof. Let C = T1 + · · · + Tk be nonzero. We de�ne its gcd part, gcd(C) :=
gcd(T1, . . . , Tk) and its simple part, sim(C) := C

gcd(C)
.

We now de�ne some subspaces spanned by the linear polynomials appear-
ing in C. These subspaces shall have the property that any linear transfor-
mation which preserves their dimensions, leaves C nonzero. The subspaces
are:

1. For every pair of linear forms `, `′ that appear in the circuit de�ne
W`,`′ := sp(`, `′), where sp(·) refers to the linear span, over F, of the
set.



2. For every nonempty subset A ⊆ [k], de�ne CA :=
∑

i∈A Ti and let
rA := min{R(k, d), rank(sim(CA))}. Let WA be the subspace spanned
by rA independent linear polynomials that appear in sim(CA).

Notice that the number of such subspaces is strictly less than s := (k2d2+2k).
The claim is that for any linear transformation τ = φα,n,R(k,d) that preserves
(the rank of) all these subspaces, also satis�es τ(C) 6= 0. We will prove this
by contradiction.

The �rst observation is that such a τ cannot map two linear functions,
that appear in the circuit, to the same linear function since it preserves
W`,`′ 's. Hence the simple part does not reduce further under τ , i.e. we have
sim(τ(CA)) = τ(sim(CA)). So we can assume wlog that C (and hence τ(C)
as well) is simple.

If τ(C) = 0 then the rank bound entails that either τ(C) is not minimal or
the rank(τ(C)) < R(k, d). If the latter is the case then rank(C) < R(k, d),
but then τ will preserve W[k], which means that the circuit C is itself zero.
This contradicts the hypothesis.

The other case then is: τ(C) is zero but not minimal. Let A be a minimal
subset such that τ(CA) = 0 with CA 6= 0. Hence τ(sim(CA)) is a simple,
minimal and zero circuit, therefore it is of rank less than R(k, d). But then τ
will preserve the rank of WA, which together with sim(CA) 6= 0 means that
τ(sim(CA)) 6= 0. This is again a contradiction.

It is now a consequence of Lemma 5.2 that we will �nd such a τ if we try
out nsR(k, d)2 many α's. This �nishes the proof.

Algorithm & Complexity. The �nal black-box PIT algorithm is: given
an access to a ΣΠΣ(n, k, d) circuit C, try out n2kd2R(k, d)2 many α's from
the �eld (or its extension) and consider C ′(x1, . . . , xR(k,d)) := φα,n,R(k,d)(C).
Evaluate each such C ′ on (d + 1)R(k,d) points on FR(k,d), and announce C to
be zero i� all these evaluations are zero. It is now evident that this is a valid
algorithm and it requires �only� poly(n, 2k, dR(k,d)) many F operations.

5.2 An almost Optimal Rank Bound

The best known rank bound for minimal, simple ΣΠΣ(n, k, d) identities is
k3 log d [43]. It is also close to optimal as there are identities of rank Ω(k log d)
[31, 43]. This rank bound holds for any �eld. For special �elds there is scope
for improvement, for example Kayal & Saraf [34] showed a rank bound of
kk over reals using real geometry. Note that it is independent of d. Both
kinds of rank bounds have quite involved proofs and tend to have a strong
combinatorial �avor. We will only exhibit the basic ideas of the two rank
bounds by working with the �toy� example of top fanin 3. Fortunately, these



basic ideas extend to the higher fanins by developing the higher-dimensional
generalizations.

The k3 log d rank bound of Saxena & Seshadhri [43] hinges on a combina-
torial doubling argument. It is best visible in the top fanin 3 case and proves
a sharp upper bound of (lg d + 2), we prove it next.

Suppose C = T1 + T2 + T3 = 0 is a minimal, simple ΣΠΣ(n, 3, d) identity
over some �eld F. We will look at C modulo various linear forms that occur
in the multiplication gate T1. This re�ects a dependency between the forms
occurring in T2 and T3. For instance, pick a (nonzero) linear form q from
T1 and consider C(mod q) which gives T2 + T3 = 0 (mod q). By unique
factorization of polynomials modulo q this gives us a bijection π between the
forms of T2 with those in T3, which we call a q-matching between T2, T3.

De�nition 5.4. (Matchings) Let U, V be two lists of linear forms and I be a
form. An I-matching π between U, V is a bijection π between lists U, V such
that: for all ` ∈ U , π(`) = c` + v for some c ∈ F∗ and v ∈ sp(I).

