Progress on Polynomial Identity Testing

Nitin Saxena $\|$

Abstract

Polynomial identity testing (PIT) is the problem of checking whether a given arithmetic circuit is the zero circuit. PIT ranks as one of the most important open problems in the intersection of algebra and computational complexity. In the last few years, there has been an impressive progress on this problem but a complete solution might take a while. In this article we give a soft survey exhibiting the ideas that have been useful.

1 Introduction

One learns a number of identities as part of Algebra in the school curriculum. For example, the difference of squares identity $(x+y)(x-y)=\left(x^{2}-y^{2}\right)$ or a more impressive sum of four squares identity (probably first communicated by Euler in a letter to Goldbach on May 4, 1748): $\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+\right.$ $\left.b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)=\left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right)^{2}+\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2}+$ $\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right)^{2}+\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right)^{2}$. There is of course an easy way to test them: just completely expand the products and check whether the monomials cancel in the resulting sum. This way you can easily verify that the above two expressions are indeed identities. But the process of expanding products blows up monomials and would be very expensive when both the number of variables and the degree of the expression are increased. Roughly, for n variables and d degree the number of monomials grows as $\binom{n+d}{d}$ which is small if one of n or d is small but exponentially large if both n, d are large. So the question we ask is - can this identity or zero testing be done in $(n d)^{O(1)}$ steps?

Notice that to formalize this question there seems to be a need of carefully defining the way the algebraic expression is given to us in the input. Fortunately, there is already an object defined in computational complexity,

[^0]called arithmetic circuit, that we could directly use 48. An arithmetic circuit C, on say n variables and a field \mathbb{F}, is a directed acyclic graph with input variables at the leaves and output at the root. The internal nodes are called gates, they are of two kinds - multiplication and addition - and perform the respective operations over the field \mathbb{F}. The edges or wires of C can have constants on them from the field which get multiplied to the value at the tail of the respective edge. It is easy to see that the value at the root of the circuit C is just an n-variate polynomial and lives in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Thus a circuit is a natural combinatorial way to capture algebraic computation. One might want to consider the base object \mathbb{F} to be a general ring instead of a field but we will be more concerned with the latter in this survey. For the purposes of identity testing we usually regard the operations in the field \mathbb{F} to be doable in unit time. The bulk of the computation in the identity testing algorithms is seen as a function of the size of the input circuit, which is basically the number of gates and wires in the circuit. Another useful parameter of a circuit is depth, which is the number of levels between the root and the leaves. Fanin/Fanout refers to the maximum number of inputs/outputs a gate has in the circuit, and a circuit with fanout 1 is called a formula. Finally, we use the notation $\operatorname{poly}(s, t)$ to denote a positive-valued function whose asymptotic behaviour is $(s+t)^{O(1)}$. The problem of identity testing is then:

Problem 1.1 (PIT). Given an arithmetic circuit C in the input that computes a polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. Find a deterministic algorithm that tests if p is the zero polynomial, and uses only $\operatorname{poly}(\operatorname{size}(C))$ many \mathbb{F} operations.

PIT is currently an open question and, as we will see in this survey, an important question in complexity theory. But it has an easy "practical" solution, i.e. there are randomized polynomial-time algorithms that are easy to implement. The first randomized polynomial time algorithm was given (independently) by Schwartz [39] and Zippel [49]. It simply evaluates the input circuit at a randomly chosen point in \mathbb{F}^{n} and outputs YES iff the specific evaluation is zero. This idea works mainly because a nonzero polynomial cannot have "too many" roots over a field:

Lemma 1.2 (Schwartz-Zippel). Let $P \in F\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a non-zero polynomial of degree $d \geq 0$ over a field \mathbb{F}. Let S be a finite subset of \mathbb{F}. Then,

$$
\operatorname{Prob}_{r_{1}, \ldots, r_{n} \in S}\left[P\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

Proof. The proof is by induction on n. For $n=1, P$ can have at most d roots and hence the probability of hitting a root is at most $\frac{d}{|S|}$.

Now, assume that the statement holds for all polynomials upto $(n-1)$ variables. Wlog we can then consider P to be a polynomial in x_{1} by writing it as,

$$
P\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{d} x_{1}^{i} P_{i}\left(x_{2}, \ldots, x_{n}\right)
$$

Since P is a nonzero polynomial, $\exists i$ such that P_{i} is nonzero. Take the largest such i, clearly $\operatorname{deg} P_{i} \leq(d-i)$. Now we randomly pick r_{2}, \ldots, r_{n} from S. By the induction hypothesis, $\operatorname{Prob}\left[P_{i}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq \frac{d-i}{|S|}$. If $P_{i}\left(r_{2}, \ldots, r_{n}\right) \neq$ 0 then $P\left(x_{1}, r_{2}, \ldots, r_{n}\right)$ is of degree i so by the univariate case:

$$
\operatorname{Prob}\left[P\left(r_{1}, \ldots, r_{n}\right)=0 \mid P_{i}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq \frac{i}{|S|}
$$

By a lazy probability estimation we get:

$$
\begin{aligned}
\operatorname{Prob}_{r_{1}, \ldots, r_{n} \in S}\left[P\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq & \operatorname{Prob}\left[P_{i}\left(r_{2}, \ldots, r_{n}\right)=0\right]+ \\
& \operatorname{Prob}\left[P\left(r_{1}, \ldots, r_{n}\right)=0 \mid P_{i}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \\
\leq & \frac{d-i}{|S|}+\frac{i}{|S|} \\
\leq & \frac{d}{|S|}
\end{aligned}
$$

Thus completing the proof by induction.
This lemma shows that as long as the field \mathbb{F} has twice as many elements as the degree of the input circuit, we have a good randomized algorithm that has error probability at most $\frac{1}{2}$. In case \mathbb{F} is too small compared to the degree d of the input circuit C we go to a suitable extension of \mathbb{F} and pick random points there. The two issues here that are worth mentioning: (1) The degree of the input polynomial can only be at most $2^{s i z e(C)}$. (2) A field extension of \mathbb{F} of degree $O(\operatorname{size}(C))$ can either be found by a deterministic construction of irreducible polynomials [8] or we can simply work over the cyclotomic extension $\mathbb{F}[z] /\left(z^{r}-1\right)$ for a "suitable" $r=\operatorname{poly}(\operatorname{size}(C))$. Finally, the actual evaluation of C at a randomly chosen point (even from the extension algebra) can be trivially simulated in poly $($ size $(C))$ many \mathbb{F} operations.

Randomized algorithms that use fewer random bits and have lower error probability (at the cost of time) were given by Chen \& Kao [17], Lewin \& Vadhan [35], and Agrawal \& Biswas [1]. As we care more about deterministic methods in this survey, we will not discuss the details of these methods here. These randomized algorithms show that PIT is in the complexity class BPP which in turn is conjectured to be equal to P (see the survey [27] for the theoretical evidence). Thus it seems to be a reasonable goal to derandomize PIT.

Some applications of PIT

Being a fundamental problem it is not surprising that PIT appears in several other seemingly unrelated problems. We see below an example each from complexity theory, graph theory and number theory.

The idea of comparing two multivariate polynomials for equality by evaluating them at randomly chosen points was crucial in the proof of the complexity result: $\mathrm{IP}=\mathrm{PSPACE}$ [41. The multivariate polynomial in that case is the arithmetized version of a quantified boolean formula (QBF) ϕ, and using PIT it becomes possible to give an interactive protocol (IP) to verify the truth of ϕ. Here PIT helped in upper bounding the complexity of QBF problem, on the other hand, PIT also has several lower bound implications (see Section 7)

Another, much older, application of PIT is due to the following theorem proved by Tutte [47] in 1947: A graph has no perfect matching iff the determinant of its Tutte matrix is zero. Recall that for a graph $G=(V, E)$ on n vertices its Tutte matrix is an $n \times n$ matrix A with its (i, j) th entry defined as:

$$
A_{i, j}:=\left\{\begin{array}{l}
x_{i, j}, \text { if }(i, j) \in E \text { and } i<j \\
-x_{j, i}, \text { if }(i, j) \in E \text { and } i>j \\
0, \text { otherwise }
\end{array}\right.
$$

To use this theorem in a matching algorithm we will have to check whether the multivariate polynomial $\operatorname{det}(A)$ is zero, which can be seen as a special case of PIT. This formulation immediately gives a randomized algorithm which has the added advantage of being in (randomized) NC, i.e. it is a highly parallel algorithm since determinant has known fast parallel algorithms. It is an open question to find a deterministic parallel algorithm for perfect matching, and it appears that a derandomization of this special case of PIT might be the way to go (see a related conjecture in [2] and a special case in [5).

Finally, the problem of primality testing was solved in an elementary way by working with a PIT formulation. It was observed by Agrawal \& Biswas [1] that a positive integer n is prime iff $(x+1)^{n}=\left(x^{n}+1\right)(\bmod n)$, and they exploited this simple binomial fact to design a new randomized primality test. If we define $P(x):=(x+1)^{n}-\left(x^{n}+1\right)$ then the question is that of testing whether $P(x)$ is the zero polynomial over the ring $\mathbb{Z} / n \mathbb{Z}$, which is just a special case of PIT. Note that although $P(x)$ is a univariate polynomial it has degree n which is exponential in the input size $\log n$, and so we cannot afford to completely expand $P(x)$. The neat idea in [1] was to test $P(x)=0(\bmod n, Q(x))$ for a randomly chosen polynomial Q of degree
$O(\log n)$. As Q has "small" degree we can do this in $\operatorname{poly}(\log n)$ time, using repeated squaring of $(x+1)$ and x. This randomized algorithm was later derandomized by Agrawal, Kayal \& Saxena 7 to get the first deterministic polynomial time algorithm for primality testing. They essentially showed that if $P(x)=0\left(\bmod n, a^{r} x^{r}-1\right)$ for all $1 \leq a, r \leq(\log n)^{5}$ then $P(x)=$ $0(\bmod n)$. It is astonishing that the zeroness of a polynomial of a high degree can be determined by just looking modulo very few, very small polynomials!

Survey Overview

The goal of this survey is not to be exhaustive but to cover the main ideas and to pose the closely related open questions. One of the interesting topics related to PIT which we would not be discussing in this survey are: PIT for circuits over general rings (see [44]), interpolation of polynomials (see [15, [23, 42]) and learning arithmetic formulas (see [45, 33]). A brief overview of the topics that we do cover in this survey now follows.

