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Abstract

The relationship between BQP and PH has been an open problem since the earliest days
of quantum computing. We present evidence that quantum computers can solve problems
outside the entire polynomial hierarchy, by relating this question to topics in circuit complexity,
pseudorandomness, and Fourier analysis.

First, we show that there exists an oracle relation problem (i.e., a problem with many valid
outputs) that is solvable in BQP, but not in PH. This also yields a non-oracle relation problem
that is solvable in quantum logarithmic time, but not in AC

0.
Second, we show that an oracle decision problem separating BQP from PH would follow

from the Generalized Linial-Nisan Conjecture, which we formulate here and which is likely of
independent interest. The original Linial-Nisan Conjecture (about pseudorandomness against
constant-depth circuits) was recently proved by Braverman, after being open for twenty years.
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1 Introduction

A central task of quantum computing theory is to understand how BQP—meaning Bounded-Error
Quantum Polynomial-Time, the class of all problems feasible for a quantum computer—fits in with
classical complexity classes. In their original 1993 paper defining BQP, Bernstein and Vazirani
[11] showed that BPP ⊆ BQP ⊆ P#P.1 Informally, this says that quantum computers are at
least as fast as classical probabilistic computers and no more than exponentially faster (indeed,
they can be simulated using an oracle for counting). Bernstein and Vazirani also gave evidence
that BPP 6= BQP, by exhibiting an oracle problem called Recursive Fourier Sampling that
requires nΩ(log n) queries on a classical computer but only n queries on a quantum computer.2 The
evidence for the power of quantum computers became dramatically stronger a year later, when Shor
[33] (building on work of Simon [34]) showed that Factoring and Discrete Logarithm are in
BQP. On the other hand, Bennett et al. [9] gave oracle evidence that NP 6⊂ BQP, and while no
one regards such evidence as decisive, today it seems extremely unlikely that quantum computers
can solve NP-complete problems in polynomial time. A vast body of research, continuing to the
present, has sought to map out the detailed boundary between those NP problems that are feasible
for quantum computers and those that are not.

However, there is a complementary question that—despite being universally recognized as one
of the “grand challenges” of the field—has had essentially zero progress over the last sixteen years:

Is BQP in NP? More generally, is BQP contained anywhere in the polynomial hierar-

chy PH = NP ∪ NPNP ∪ NPNPNP ∪ · · · ?

The “default” conjecture is presumably BQP 6⊂ PH, since no one knows what a simulation
of BQP in PH would look like. Before this work, however, there was no formal evidence for
or against that conjecture. Almost all the problems for which we have quantum algorithms—
including Factoring and Discrete Logarithm—are easily seen to be in NP ∩ coNP.3 One
notable exception is Recursive Fourier Sampling, the problem that Bernstein and Vazirani
[11] originally used to construct an oracle A relative to which BPPA 6= BQPA. One can show,
without too much difficulty, that Recursive Fourier Sampling yields oracles A relative to
which BQPA 6⊂ NPA and indeed BQPA 6⊂ MAA. However, while it is reasonable to conjecture
that Recursive Fourier Sampling (as an oracle problem) is not in PH, it is open even to show
that this problem (or any other BQP oracle problem) is not in AM! Recall that AM = NP under

1The upper bound was later improved to BQP ⊆ PP by Adleman, DeMarrais, and Huang [3].
2For more about Recursive Fourier Sampling see Aaronson [2].
3Here we exclude BQP-complete problems such as approximating the Jones polynomial [5], which, by the very

fact of being BQP-complete, seem hard to interpret as “evidence” for BQP 6⊂ PH.
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plausible derandomization assumptions [26]. Thus, until we solve the problem of constructing an
oracle A such that BQPA 6⊂ AMA, we cannot even claim to have oracle evidence (which is itself, of
course, a weak form of evidence) that BQP 6⊂ NP.

Before going further, we should clarify that there are two questions here: whether BQP ⊆ PH

and whether PromiseBQP ⊆ PromisePH. In the unrelativized world, it is entirely possible that
quantum computers can solve promise problems outside the polynomial hierarchy, but that all
languages in BQP are nevertheless in PH. However, for the specific purpose of constructing an
oracle A such that BQPA 6⊂ PHA, the two questions are equivalent, basically because one can always
“offload” a promise into the construction of the oracle A.4

1.1 Motivation

There are at least four reasons why the BQP versus PH question is so interesting. At a basic
level, it is both theoretically and practically important to understand what classical resources are
needed to simulate quantum physics. For example, when a quantum system evolves to a given
state, is there always a short classical proof that it does so? Can one estimate quantum amplitudes
using approximate counting (which would imply BQP ⊆ BPPNP)? If something like this were true,
then while the exponential speedup of Shor’s factoring algorithm might stand, quantum computing
would nevertheless seem much less different from classical computing than previously thought.