Now as we pick di�erent q's we get di�erent matchings between T2, T3.
The interesting property is that there cannot be too many such matchings if
we only pick linearly independent q's. This we prove in the following lemma
and it immediately gives a sharp rank bound for C.

Lemma 5.5. Let U, V be two lists of linear forms each of size d > 0 and
I1, . . . , Ir be linearly independent linear forms such that for all i ∈ [r], there
is an Ii-matching πi between U, V . If r > (lg d + 2) then U, V are similar
lists (upto constant factors).

Proof. For contradiction assume that r > (lg d + 2) but U, V are not similar
lists. In that case we can assume wlog that U and V are coprime lists, i.e.
there is no linear form that occurs (upto constant factors) in both the lists.

The proof is in the form of a combinatorial process that happens on a
bipartite graph. The graph G = (U, V,E) has vertices labelled with the
respective forms. The various πi's can be seen as bipartite matchings of
G. For each πi and each ` ∈ U , we add an (undirected) edge tagged with Ii

between the vertices ` and πi(`). There may be many tagged edges between a
pair of vertices1. We call πi(`) the Ii-neighbor of ` (and vice versa). Abusing
notation, we use vertex to refer to a form in U ∪V . We denote

⋃
j≤i Ij by Ji.

We will show that there cannot be more than (lg d + 2) such perfect
matchings in G. The proof is done by following an iterative process that has
r phases, one for each Ii. We maintain a partial basis for the forms in U ∪ V

1It can be shown, using the independence of Ii's, that an edge can have at most two

distinct tags.



which will be updated iteratively. This basis is denoted by the set B. The
goal is to completely span the forms U ∪ V using the forms Ii's.

We start with an empty B and initialize by adding some ` ∈ U to B. In
the ith round, we will add the form Ii to B. All forms of U ∪V in sp({`}∪Ji)
are now spanned. We then proceed to the next round. To introduce some
colorful terminology: A green vertex is one that is in the set sp(B) (i.e. a
form in (U ∪ V ) ∩ sp(B)). Let vertex v be green, so v ∈ sp(B). The I1-
neighbor of v is a linear combination of v and I1. Therefore, the neighbor
is also in sp(B) and is colored green. This shows that the number of green
vertices in U is equal to the number of those in V , at the end of each round.

Let i0 ∈ [r] be the least index such that {`}, I1, . . . , Ii0 are linearly de-
pendent, if it does not exist then set i0 := r + 1. Now we have the following
easy claim.

Claim 5.6. The forms {`}, I1, . . . , Ii0−1 are independent and the subspaces:
sp({`} ∪ Ji0), sp(Ii0+1), . . . , sp(Ir) are independent.

Proof of Claim 5.6. The forms {`}, I1, . . . , Ii0−1 are independent by the
minimality of i0.

As I1, . . . , Ii0 are independent but {`}, I1, . . . , Ii0 are not, we deduce that
` ∈ sp(Ji0). Thus, the subspace sp({`}∪ Ji0) = sp(Ji0) is independent to the
forms Ii0+1, . . . , Ir by the independence of I1, . . . , Ir. 2

We shall now show that for i 6∈ {1, i0}, the number of green vertices
doubles in the ith round. Let `′ be a green vertex, say in U , at the end of
the (i− 1)th round (at that point B = {`} ∪ Ji−1). Consider the Ii-neighbor
of `′. This is in V and is equal to (c`′ + v) where c ∈ F∗ and v is a nonzero
element in sp(Ii) (since U, V are coprime). If this neighbor is green, then
v would be a linear combination of two green forms, implying v ∈ sp(B).
But Ii is independent to B, implying v ∈ sp(B) ∩ sp(Ii) = {0} which is a
contradiction. Therefore, the Ii-neighbor of any green vertex is not green.
On adding Ii to B, the number of green vertices doubles (for at least (r− 2)
rounds).

We started o� with one green vertex `, and lists U , V each of size d. Thus,
this doubling can happen at most lg d times, implying that (r − 2) ≤ lg d.
This is a contradiction, implying that U, V are indeed similar lists.