Sparse PIT. A circuit C that computes a polynomial which has at most m nonzero monomials is called m-sparse. The problem of sparse PIT is to design an algorithm that runs in $\operatorname{poly}(\operatorname{size}(C), m)$ field operations. This problem has several known solutions (see [30]). We will see the one by Agrawal [3] as I find it the simplest conceptually.
Low Degree PIT. A circuit $C\left(x_{1}, \ldots, x_{n}\right)$ that computes a polynomial of degree $\operatorname{poly}(n)$ is called a low degree circuit. The term low degree is used to contrast with circuits that use repeated squaring to exponentially increase the degree, for example the circuit $P(x)$ that appears in the primality test above is not low degree. It can be seen that formulas, circuits of constant depth, and bounded fanin circuits of $O(\log n)$ depth; all compute a low degree polynomial. Thus, it seems natural to study the problem of PIT for low degree circuits and we call it low degree PIT.

It was shown by Agrawal \& Vinay [10] that for the purposes of low degree PIT it is enough, somewhat surprisingly, to just consider depth-4 circuits. The main idea is to "shrink" any low degree circuit into a depth-4 circuit by paying only a subexponential price in the circuit size. Thus if one solves depth-4 PIT in deterministic polynomial time then one has solved low degree PIT in subexponential time. I mainly see this as a strong evidence that PIT for "shallow" circuits, i.e. those of depth 3 or 4 , gives us enough clues to tackle the bigger PIT problem.
Depth-3 PIT (Non Black-Box). Convinced that shallow circuits are already interesting cases for PIT, we now focus on the PIT algorithms for depths 2,3 and 4 . A depth 2 circuit is either a sum of monomials $(\Sigma \Pi)$ or a
product of linear polynomials $(\Pi \Sigma)$, both of which have obvious deterministic polynomial time PIT algorithms if we can look "inside" the circuit (which is why we use the term non black-box). A depth 3 circuit can either be a product of sum of monomials or a sum of product of linear polynomials. As the former case is again trivial to check for zeroness, we only worry about the latter case. Thus, for us a depth-3 circuit C over a field \mathbb{F} is $C\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{i=1}^{k} T_{i}$, where T_{i} (a multiplication term) is a product of d_{i} linear polynomials $L_{i, j}$ over \mathbb{F}. Note that by homogenization we can assume wlog that $L_{i, j}$'s are linear forms (i.e. linear polynomials with a zero constant coefficient) and that $d_{1}=\cdots=d_{k}=: d$. Such a circuit is referred to as a $\Sigma \Pi \Sigma(n, k, d)$ circuit, where k is the top fanin of C and d is the degree of C. Depth- 3 circuits are a good starting point and are under intense study from various viewpoints [22, 19, 31, 9, 45, 32, 38, 42, 33, 34, 43].

It was shown by Kayal \& Saxena [31] that if the top fanin k is small then PIT is easy. Note that $k=2$ is the trivial case (because $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a unique factorization domain) but $k=3$ is already nontrivial. The main idea of [31] was to look at C modulo several linear forms and use a generalized form of Chinese remaindering. The cost of doing this grows like d^{k} and hence is meaningful when k is small even if d, n are arbitrarily large. As one needs to look "inside" the circuit this algorithm we label as non black-box.

Depth-3 PIT (Black-Box). One might wish to develop algorithms for PIT that do not even look inside a given circuit C, but merely evaluate C at several points in \mathbb{F} or algebraic extensions of \mathbb{F}. Of course this is an impossible dream if we do not have an a priori bound on size (C). But with such a bound given in the input together with a black-box access to C, the question of testing $C=0$ in $\operatorname{poly}(\operatorname{size}(C))$ many \mathbb{F} operations becomes reasonable, as the randomized Schwartz-Zippel PIT algorithm does not look inside the circuit at all! Intuitively it seems that to devise a black-box PIT algorithm for a circuit family, one would need a very good understanding about the structure of identities in that family. There is some progress in that direction for $\Sigma \Pi \Sigma(n, k, d)$ identities with constant top fanin k.

Note that a $\Sigma \Pi \Sigma(n, k, d)$ identity C is composed of linear forms and hence we can associate a natural notion of rank, which will be the rank of the vector space that these linear forms span. It was first shown by Dvir \& Shpilka 19 that, under some mild assumptions on C, the rank of C is bounded by $\log ^{k} d$. For a constant k this is saying something nontrivial about the $\Sigma \Pi \Sigma(n, k, d)$ identities. Later Karnin \& Shpilka [32] used this property to develop a blackbox PIT algorithm for $\Sigma \Pi \Sigma(n, k, d)$ circuits that runs in time $\sim d^{r a n k(C)}$, or $d^{\log ^{k} d}$ which is a subexponential complexity when k is constant. This connection between rank and black-box PIT is quite encouraging, and has
already led to several improvements. Saxena \& Seshadhri 43] showed a rank bound of $k^{3} \log d$ which is almost optimal and translates into an improved black-box PIT algorithm of complexity $d^{k^{3} \log d}$. Their main idea was to look at C modulo various ideals and deduce lots of dependencies between the various multiplication terms of the identity C.

It is believed that over the fields of zero characteristic, especially complex numbers, the identities should be even more restricted. Towards that goal, Kayal \& Saraf [34] showed a rank bound of k^{k} over the field of reals. It gives a corresponding black-box PIT algorithm of complexity $d^{k^{k}}$, which is polynomial time for constant k. Their main idea is to look at the linear forms appearing in C as points in a higher dimensional space and then use certain properties of real geometry [13] to rule out their arrangement in a $\Sigma \Pi \Sigma(n, k, d)$ identity.
Depth-4 PIT. PIT algorithms for circuits of depth higher than 3 are currently few [37, 9, 38, 45, 46]. The ones that are known are based on insights obtained from depth- 2 and depth- 3 circuits and put further restrictions so that those ideas could be lifted to higher depths. We will discuss the PIT algorithms for noncommutative formulas [37] and depth-4 circuits with multiplication gates that only do powering [38].

A noncommutative formula is one that has noncommuting variables, i.e. $x_{i} x_{j} \neq x_{j} x_{i}$ for all $i \neq j \in[n]$. The main idea of Raz \& Shpilka [37] was that a multiplication gate in a noncommutative formula can be gradually opened-up without getting into the problem of monomial explosion. They then used linear algebra to complete the PIT algorithm.

Saxena [38] solved the case of depth-4 circuits when each multiplication gate is just powering, i.e. an input $p\left(x_{1}, \ldots, x_{n}\right)$ is converted to $\alpha \cdot p\left(x_{1}, \ldots, x_{n}\right)^{e}$ for some $\alpha \in \mathbb{F}$ and $e \in \mathbb{N}$. The main idea was to transform such a circuit to another one wherein each multiplication gate has factors with unmixed variables. The PIT algorithm then follows an algebraic generalization of the idea of [37].

General PIT and Lower Bounds. As seen above PIT is a fascinating fundamental problem with direct connections to other problems. As if this was not enough, Kabanets \& Impagliazzo [29] further emphasized the importance of PIT by showing that a complete solution of PIT would imply circuit lower bounds. They showed that if PIT is in P then either Permanent (the naughtier sibling of Determinant) does not have polynomial sized arithmetic circuits or NEXP does not have polynomial sized boolean circuits. Even though we "believe" both the conclusions to be independently true, nevertheless, the connection with PIT is intriguing. Their main idea is to show that low-degree-PIT $\in \mathrm{P}$ together with the existence of small circuits for perma-
nent and those for NEXP, implies NEXP \subseteq NP, which is a contradiction. In the proof PIT is only used to test whether a small arithmetic circuit equals the permanent function.

In a more explicit way, Agrawal [3] showed that if there are black-box PIT algorithms for a circuit family then they also exhibit lower bounds for that family.

2 Sparse PIT

A lot of papers have focused on the case of circuits that compute a sparse polynomial. In this case we are given a circuit C together with an upper bound m on the number of nonzero monomials in the computed polynomial, and the goal is to devise a poly $(\operatorname{size}(C), m)$ time PIT algorithm. Notice that this is a "benign" goal as usually in PIT a given circuit would produce an exponential (in size (C)) number of nonzero monomials.

There exist a host of solutions for this case and also for the seemingly more general problem of interpolating such circuits [15, 23, 16, 30, 3, ,5, 12]. All these algorithms are based on the idea of evaluating the given circuit at cleverly chosen points so that a specific nonzero monomial gets isolated. Since there are "few" nonzero monomials one of them can be efficiently isolated by just doing evaluations, hence these tend to be black-box algorithms. We exhibit one such algorithm, following Agrawal [3]. The basic idea is to go to a cyclotomic extension and evaluate the circuit at the virtual roots of unity available in this extension algebra.

Theorem 2.1. Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a nonzero polynomial (over a field \mathbb{F}) whose degree in each variable is less than d and the number of monomials is at most m. Then there exists an $1 \leq r \leq(m n \lg d)^{2}$ such that, $p\left(y, y^{d}, \ldots, y^{d^{n-1}}\right) \neq 0\left(\bmod y^{r}-1\right)$.

Proof. Consider the polynomial $q(y):=p\left(y, y^{d}, \ldots, y^{d^{n-1}}\right)$ in $\mathbb{F}[y]$. Note that a monomial $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ in p is mapped to the monomial $y^{i_{1}+i_{2} d+\cdots+i_{n} d^{n-1}}$ in q. Since we have assumed $i_{1}, \ldots, i_{n}<d$, observe that the map is one-to-one. Consequently, $q(y) \neq 0$. Say y^{a} is a monomial with nonzero coefficient in q. Now we look at $q(y)$ modulo $\left(y^{r}-1\right)$.

If $q(y)=0\left(\bmod y^{r}-1\right)$, then there ought to be another monomial $y^{b} \neq y^{a}$ with nonzero coefficients in $q(y)$ such that $y^{b}=y^{a}\left(\bmod y^{r}-1\right)$. This is possible iff $r \mid(b-a)$. Thus, to avoid picking such a "bad" r we need one that satisfies:

$$
r \nmid \prod_{y^{b} \in q(y), b \neq a}(b-a)=: R .
$$

Clearly, integer R can be at most $\left(d^{n}\right)^{m}$ in value. Since R has at most $\lg R$ prime factors and since we would encounter at least $(\lg R+1)$ primes in the range $1<r \leq(\lg R)^{2}=(m n \lg d)^{2}$, it is clear that we have the required (prime) r for which $q(y) \neq 0\left(\bmod y^{r}-1\right)$.

