
On the Hardness of the Noncommutative Determinant

V. Arvind and Srikanth Srinivasan
The Institute of Mathematical Sciences
C.I.T. Campus,Chennai 600 113, India
{arvind,srikanth}@imsc.res.in

October 26, 2009

Abstract

In this paper we study the computational complexity of computing the noncommutative
determinant. We first consider the arithmetic circuit complexity of computing the noncom-
mutative determinant polynomial. Then, more generally, we also examine the complexity of
computing the determinant (as a function) over noncommutative domains. Our hardness re-
sults are summarized below:

• We show that if the noncommutative determinant polynomial has small noncommuta-
tive arithmetic circuits then so does the noncommutative permanent. Consequently, the
commutative permanent polynomial has small commutative arithmetic circuits.

• For any field F we show that computing the n × n permanent over F is polynomial-time
reducible to computing the 2n × 2n (noncommutative) determinant whose entries are
O(n2)×O(n2) matrices over the field F.

• We also derive as a consequence that computing the n × n permanent over nonnegative
rationals is polynomial-time reducible to computing the noncommutative determinant over
Clifford algebras of nO(1) dimension.

Our techniques are elementary and use primarily the notion of the Hadamard Product of non-
commutative polynomials.

1 Introduction

In his seminal paper [N91] Nisan first systematically studied the problem of proving lower bounds
for noncommutative computation. The focus of his study was noncommutative arithmetic circuits,
noncommutative arithmetic formulas and noncommutative algebraic branching programs. In his
central result based on a rank argument, Nisan shows that the noncommutative permanent or deter-
minant polynomials in the ring F〈x11, · · · , xnn〉 require exponential size noncommutative algebraic
branching programs.

Nisan’s results are over the free noncommutative ring F〈X〉. Chien and Sinclair, in [CS04], explore
the same question over other noncommutative algebras. They refine Nisan’s rank argument to show

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 103 (2009)

exponential size lower bounds for formulas computing the permanent or determinant over specific
noncommutative algebras, like the algebra of 2× 2 matrices over F, the quaternion algebra, and a
host of other examples.

However, the question of whether there is a small noncommutative circuit for the determinant
or permanent remains unanswered. (Indeed, no explicit lower bounds are known for the general
noncommutative circuit model.) Since the existence of small noncommutative arithmetic circuits
for the permanent would imply the existence of small commutative arithmetic circuits for the per-
manent, we have a good reason to believe that the permanent does not have small noncommutative
arithmetic circuits. However, as far as we know, no such argument has been given for the case of
the noncommutative determinant. Indeed, since Nisan [N91] has also shown an exponential sepa-
ration between the power of noncommutative formulas and circuits, it may very well be that the
noncommutative determinant has polynomial-sized arithmetic circuits.

Another motivation for studying the computational difficulty of computing the noncommutative
determinant (as a function) is an approach to designing randomized approximation algorithms
for the 0 − 1 permanent by designing good unbiased estimators based on the determinant. This
approach has a long history starting with [GG81, KKL+93]. Of specific interest are the works
of Barvinok [B]; Chien, Rasmussen, and Sinclair [CRS03]; and more recently that of Moore and
Russell [MR09]. Barvinok [B] defines a variant of the noncommutative determinant called the
symmetrized determinant and shows that given inputs from a constant dimensional matrix alge-
bra, the symmetrized determinant over these inputs can be evaluated in polynomial time. He uses
these to define a series of algorithms that he conjectures might yield progressively better random-
ized approximation algorithms for the (commutative) permanent. Chien, Rasmussen, and Sinclair
[CRS03] show that efficient algorithms to compute the determinant over Clifford algebras of poly-
nomial dimension would yield efficient approximation algorithms for the permanent. Moore and
Russell [MR09] provide evidence that Barvinok’s approach might not work, but their results also
imply that computing the symmetrized or standard noncommutative determinant over polynomial
dimensional matrix algebras would give a good estimator for the permanent.

Our results

1. We provide evidence that the noncommutative determinant is hard. We show that if the
noncommutative determinant1 can be computed by a small noncommutative arithmetic cir-
cuit, then so can the noncommutative permanent and therefore, the commutative permanent
has small commutative arithmetic circuits. This is in marked contrast to the commutative
case, where the determinant is known to be computable by polynomial sized circuits, but the
permanent is not known (or expected) to have subexponential sized arithmetic circuits.

2. We show that computing the noncommutative determinant over matrix algebras of polynomial
dimension is as hard as computing the commutative permanent. We also derive as a conse-
quence that computing the n × n permanent over nonnegative rationals is polynomial-time
reducible to computing the noncommutative determinant over Clifford algebras of poly(n)
dimension.

1We haven’t defined this polynomial formally yet and there are, in fact, many ways of doing it. See Section 2.

2

This points to the intractability of carrying over Barvinok’s approach for large dimension,
and also to the possibility that the approach of Chien, Rasmussen, and Sinclair might be
computationally infeasible.

We stress that our result here is potentially more useful than a noncommutative circuit lower
bound for the determinant, from an algorithmic point of view. For, an arithmetic circuit
lower bound result would not rule out the possibility of a polynomial-time algorithm for the
noncommutative determinant over even polynomial dimension matrix algebras. For example,
Barvinok’s algorithm [B] computes the symmetrized determinant over constant dimensional
matrix algebras, whereas any algebraic branching program that computes the symmetrized
determinant over constant dimensional matrix algebras must be of exponential size [CS04].

2 Preliminaries

For any set of variables X, let F〈X〉 denote the ring of noncommuting polynomials over X. Let
M(X) denote the set of noncommutative monomials over X; given d ∈ N, let Md(X) denote the
monomials over X of degree exactly d. For f ∈ F〈X〉 and m ∈M(X), we will denote by f(m) the
coefficient of the monomial m in f .

For any ring R, we use Mn(R) to denote the ring of n× n matrices with entries from R.

Fix X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, two disjoint sets of variables. Given f ∈ F〈X〉,
matrices Ai ∈Mk(F〈Y 〉) for 1 ≤ i ≤ m, and i0, j0 ∈ [k], we use f(A1, A2, . . . , Am)(i0, j0) to denote
the (i0, j0)th entry of the matrix f(A1, A2, . . . , Am) ∈Mk(F〈Y 〉).