The above lemma immediately implies a rank bound for our identity C.
As T2, T3 are coprime multiplication terms (by simplicity of C) the number of
linearly independent forms q in T1 can be at most (lg d + 2). Repeating this
argument wrt T2 and T3 proves that rank(C) = O(lg d). Interestingly, the
combinatorial procedure in the proof of Lemma 5.5 also suggests an identity



that achieves this rank bound. It was �rst constructed by Kayal & Saxena
[31]:

C(x1, . . . , xr) :=
∏

b1,...,br−1∈F2
b1+···+br−1≡1

(b1x1 + · · ·+ br−1xr−1)

+
∏

b1,...,br−1∈F2
b1+···+br−1≡0

(xr + b1x1 + · · ·+ br−1xr−1)

+
∏

b1,...,br−1∈F2
b1+···+br−1≡1

(xr + b1x1 + · · ·+ br−1xr−1) (5.1)

It can be seen that, over F2, C is a simple and minimal ΣΠΣ zero circuit of
degree d = 2r−2 with k = 3 multiplication terms and rank(C) = r = lg d+2.

In General. The above description gives a fair snapshot of the general
rank bound. For a minimal, simple ΣΠΣ(n, k, d) identity C = T1 + · · ·+ Tk,
we need to consider form-ideals I = (`1, . . . , `k−2), where form `i occurs in
Ti. C modulo I then gives us I-matchings between Tk−1, Tk. If we look at
such matchings modulo several linearly independent form-ideals I's then a
generalization of Lemma 5.5 says that there can be at most O(lg d) indepen-
dent form-ideals. Since each form-ideal I itself contains (k− 2) independent
forms, this suggests an overall rank bound of O(k lg d). This proof idea when
formalized gets into several problems, but can be salvaged to prove a rank
bound of k3 lg d. The highest rank (minimal, simple) identities known are
constructed using Equation 5.1, and have rank Ω(k lg d). Thus, there is a
slight gap in our understanding of rank.

5.3 A Rank Bound over Reals

The high rank identities that we saw in the last section are over �elds with
nonzero characteristic. When one tries to construct ΣΠΣ(n, k, d) identities
over zero characteristic �elds, say rationals, one feels that no matter how
large degree d is, the rank grows only like k. It was �rst conjectured by Dvir
& Shpilka [19] that the rank of minimal simple ΣΠΣ(n, k, d) identities over
zero characteristic �elds should be only O(k). A weak form of this conjecture
was shown true by Kayal & Saraf [34]. They proved a rank bound of kk over
the reals (R). It is not trivial even for fanin k = 3. So we give below the
proof for that case and then only state its generalization.

Let C = T1 + T2 + T3 = 0 be a minimal, simple ΣΠΣ(n, 3, d) identity
over R. Suppose it has rank (r + 1). We identify every linear form ` in C
with the corresponding point in Rr. This form-to-point correspondence is



just going to the projective space, roughly, a form (a1x1 + · · ·+ ar+1xr+1)

is mapped to the point
(

a1

ar+1
, . . . , ar

ar+1

)
in Rr. This mapping gives us sets

of points A1, A2, A3 corresponding to the linear forms occurring in T1, T2, T3

respectively. Furthermore for any forms `1, `2 occurring in T1, T2 respectively,
C = 0 modulo (`1, `2), implying that there exists a linear form `3 ∈ sp(`1, `2)
that occurs in T3. This means that any line passing through a point in A1

and a point in A2, also passes through a point in A3. By symmetry this
means that any line passing through two of the sets A1, A2, A3 also passes
through the third! Such sets A1, A2, A3 ⊂ Rr are rather special and we will
show below, following [20], that their existence implies r ≤ 3. The proof is
based on a famous theorem in incidence geometry - Sylvester-Gallai theorem.

Theorem 5.7 (Sylvester-Gallai). Given a �nite number of non-collinear
points S in the plane R2, there always exists a line which passes through
exactly two points in S.

Proof. The simple proof below is due to Kelly (see the survey by Borwein &
Moser [13]).

De�ne a connecting line to be a line which contains at least two points
from S. For contradiction assume that every connecting line has a third
point from S. Let (P, `) be a point and a connecting line pair that are the
smallest nonzero distance apart amongst all such point-line pairs.

The line ` goes through at least three points of S. Drop a perpendicular
from P to `, there must be two points on the same side of the perpendicular
(one might be exactly on the intersection of the perpendicular with `). Call
the point closer to the perpendicular B, and the farther point C. Draw the
line m connecting P to C. Then the distance from B to m is smaller than
the distance from P to `, which is a contradiction! One way to see this is to
notice that the right triangle with hypotenuse BC is similar and contained in
the right triangle with hypotenuse PC. This contradiction implies that there
cannot be a nonzero distance between point-line pairs, thus every point must
be at distance 0 from every connecting line, or in other words, every point
must lie on the same line. But as S was non-collinear, we �nally deduce that
there exists a connecting line with exactly two points.