Algorithm. The above property immediately gives a black-box PIT algorithm for sparse polynomials. Given an m-sparse circuit $C\left(x_{1}, \ldots, x_{n}\right)$ over \mathbb{F}, fix $d:=2^{\operatorname{size}(C)}$ and for every $1 \leq r \leq(m n \lg d)^{2}$: compute $d, d^{2}, \ldots, d^{n-1}$ modulo r using repeated squaring and then evaluate $C\left(y, y^{d}, \ldots, y^{d^{n-1}}\right)$ over the extension algebra $\mathbb{F}[y] /\left(y^{r}-1\right)$. Finally, we declare C to be an identity iff all these evaluations are zero. It is routine to verify that this is a correct algorithm with time complexity poly (size $(C), m)$.
Open. One might wonder what happens if we replace the parameter $(m n \lg d)^{2}$ in the above analysis by a milder parameter like poly $(\operatorname{size}(C))$? If we could still prove the statement in Theorem 2.1 then we would get a conceptually simple black-box algorithm for general PIT! Such a generalization of Theorem 2.1 is currently an open question, even for the "smallest" case of depth-3 circuits. (Note that the theorem trivially applies to the case of depth-2 circuits.) It is conjectured by Agrawal [3] that Theorem 2.1 should be true if we replace $(m n \lg d)^{2}$ by size $(C)^{\operatorname{depth}(C)}$, thus, solving PIT at least for constant depth circuits.

3 Low Degree PIT

The circuit model is a very expressive representation for polynomials, for example, in size s it is possible to achieve degree 2^{s} by repeated squaring (although the number of monomials produced remains singly-exponential in s and not doubly-exponential). What if we reduce the expressive nature of a circuit, say, by restricting the degree of the computed polynomial to be "only" poly(s)? Intuitively, PIT for these circuits should be easier.

It was shown by Agrawal \& Vinay [10] that a low degree circuit $C\left(x_{1}, \ldots, x_{n}\right)$, i.e. of degree poly (n), can be shrunk to a depth-4 circuit by a reasonable blowup in the size. We will now see the main idea of the proof. As we can always add some useless variables to C, we can assume wlog that $C\left(x_{1}, \ldots, x_{n}\right)$ is computing a polynomial of degree $d=O(n)$. Furthermore, as any n variate, d degree polynomial can be trivially computed by a depth- 2 circuit of size $\sim\binom{n+d}{d} \sim 2^{d \lg \frac{n}{d}}$, it is only reasonable to assume that C has size $2^{o\left(d \lg \frac{n}{d}\right)}$ (note the small o in the exponent). In that case the theorem of [10] states:

Theorem 3.1. If a polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ of degree $d=O(n)$ has a circuit C of size $2^{o\left(d \lg \frac{n}{d}\right)}$ then there is a depth- 4 circuit C^{\prime} of size $2^{o\left(d \lg \frac{n}{d}\right)}$. Moreover, it can be explicitly constructed in $2^{o\left(d \lg \frac{n}{d}\right)}$ time, given C in the input.

Proof Sketch: The depth reduction is done in two stages. The first stage reduces the depth to $O(\lg d)$ by an efficient construction of Allender, Jiao, Mahajan and Vinay [6. The second stage is more expensive but it reduces the depth to 4.

The main idea in the first stage is to look at certain intermediate polynomials $[g, h]$ computed inside the circuit C : for any gate g in C and any gate h in the subtree rooted at $g,[g, h]$ is defined to be the polynomial computed at the node g if the subtree at h is replaced by a leaf labelled 1 . This immediately gives us the simple relation: $C\left(x_{1}, \ldots, x_{n}\right)=\sum_{i}\left[\operatorname{root}(C), x_{i}\right] x_{i}$. Next the polynomial $[g, h]$ is recursively expanded wrt the multiplication gates p in the subtree (rooted at g) for which the degree $\geq \frac{1}{2} \operatorname{deg}(g h)>$ degree of the children of p. This expansion is then used to construct a circuit $C^{\prime \prime}$ whose gates correspond to $[g, h]$, for "all" gates g, h in C. A clever argument in [6] shows that every multiplication gate in $C^{\prime \prime}$ has at least a doubling effect on the degree of its children, hence, the depth of $C^{\prime \prime}$ can be at most $O(\lg d)$. Also, size $\left(C^{\prime \prime}\right)$ remains at most a polynomial in size (C).

Let s be the size of $C^{\prime \prime}$ and define a parameter ℓ sufficiently smaller than $\frac{d \lg \frac{n}{d}}{\lg s}$. The second stage has an even simpler idea: cut $C^{\prime \prime}$ into two parts, the top has exactly $t:=\lg \ell$ layers of multiplication gates and the rest of the layers form the bottom. Let g_{1}, \ldots, g_{k} (where $k \leq s$) be the output gates of the bottom part. Thus, we can think of the top part as computing a polynomial $P_{\text {top }}$ in new variables y_{1}, \ldots, y_{k} and each of the g_{i} computing a polynomial P_{i} in the input variables x_{1}, \ldots, x_{n}. The polynomial computed by the circuit $C^{\prime \prime}$ then equals: $P_{\text {top }}\left(P_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, P_{k}\left(x_{1}, \ldots, x_{n}\right)\right)$. Since the top half consists of t levels of multiplication gates $\operatorname{deg}\left(P_{\text {top }}\right)$ is bounded by 2^{t}. And since the degree drops by a factor of two across multiplication gates, we also have $\operatorname{deg}\left(P_{i}\right) \leq \frac{d}{2^{t}}$. Expressing $P_{\text {top }}$ and P_{i} 's as a sum of product, we have a depth- 4 circuit $C^{\prime \prime}$ computing the same polynomial as $C^{\prime \prime}$. The size of this circuit C^{\prime} is:

$$
\sim\binom{k+2^{t}}{k}+k \cdot\binom{n+\frac{d}{2^{t}}}{n}
$$

An easy calculation shows that the dominating terms above are: $s^{\ell}+(n \ell)^{\frac{d}{\ell}}$. Both of which, by the choice of ℓ, are smaller than $2^{o\left(d \lg \frac{n}{d}\right)}$. This completes the proof.

This theorem already suggests that a PIT algorithm for depth-4 circuits would imply a nontrivial one for low degree circuits. [10] goes a step further
and shows that a black-box polynomial time algorithm for depth-4 PIT gives an $n^{\lg n}$ time algorithm for low degree PIT!
Open. The above proof has an interesting byproduct: if we could prove an exponential lower bound for a low degree polynomial for depth- 4 circuits then it implies an exponential lower bound for general circuits! For example, we know that permanent (on $n \times n$ matrices) has a depth-4 circuit of size $2^{O(n)}$. But whether it has depth-4 circuits of size $2^{o(n)}$ is not known. Such a lower bound would now imply that permanent does not have (general) arithmetic circuits of size $2^{o(\sqrt{n})}$.

4 Depth-3 PIT (Non Black-Box)

The case of depth-2 being too easy (it has a black-box polynomial time PIT algorithm) and that of depth- 4 being too general (its PIT algorithm will also give a nontrivial one for low degree circuits), leaves us with the intermediate case of depth-3 PIT. There are a host of results for it but the case is still not completely solved. Here we will sketch the idea of the best known PIT algorithm [31. It is a non black-box algorithm as it needs to look at the input circuit to use the linear polynomials that occur in it.

Let the input circuit C be computing over a field \mathbb{F}. As discussed before we can assume wlog that C looks like: $C\left(x_{1}, \ldots, x_{n}\right)=T_{1}+\cdots+T_{k}$, where T_{i} is a product of linear polynomials $L_{i, 1}, \ldots, L_{i, d}$, i.e. each $L_{i, j}=\left(a_{i, j, 0}+\right.$ $\left.a_{i, j, 1} x_{1}+\cdots+a_{i, j, n} x_{n}\right)$ for some constant a 's from \mathbb{F}. Note that the case of $k=2$ is trivial as checking $T_{1}+T_{2}=0$ entails comparing the linear factors of T_{1} and T_{2}, which we know explicitly. Thus, $k=3$ is the first bonafide case and indeed therein lies the main idea of [31. So we sketch the algorithm only for the case $C=T_{1}+T_{2}+T_{3}$.
Chinese Remaindering. The starting idea is to study C modulo linear polynomials. So pick $(d+1)$ coprime linear polynomials p_{1}, \ldots, p_{d+1} from the set $\left\{L_{i, j} \mid i \in[3], j \in[d]\right\}$. Note that by elementary algebra, $C=0$ iff for all $i \in[d+1], C=0\left(\bmod p_{i}\right)$. The latter conditions are easy to check because C modulo p_{i} is just a sum of two multiplication gates, say $C=T_{1}+T_{2}$ $\left(\bmod p_{i}\right)$. Now we can further simplify the situation by mapping $p_{i} \mapsto x_{1}$ by applying a suitable invertible linear transformation τ on x_{1}, \ldots, x_{n} (i.e. it replaces x_{i} by a linear combination of the x 's). It is easy to see that $C=0$ $\left(\bmod p_{i}\right)$ iff $C\left(\tau\left(x_{1}\right), \ldots, \tau\left(x_{n}\right)\right)=0\left(\bmod x_{1}\right)$. The latter can be tested by simply comparing the linear factors of $\tau\left(T_{1}\right)$ and $\tau\left(T_{2}\right)$ after fixing $x_{1}=0$ in them.

Thus, zero testing of C just boils down to picking the right set of linear polynomials amongst the ones that appear in the definition of C. But the
above idea fails if the set $\left\{L_{i, j} \mid i \in[3], j \in[d]\right\}$ does not have $(d+1)$ coprime linear polynomials. This could easily happen, for example when $C=x_{1}^{9}+$ $x_{2}^{5} x_{3}^{4}-\left(x_{1}+x_{2}+x_{3}\right)^{9}$ we have only 4 coprime linear polynomials while we need 10. In that case we require more algebra:
Chinese Remaindering over Ideals. The idea that finally works is to study C modulo "nice looking" ideals. Formally, pick coprime linear polynomials p_{1}, \ldots, p_{ℓ} from the set $\left\{L_{i, j} \mid i \in[3], j \in[d]\right\}$ such that there exist exponents e_{1}, \ldots, e_{ℓ} satisfying:

1) every $p_{i}^{e_{i}}$ divides some T_{j}.
2) $e_{1}+\cdots+e_{\ell}>d$.