2.1 Noncommutative determinants and permanents

Given X = {xij | 1 ≤ i, j ≤ n} for n ∈ N, we define the n × n noncommutative determinant and
permanent polynomials over the set of variables X. By fixing the order of multiplication in each
monomial of the commutative determinant/permanent polynomials in different ways, one can obtain
many different reasonable ways of defining the n×n noncommutative determinant and permanent,
and indeed many of these definitions have been studied (see [A96], which surveys various flavours of
the noncommutative determinant). The most straightforward definitions are those of the Cayley de-
terminant and Cayley permanent – we will denote these by Cdetn(X) and Cpermn(X) respectively
– which use the row order of multiplication. That is,

Cdetn(X) =
∑
σ∈Sn

sgn(σ) x1,σ(1) · x2,σ(2) · · ·xn,σ(n),

Cpermn(X) =
∑
σ∈Sn

x1,σ(1) · x2,σ(2) · · ·xn,σ(n).

We also define the Moore determinant and Moore permanent – denoted Mdetn(X) and Mpermn(X)
respectively – by ordering the variables in each monomial using the cyclic order of the

3

corresponding permutation. Given σ ∈ Sn, we write it as a product of disjoint cycles
(nσ11 · · ·nσ1l1)(nσ21 · · ·nσ2l2) · · · (nσr1 · · ·nσrlr) such that ∀i ∈ [r] and j ∈ [lr] \ {1}, we have nσi1 < nσij and
nσ11 > nσ21 > · · · > nσr1. The Moore determinant and permanent are defined as

Mdetn(X) =
∑
σ∈Sn

sgn(σ) xnσ11,nσ12 · · ·xnσ1lr ,nσ11 · · ·xnσr1,nσr2 · · ·xnσrlr ,nσr1 ,

Mpermn(X) =
∑
σ∈Sn

xnσ11,nσ12 · · ·xnσ1lr ,nσ11 · · ·xnσr1,nσr2 · · ·xnσrlr ,nσr1 .

In the setting of a field F of characteristic 0, Alexander Barvinok, in [B], has studied another
variant of the noncommutative determinant called the symmetrized determinant, which is denoted
sdetn(X). It is defined as follows:

sdetn(X) =
1
n!

∑
σ,τ∈Sn

sgn(σ)sgn(τ) xτ(1),σ(1)xτ(2),σ(2) · · ·xτ(n),σ(n).

Barvinok shows that, for any fixed dimensional associative algebra A over F of characteristic zero,
there is a polynomial-time algorithm which, on input an n × n matrix A with entries from A,
computes sdetn(A). It is not known whether such algorithms exist for the Cayley or Moore deter-
minants.

2.2 Models for noncommutative arithmetic computation

A noncommutative arithmetic circuit C over a field F is defined as follows: C is a directed acyclic
graph and every leaf of the graph is labelled with either an input variable from the set of variables
X or an element from F. Every internal node is labelled by either (+) or (×) – meaning that it is
either an addition or multiplication gate respectively – and has fanin two. Since we are working
over noncommutative domains, we will assume that each multiplication gate has a designated left
child and a designated right child. Each gate of the circuit computes a polynomial in F〈X〉 in the
natural way: the polynomials computed at the leaves are the polynomials labelling the leaves; the
polynomial computed at an internal node labelled by + (resp. ×) is the sum (resp. product in
left-to-right order) of the polynomials computed at its children. The polynomial computed by C is
the polynomial computed at a designated output node of the circuit.

We also recall the definition of an Algebraic Branching Program (ABP) computing a noncommu-
tative polynomial in F〈X〉 ([N91], [RS05]). An ABP is a directed acyclic graph with one vertex
of in-degree zero, which is called the source, and one vertex of out-degree zero, which is called the
sink. The vertices of the graph are partitioned into levels numbered 0, 1, . . . , d. Edges may only go
from level i to level i+ 1 for i = 0, 1, . . . , d−1. The source is the only vertex at level 0 and the sink
is the only vertex at level d. Each edge is labeled with a homogeneous linear form in the variables
X. The size of the ABP is the number of vertices.

The ABP computes a degree d homogeneous polynomial f ∈ F〈X〉 as follows. Fix any path γ from
source to sink with edges e1, e2, . . . , ed, where ei is the edge from level i − 1 to level i, and let `i

4

denote the linear form labelling edge ei. We denote by fγ the homogeneous degree d polynomial
`1 · `2 · · · `d (note that the order of multiplication is important). The polynomial f computed by
the ABP is simply

f =
∑
γ∈P

fγ

where P is the set of all paths from the source to the sink.

We will also consider a slight variant of the above definition where we allow multiple sources and
sinks. A multi-output ABP P is defined exactly as above, except that we allow multiple sources at
level 0 and multiple sinks at level d. For each source s and sink t, an ABP Pst may be obtained
from P by removing all sources other than s and sinks other than t. Let S = {s1, s2, . . . , sa} and
T = {t1, t2, . . . , tb} denote the sets of sources and sinks respectively in P . The ABP P will be
thought of as computing the ab many polynomials computed by the ABPs Psi,tj . More precisely,
the output of the ABP P is an a× b matrix A with entries from F〈X〉 such that the (i, j)th entry
of A, denoted A(i, j), is the polynomial computed by the ABP Psi,tj . It is easily seen that we
can write A as

∑
m∈Md(X)Amm, where Am ∈ Fa×b; we will call Am the coefficient matrix of the

monomial m in the matrix A.

3 The Hadamard Product

A key notion we require for all our reductions is the Hadamard product of polynomials that was
introduced in [AJS09].

Definition 1. Given polynomials f, g ∈ F〈X〉, their Hadamard product h = f ◦ g is defined as
follows: h is the unique polynomial in F〈X〉 such that for any monomial m ∈M(X), the coefficient
h(m) = f(m) · g(m).

In [AJS09, Theorem 5] we show that given a noncommutative circuit for polynomial f and an ABP
for polynomial g we can efficiently compute a noncommutative circuit for their Hadamard product
f ◦ g. However, the construction we present in [AJS09] modifies the noncommutative circuit for
the polynomial f . Hence, it will not work if we are allowed only black-box access to f , which we
require for certain applications in this paper.

Suppose we have an efficient black-box algorithm for evaluating the polynomial f ∈ F〈X〉, where the
variables in X take values in some matrix algebra (say, n×n matrices over a field F). Furthermore,
suppose we have an explicit ABP for the polynomial g. Ideally, we would like to obtain an efficient
algorithm for computing their Hadamard product f ◦ g over the same matrix algebra.

However, what we can show is that we can put together the ABP and the black-box algorithm for
f to obtain an efficient algorithm that computes f ◦ g over F. This turns out to be sufficient to
prove all our hardness results for the different noncommutative determinants.