Let us go back to our special sets A1, A2, A3 ⊂ Rr obtained from the
identity C and assume (for contradiction) that r = 4. Pick points p1, p2 from
A1, A2 respectively and consider the following pencil of planes,

P := {sp(p1 − q, p2 − q, q) | q ∈ A1 ∪ A2 ∪ A3}.

Notice that P consists of planes (formally 2-�ats) in the space R4 and all of
them contain the line (1-�at) joining the points p1, p2. The dual of this pencil
of planes would give us a corresponding pencil of lines L in R3. Now if we look
at a section of L cut by a plane in general position, we see |L| non-collinear
points. By Theorem 5.7 there exists a line passing through exactly two of
these points, which means there exists a plane in R3 containing exactly two of
the lines in L, which �nally means that there exists a 3-�at in R4 containing
exactly two of the planes in P . Let us denote this 3-�at by H and the two
planes it contains by H1, H2. Say H1, H2 are a�ne spans of the three points
(p1, p2, q1), (p1, p2, q2) respectively. Now if q1, q2 are not in the same Ai then
the line joining them (so �across� H1, H2) should pass through a point in the
third set Aj. But that is impossible as H contains only the planes H1, H2

from P . Thus, q1, q2 have to be in the same Ai, say A1. But then look at
the line joining q1, p2, it has to contain a point from A3, say q3, which will
of course be in H1. The line joining q3, q2 (so �across� H1, H2) should pass
through a point in the third set A2, which is again impossible.

This contradiction shows that our assumption r = 4 cannot hold, infact,
the above contradiction appears as long as r ≥ 4. Thus, r can be at most 3.
This gives us a rank bound of 4 for simple ΣΠΣ(n, 3, d) identities over reals.
Interestingly, this bound is tight and there is a unique (upto transformations,
see [14]) identity of rank 4 over R:

x1x2x3(2y + x1 + x2 + x3)− (y + x1)(y + x2)(y + x3)(y + x1 + x2 + x3)+

y(y + x1 + x2)(y + x2 + x3)(y + x1 + x3) = 0.

In General. The above idea extends to higher fanins, but the rank bound
obtained is �weaker�. Suppose C = T1 + · · · + Tk = 0 is a minimal, sim-
ple ΣΠΣ(n, k, d) identity over R. Instead of working in R4 and applying
Sylvester-Gallai theorem as above, we now have to work in a much bigger
space of Rm (roughly m = kk) and use a higher-dimensional generalization
of Sylvester-Gallai theorem that says:

Theorem 5.8. ([25], [11]) Let S be a �nite set of points spanning an a�ne
space V ⊆ Rn such that dim(V ) ≥ 2t. Then, there exist (t + 1) points in S
that span a t dimensional a�ne space H ⊂ V such that |H ∩ S| = t + 1.



(Note that putting t = 1 above gives the statement of Sylvester-Gallai
theorem.) In our case S is taken to be the set of points corresponding to
all the forms that appear in C. Then dim(V ) = rank(C), which we assume
large enough, say kk, to derive a contradiction. Kayal & Saraf [34] now use
Theorem 5.8 to identify a subspace of V and its decomposition (analogous to
H and its �decomposition� H1, H2 above), and from that deduce the existence
of a linear form ` in C such that C(mod `) has a minimal, simple sub-identity
of rank at least (k−1)k−1. This gives the promised contradiction as C(mod `),
and hence the sub-identity, has a smaller fanin.

Open. It would be interesting to improve the above rank bound: (1) to
other zero characteristic �elds, (2) to a more optimal-looking bound O(k).

It is known that Sylvester-Gallai theorem 5.7 is false in C2 (cubic curves
give counter examples [18]). Nevertheless, it is known to hold in the following
sense [28, 21]: Given a �nite number of non-coplanar points S in C3, there
always exists a line which passes through exactly two points in S. This imme-
diately gives us a rank bound of 5 (unlike 4 before) for simple ΣΠΣ(n, 3, d)
identities over C. Unfortunately, a higher-dimensional generalization of this
version is not known. A natural conjecture for it would be:

Conjecture 5.9. Let S be a �nite set of points spanning an a�ne space
V ⊆ Cn such that dim(V ) ≥ 3t. Then there exist (t + 1) points in S that
span a t dimensional a�ne space H ⊂ V such that |H ∩ S| = t + 1.