A simple calculation shows that such powers of linear polynomials $p_{1}^{e_{1}}, \ldots, p_{\ell}^{e_{\ell}}$ always exist (unless the multiplication terms in C are not distinct). Also $C=0$ iff for all $i \in[\ell], C=0\left(\bmod p_{i}^{e_{i}}\right)$. But how do we check the latter condition? We can again first simplify it to $p_{i} \mapsto x_{1}$ by applying an invertible linear map τ on x_{1}, \ldots, x_{n}. Then $C=0\left(\bmod p_{i}^{e_{i}}\right)$ iff $C\left(\tau\left(x_{1}\right), \ldots, \tau\left(x_{n}\right)\right)$ vanishes over the algebra $\mathbb{F}\left[x_{1}\right] /\left(x_{1}^{e_{i}}\right)$. Since $\tau(C)\left(\bmod x_{1}^{e_{i}}\right)$ is a sum of two multiplication gates, say $\tau\left(T_{1}\right)+\tau\left(T_{2}\right)$, testing $\tau\left(T_{1}\right)+\tau\left(T_{2}\right)=0$ modulo the ideal $\left(x_{1}^{e_{i}}\right)$ boils down to a more sophisticated comparison of the linear factors of $\tau\left(T_{1}\right)$ and $\tau\left(T_{2}\right)$.
Algorithm \& Complexity. The final PIT algorithm for a $\Sigma \Pi \Sigma(n, k, d)$ circuit $C=T_{1}+\cdots+T_{k}$ thus identifies a set \mathcal{I} of nice looking ideals, namely,
$\mathcal{I}:=\left\{\left(f_{1}, \ldots, f_{\ell}\right) \mid \ell \in[k-1], \forall i \in[\ell], f_{i}\right.$ is a maximal factor of some T_{j} s.t.
f_{i} is not a zero-divisor modulo ($0, f_{1}, \ldots, f_{i-1}$) and
f_{i} is power of a linear polynomial modulo the radical of $\left.\left(0, f_{1}, \ldots, f_{i-1}\right)\right\}$.
Actually, the ideals useful for the algorithm of [31] are a subset of \mathcal{I} but this set captures the most important properties of the ideals. The PIT algorithm just checks $C=0(\bmod I)$, for every $I \in \mathcal{I}$, and that implies the zeroness of C. The test $C=0(\bmod I)$ is easy to do because $C(\bmod I)$ is basically just one multiplication gate. Morever, since $|\mathcal{I}|<d^{k}$ and the dimension of the factor-algebra of any ideal in \mathcal{I} is also at most d^{k}, the algorithm has time complexity $\operatorname{poly}\left(n, d^{k}\right)$.

5 Depth-3 PIT (Black-Box)

The depth-3 PIT algorithm seen above is inherently non black-box as it uses the linear polynomials that define the input circuit. It is more desirable to
have a black-box PIT algorithm as it will imply circuit lower bounds (see [3, 10]) and it tends to be useful in learning algorithms [23, [33]. Note that the randomized PIT algorithm based on Schwartz-Zippel lemma is black-box, hence, by the conditional derandomizations of BPP [27] such a deterministic polynomial-time black-box PIT algorithm is conjectured to exist.

The black-box version of depth-3 PIT is the one in which we are given a black-box $C\left(x_{1}, \ldots, x_{n}\right)$ with the promise that C computes a depth- 3 circuit over a known field \mathbb{F} and has a known size bound $\operatorname{size}(C)$. This question has received a fair amount of attention [32, 43, 34, 46] but is not yet completely solved. The known black-box methods are successful, to a varying degree, only in the case of $\Sigma \Pi \Sigma(n, k, d)$ circuits when the top fanin k is "small". We discuss in this survey techniques that are based on the notion of rank of a depth-3 circuit, i.e. the dimension of the vector space spanned by the linear polynomials that appear in its multiplication terms. For a $\Sigma \Pi \Sigma(n, k, d)$ identity a trivial bound on the rank is $k d$. It is not immediately clear whether the rank of an identity should be significantly smaller than $k d$, but it is and this property helps in developing the black-box PIT algorithms. To show the rank bounds we need to put certain "mild" conditions on the circuits:

Definition 5.1. (Minimal and Simple circuits) A $\Sigma \Pi \Sigma(n, k, d)$ circuit $C=$ $T_{1}+\cdots+T_{k}$ is said to be minimal if no proper subset of $\left\{T_{i}\right\}_{1 \leq i \leq k}$ sums to zero.

The circuit is said to be simple if there is no non-trivial common factor dividing all the T_{i} 's.

It was first shown by Dvir \& Shpilka 19 that a minimal, simple $\Sigma \Pi \Sigma(n, k, d)$ identity has rank at most $\log ^{k} d$. If k is small then this is a much better bound than the trivial bound of $k d$. For larger k 's this bound is an overkill, and was improved to a more optimal-looking $k^{3} \log d$ by Saxena \& Seshadhri [43]. We will sketch the idea of the latter rank bound but first we discuss how a rank bound implies a black-box PIT algorithm.

5.1 Rank Bounds entail Black-box PIT

Karnin \& Shpilka [32] showed that if we have a rank bound of $R(k, d)$ for minimal, simple $\Sigma \Pi \Sigma(n, k, d)$ identities then black-box PIT can be done in $\operatorname{poly}\left(n, d^{R(k, d)}\right)$ many field operations. Their idea was to come up with a small set of linear transformations such that: (1) for each non-zero $\Sigma \Pi \Sigma(n, k, d)$ circuit, at least one of the linear transformations continues to keep it nonzero, and (2) these linear transformations map the n variables to $R(k, d)$ variables. It is easy to see that once we have such a linear transformation τ, we can compose it with the given black-box for C to get a new black-box
computing $C^{\prime}\left(x_{1}, \ldots, x_{m}\right):=C\left(\tau\left(x_{1}\right), \ldots, \tau\left(x_{n}\right)\right)$. Since C^{\prime} now has "fewer" variables $(m=R(k, d))$ and is still of degree at most d, we could just apply a brute-force version of Schwartz-Zippel to test it for zeroness. This entails evaluating C^{\prime} on $(d+1)^{m}$ points in \mathbb{F}^{m} (an extension of it, if required), hence it gives an overall complexity of $\operatorname{poly}\left(n, d^{R(k, d)}\right)$.

These linear transformations τ are inspired from the Fourier transform matrix and they preserve the rank of arbitrary subspaces. The following lemma by Gabizon \& Raz [24] (which they used to construct extractors for affine sources) tells us how to identify such transformations.

Lemma 5.2. Let $W_{1}, \ldots, W_{s} \subseteq \mathbb{F}^{n}$ be fixed subspaces, each of dimension at most t. Consider the linear transformation (for some $\alpha \in \mathbb{F}$),

$$
\phi_{\alpha, n, t}\left(x_{1}, \ldots, x_{n}\right):=\left(\left(\alpha^{i(j-1)}\right)\right)_{1 \leq i \leq t, 1 \leq j \leq n} \cdot\left[x_{1} \cdots x_{n}\right]^{T} .
$$

Then there are at most snt ${ }^{2}$ elements $\alpha \in \mathbb{F}$ for which the dimension of some $W_{i} \operatorname{drops}$, i.e. $\operatorname{dim}\left(\phi_{\alpha, n, t}\left(W_{i}\right)\right)<\operatorname{dim}\left(W_{i}\right)$.

Proof. The proof idea is to capture all the "bad" α 's in a univariate equation, then its degree upper bounds their number.

Whenever the dimension of the image of W_{i} under $\phi_{\alpha, n, t}$ drops, it means that the top-left $\operatorname{dim}\left(W_{i}\right) \times \operatorname{dim}\left(W_{i}\right)$ submatrix of (the matrix defining) $\phi_{\alpha, n, t}$ is singular. Thus, its determinant gives us a (nonzero) univariate equation in α of degree at most $n t^{2}$. Doing this for all W_{i} 's gives us the promised bound of $s n t^{2}$.

Now, following [32], we give the construction of the subspaces W_{i} 's for the case of $\Sigma \Pi \Sigma(n, k, d)$ circuits assuming a rank bound of $R(k, d)$ for the minimal simple identities.

Theorem 5.3. Let C be a $\Sigma \Pi \Sigma(n, k, d)$ circuit and $S \subseteq \mathbb{F}$ be of size at least $n 2^{k} d^{2} R(k, d)^{2}$. If C is a nonzero circuit then there is an $\alpha \in S$ such that $\phi_{\alpha, n, R(k, d)}(C)$ is also nonzero.

Proof. Let $C=T_{1}+\cdots+T_{k}$ be nonzero. We define its $\operatorname{gcd} \operatorname{part}, \operatorname{gcd}(C):=$ $\operatorname{gcd}\left(T_{1}, \ldots, T_{k}\right)$ and its simple part, $\operatorname{sim}(C):=\frac{C}{g c d(C)}$.

We now define some subspaces spanned by the linear polynomials appearing in C. These subspaces shall have the property that any linear transformation which preserves their dimensions, leaves C nonzero. The subspaces are:

1. For every pair of linear forms ℓ, ℓ^{\prime} that appear in the circuit define $W_{\ell, \ell^{\prime}}:=s p\left(\ell, \ell^{\prime}\right)$, where $s p(\cdot)$ refers to the linear span, over \mathbb{F}, of the set.
2. For every nonempty subset $A \subseteq[k]$, define $C_{A}:=\sum_{i \in A} T_{i}$ and let $r_{A}:=\min \left\{R(k, d), \operatorname{rank}\left(\operatorname{sim}\left(C_{A}\right)\right)\right\}$. Let W_{A} be the subspace spanned by r_{A} independent linear polynomials that appear in $\operatorname{sim}\left(C_{A}\right)$.

Notice that the number of such subspaces is strictly less than $s:=\left(k^{2} d^{2}+2^{k}\right)$. The claim is that for any linear transformation $\tau=\phi_{\alpha, n, R(k, d)}$ that preserves (the rank of) all these subspaces, also satisfies $\tau(C) \neq 0$. We will prove this by contradiction.

The first observation is that such a τ cannot map two linear functions, that appear in the circuit, to the same linear function since it preserves $W_{\ell, \ell^{\prime}}$'s. Hence the simple part does not reduce further under τ, i.e. we have $\operatorname{sim}\left(\tau\left(C_{A}\right)\right)=\tau\left(\operatorname{sim}\left(C_{A}\right)\right)$. So we can assume wlog that C (and hence $\tau(C)$ as well) is simple.

If $\tau(C)=0$ then the rank bound entails that either $\tau(C)$ is not minimal or the $\operatorname{rank}(\tau(C))<R(k, d)$. If the latter is the case then $\operatorname{rank}(C)<R(k, d)$, but then τ will preserve $W_{[k]}$, which means that the circuit C is itself zero. This contradicts the hypothesis.

The other case then is: $\tau(C)$ is zero but not minimal. Let A be a minimal subset such that $\tau\left(C_{A}\right)=0$ with $C_{A} \neq 0$. Hence $\tau\left(\operatorname{sim}\left(C_{A}\right)\right)$ is a simple, minimal and zero circuit, therefore it is of rank less than $R(k, d)$. But then τ will preserve the rank of W_{A}, which together with $\operatorname{sim}\left(C_{A}\right) \neq 0$ means that $\tau\left(\operatorname{sim}\left(C_{A}\right)\right) \neq 0$. This is again a contradiction.