Theorem 2. Fix d ∈ N. Let Z = {z1, z2, . . . , zm} be a set of noncommuting variables and g ∈ F〈Z〉
be a homogeneous polynomial of degree d such that g is computed by an ABP P of size S. Then,
there exist matrices A1, A2, . . . , An ∈ MS(F) such that for any homogeneous polynomial f ∈ F〈Z〉

5

of degree d, f ◦ g = f(A1z1, A2z2, . . . , Anzn)(1, S). Moreover, given the ABP P , the matrices
A1, A2, . . . , An can be computed in time polynomial in the size of the description of P .

Proof. Let the vertices of P be named 1, 2, . . . , S where 1 is the source of the ABP and S is the sink.
Define the matrices A1, A2, . . . , An ∈MS(F) as follows: Ai(k, l) is the coefficient of the variable zi
in the linear form labelling the edge that goes from vertex k to vertex l; if there is no such edge,
the entry Ai(k, l) = 0. For any monomial m = zi1zi2 · · · zid ∈ Md(Z), let Am denote the matrix
Ai1Ai2 · · ·Aid . We see that

f(A1z1, A2z2, . . . , Anzn) =
∑

i1,i2,...,id∈[n]

f(zi1zi2 · · · zid)(Ai1zi1)(Ai2zi2) · · · (Aidzid)

=
∑

i1,i2,...,id∈[n]

f(zi1zi2 · · · zid)(Ai1Ai2 · · ·Aid)(zi1zi2 · · · zid)

=
∑

m∈Md(Z)

f(m)Amm

Note that the coefficient g(m) of a monomial m = zi1zi2 · · · zid in g is just Am(1, S) =∑
k1,k2,...,kd−1∈[S]

∏d
j=1Aij (kj−1, kj), where k0 = 1 and kd = S. Putting the above obser-

vations together, we see that f(A1z1, A2z2, . . . , Anzn)(1, S) =
∑

m∈Md(Z) f(m)Am(1, S)m =∑
m∈Md(Z) f(m)g(m)m = f ◦ g. Since the entries of the matrices A1, A2, . . . , An can be read

off from the labels of P , it can be seen that A1, A2, . . . , An can be computed in polynomial time
given the ABP P . This completes the proof.

Remark 3. We note that the matrices Ai in the statement of Theorem 2 can actually be computed
from the ABP even more efficiently, say, in uniform AC0.

The following corollary is immediate.

Corollary 4. [AJS09] Given a noncommutative circuit of size S′ for f ∈ F〈Z〉 and an ABP of size
S for g ∈ F〈Z〉, we can efficiently compute a noncommutative circuit of size O(S′S3) for f ◦ g.

The next corollary is the more useful version for this paper.

Corollary 5. Let Z = {z1, z2, . . . , zn}. Suppose A is a polynomial-time algorithm for computing
a homogeneous degree d polynomial f ∈ F〈Z〉 for matrix inputs from MS(F).2 Given as input
an ABP P , with S nodes, computing a homogeneous degree d polynomial g ∈ F〈Z〉, and scalars
a1, a2, . . . , an ∈ F, we can compute f ◦ g(a1, a2, . . . , an) in polynomial time.

Proof. We first compute matrices A1, A2, . . . , An, described in the Theorem 2, in time poly-
nomial in the description of the ABP P . Then we invoke the given algorithm A on in-
put (A1a1, A2a2, . . . , Anan) to obtain as output an S × S matrix whose (1, S)th entry contains
f ◦ g(a1, a2, . . . , an). Clearly, the simulation runs in polynomial time.

2The statement can be generalized to any unital algebra A in place of the field F.

6

4 The hardness of the Cayley determinant

We consider polynomials over an arbitrary field F (for the algorithmic results F is either rational
numbers or a finite field). The main result of this section is that if there is a polynomial-time
algorithm to compute the 2n× 2n Cayley determinant over inputs from MS(F) for S = c · n2 (for
a suitable constant c) then there is a polynomial-time algorithm to compute the n× n permanent
over F.

Throughout this section let X denote {xij | 1 ≤ i, j ≤ 2n}, and Y denote {yij | 1 ≤ i, j ≤ n}. Our
aim is to show that if there is a polynomial-time algorithm for computing Cdet2n(X) where xij
takes values in MS(F) then there is a polynomial-time algorithm that computes Cpermn(Y) where
yij takes values in F.

The 2n × 2n determinant has 2n! many signed monomials of degree 2n of the form
x1,σ(1)x2,σ(2) · · ·x2n,σ(2n) for σ ∈ S2n. We will identify n! of these monomials, all of which have
the same sign. More precisely, we will design a small ABP with which we will be able to pick out
these n! monomials of the same sign.

We now define these n! many permutations from S2n which have the same sign and the correspond-
ing monomials of Cdet2n that can be picked out by a small ABP.

Definition 6. Let n ∈ N. For each permutation π ∈ Sn, we define a permutation ρ(π) in S2n,
called the interleaving of π, as follows:

ρ(π)(i) =
{
π(i+1

2), if i is odd,
n+ π(i2), if i is even.

That is, the elements ρ(π)(1), ρ(π)(2), · · · , ρ(π)(2n) are simply π(1), (n + π(1)), π(2), (n +
π(2)), · · · , π(n), (n+ π(n)).

The following lemma states a crucial property of the permutation ρ(π).

Lemma 7. The sign of the permutation ρ(π) is independent of π. More precisely, for every π ∈ Sn,
we have sgn(ρ(π)) = sgn(ρ(1n)), where 1n denotes the identity permutation in Sn.

Proof. For each π ∈ Sn we can define the permutation π2 ∈ S2n as π2(i) = π(i) for 1 ≤ i ≤ n
and π2(n + j) = n + π(j) for 1 ≤ j ≤ n. It is easy to verify that sgn(π2) = sgn(π)2 = 1 for every
π ∈ Sn. To see this we write π2 as a product of disjoint cycles and notice that every cycle occurs
an even number of times. Furthermore, we can check that ρ(π) = ρ(1n)π2, where we evaluate
products of permutations from left to right. Hence it follows that sgn(ρ(π)) = sgn(ρ(1n))sgn(π2) =
sgn(ρ(1n)).

We will denote by ρ0 the permutation ρ(1n), where 1n denotes the identity permutation in Sn.

For σ ∈ S2n, we will denote by mσ the monomial x1,σ(1)x2,σ(2) · · ·x2n,σ(2n) ∈M(X). For σ, τ ∈ S2n,
we will denote the monomial xσ(1),τ(1)xσ(2),τ(2) · · ·xσ(2n),τ(2n) by mσ,τ .

7

In the next lemma we show that there is an ABP that will filter out monomials that are not of the
form mρ(π) from among the mσ.