(Currently, a proof exists only for t = 1.)

6 Depth-4 PIT

We know that depth-4 case of PIT has direct relations to more general cases
of PIT. But currently we have little understanding of depth-4 circuits. For
example, we do not even know how to test f1 . . . fm = g1 . . . gm where fi's and
gi's are multivariate polynomials given in fully expanded form (also called the
sparse representation). Here we will discuss two simple ideas that solve PIT
for certain restricted forms of depth-4 circuits.

Noncommuting Idea. The �rst idea is easiest to see on depth-4 circuits
C whose multiplication gates have unmixed variables, i.e. C(x1, . . . , xn) =
M1 + · · · + Mk, where for all i ∈ [k], Mi = fi,1(x1) · · · fi,n(xn), where each
fi,j is a univariate polynomial given in the sparse representation and is of
degree at most d. Note that �expanding out� Mi in a brute force way could
potentially produce dn monomials and hence is not recommended!

Interestingly, Raz & Shpilka formulated a �controlled� way of doing
this expansion using basic linear algebra. Their idea was to compute



fi,1(x1)fi,2(x2), for all i ∈ [k]. View each of these polynomials as vectors
in a natural way, i.e. each coe�cient is a coordinate of the vector. Thus we
have k vectors V := {v1, . . . , vk} in a space of dimension at most d2. Pick
some maximal subset of V that has linearly independent vectors, say they
are v1, . . . , v` (1 ≤ ` ≤ k). Now we form the circuit C1 from C by replac-
ing fi,1(x1)fi,2(x2), for all i ∈ [`], by a fresh variable z1,i. For the other i's,
replace fi,1(x1)fi,2(x2) by the same linear combination of {z1,1, . . . , z1,`} as
the one that expresses vi in terms of {v1, . . . , v`}. It is easy to verify that
C(x1, . . . , xn) = 0 i� C1(z1,1, . . . , z1,`, x3, . . . , xn) = 0. Thus this one round
reduced the number of factors in each Mi by one at the cost of increasing
the number of variables by O(k). If we repeat this round (n− 2) more times
then instead of Mi's we would have just linear forms and the number of
variables would be O(nk). As the linear algebra in each round requires just
poly(ndk) operations, and testing the zeroness of the circuit after the last
round is trivial, we get an overall complexity of poly(ndk) �eld operations.

It can be easily veri�ed that the technique above is applicable in several
other cases, in particular: (1) when C is a set-multilinear formula, i.e. each
multiplication gate Mi has t inputs that are polynomials in disjoint variables
S1, . . . , St �xed such that S1t· · ·tSt = {x1, . . . , xn}. (2) more generally, when
C is a noncommutative formula, i.e. variables x1, . . . , xn do not commute wrt
multiplication.

Powering Idea. The second idea is to consider depth-4 circuits C whose
multiplication gates just do powering, i.e. C(x1, . . . , xn) = M1 + · · · + Mk,
where for all i ∈ [k], Mi = αi · (fi,1(x1) + · · ·+ fi,n(xn))ei , where each fi,j is a
univariate polynomial given in the sparse representation and is of degree at
most d, αi ∈ F and ei ∈ N. Again note that �expanding out� Mi in a brute
force way could potentially produce more than

(
n+ei

n

)
monomials. Interest-

ingly, although this case looks to be on the other extreme of the �unmixed
variable� case discussed above, a reduction of the former to the latter was
given by Saxena [38]. The following lemma gives the main transformation:

Lemma 6.1. Let g1(x1), . . . , gn(xn) be univariate polynomials of degree at
most d, over a �eld F of zero characteristic. Then we can compute univariate
polynomials hi,j's in poly(nda) �eld operations such that for t = (na + 1):

(g1(x1) + · · ·+ gn(xn))a =
t∑

i=1

hi,1(x1) · · ·hi,n(xn)

Proof. We will prove this using the formal power series: exp(x) = 1 + x +
x2

2!
+ · · · , where exp(x) = ex and e is the base of natural logarithm. De�ne

the degree a truncation of the series to be Ea(x) = 1 + x + · · · + xa

a!
. We



will use the operator [za] to extract the coe�cient of za from a polynomial.
Observe that:

(a!)−1 · (g1(x1) + · · ·+ gn(xn))a = [za] exp ((g1(x1) + · · ·+ gn(xn)) · z)

= [za] exp(g1(x1)z) · · · exp(gn(xn)z)

= [za] Ea(g1(x1)z) · · ·Ea(gn(xn)z)

The product Ea(g1(x1)z) · · ·Ea(gn(xn)z) can be viewed as a univariate poly-
nomial in z of degree na. Hence, its coe�cient of za can be computed by
evaluating the polynomial at t distinct points α1, . . . , αt ∈ F (remember F is
large enough) and by interpolation we can compute β1, . . . , βt ∈ F such that:

[za] Ea(g1(x1)z) · · ·Ea(gn(xn)z)

=
t∑

i=1

βi · Ea(αig1(x1)) · · ·Ea(αign(xn))

This can be seen as the dual form of the multiplication gate (g1(x1) + · · · +
gn(xn))a. It is routine to verify that all the univariate polynomials Ea(·) in
the above sum can be computed in poly(nda) �eld operations.

Applying this lemma to all the gates Mi's of C(x1, . . . , xn) = M1 + · · ·+
Mk, we convert our given circuit C to another circuit C ′(x1, . . . , xn) which
is a sum-of-product of univariates. Such a C ′ can now be tested for zeroness
using the noncommuting idea seen above.

The technique of Lemma 6.1 also applies to a slightly general case of (s
is any constant):

C(x1, . . . , xn) =
k∑

i=1

L
ei,1

i,1 · · ·Lei,s

i,s

where the Li,j's are sums of univariate polynomials, i.e. for all i ∈ [k], j ∈ [s]:
Li,j(x1, . . . , xn) = fi,j,1(x1) + · · ·+ fi,j,n(xn) where fi,j,j′ ∈ F[xj′ ].

Open. The PIT algorithms in the above two restricted cases of depth-4
circuits are inherently non black-box. Are there black-box PIT algorithms
for these family of depth-4 circuits? Currently, there are no black-box PIT
algorithms known for any nontrivial family of depth-4 circuits.

7 General PIT and Lower Bounds

We saw in the above sections that PIT algorithms, at least the ones currently
known, are quite involved and require ideas from algebra, geometry and



combinatorics. This proof complexity is partially explained by the connection
PIT has to certain circuit lower bounds (that are historically considered
di�cult to prove!). We will now discuss how a theorem like PIT ∈ P would
imply lower bounds [29], and that a black-box PIT algorithm would imply
even stronger lower bounds [3].

Implications of PIT in P. Kabanets & Impagliazzo [29] showed that
if PIT has a deterministic polynomial time algorithm then either NEXP
(i.e. nondeterministic exponential time class) does not have polynomial sized
boolean circuits (i.e. P/poly class) or the perm function (i.e. permanent
of a square matrix of rationals) does not have polynomial sized arithmetic
circuits (i.e. AlgP/poly class). Note that both the claims NEXP 6⊆ P/poly
and perm 6∈ AlgP/poly are conjectured to be true by �most� people. So the
main attraction of the following theorem is that it connects an algorithmic
conjecture like PIT∈P with these lower bound conjectures.

Theorem 7.1. ([29]) If low-degree-PIT ∈ P then: NEXP 6⊆ P/poly or
perm 6∈ AlgP/poly.

Proof Sketch: The proof is by contradiction, so we assume:

1. low-degree-PIT ∈ P

2. perm ∈ AlgP/poly

3. NEXP ⊆ P/poly

Assumptions (1) and (2) imply that, one can guess an arithmetic circuit
C and then actually check whether C = perm using PIT. As permanent of an
m×m matrix has degree m, one only needs to guess C of depth O(lg m) and
multiplication fanin 2 [6], then do low degree PIT. The part where we check
C = perm using PIT, actually makes use of the downward self-reducibility of
the permanent function, i.e. perm of an m×m matrix can be expressed as
the sum of m permanents each of (m− 1)× (m− 1) submatrices. Finally,

4. Pperm ⊆ NP.

Now it is known that assumption (3) implies NEXP ⊆ Pperm [26]. This
together with deduction (4) implies that NEXP ⊆ NP, which is a contradic-
tion as there are classical diagonalization methods proving NEXP di�erent
from NP [40].