It is now a consequence of Lemma 5.2 that we will find such a τ if we try out $n s R(k, d)^{2}$ many α 's. This finishes the proof.

Algorithm \& Complexity. The final black-box PIT algorithm is: given an access to a $\Sigma \Pi \Sigma(n, k, d)$ circuit C, try out $n 2^{k} d^{2} R(k, d)^{2}$ many α 's from the field (or its extension) and consider $C^{\prime}\left(x_{1}, \ldots, x_{R(k, d)}\right):=\phi_{\alpha, n, R(k, d)}(C)$. Evaluate each such C^{\prime} on $(d+1)^{R(k, d)}$ points on $\mathbb{F}^{R(k, d)}$, and announce C to be zero iff all these evaluations are zero. It is now evident that this is a valid algorithm and it requires "only" poly $\left(n, 2^{k}, d^{R(k, d)}\right)$ many \mathbb{F} operations.

5.2 An almost Optimal Rank Bound

The best known rank bound for minimal, simple $\Sigma \Pi \Sigma(n, k, d)$ identities is $k^{3} \log d$ [43]. It is also close to optimal as there are identities of $\operatorname{rank} \Omega(k \log d)$ [31, 43]. This rank bound holds for any field. For special fields there is scope for improvement, for example Kayal \& Saraf [34] showed a rank bound of k^{k} over reals using real geometry. Note that it is independent of d. Both kinds of rank bounds have quite involved proofs and tend to have a strong combinatorial flavor. We will only exhibit the basic ideas of the two rank bounds by working with the "toy" example of top fanin 3. Fortunately, these
basic ideas extend to the higher fanins by developing the higher-dimensional generalizations.

The $k^{3} \log d$ rank bound of Saxena \& Seshadhri 43 hinges on a combinatorial doubling argument. It is best visible in the top fanin 3 case and proves a sharp upper bound of $(\lg d+2)$, we prove it next.

Suppose $C=T_{1}+T_{2}+T_{3}=0$ is a minimal, simple $\Sigma \Pi \Sigma(n, 3, d)$ identity over some field \mathbb{F}. We will look at C modulo various linear forms that occur in the multiplication gate T_{1}. This reflects a dependency between the forms occurring in T_{2} and T_{3}. For instance, pick a (nonzero) linear form q from T_{1} and consider $C(\bmod q)$ which gives $T_{2}+T_{3}=0(\bmod q)$. By unique factorization of polynomials modulo q this gives us a bijection π between the forms of T_{2} with those in T_{3}, which we call a q-matching between T_{2}, T_{3}.

Definition 5.4. (Matchings) Let U, V be two lists of linear forms and I be a form. An I-matching π between U, V is a bijection π between lists U, V such that: for all $\ell \in U, \pi(\ell)=c \ell+v$ for some $c \in \mathbb{F}^{*}$ and $v \in \operatorname{sp}(I)$.

Now as we pick different q 's we get different matchings between T_{2}, T_{3}. The interesting property is that there cannot be too many such matchings if we only pick linearly independent q 's. This we prove in the following lemma and it immediately gives a sharp rank bound for C.

Lemma 5.5. Let U, V be two lists of linear forms each of size $d>0$ and I_{1}, \ldots, I_{r} be linearly independent linear forms such that for all $i \in[r]$, there is an I_{i}-matching π_{i} between U, V. If $r>(\lg d+2)$ then U, V are similar lists (upto constant factors).

Proof. For contradiction assume that $r>(\lg d+2)$ but U, V are not similar lists. In that case we can assume wlog that U and V are coprime lists, i.e. there is no linear form that occurs (upto constant factors) in both the lists.

The proof is in the form of a combinatorial process that happens on a bipartite graph. The graph $G=(U, V, E)$ has vertices labelled with the respective forms. The various π_{i} 's can be seen as bipartite matchings of G. For each π_{i} and each $\ell \in U$, we add an (undirected) edge tagged with I_{i} between the vertices ℓ and $\pi_{i}(\ell)$. There may be many tagged edges between a pair of vertices ${ }^{1}$. We call $\pi_{i}(\ell)$ the I_{i}-neighbor of ℓ (and vice versa). Abusing notation, we use vertex to refer to a form in $U \cup V$. We denote $\bigcup_{j \leq i} I_{j}$ by J_{i}.

We will show that there cannot be more than $(\lg d+2)$ such perfect matchings in G. The proof is done by following an iterative process that has r phases, one for each I_{i}. We maintain a partial basis for the forms in $U \cup V$

[^1]which will be updated iteratively. This basis is denoted by the set B. The goal is to completely span the forms $U \cup V$ using the forms I_{i} 's.

We start with an empty B and initialize by adding some $\ell \in U$ to B. In the i th round, we will add the form I_{i} to B. All forms of $U \cup V$ in $s p\left(\{\ell\} \cup J_{i}\right)$ are now spanned. We then proceed to the next round. To introduce some colorful terminology: A green vertex is one that is in the set $s p(B)$ (i.e. a form in $(U \cup V) \cap \operatorname{sp}(B))$. Let vertex v be green, so $v \in \operatorname{sp}(B)$. The $I_{1^{-}}$ neighbor of v is a linear combination of v and I_{1}. Therefore, the neighbor is also in $s p(B)$ and is colored green. This shows that the number of green vertices in U is equal to the number of those in V, at the end of each round.

Let $i_{0} \in[r]$ be the least index such that $\{\ell\}, I_{1}, \ldots, I_{i_{0}}$ are linearly dependent, if it does not exist then set $i_{0}:=r+1$. Now we have the following easy claim.

Claim 5.6. The forms $\{\ell\}, I_{1}, \ldots, I_{i_{0}-1}$ are independent and the subspaces: $s p\left(\{\ell\} \cup J_{i_{0}}\right), s p\left(I_{i_{0}+1}\right), \ldots, s p\left(I_{r}\right)$ are independent.

Proof of Claim 5.6. The forms $\{\ell\}, I_{1}, \ldots, I_{i_{0}-1}$ are independent by the minimality of i_{0}.

As $I_{1}, \ldots, I_{i_{0}}$ are independent but $\{\ell\}, I_{1}, \ldots, I_{i_{0}}$ are not, we deduce that $\ell \in \operatorname{sp}\left(J_{i_{0}}\right)$. Thus, the subspace $\operatorname{sp}\left(\{\ell\} \cup J_{i_{0}}\right)=\operatorname{sp}\left(J_{i_{0}}\right)$ is independent to the forms $I_{i_{0}+1}, \ldots, I_{r}$ by the independence of I_{1}, \ldots, I_{r}.

We shall now show that for $i \notin\left\{1, i_{0}\right\}$, the number of green vertices doubles in the i th round. Let ℓ^{\prime} be a green vertex, say in U, at the end of the $(i-1)$ th round (at that point $B=\{\ell\} \cup J_{i-1}$). Consider the I_{i}-neighbor of ℓ^{\prime}. This is in V and is equal to $\left(c \ell^{\prime}+v\right)$ where $c \in \mathbb{F}^{*}$ and v is a nonzero element in $s p\left(I_{i}\right)$ (since U, V are coprime). If this neighbor is green, then v would be a linear combination of two green forms, implying $v \in s p(B)$. But I_{i} is independent to B, implying $v \in \operatorname{sp}(B) \cap \operatorname{sp}\left(I_{i}\right)=\{0\}$ which is a contradiction. Therefore, the I_{i}-neighbor of any green vertex is not green. On adding I_{i} to B, the number of green vertices doubles (for at least $(r-2)$ rounds).

We started off with one green vertex ℓ, and lists U, V each of size d. Thus, this doubling can happen at most $\lg d$ times, implying that $(r-2) \leq \lg d$. This is a contradiction, implying that U, V are indeed similar lists.

The above lemma immediately implies a rank bound for our identity C. As T_{2}, T_{3} are coprime multiplication terms (by simplicity of C) the number of linearly independent forms q in T_{1} can be at most $(\lg d+2)$. Repeating this argument wrt T_{2} and T_{3} proves that $\operatorname{rank}(C)=O(\lg d)$. Interestingly, the combinatorial procedure in the proof of Lemma 5.5 also suggests an identity
that achieves this rank bound. It was first constructed by Kayal \& Saxena [31):

$$
\begin{align*}
C\left(x_{1}, \ldots, x_{r}\right):= & \prod_{\substack{b_{1}, \ldots, b_{r-1} \in \mathbb{F}_{2} \\
b_{1}+\cdots+b_{r-1} \equiv 1}}\left(b_{1} x_{1}+\cdots+b_{r-1} x_{r-1}\right) \\
& +\prod_{\substack{b_{1}, \ldots, b_{r-1} \in \mathbb{F}_{2} \\
b_{1},+\cdots b_{r-1} \equiv 0}}\left(x_{r}+b_{1} x_{1}+\cdots+b_{r-1} x_{r-1}\right) \\
& +\prod_{\substack{b_{1}, \ldots, b_{r-1} \in \mathbb{F}_{2} \\
b_{1}+\cdots+\cdots b_{r-1} \equiv 1}}\left(x_{r}+b_{1} x_{1}+\cdots+b_{r-1} x_{r-1}\right) \tag{5.1}
\end{align*}
$$

It can be seen that, over \mathbb{F}_{2}, C is a simple and minimal $\Sigma \Pi \Sigma$ zero circuit of degree $d=2^{r-2}$ with $k=3$ multiplication terms and $\operatorname{rank}(C)=r=\lg d+2$.
In General. The above description gives a fair snapshot of the general rank bound. For a minimal, simple $\Sigma \Pi \Sigma(n, k, d)$ identity $C=T_{1}+\cdots+T_{k}$, we need to consider form-ideals $I=\left(\ell_{1}, \ldots, \ell_{k-2}\right)$, where form ℓ_{i} occurs in T_{i}. C modulo I then gives us I-matchings between T_{k-1}, T_{k}. If we look at such matchings modulo several linearly independent form-ideals I 's then a generalization of Lemma 5.5 says that there can be at most $O(\lg d)$ independent form-ideals. Since each form-ideal I itself contains $(k-2)$ independent forms, this suggests an overall rank bound of $O(k \lg d)$. This proof idea when formalized gets into several problems, but can be salvaged to prove a rank bound of $k^{3} \lg d$. The highest rank (minimal, simple) identities known are constructed using Equation 5.1, and have rank $\Omega(k \lg d)$. Thus, there is a slight gap in our understanding of rank.