Lemma 8. There is an ABP P of size O(n2) and width n that computes a homogeneous polynomial
F ∈ F〈X〉 of degree 2n such that for any σ, τ ∈ S2n,

• F (mσ) = 1 if σ = ρ(π) for some π ∈ Sn, and 0 otherwise.

• F (mσ,τ) = 0 unless σ = 12n, where 12n denotes the identity permutation in S2n.

Moreover, the above ABP P can be computed in time poly(n).

Proof. The ABP is essentially just a finite automaton over the alphabet X with the following
properties: for input monomials of the form mσ it accepts only those monomials that are of the
form mρ(π). Further, for input monomials of the form mσ,τ it accepts only those monomials of the
form m12n,τ . We give the formal description of this ABP P below.

The ABP P contains 2n + 1 layers, labelled {0, 1, . . . , 2n}. For each even i ∈ {0, 1, . . . , 2n}, there
is exactly one node qi at level i; for each odd i ∈ {0, 1, . . . , 2n}, there are n nodes pi,1, pi,2, . . . , pi,n
at level i. We now describe the edges of P : for each even i ∈ {0, 1, . . . , 2n − 2} and j ∈ [n], there
is an edge from qi to pi+1,j labelled xi+1,j ; for each odd i ∈ {0, 1, . . . , 2n} and j ∈ [n], there is an
edge from pi,j to qi+1 labelled xi+1,n+j .

It is easy to see that P as defined above satisfies the requirements of the statement of the lemma.
It is also clear that the ABP P can be computed in polynomial time.

Note that the ABP P of Lemma 8 can in fact be constructed in uniform AC0.

Remark 9. For this section we require only the first part of Lemma 8. The second part of Lemma 8
is used in Section 6.

We are now ready to prove that if there is a small noncommutative arithmetic circuit that computes
the Cayley determinant polynomial, then there is a small noncommutative arithmetic circuit that
computes the Cayley permanent polynomial.

Theorem 10. For any n ∈ N, if there is a circuit C of size s computing Cdet2n(X), then there is
a circuit C ′ of size polynomial in s and n that computes Cpermn(Y).

Proof. Assuming the existence of the circuit C as stated above, by Corollary 4, there is a noncom-
mutative arithmetic circuit C ′′ of size poly(s, n) that computes the polynomial F ′′ = Cdet2n ◦ F ,
where F is the polynomial referred to in Lemma 8. For any monomial m, if m 6= mσ for any
σ ∈ S2n, then Cdet2n(m) = 0 and hence, in this case, F ′′(m) = 0; moreover, for m = mσ, we have
F (m) = 1 if σ = ρ(π) for some π ∈ Sn, and 0 otherwise. Hence, we see that

F ′′(X) =
∑
π∈Sn

sgn(ρ(π))mρ(π) = sgn(ρ0)

(∑
π∈Sn

mρ(π)

)

8

where the last equality follows from Lemma 7.

Let C ′ be the circuit obtained from C ′′ by substituting xij with y 1+i
2
,j if i is odd and j ∈ [n], and

by 1 if i is even or j /∈ [n], and by multiplying the output of the resulting circuit by sgn(ρ0). Let
F ′ denote the polynomial computed by C ′. Then, we have

F ′(X) =
∑
π∈Sn

m′ρ(π)

where m′ρ(π) denotes the monomial obtained from mρ(π) after the substitution. It can be checked
that for any π ∈ Sn, the monomial m′ρ(π) = y1,π(1)y2,π(2) · · · yn,π(n). Hence, the polynomial F ′

computed by C ′ in indeed Cpermn(Y). It is easily seen that the size of C ′ is poly(s, n).

We now show that evaluating the polynomial Cdet2n over MS(F), for S = c · n2 for suitable c > 0,
is at least as hard as evaluating the permanent over F.

Theorem 11. If there is a polynomial-time algorithm A that computes the 2n × 2n Cayley de-
terminant of matrices with entries in MS(F), for S = c · n2 for suitable c > 0, then there is a
polynomial-time algorithm that computes the n× n permanent over F.

Proof. This is an easy consequence of Corollary 5. Consider the algorithm given by Corollary 5
for computing Cdet2n ◦ F over the field F, where the ABP in Corollary 5 is the ABP of Lemma 8
computing F .

In order to evaluate the permanent over inputs aij , 1 ≤ i, j ≤ n we will substitute x2i−1,j = aij for
1 ≤ i, j ≤ n and we put xi,j = 1 when i is even or j > n. As in the proof of Theorem 10 it follows that
for this substitution the algorithm computing Cdet2n ◦F will output sgn(ρ0)Cpermn(a11, . . . , ann).
Since sgn(ρ0) can be easily computed, we have a polynomial-time algorithm for computing the n×n
permanent over F.

Remark 12. The above result has a stronger consequence: for any fixed ε > 0, if there is a
polynomial-time algorithm that computes the m×m Cayley determinant over Mmε(F), then there
is a polynomial-time algorithm that computes Ω(mε/2)×Ω(mε/2) permanents over F, hence implying
that permanent over F is polynomial-time computable.

5 The Cayley determinant over Clifford algebras

We now consider the complexity of computing the determinant over real Clifford algebras of poly-
nomially large dimension. We show via a polynomial-time reduction that computing the permanent
over rationals is reducible to this problem. Indeed, by inspecting our result we can observe that
even approximating the determinant over such Clifford algebras would yield similar approximation
algorithms for the permanent over the reals.

We first define the basic notions in the theory of Clifford algebras. A thorough treatment can be
found in [LS09]. Fix m ∈ N. The (real) Clifford algebra CL′m is a 2m-dimensional vector space

9

over R with basis elements of the form ei1ei2ei3 · · · eik where i1 < i2 < i3 · · · < ik are elements
from [m]. Multiplication between elements of the basis is defined by the following rules: e2i = 1
and eiej = −ejei for distinct i, j ∈ [m]; this is extended linearly to all pairs of elements from
the Clifford algebra. Given i1 < i2 < · · · < ik from [m], we denote by eS the basis element
ei1ei2 · · · eik , where S = {i1, i2, . . . , ik}. Each element of the Clifford algebra is uniquely expressible
as
∑

S⊆[m] cSeS , where cS ∈ R for each S. (Note that e∅ and 1 both refer to the multiplicative
identity of the algebra.) An idempotent of the Clifford algebra is an element e such that e2 = e.
Given h =

∑
S⊆[m] cSeS in CL′m, we define its norm |h| to be

√∑
S⊆[m] c

2
S .

The subset of basis elements {eS | S has even cardinality} generates a strict subalgebra of CL′m.
We will denote this subalgebra by CLm. This is the algebra of interest to us. The term ‘Clifford
algebra’ will henceforth refer to CLm for some m ∈ N.