One might wonder whether this theorem has a converse. As a step in that
direction, it was shown in [29]: if permanent has superpolynomial arithmetic
circuit complexity then PIT has a subexponential time algorithm. The idea is



to apply a hard function (here permanent) on the designs de�ned by Nisan
& Wigderson [36], and evaluate the given circuit C at the resulting point.
The claim is that this evaluation is zero i� C is a zero circuit. Thus, hard
algebraic functions give black-box PIT algorithms!

Implications of black-box PIT. As we have mentioned before, black-box
PIT algorithms seem to require a very good understanding of the circuit
family and hence should, intuitively, also imply what that circuit family
cannot compute! It is interesting, this intuition can also be proven formally,
as we will now show following Agrawal [3].

A black-box PIT algorithm is only allowed to evaluate a given circuit
C(x1, . . . , xn) at points in the extensions of the given �eld F. Thus, it
seems reasonable to assume that such an algorithm just �feeds in� xi = fi(y)
(mod g(y)) for all i ∈ [n], where fi's and g are univariate polynomials of
a �small� degree 2`(n). Note that the algorithm feeds these polynomials to
every input circuit C(x1, . . . , xn), only assuming that C has a size bound of
(wlog) n. Clearly, the time complexity of such a black-box PIT algorithm is
dominated by 2`(n), and the time taken to actually construct fi's and g. This
motivates the de�nition of a pseudo-random generator (prg) for arithmetic
circuits.

De�nition 7.2. Fix a �eld F. A function f : N → (F[y])∗ is called an
e�cient (`(n), n)-prg if,

- f(n) ∈ (F[y])n+1 for all n > 0.

- f(n) = (f1(y), . . . , fn(y), g(y)) where the polynomials fi's and g are of
degree at most 2`(n), and are also constructible in poly(2`(n)) time.

- For any circuit C(x1, . . . , xn) of size at most n, C(x1, . . . , xn) = 0 i�
C(f1(y), . . . , fn(y)) = 0 (mod g(y)).

If we drop the requirement of e�cient constructibility then such functions
f , for any `(n) = Ω(lg n), can be easily shown to exist using the Schwartz-
Zippel lemma. On the other hand it can be seen, by the methods of Section 2,
that e�cient ones for `(n) = O(n2) exist. The really interesting cases for us
are in between, and so we will always assume `(n) = Ω(lg n) and `(n) = o(n).
The existence of an e�cient (`(n), n)-prg immediately gives a black-box PIT
algorithm with time complexity poly(2`(n)). Thus, to completely solve PIT
we �just� need an e�cient (O(lg n), n)-prg. We now show that such a prg
implies arithmetic circuit lower bounds (that are beyond the scope of current
methods).



Theorem 7.3. ([3]) If there is an e�cient (`(n), n)-prg. Then there is a
multilinear polynomial that is poly(2`(n)) time computable but has no circuits
of size n.

Proof Sketch: Let f(n) = (f1, . . . , fn(y), g(y)) be an e�cient (`(n), n)-prg.
Let m := `(n). In the interesting case of `(n) = o(n), we have n > 2m. We
de�ne a polynomial qf (x1, . . . , x2m) as:

qf (x1, . . . , x2m) :=
∑

S⊆[1,2m]

cS ·
∏
i∈S

xi.

Where the coe�cient c's are picked such that they satisfy:

qf (f1(y), . . . , f2m(y)) =
∑

S⊆[1,2m]

cS ·
∏
i∈S

fi(y) = 0.

The existence of such coe�cient c's can be seen by comparing the degree
of the above equation in y and the number of the unknowns. Furthermore,
the polynomial qf can be computed by solving a system of poly(2m) linear
equations in poly(2m) variables over the �eld F. Each of these equations can
be computed in time poly(2m) using the computability of f . Therefore, qf

can be computed in time poly(2m).
Now suppose qf can be computed by a circuit C of size n. By the def-

inition of polynomial qf , it follows that C(f1(y), f2(y), ..., f2m(y)) = 0. On
the other hand, the size of the circuit C is n and it computes a nonzero
polynomial. This contradicts to f being a prg. Hence qf (x1, . . . , x2`(n)) is
a multilinear polynomial computable in poly(2`(n)) time but not by n-sized
circuits.

The way qf is de�ned above has the nice property that it can be expressed
as the permanent of a �small� matrix [4]. Thus the existence of an e�cient prg
f would not only give a �hard� polynomial qf but indeed prove the hardness
of permanent function!
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