5.3 A Rank Bound over Reals

The high rank identities that we saw in the last section are over fields with nonzero characteristic. When one tries to construct $\Sigma \Pi \Sigma(n, k, d)$ identities over zero characteristic fields, say rationals, one feels that no matter how large degree d is, the rank grows only like k. It was first conjectured by Dvir \& Shpilka [19] that the rank of minimal simple $\Sigma \Pi \Sigma(n, k, d)$ identities over zero characteristic fields should be only $O(k)$. A weak form of this conjecture was shown true by Kayal \& Saraf [34]. They proved a rank bound of k^{k} over the reals (\mathbb{R}). It is not trivial even for fanin $k=3$. So we give below the proof for that case and then only state its generalization.

Let $C=T_{1}+T_{2}+T_{3}=0$ be a minimal, simple $\Sigma \Pi \Sigma(n, 3, d)$ identity over \mathbb{R}. Suppose it has rank $(r+1)$. We identify every linear form ℓ in C with the corresponding point in \mathbb{R}^{r}. This form-to-point correspondence is
just going to the projective space, roughly, a form ($a_{1} x_{1}+\cdots+a_{r+1} x_{r+1}$) is mapped to the point $\left(\frac{a_{1}}{a_{r+1}}, \ldots, \frac{a_{r}}{a_{r+1}}\right)$ in \mathbb{R}^{r}. This mapping gives us sets of points A_{1}, A_{2}, A_{3} corresponding to the linear forms occurring in T_{1}, T_{2}, T_{3} respectively. Furthermore for any forms ℓ_{1}, ℓ_{2} occurring in T_{1}, T_{2} respectively, $C=0$ modulo (ℓ_{1}, ℓ_{2}), implying that there exists a linear form $\ell_{3} \in \operatorname{sp}\left(\ell_{1}, \ell_{2}\right)$ that occurs in T_{3}. This means that any line passing through a point in A_{1} and a point in A_{2}, also passes through a point in A_{3}. By symmetry this means that any line passing through two of the sets A_{1}, A_{2}, A_{3} also passes through the third! Such sets $A_{1}, A_{2}, A_{3} \subset \mathbb{R}^{r}$ are rather special and we will show below, following [20], that their existence implies $r \leq 3$. The proof is based on a famous theorem in incidence geometry - Sylvester-Gallai theorem.

Theorem 5.7 (Sylvester-Gallai). Given a finite number of non-collinear points S in the plane \mathbb{R}^{2}, there always exists a line which passes through exactly two points in S.

Proof. The simple proof below is due to Kelly (see the survey by Borwein \& Moser [13]).

Define a connecting line to be a line which contains at least two points from S. For contradiction assume that every connecting line has a third point from S. Let (P, ℓ) be a point and a connecting line pair that are the smallest nonzero distance apart amongst all such point-line pairs.

The line ℓ goes through at least three points of S. Drop a perpendicular from P to ℓ, there must be two points on the same side of the perpendicular (one might be exactly on the intersection of the perpendicular with ℓ). Call the point closer to the perpendicular B, and the farther point C. Draw the line m connecting P to C. Then the distance from B to m is smaller than the distance from P to ℓ, which is a contradiction! One way to see this is to notice that the right triangle with hypotenuse $B C$ is similar and contained in the right triangle with hypotenuse $P C$. This contradiction implies that there cannot be a nonzero distance between point-line pairs, thus every point must be at distance 0 from every connecting line, or in other words, every point must lie on the same line. But as S was non-collinear, we finally deduce that there exists a connecting line with exactly two points.

Let us go back to our special sets $A_{1}, A_{2}, A_{3} \subset \mathbb{R}^{r}$ obtained from the identity C and assume (for contradiction) that $r=4$. Pick points p_{1}, p_{2} from A_{1}, A_{2} respectively and consider the following pencil of planes,

$$
\mathcal{P}:=\left\{s p\left(p_{1}-q, p_{2}-q, q\right) \mid q \in A_{1} \cup A_{2} \cup A_{3}\right\} .
$$

Notice that \mathcal{P} consists of planes (formally 2 -flats) in the space \mathbb{R}^{4} and all of them contain the line (1 -flat) joining the points p_{1}, p_{2}. The dual of this pencil of planes would give us a corresponding pencil of lines \mathcal{L} in \mathbb{R}^{3}. Now if we look at a section of \mathcal{L} cut by a plane in general position, we see $|\mathcal{L}|$ non-collinear points. By Theorem 5.7 there exists a line passing through exactly two of these points, which means there exists a plane in \mathbb{R}^{3} containing exactly two of the lines in \mathcal{L}, which finally means that there exists a 3 -flat in \mathbb{R}^{4} containing exactly two of the planes in \mathcal{P}. Let us denote this 3 -flat by H and the two planes it contains by H_{1}, H_{2}. Say H_{1}, H_{2} are affine spans of the three points $\left(p_{1}, p_{2}, q_{1}\right),\left(p_{1}, p_{2}, q_{2}\right)$ respectively. Now if q_{1}, q_{2} are not in the same A_{i} then the line joining them (so "across" H_{1}, H_{2}) should pass through a point in the third set A_{j}. But that is impossible as H contains only the planes H_{1}, H_{2} from \mathcal{P}. Thus, q_{1}, q_{2} have to be in the same A_{i}, say A_{1}. But then look at the line joining q_{1}, p_{2}, it has to contain a point from A_{3}, say q_{3}, which will of course be in H_{1}. The line joining q_{3}, q_{2} (so "across" H_{1}, H_{2}) should pass through a point in the third set A_{2}, which is again impossible.

This contradiction shows that our assumption $r=4$ cannot hold, infact, the above contradiction appears as long as $r \geq 4$. Thus, r can be at most 3 . This gives us a rank bound of 4 for simple $\Sigma \Pi \Sigma(n, 3, d)$ identities over reals. Interestingly, this bound is tight and there is a unique (upto transformations, see [14]) identity of rank 4 over \mathbb{R} :

$$
\begin{aligned}
& x_{1} x_{2} x_{3}\left(2 y+x_{1}+x_{2}+x_{3}\right)-\left(y+x_{1}\right)\left(y+x_{2}\right)\left(y+x_{3}\right)\left(y+x_{1}+x_{2}+x_{3}\right)+ \\
& y\left(y+x_{1}+x_{2}\right)\left(y+x_{2}+x_{3}\right)\left(y+x_{1}+x_{3}\right)=0 .
\end{aligned}
$$

In General. The above idea extends to higher fanins, but the rank bound obtained is "weaker". Suppose $C=T_{1}+\cdots+T_{k}=0$ is a minimal, simple $\Sigma \Pi \Sigma(n, k, d)$ identity over \mathbb{R}. Instead of working in \mathbb{R}^{4} and applying Sylvester-Gallai theorem as above, we now have to work in a much bigger space of \mathbb{R}^{m} (roughly $m=k^{k}$) and use a higher-dimensional generalization of Sylvester-Gallai theorem that says:

Theorem 5.8. ([25], [11]) Let S be a finite set of points spanning an affine space $V \subseteq \mathbb{R}^{n}$ such that $\operatorname{dim}(V) \geq 2 t$. Then, there exist $(t+1)$ points in S that span a t dimensional affine space $H \subset V$ such that $|H \cap S|=t+1$.
(Note that putting $t=1$ above gives the statement of Sylvester-Gallai theorem.) In our case S is taken to be the set of points corresponding to all the forms that appear in C. Then $\operatorname{dim}(V)=\operatorname{rank}(C)$, which we assume large enough, say k^{k}, to derive a contradiction. Kayal \& Saraf [34] now use Theorem 5.8 to identify a subspace of V and its decomposition (analogous to H and its "decomposition" H_{1}, H_{2} above), and from that deduce the existence of a linear form ℓ in C such that $C(\bmod \ell)$ has a minimal, simple sub-identity of rank at least $(k-1)^{k-1}$. This gives the promised contradiction as $C(\bmod \ell)$, and hence the sub-identity, has a smaller fanin.
Open. It would be interesting to improve the above rank bound: (1) to other zero characteristic fields, (2) to a more optimal-looking bound $O(k)$.

It is known that Sylvester-Gallai theorem 5.7 is false in \mathbb{C}^{2} (cubic curves give counter examples [18]). Nevertheless, it is known to hold in the following sense [28, 21: Given a finite number of non-coplanar points S in \mathbb{C}^{3}, there always exists a line which passes through exactly two points in S. This immediately gives us a rank bound of 5 (unlike 4 before) for simple $\Sigma \Pi \Sigma(n, 3, d)$ identities over \mathbb{C}. Unfortunately, a higher-dimensional generalization of this version is not known. A natural conjecture for it would be:

Conjecture 5.9. Let S be a finite set of points spanning an affine space $V \subseteq \mathbb{C}^{n}$ such that $\operatorname{dim}(V) \geq 3 t$. Then there exist $(t+1)$ points in S that span a t dimensional affine space $H \subset V$ such that $|H \cap S|=t+1$.
(Currently, a proof exists only for $t=1$.)

6 Depth-4 PIT

We know that depth-4 case of PIT has direct relations to more general cases of PIT. But currently we have little understanding of depth- 4 circuits. For example, we do not even know how to test $f_{1} \ldots f_{m}=g_{1} \ldots g_{m}$ where f_{i} 's and g_{i} 's are multivariate polynomials given in fully expanded form (also called the sparse representation). Here we will discuss two simple ideas that solve PIT for certain restricted forms of depth- 4 circuits.
Noncommuting Idea. The first idea is easiest to see on depth-4 circuits C whose multiplication gates have unmixed variables, i.e. $C\left(x_{1}, \ldots, x_{n}\right)=$ $M_{1}+\cdots+M_{k}$, where for all $i \in[k], M_{i}=f_{i, 1}\left(x_{1}\right) \cdots f_{i, n}\left(x_{n}\right)$, where each $f_{i, j}$ is a univariate polynomial given in the sparse representation and is of degree at most d. Note that "expanding out" M_{i} in a brute force way could potentially produce d^{n} monomials and hence is not recommended!