Chien, Rasmussen, and Sinclair [CRS03] have shown that a polynomial-time algorithm that, when
given as input an n×n matrix B with entries from CLm for m = 2 log n+2, computes |Cdetn(B)|2
can be used to design a randomized polynomial time algorithm to approximate the 0-1 permanent
(over Q).

In this section, we prove that if there is a polynomial-time algorithm to compute either |Cdetn(B)|2
or Cdetn(B), then the permanent (over inputs from R) can actually be computed in polynomial
time. For an n× n real matrix A, let permn(A) denote the permanent of A.

Remark 13. In a sense, our result in this section should not be surprising. We have already
proved (in Theorem 11) that computing the determinant over matrix algebras is at least as hard
as computing the permanent. Also, it is known that Clifford algebras of polynomial dimension are
isomorphic to matrix algebras of polynomial dimension (see, for example, [LS09, Chapter 5]). How-
ever, in this section we actually give an explicit polynomial-time reduction showing that computing
the permanent over the reals is reducible to computing either |Cdetn(B)|2 or Cdetn(B) where the
entries of B are from the Clifford algebra CLm.

Suppose we wish to compute the permanent of an n× n matrix with entries from R. W.l.o.g., we
assume that n = 2` for some ` ∈ N. Let m denote 5`. The next lemma is about the existence of
certain elements in the algebra CLm useful for the reduction.

Lemma 14. Let n, `,m be as above. Then, there exist h1, h2, . . . , hn, h
′
1h
′
2, . . . , h

′
n ∈ CLm and an

idempotent e ∈ CLm such that:

• For all j, hjh′j = e.

• For all j 6= k, hjh′k = 0.

• |e|2 = 1
2`

.

Moreover, the elements h1, h2, . . . , hn, h
′
1, h
′
2, . . . , h

′
n and e can be constructed in time poly(n).

We defer the proof of the above lemma and first prove the main result of this section.

10

Theorem 15. Let n, `,m be as above. There is a polynomial-time algorithm which, when given
any matrix A ∈Mn(R), computes a B ∈M2n(CLm) such that |Cdet2n(B)|2 = permn(A)2

2`
.

Proof. The matrix B will be the following: for any odd i ∈ [2n] and any j ∈ [2n], set B(i, j) – the
(i, j)th entry of B – to be A(i+1

2 , j)hj if j ≤ n and 0 if j > n; for any even i ∈ [2n] and j ∈ [2n],
set B(i, j) to be h′j−n if j > n and 0 otherwise. Clearly, B can be computed in polynomial time
given A. Note the following property of B: for any odd i ∈ [2n] and j, k ∈ [2n]

B(i, j)B(i+ 1, k) =
{
A(i+1

2 , j)e if j ≤ n and k = n+ j,
0 otherwise.

Here e denotes the idempotent from Lemma 14. The following claim is easy to see.

Claim 16. For any permutation σ ∈ S2n, the product
∏2n
i=1B(i, σ(i)) = (

∏n
i=1A(i, π(i)))e if

σ = ρ(π) for some π ∈ Sn and it is 0 otherwise.

Let us consider Cdet2n(B). We have:

Cdet2n(B) =
∑
σ∈S2n

sgn(σ)B(1, σ(1)) ·B(2, σ(2)) · · ·B(2n, σ(2n))

=
∑
π∈Sn

sgn(ρ(π))(
n∏
i=1

A(i, π(i)))e

= sgn(ρ0)permn(A)e

Thus, we see that |Cdet2n(B)|2 = permn(A)2 |e|2 = permn(A)2

2`
.

We have the following easy consequence of the above theorem.

Corollary 17. Fix any ε > 0, and suppose there is a polynomial-time algorithm that computes
|Cdetn(B)|2 on input an n × n matrix B with entries from CLm for m = ε log n. Then there is a
polynomial-time algorithm that computes the n×n permanent of matrices with nonnegative rational
entries.

Proof. The statement directly follows from Theorem 15 for m = d5 log ne. To prove hardness for
m = ε log n, we note that a polynomial-time algorithm to compute |Cdetn(B)|2 over CLε logn can
be used to compute |Cdetnε/5(B)|2 over CL5 lognε/5 in polynomial time.

A δ-approximation algorithm A for a function f : Σ∗ −→ Q is an algorithm such that for each
x ∈ Σ∗

(1− δ)f(x) ≤ A(x) ≤ (1 + δ)f(x).

Our reduction from computing the permanent for nonnegative entries to computing |Cdetn(B)|2
actually yields an approximation preserving reduction. We formalize this in the next corollary.

11

Corollary 18. Fix any δ > 0 and ε > 0. Suppose there is a polynomial-time δ-approximation
algorithm for the function that on input an n× n matrix B with entries from CLm for m = ε log n
takes the value |Cdetn(B)|2. Then there is a polynomial-time δ-approximation algorithm for the
n× n permanent with nonnegative rational entries.

We now prove Lemma 14.

Proof of Lemma 14. Let e1, e2, . . . , em denote the generators of CL′m. Partition the set [m] into `
subsets of size 5 as follows: set Si = {5(i− 1) + j | j ∈ [5]} for each i ∈ [`]. For each i ∈ [`], let
Si,0 = {5(i− 1) + 1, 5(i− 1) + 2, 5(i− 1) + 3, 5(i− 1) + 5} and Si,1 = {5(i− 1) + 2, 5(i− 1) + 3, 5(i−
1) + 4, 5(i− 1) + 5}.

Using the fact that e2i = 1 and eiej = −ejei for i 6= j it easily follows that for any two disjoint
sets S, T ⊆ [m] such that |S|, |T | are even, we have eSeT = eT eS . Hence, the elements eSi,b1 and
eSj,b2 commute for i 6= j and any b1, b2 ∈ {0, 1}. Furthermore, for all i ∈ [`] and b ∈ {0, 1} we have
e2Si,b = 1. Also, we have eSi,0eSi,1 = −eSi,1eSi,0 . Finally, notice that eSi,b for 1 ≤ i ≤ ` and b ∈ {0, 1}
are all elements of CLm.

For i ∈ [`] and b ∈ {0, 1}, set gi,0 =
1+eSi,1

2 and gi,1 =
eSi,0 (1−eSi,1)

2 . Also, set g′i,0 = gi,0 and

g′i,1 =
eSi,0 (1+eSi,1)

2 . Notice that g2
i,0 = gi,0. We also note an additional relation eSi,0(1 − eSi,1) =

(1 + eSi,1)eSi,0 . Using these we can easily derive the following crucial properties of these elements
of CLm.

• For each i ∈ [`] and b ∈ {0, 1}, gi,bg′i,b = gi,0.

• For each i ∈ [`] and b ∈ {0, 1}, gi,bg′i,1−b = 0.

• For i1 6= i2 and any b1, b2 ∈ {0, 1}, the elements gi1,b1 and g′i2,b2 commute.

Finally, we define hj , h′j for a fixed j ∈ [n]. Let b1b2 . . . b` be the binary representation of the integer
j − 1 (recall that n = 2`). We define hj = g1,b1g2,b2 · · · g`,b` and h′j = g′1,b1g

′
2,b2
· · · g′`,b` . Also, we

define e to be g1,0g2,0 · · · g`,0, which is the same as h1 and h′1.

We now prove that the hj , h′j (j ∈ [n]) and e satisfy the properties claimed in the statement of the
lemma. Fix any j ∈ [n] and let b1b2 . . . b` be the binary representation of j − 1. We have

hjh
′
j = g1,b1g2,b2 · · · g`,b`g

′
1,b1g

′
2,b2 · · · g

′
`,b`

= (g1,b1g
′
1,b1) · (g2,b1g′2,b2) · · · (g`,b`g

′
`,b`

)

= g1,0g2,0 · · · g`,0 = e

The second equality follows from the fact that gi1,b and g′i2,b commute for any distinct i1 and i2.
The third equality follows from the fact that for any i and b, gi,bg′i,b = gi,0. This proves the first
property claimed in the statement of the lemma. Similarly, we can see that e is an idempotent:
e2 = h2

1 = e.

12

Fix any distinct j, k ∈ [n]. Let b1b2 . . . b` and b′1b
′
2 . . . b

′
` be the binary representations of j and k.

Since j 6= k, we can fix some i such that bi 6= b′i. We have

hjh
′
k = g1,b1g2,b2 · · · g`,b`g

′
1,b′1

g′2,b′2
· · · g′`,b′`

= (g1,b1g
′
1,b1) · (g2,b1g′2,b2) · · · (gi,big

′
i,b′i

) · · · (g`,b`g
′
`,b`

)

= (g1,b1g
′
1,b1) · (g2,b1g′2,b2) · · · 0 · · · (g`,b`g

′
`,b`

) = 0

where the third equality follows from the fact that we have gi,bg′i,1−b = 0. This proves the second
claim made in the lemma.

Finally, we note that

|e|2 = |g1,0g2,0 · · · g`,0|2 =

∣∣∣∣∣∣ 1
2`
∑
T⊆`

∏
i∈T

eSi,1

∣∣∣∣∣∣
2

=
1
4`

∣∣∣∣∣∣
∑
T⊆`

∏
i∈T

eSi,1

∣∣∣∣∣∣
2

=
2`

4`
=

1
2`

It is easily seen from their definitions that the hj , h′j and e can be computed in time poly(n). This
completes the proof of the lemma.

6 The Symmetrized Determinant

In this section, we observe that the 2n×2n symmetrized determinant over O(n2)-dimensional matrix
algebras is at least as hard to compute as the permanent. This stands in marked contrast to the
result of Barvinok [B], who shows that over constant-dimensional matrix algebras, the symmetrized
determinant is polynomial-time computable.

In this section, let F denote a field of characteristic 0. Let X = {xij | 1 ≤ i, j ≤ 2n} and Y =
{yij | 1 ≤ i, j ≤ n}. Recall that for σ, τ ∈ S2n, the monomialmσ,τ is xσ(1),τ(1)xσ(2),τ(2) · · ·xσ(2n),τ(2n),
and the monomial mσ is x1,σ(1)x2,σ(2) · · ·x2n,σ(2n).

Theorem 19. If the sdet2n(X) polynomial over F can be computed by a polynomial-sized noncom-
mutative arithmetic circuit, then the polynomial Cpermn(Y) can also be computed by a polynomial-
sized noncommutative arithmetic circuit.

Proof. Assume that sdet2n(X) is computed by a circuit C of size s. As in Theorem 10, we will
proceed by taking Hadamard product. Let P be the ABP defined in Lemma 8 and F (X) the
polynomial it computes. Let F ′′ denote the polynomial sdet2n(X) ◦ F . Note that by Corollary 4,
F ′′ can be computed by a circuit C ′′ of size poly(s, n). From Lemma 8, we have F (mσ,τ) = 0 unless
σ = 12n, the identity permutation in S2n; moreover, we also have F (m12n,τ) = F (mτ) which is 1 if
τ = ρ(π) for some π ∈ Sn and 0 otherwise. By the above reasoning,

F ′′(X) =
1

(2n)!

∑
π∈Sn

sgn(ρ(π))mρ(π) =
sgn(ρ0)
(2n)!

∑
π∈Sn

mρ(π)

13

Now, we substitute each xij by y 1+i
2
,j if i is odd and j ∈ [n] and by 1 if i is even or j /∈ [n] in

the circuit C ′′. The effect of this substitution is to transform mρ(π) into y1,π(1)y2,π(2) · · · yn,π(n) for
each π ∈ Sn. Hence, the resulting polynomial is simply sgn(ρ0)Cpermn(Y)

(2n)! . Thus, by multiplying by
sgn(ρ0)(2n)!, we obtain a circuit C ′ of size poly(s, n) that computes Cpermn(Y).

Theorem 20. If there is a polynomial-time algorithm A that computes the 2n × 2n symmetrized
determinant of matrices with entries in MS(F), for S = c · n2 for suitable c > 0, then there is a
polynomial-time algorithm that computes the n× n permanent over F.

Proof. The proof is almost exactly identical to that of Theorem 11. Consider the algorithm given
by Corollary 5 for computing sdet2n ◦F over the field F, where the ABP in Corollary 5 is the ABP
of Lemma 8 computing F .

In order to evaluate the permanent over inputs aij , 1 ≤ i, j ≤ n we will substitute x2i−1,j = aij
for 1 ≤ i, j ≤ n and we put xi,j = 1 when i is even or j > n. As in the proof of The-
orem 19, it follows that for this substitution the algorithm computing sdet2n ◦ F will output
sgn(ρ0)
(2n)! Cpermn(a11, . . . , ann). Since sgn(ρ0) and (2n)! are easily computable, we have a polynomial-

time algorithm for computing the n× n permanent over F.

7 The Moore determinant

We demonstrate by a simple reduction that the Moore determinant and permanent are interre-
ducible. We also show that the computing the Moore determinant over a field of characteristic
zero is at least as hard as counting the number of directed Hamilton Cycles of a directed graph,
which is a well-known #P-complete problem. If the field is of characteristic k, then computing the
Moore determinant over the field is at least as hard as counting the number of Hamilton cycles of
a directed graph modulo the prime k, which is hard for ModkP.