Interestingly, Raz \& Shpilka formulated a "controlled" way of doing this expansion using basic linear algebra. Their idea was to compute
$f_{i, 1}\left(x_{1}\right) f_{i, 2}\left(x_{2}\right)$, for all $i \in[k]$. View each of these polynomials as vectors in a natural way, i.e. each coefficient is a coordinate of the vector. Thus we have k vectors $V:=\left\{v_{1}, \ldots, v_{k}\right\}$ in a space of dimension at most d^{2}. Pick some maximal subset of V that has linearly independent vectors, say they are $v_{1}, \ldots, v_{\ell}(1 \leq \ell \leq k)$. Now we form the circuit C_{1} from C by replacing $f_{i, 1}\left(x_{1}\right) f_{i, 2}\left(x_{2}\right)$, for all $i \in[\ell]$, by a fresh variable $z_{1, i}$. For the other i 's, replace $f_{i, 1}\left(x_{1}\right) f_{i, 2}\left(x_{2}\right)$ by the same linear combination of $\left\{z_{1,1}, \ldots, z_{1, \ell}\right\}$ as the one that expresses v_{i} in terms of $\left\{v_{1}, \ldots, v_{\ell}\right\}$. It is easy to verify that $C\left(x_{1}, \ldots, x_{n}\right)=0$ iff $C_{1}\left(z_{1,1}, \ldots, z_{1, \ell}, x_{3}, \ldots, x_{n}\right)=0$. Thus this one round reduced the number of factors in each M_{i} by one at the cost of increasing the number of variables by $O(k)$. If we repeat this round $(n-2)$ more times then instead of M_{i} 's we would have just linear forms and the number of variables would be $O(n k)$. As the linear algebra in each round requires just poly $(n d k)$ operations, and testing the zeroness of the circuit after the last round is trivial, we get an overall complexity of $\operatorname{poly}(n d k)$ field operations.

It can be easily verified that the technique above is applicable in several other cases, in particular: (1) when C is a set-multilinear formula, i.e. each multiplication gate M_{i} has t inputs that are polynomials in disjoint variables S_{1}, \ldots, S_{t} fixed such that $S_{1} \sqcup \cdots \sqcup S_{t}=\left\{x_{1}, \ldots, x_{n}\right\}$. (2) more generally, when C is a noncommutative formula, i.e. variables x_{1}, \ldots, x_{n} do not commute wrt multiplication.
Powering Idea. The second idea is to consider depth-4 circuits C whose multiplication gates just do powering, i.e. $C\left(x_{1}, \ldots, x_{n}\right)=M_{1}+\cdots+M_{k}$, where for all $i \in[k], M_{i}=\alpha_{i} \cdot\left(f_{i, 1}\left(x_{1}\right)+\cdots+f_{i, n}\left(x_{n}\right)\right)^{e_{i}}$, where each $f_{i, j}$ is a univariate polynomial given in the sparse representation and is of degree at $\operatorname{most} d, \alpha_{i} \in \mathbb{F}$ and $e_{i} \in \mathbb{N}$. Again note that "expanding out" M_{i} in a brute force way could potentially produce more than $\binom{n+e_{i}}{n}$ monomials. Interestingly, although this case looks to be on the other extreme of the "unmixed variable" case discussed above, a reduction of the former to the latter was given by Saxena [38]. The following lemma gives the main transformation:

Lemma 6.1. Let $g_{1}\left(x_{1}\right), \ldots, g_{n}\left(x_{n}\right)$ be univariate polynomials of degree at most d, over a field \mathbb{F} of zero characteristic. Then we can compute univariate polynomials $h_{i, j}$'s in poly $(n d a)$ field operations such that for $t=(n a+1)$:

$$
\left(g_{1}\left(x_{1}\right)+\cdots+g_{n}\left(x_{n}\right)\right)^{a}=\sum_{i=1}^{t} h_{i, 1}\left(x_{1}\right) \cdots h_{i, n}\left(x_{n}\right)
$$

Proof. We will prove this using the formal power series: $\exp (x)=1+x+$ $\frac{x^{2}}{2!}+\cdots$, where $\exp (x)=e^{x}$ and e is the base of natural logarithm. Define the degree a truncation of the series to be $E_{a}(x)=1+x+\cdots+\frac{x^{a}}{a!}$. We
will use the operator $\left[z^{a}\right]$ to extract the coefficient of z^{a} from a polynomial. Observe that:

$$
\begin{aligned}
& (a!)^{-1} \cdot\left(g_{1}\left(x_{1}\right)+\cdots+g_{n}\left(x_{n}\right)\right)^{a}=\left[z^{a}\right] \exp \left(\left(g_{1}\left(x_{1}\right)+\cdots+g_{n}\left(x_{n}\right)\right) \cdot z\right) \\
& =\left[z^{a}\right] \exp \left(g_{1}\left(x_{1}\right) z\right) \cdots \exp \left(g_{n}\left(x_{n}\right) z\right) \\
& =\left[z^{a}\right] E_{a}\left(g_{1}\left(x_{1}\right) z\right) \cdots E_{a}\left(g_{n}\left(x_{n}\right) z\right)
\end{aligned}
$$

The product $E_{a}\left(g_{1}\left(x_{1}\right) z\right) \cdots E_{a}\left(g_{n}\left(x_{n}\right) z\right)$ can be viewed as a univariate polynomial in z of degree na. Hence, its coefficient of z^{a} can be computed by evaluating the polynomial at t distinct points $\alpha_{1}, \ldots, \alpha_{t} \in \mathbb{F}$ (remember \mathbb{F} is large enough) and by interpolation we can compute $\beta_{1}, \ldots, \beta_{t} \in \mathbb{F}$ such that:

$$
\begin{aligned}
& {\left[z^{a}\right] E_{a}\left(g_{1}\left(x_{1}\right) z\right) \cdots E_{a}\left(g_{n}\left(x_{n}\right) z\right)} \\
& \quad=\sum_{i=1}^{t} \beta_{i} \cdot E_{a}\left(\alpha_{i} g_{1}\left(x_{1}\right)\right) \cdots E_{a}\left(\alpha_{i} g_{n}\left(x_{n}\right)\right)
\end{aligned}
$$

This can be seen as the dual form of the multiplication gate $\left(g_{1}\left(x_{1}\right)+\cdots+\right.$ $\left.g_{n}\left(x_{n}\right)\right)^{a}$. It is routine to verify that all the univariate polynomials $E_{a}(\cdot)$ in the above sum can be computed in poly ($n d a$) field operations.

Applying this lemma to all the gates M_{i} 's of $C\left(x_{1}, \ldots, x_{n}\right)=M_{1}+\cdots+$ M_{k}, we convert our given circuit C to another circuit $C^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ which is a sum-of-product of univariates. Such a C^{\prime} can now be tested for zeroness using the noncommuting idea seen above.

The technique of Lemma 6.1 also applies to a slightly general case of $(s$ is any constant):

$$
C\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k} L_{i, 1}^{e_{i, 1}} \cdots L_{i, s}^{e_{i, s}}
$$

where the $L_{i, j}$'s are sums of univariate polynomials, i.e. for all $i \in[k], j \in[s]$: $L_{i, j}\left(x_{1}, \ldots, x_{n}\right)=f_{i, j, 1}\left(x_{1}\right)+\cdots+f_{i, j, n}\left(x_{n}\right)$ where $f_{i, j, j^{\prime}} \in \mathbb{F}\left[x_{j^{\prime}}\right]$.
Open. The PIT algorithms in the above two restricted cases of depth-4 circuits are inherently non black-box. Are there black-box PIT algorithms for these family of depth-4 circuits? Currently, there are no black-box PIT algorithms known for any nontrivial family of depth-4 circuits.

7 General PIT and Lower Bounds

We saw in the above sections that PIT algorithms, at least the ones currently known, are quite involved and require ideas from algebra, geometry and
combinatorics. This proof complexity is partially explained by the connection PIT has to certain circuit lower bounds (that are historically considered difficult to prove!). We will now discuss how a theorem like PIT $\in \mathrm{P}$ would imply lower bounds [29], and that a black-box PIT algorithm would imply even stronger lower bounds [3].
Implications of PIT in P. Kabanets \& Impagliazzo [29] showed that if PIT has a deterministic polynomial time algorithm then either NEXP (i.e. nondeterministic exponential time class) does not have polynomial sized boolean circuits (i.e. $P /$ poly class) or the perm function (i.e. permanent of a square matrix of rationals) does not have polynomial sized arithmetic circuits (i.e. AlgP/poly class). Note that both the claims NEXP $\nsubseteq P /$ poly and perm $\notin A l g P /$ poly are conjectured to be true by "most" people. So the main attraction of the following theorem is that it connects an algorithmic conjecture like PIT $\in \mathrm{P}$ with these lower bound conjectures.

Theorem 7.1. ([29]) If low-degree-PIT $\in P$ then: $N E X P \nsubseteq P /$ poly or perm \notin AlgP/poly.

Proof Sketch: The proof is by contradiction, so we assume:

1. low-degree-PIT $\in P$
2. perm \in AlgP/poly
3. NEXP $\subseteq P /$ poly

Assumptions (1) and (2) imply that, one can guess an arithmetic circuit C and then actually check whether $C=$ perm using PIT. As permanent of an $m \times m$ matrix has degree m, one only needs to guess C of depth $O(\lg m)$ and multiplication fanin 2 [6], then do low degree PIT. The part where we check $C=$ perm using PIT, actually makes use of the downward self-reducibility of the permanent function, i.e. perm of an $m \times m$ matrix can be expressed as the sum of m permanents each of $(m-1) \times(m-1)$ submatrices. Finally,
4. $\mathrm{P}^{\text {perm }} \subseteq \mathrm{NP}$.

Now it is known that assumption (3) implies NEXP $\subseteq \mathrm{P}^{\text {perm }}$ [26]. This together with deduction (4) implies that NEXP \subseteq NP, which is a contradiction as there are classical diagonalization methods proving NEXP different from NP [40].

One might wonder whether this theorem has a converse. As a step in that direction, it was shown in [29]: if permanent has superpolynomial arithmetic circuit complexity then PIT has a subexponential time algorithm. The idea is
to apply a hard function (here permanent) on the designs defined by Nisan \& Wigderson [36], and evaluate the given circuit C at the resulting point. The claim is that this evaluation is zero iff C is a zero circuit. Thus, hard algebraic functions give black-box PIT algorithms!
Implications of black-box PIT. As we have mentioned before, black-box PIT algorithms seem to require a very good understanding of the circuit family and hence should, intuitively, also imply what that circuit family cannot compute! It is interesting, this intuition can also be proven formally, as we will now show following Agrawal [3].

A black-box PIT algorithm is only allowed to evaluate a given circuit $C\left(x_{1}, \ldots, x_{n}\right)$ at points in the extensions of the given field \mathbb{F}. Thus, it seems reasonable to assume that such an algorithm just "feeds in" $x_{i}=f_{i}(y)$ $(\bmod g(y))$ for all $i \in[n]$, where f_{i} 's and g are univariate polynomials of a "small" degree $2^{\ell(n)}$. Note that the algorithm feeds these polynomials to every input circuit $C\left(x_{1}, \ldots, x_{n}\right)$, only assuming that C has a size bound of (wlog) n. Clearly, the time complexity of such a black-box PIT algorithm is dominated by $2^{\ell(n)}$, and the time taken to actually construct f_{i} 's and g. This motivates the definition of a pseudo-random generator (prg) for arithmetic circuits.