Assume X = {xij | 1 ≤ i, j ≤ n}. Given a permutation σ ∈ Sn, we write σ as a product of
disjoint cycles as follows: (nσ11 · · ·nσ1l1)(nσ21 · · ·nσ2l2) · · · (nσr1 · · ·nσrlr) with nσi1 < nσij for all i ∈ [r]
and j ∈ [lr] \ {1} and satisfying nσ11 > nσ21 > · · · > nσr1. Let wσ denote the monomial
xnσ11,nσ12 · · ·xnσ1lr ,nσ11 · · ·xnσr1,nσr2 · · ·xnσrlr ,nσr1 .

Let Cn denote the set of all 1-cycles in Sn, i.e permutations whose cycle decomposition con-
sists of a single cycle of length n. Define the polynomial HCn(x11, . . . , xnn) ∈ F〈X〉 to be∑

σ∈Cn wσ. Fix any directed graph G on n vertices with adjacency matrix A. Let H(G) denote
HCn(A(1, 1), . . . , A(n, n)). The quantity H(G) has a simple description: if F is of characteristic 0,
then H(G) is the number of directed Hamiltonian cycles in G; and if F is of characteristic k, then
H(G) is the number of directed Hamiltonian cycles of G modulo k.

We have the following easy lemma:

Lemma 21. There are ABPs P ′1 and P ′2 of size O(n2) and width n that compute homogeneous
polynomials F ′1, F

′
2 ∈ F〈X〉 of degree n such that for any σ ∈ Sn, we have

14

• F ′1(wσ) = sgn(σ).

• F ′2(wσ) = sgn(σ) if σ ∈ Cn and 0 otherwise.

Moreover, the above ABPs can be computed in time poly(n).

Proof. Recall that given a permutation σ ∈ Sn, the quantity sgn(σ) is (−1)n+cσ , where cσ is
the number of disjoint cycles in σ. Moreover, note that if σ as a product of disjoint cycles is
(nσ11 · · ·nσ1l1)(nσ21 · · ·nσ2l2) · · · (nσr1 · · ·nσrlr) as above, the value cσ is simply the number of left-to-right
minima in this representation, i.e the number of nσij such that nσij < nσkl for all nσkl to the left of
nσij . Using this observation, it is easy to design an ABP P ′1 that keeps track of the sign of the
permutation and computes a polynomial F ′1 as above. The ABP P ′2 can be constructed similarly;
the main difference from the case of P ′1 is that the ABP must produce the coefficient 0 unless
nσ11 = 1. We omit the formal description of P ′1 and P ′2.

The analogue of Theorem 10 for the Moore determinant follows below. The statement here is
stronger: we show that the arithmetic circuit complexity of Mdetn(X) is polynomial if and only if
the arithmetic circuit complexity of Mpermn(X) is polynomial.

Theorem 22. The Moore determinant polynomial Mdetn(X) can be computed by a polynomial-
sized noncommutative arithmetic circuit if and only if the Moore permanent polynomial Mpermn(X)
can be computed by a polynomial-sized noncommutative arithmetic circuit.

Proof. As in the proof of Theorem 10, we will use the Hadamard product; this time, it can be used
to erase or introduce the signs of the permutations corresponding to each monomial wσ. Formally,
we have Mpermn(X) = Mdetn(X) ◦F ′1(X) and Mdetn(X) = Mpermn(X) ◦F ′1(X), where F ′1(X) is
the polynomial defined in the statement of Lemma 21. Hence, if Mdetn(X) (resp. Mpermn(X)) is
computed by a noncommutative arithmetic circuit of size s, then by applying Corollary 4, we see
that Mpermn(X) (resp. Mdetn(X)) is computed by a noncommutative arithmetic circuit of size
poly(s, n).

Remark 23. Note that Theorem 22 proves an equivalence (up to polynomial factors) between the
arithmetic circuit complexities of the Moore determinant and permanent. This is a stronger state-
ment than we obtained in the case of the Cayley determinant and permanent, where we only showed
(roughly) that the Cayley determinant is at least as hard to compute as the Cayley permanent. The
reason for this is that we are unable to obtain a small ABP that performs the function of P ′1 for the
monomials mσ (defined in Section 4): that is, a small ABP computing a polynomial F1 such that
F1(mσ) = sgn(mσ) for every σ ∈ Sn. However, we are unable to rule out the possibility that such an
ABP exists. If it does, then as above, we can obtain a simple equivalence between the complexities
of the Cayley determinant and permanent.

We now consider the complexity of computing the Moore determinant over matrix algebras of
polynomial dimension. We can, as in the previous sections, show that this is at least as hard as
computing the permanent over matrices with entries from F, but we take a different route this
time. We show that if the Moore determinant over a field of characteristic k can be computed

15

in polynomial time, then there is a polynomial-time algorithm to compute the number of directed
Hamilton cycles H(G) modulo k for an input directed graph G. This allows us to draw stronger
consequences, namely that the Moore determinant is hard to compute even when the field F is
of characteristic 2, something that would not follow if we reduced the permanent to this problem
(since the permanent is polynomial-time computable over fields of characteristic 2).

Theorem 24. If there is a polynomial-time algorithm A that computes the n×n Moore determinant
of matrices with entries in MS(F), for S = c ·n2 for suitable c > 0, then there is a polynomial-time
algorithm that, on input a directed graph G, computes H(G).

Proof. Note that HCn(X) = Mdetn(X) ◦ F ′2, where F ′2 is the polynomial computed by ABP P ′2
constructed in Lemma 21. Moreover, H(G) = HCn(A(1, 1), . . . , A(n, n)), where A is the adjacency
matrix of the graph G. Hence, to compute H(G), we need to compute HCn(A(1, 1), . . . , A(n, n)),
which can be done in polynomial time by Corollary 5.

8 Completeness Results

In this section we observe that the noncommutative Cayley determinant over integer matrices
is complete for GapP w.r.t. polynomial-time Turing reductions. Likewise, the noncommutative
Cayley determinant over a finite field of characteristic k 6= 2 is hard for the modular counting
complexity class ModkP w.r.t. polynomial-time Turing reductions. These observations also hold
for the symmetrized determinant. For the Moore determinant, we prove the above results without
any restriction on the characteristic of the underlying field. We formally describe these observations.

Definition 25. [FFK94],[BG92] A function f : Σ∗ −→ Z is in GapP if there is a polynomial time
NDTM M such that for each x ∈ Σ∗ the value f(x) is accM (x)− rejM (x).

For a prime k, the class ModkP consist of languages L ⊆ Σ∗ such that for some function f ∈ GapP
we have x ∈ L if and only if f(x) ≡ 0(mod k).

By Valiant’s result [V79] it is known that the integer permanent is GapP-complete with respect to
polynomial-time Turing reductions. Furthermore, the permanent over Fk is ModkP-hard for prime
k 6= 2.

Now, for n ∈ N, consider the Cayley determinant for 2n × 2n matrices with entries from MS(Z),
where S = cn2 for some constant c. By Theorem 11, there is a fixed c > 0 such that computing the
integer permanent for n× n matrices is polynomial-time reducible to computing the (1, S)th entry
of such a Cayley determinant. The same observation holds modulo k for a prime k.

Furthermore, the problem of computing the (1, S)th entry of such a Cayley determinant over Z is
easily seen to be in GapP: we can design a polynomial-time NDTM which takes as input a 2n× 2n
matrix with entries from MS(Z) and the difference in the number of accepting and rejecting paths
is the (1, S)th entry of its Cayley determinant. Hence we have the following.

16

Corollary 26. There exists a constant c such that the following holds. For S = cn2, computing the
(1, S)th entry of the Cayley determinant for 2n × 2n matrices with entries from MS(Z) is GapP-
complete w.r.t. polynomial-time Turing reductions. Given a finite field F of characteristic k 6= 2,
computing the (1, S)th of the Cayley determinant for 2n × 2n matrices over MS(F) is hard w.r.t.
polynomial-time Turing reductions for ModkP.

We have similar GapP-completeness and ModkP-hardness consequences for the symmetrized deter-
minant from the results in Sections 6. For the Moore determinant, by Theorem 24, we additionally
obtain hardness for ⊕P over fields of characteristic 2.

Corollary 27. There exists a constant c such that the following holds. For S = cn2, computing
the (1, S)th entry of the Moore determinant for 2n×2n matrices with entries from MS(Z) is GapP-
complete w.r.t. polynomial-time Turing reductions. Given a finite field F of any characteristic
k > 1, computing the (1, S)th of the Moore determinant for 2n × 2n matrices over MS(F) is hard
w.r.t. polynomial-time Turing reductions for ModkP.

Proof. The result follows from Theorem 24 and the following observations: computing H(G) over
the rationals on an input graph G is GapP-complete w.r.t. polynomial-time Turing reductions;
similarly, computing H(G) over a field F of characteristic k (including k = 2) is hard for ModkP
w.r.t. polynomial-time Turing reductions.

9 Discussion

Our work raises further interesting questions regarding the complexity of the noncommutative
determinant.

An important open question is the complexity of computing the noncommutative determinant over
constant dimensional matrix algebras. Theorem 11 can be easily used to show that assuming that
the permanent of an n × n matrix over F cannot be computed in subexponential time, the n × n
noncommutative Cayley, symmetrized, and Moore determinants with entries from M(logn)ω(1)(F)
cannot be computed in polynomial time. Can one strengthen this result to one that says something
about computing the Cayley or Moore determinant over matrices with entries from Mc(F) for some
absolute constant c? (Recall that the symmetrized determinant, on the other hand, is efficiently
computable over constant dimensional matrix algebras.) It is interesting to note that [CS04] have
shown an exponential lower bound for the ABP complexity of the Cayley determinant over even
2× 2 matrices.

A question that arises from the results of Section 4 is if one can show – analogous to those results
– that the Cayley permanent is at least as hard to compute as the Cayley determinant. As pointed
out in Remark 23, one way to prove this is to construct a small ABP P1 that computes a polynomial
F1 of degree n such that F (x1,σ(1) . . . xn,σ(n)) = sgn(σ) for every σ ∈ Sn. This would also make the
proofs of Theorems 10 and 11 much more transparent.

Finally, note that our results do not imply that the Cayley determinant is hard to compute over
Mk(F) when F is a field of characteristic 2, since the permanent is known to be polynomial-time

17

computable over such fields. On the other hand, we have proved that the Moore determinant over
such domains (where k is polynomial) is hard for ⊕P. Can we prove an analogous result for the
Cayley determinant?

References

[AJS09] V. Arvind, P. S. Joglekar, S. Srinivasan. Arithmetic Circuits and the Hadamard
Product of Polynomials CoRR abs/0907.4006: (2009). http://arxiv.org/abs/0907.4006. In
Proceedings FSTTCS 2009 conference, December 2009, to appear.

[A96] H. Aslaksen. Quaternionic determinants. Math. Intelligencer 18 (1996), no. 3, 57-65.

[B] A. Barvinok. New Permanent Estimators via Non-Commutative Determinants. preprint avail-
able from http://www.math.lsa.umich.edu/~barvinok/papers.html

[BG92] R. Beigel, J. Gill. Counting Classes: Thresholds, Parity, Mods, and Fewness. Theor.
Comput. Sci. 103(1): 3-23 (1992).

[CS04] S. Chien, A. Sinclair. Algebras with polynomial identities and computing the determi-
nant In Proc. Annual IEEE Sym. on Foundations of Computer Science,352-361, 2004.

[CRS03] S. Chien, L. E. Rasmussen, A. Sinclair. Clifford algebras and approximating the
permanent. J. Comput. Syst. Sci. 67(2): 263-290 (2003).

[FFK94] S. A. Fenner, L. Fortnow, S. A. Kurtz. Gap-Definable Counting Classes. J. Comput.
Syst. Sci. 48(1): 116-148 (1994).

[GG81] C. Godsil, I. Gutman. On the matching polynomial of a graph, Algebraic Methods in
Graph Theory, 1981, pp. 241–249.

[KKL+93] N. Karmarkar, R. M. Karp, R. J. Lipton, L. Lovàsz, Michael Luby. A Monte-
Carlo Algorithm for Estimating the Permanent. SIAM J. Comput. 22(2): 284-293 (1993).

[LS09] D. Lundholm, L. Svensson. Clifford algebra, geometric algebra, and applications. Avail-
able at http://arxiv.org/abs/0907.5356

[MR09] C. Moore, A. Russell. Approximating the Permanent via Nonabelian Determinants,
CoRR abs/0906.1702: (2009). http://arxiv.org/abs/0906.1702

[N91] N. Nisan. Lower bounds for noncommutative computation In Proc. of 23rd ACM Sym. on
Theory of Computing, 410-418, 1991.

[RS05] R. Raz, A. Shpilka. Deterministic polynomial identity testing in non commutative models
Computational Complexity,14(1):1-19, 2005.

[V79] L. G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci. 8:
189-201 (1979).

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