Definition 7.2. Fix a field \mathbb{F}. A function $f: \mathbb{N} \rightarrow(\mathbb{F}[y])^{*}$ is called an efficient ($\ell(n), n)$-prg if,

- $f(n) \in(\mathbb{F}[y])^{n+1}$ for all $n>0$.
- $f(n)=\left(f_{1}(y), \ldots, f_{n}(y), g(y)\right)$ where the polynomials f_{i} 's and g are of degree at most $2^{\ell(n)}$, and are also constructible in $\operatorname{poly}\left(2^{\ell(n)}\right)$ time.
- For any circuit $C\left(x_{1}, \ldots, x_{n}\right)$ of size at most $n, C\left(x_{1}, \ldots, x_{n}\right)=0$ iff $C\left(f_{1}(y), \ldots, f_{n}(y)\right)=0(\bmod g(y))$.

If we drop the requirement of efficient constructibility then such functions f, for any $\ell(n)=\Omega(\lg n)$, can be easily shown to exist using the SchwartzZippel lemma. On the other hand it can be seen, by the methods of Section 2, that efficient ones for $\ell(n)=O\left(n^{2}\right)$ exist. The really interesting cases for us are in between, and so we will always assume $\ell(n)=\Omega(\lg n)$ and $\ell(n)=o(n)$. The existence of an efficient $(\ell(n), n)$-prg immediately gives a black-box PIT algorithm with time complexity poly $\left(2^{\ell(n)}\right)$. Thus, to completely solve PIT we "just" need an efficient $(O(\lg n), n)$-prg. We now show that such a prg implies arithmetic circuit lower bounds (that are beyond the scope of current methods).

Theorem 7.3. ([3]) If there is an efficient $(\ell(n), n)$-prg. Then there is a multilinear polynomial that is poly $\left(2^{\ell(n)}\right)$ time computable but has no circuits of size n.

Proof Sketch: Let $f(n)=\left(f_{1}, \ldots, f_{n}(y), g(y)\right)$ be an efficient $(\ell(n), n)$-prg. Let $m:=\ell(n)$. In the interesting case of $\ell(n)=o(n)$, we have $n>2 m$. We define a polynomial $q_{f}\left(x_{1}, \ldots, x_{2 m}\right)$ as:

$$
q_{f}\left(x_{1}, \ldots, x_{2 m}\right):=\sum_{S \subseteq[1,2 m]} c_{S} \cdot \prod_{i \in S} x_{i} .
$$

Where the coefficient c 's are picked such that they satisfy:

$$
q_{f}\left(f_{1}(y), \ldots, f_{2 m}(y)\right)=\sum_{S \subseteq[1,2 m]} c_{S} \cdot \prod_{i \in S} f_{i}(y)=0
$$

The existence of such coefficient c 's can be seen by comparing the degree of the above equation in y and the number of the unknowns. Furthermore, the polynomial q_{f} can be computed by solving a system of $\operatorname{poly}\left(2^{m}\right)$ linear equations in $\operatorname{poly}\left(2^{m}\right)$ variables over the field \mathbb{F}. Each of these equations can be computed in time poly $\left(2^{m}\right)$ using the computability of f. Therefore, q_{f} can be computed in time poly $\left(2^{m}\right)$.

Now suppose q_{f} can be computed by a circuit C of size n. By the definition of polynomial q_{f}, it follows that $C\left(f_{1}(y), f_{2}(y), \ldots, f_{2 m}(y)\right)=0$. On the other hand, the size of the circuit C is n and it computes a nonzero polynomial. This contradicts to f being a prg. Hence $q_{f}\left(x_{1}, \ldots, x_{2 \ell(n)}\right)$ is a multilinear polynomial computable in poly $\left(2^{\ell(n)}\right)$ time but not by n-sized circuits.

The way q_{f} is defined above has the nice property that it can be expressed as the permanent of a "small" matrix [4]. Thus the existence of an efficient prg f would not only give a "hard" polynomial q_{f} but indeed prove the hardness of permanent function!

References

[1] M. Agrawal and S. Biswas. Primality and identity testing via Chinese remaindering. Journal of the ACM, 50(4):429-443, 2003.
[2] M. Agrawal. On derandomizing tests for certain polynomial identities. In Proceedings of the 18th Annual IEEE Conference on Computational Complexity, page 355, 2003.
[3] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the 25th Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 92105, 2005.
[4] M. Agrawal. Determinant versus permanent. In Proceedings of the 25th International Congress of Mathematicians (ICM), volume 3, pages 985997, 2006.
[5] M. Agrawal, T. M. Hoang, and T. Thierauf. The polynomially bounded perfect matching problem is in NC^{2}. In Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 489-499, 2007.
[6] E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arithmetic circuits: Depth reduction and size lower bounds. Theor. Comput. Sci., 209(1-2):47-86, 1998.
[7] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Ann. of Math, 160(2):781-793, 2004.
[8] L. M. Adleman and H. W. Lenstra. Finding irreducible polynomials over finite fields. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC), pages 350-355, 1986.
[9] V. Arvind and P. Mukhopadhyay. The monomial ideal membership problem and polynomial identity testing. In Proceedings of the 18th International Symposium on Algorithms and Computation (ISAAC), pages 800-811, 2007.
[10] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of the 49th Annual Symposium on Foundations of Computer Science (FOCS), pages 67-75, 2008.
[11] W. Bonnice and M. Edelstein. Flats associated with finite sets in P^{d}. Niew. Arch. Wisk., 15:11-14, 1967.
[12] M. Bläser, M. Hardt, R. J. Lipton, and N. K. Vishnoi. Deterministically testing sparse polynomial identities of unbounded degree. Inf. Process. Lett., 109(3):187-192, 2009.
[13] P. Borwein and W. O. J. Moser. A survey of Sylvesters problem and its generalizations. Aequationes Mathematicae, 40(1):111-135, 1990.
[14] P. B. Borwein. The Desmic conjecture. J. Comb. Theory, Ser. A, 35(1):1-9, 1983.
[15] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal interpolation (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages 301-309, 1988.
[16] M. Clausen, A. Dress, J. Grabmeier, and M. Karpinski. On zero-testing and interpolation of k -sparse multivariate polynomials over finite fields. Theor. Comput. Sci., 84(2):151-164, 1991.
[17] Z. Chen and M. Kao. Reducing randomness via irrational numbers. SIAM J. on Computing, 29(4):1247-1256, 2000.
[18] H. Coxeter. A problem of collinear points. Amer. Math. Monthly, 55:26-28, 1948.
[19] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404-1434, 2006.
[20] M. Edelstein and L. M. Kelly. Bisecants of finite collections of sets in linear spaces. Canadian Journal of Mathematics, 18:375-380, 1966.
[21] N. D. Elkies, L. M. Pretorius, and C. J. Swanepoel. Sylvester-Gallai theorems for complex numbers and quaternions. Discrete \& Computational Geometry, 35(3):361-373, 2006.
[22] D. Grigoriev and M. Karpinski. An exponential lower bound for depth 3 arithmetic circuits. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), pages 577-582, 1998.
[23] D. Grigoriev, M. Karpinski, and M. F. Singer. Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIA M J. Comput., 19(6):1059-1063, 1990.
[24] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields. Combinatorica, 28(4):415-440, 2008.
[25] S. Hansen. A generalization of a theorem of Sylvester on the lines determined by a finite point set. Mathematica Scandinavia, 16:175180, 1965.
[26] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672-694, 2002.
[27] V. Kabanets. Derandomization: A brief overview. In Bulletin of the European Association for Theoretical Computer Science - Computational Complexity Column, number 76, 2002.
[28] L. Kelly. A resolution of the Sylvester-Gallai problem of J. -P. Serre. Discrete Comput. Geom., 1:101-104, 1986.
[29] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1):1-46, 2004.
[30] A. Klivans and D. A. Spielman. Randomness efficient identity testing of multivariate polynomials. In Proceedings of the 33rd Symposium on Theory of Computing (STOC), pages 216-223, 2001.
[31] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational Complexity, 16(2):115-138, 2007.
[32] Z. Karnin and A. Shpilka. Deterministic black box polynomial identity testing of depth-3 arithmetic circuits with bounded top fan-in. In Proceedings of the 23rd Annual Conference on Computational Complexity (CCC), pages 280-291, 2008.
[33] Z. S. Karnin and A. Shpilka. Reconstruction of generalized depth-3 arithmetic circuits with bounded top fan-in. In Proceedings of the 24th Annual Conference on Computational Complexity (CCC), 2009.
[34] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. In Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS), 2009.
[35] D. Lewin and S. Vadhan. Checking polynomial identities over any field: Towards a derandomization? In Proceedings of the 30th Annual Symposium on the Theory of Computing (STOC), pages 428-437, 1998.
[36] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-167, 1994.
[37] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non-commutative models. Computational Complexity, 14(1):1-19, 2005.
[38] N. Saxena. Diagonal circuit identity testing and lower bounds. In Proceedings of the 35th Annual International Colloquium on Automata, Languages and Programming (ICALP), pages 60-71, 2008.
[39] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM, 27(4):701-717, 1980.
[40] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity classes. J. ACM, 25(1):146-167, 1978.
[41] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992.
[42] A. Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM J. Comput., 38(6):2130-2161, 2009.
[43] N. Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. In Proceedings of the 24 th Annual Conference on Computational Complexity (CCC), 2009.
[44] C. Saha, R. Saptharishi, and N. Saxena. The power of depth 2 circuits over algebras. In Proceedings of the 29th Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 2009.
[45] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of the 40 th Annual ACM Symposium on Theory of Computing (STOC), pages 507-516, 2008.
[46] A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once formulas. In Proceedings of the 13th International Workshop on Randomization and Computation (RANDOM), 2009.
[47] W. T. Tutte. The factorization of linear graphs. J. London Math. Soc., 22:107-111, 1947.
[48] L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM Symposium on Theory of Computing (STOC), pages 249-261, 1979.
[49] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Manipulation (EUROSAM), pages 216-226, 1979.

[^0]: *Hausdorff Center for Mathematics, Endenicher Allee 62, 53115 Bonn, Germany, ns@hcm.uni-bonn.de
 ${ }^{\dagger}$ Appeared in Bulletin EATCS, 99, October 2009, pp. 49-79.

[^1]: ${ }^{1}$ It can be shown, using the independence of I_{i} 's, that an edge can have at most two distinct tags.