Second, if BQP 6⊂ PH, then many possibilities for new quantum algorithms might open up to
us. One often hears the complaint that there are too few quantum algorithms, or that progress on
quantum algorithms has slowed since the mid-1990s. In our opinion, the real issue here has nothing
to do with quantum computing, and is simply that there are too few natural NP-intermediate
problems for which there plausibly could be quantum algorithms! In other words, instead of
focussing on Graph Isomorphism and a small number of other NP-intermediate problems, it
might be fruitful to look for quantum algorithms solving completely different types of problems—
problems that are not necessarily even in PH. In this paper, we will see a new example of such a
quantum algorithm, which solves a problem called Fourier Checking.

Third, it is natural to ask whether the P
?
= BQP question is related to that other fundamental

question of complexity theory, P
?
= NP. More concretely, is it possible that quantum computers

could provide exponential speedups even if P = NP? If BQP ⊆ PH, then certainly the answer to
that question is no (since P = NP =⇒ P = PH). Therefore, if we want evidence that quantum
computing could survive a collapse of P and NP, we must also seek evidence that BQP 6⊂ PH.

Fourth, a major challenge for quantum computing research is to get better evidence that quantum
computers cannot solve NP-complete problems in polynomial time. As an example, could we show
that if NP ⊆ BQP, then the polynomial hierarchy collapses? At first glance, this seems like a wild
hope; certainly we have no idea at present how to prove anything of the kind. However, notice

4Here is a simple proof: let Π = (ΠYES, ΠNO) be a promise problem in PromiseBQP
A \ PromisePH

A, for some
oracle A. Then clearly, every PromisePH

A machine M fails to solve Π on infinitely many inputs x in ΠYES ∪ ΠNO.
This means that we can produce an infinite sequence of inputs x1, x2, . . . in ΠYES ∪ ΠNO, whose lengths n1, n2, . . .

are spaced arbitrarily far apart, such that every PromisePH
A machine M fails to solve Π on at least one xi. Now

let B be an oracle that is identical to A, except that for each input length n, it reveals (i) whether n = ni for some
i and (ii) if so, what the corresponding xi is. Also, let L be the unary language that contains 0n if and only if (i)
n = ni for some i and (ii) xi ∈ ΠYES. Then L is in BQP

B but not PH
B .
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that if BQP ⊆ AM, then the desired implication would follow immediately! For in that case,

NP ⊆ BQP =⇒ coNP ⊆ BQP

=⇒ coNP ⊆ AM

=⇒ PH = ΣP
2

where the last implication was shown by Boppana, H̊astad, and Zachos [12]. Similar remarks apply
to the questions of whether NP ⊆ BQP would imply PH ⊆ BQP, and whether the folklore result
NPBPP ⊆ BPPNP has the quantum analogue NPBQP ⊆ BQPNP. In each of these cases, we find that
understanding some other issue in quantum complexity theory requires first coming to grips with
whether BQP is contained in some level of the polynomial hierarchy.

1.2 Our Results

This paper presents the first formal evidence for the possibility that BQP 6⊂ PH. Perhaps more
importantly, it places the relativized BQP versus PH question at the frontier of (classical) circuit
lower bounds. The heart of the problem, we will find, is to extend Braverman’s spectacular recent
proof [13] of the Linial-Nisan Conjecture, in ways that would reveal a great deal of information
about small-depth circuits independent of the implications for quantum computing.

We have two main contributions. First, we achieve an oracle separation between BQP and PH

for the case of relation problems. A relation problem is simply a problem where the desired output
is an n-bit string (rather than a single bit), and any string from some nonempty set S is acceptable.
Relation problems arise often in theoretical computer science; one well-known example is finding
a Nash equilibrium (shown to be PPAD-complete by Daskalakis et al. [15]). Within quantum
computing, there is considerable precedent for studying relation problems as a warmup to the
harder case of decision problems. For example, in 2004 Bar-Yossef, Jayram, and Kerenidis [6] gave
a relation problem with quantum one-way communication complexity O (log n) and randomized
one-way communication complexity Ω (

√
n). It took several more years for Gavinsky et al. [20] to

achieve the same separation for decision problems, and the proof was much more complicated. The
same phenomenon has arisen many times in quantum communication complexity [17, 18, 19, 21, 22],
though to our knowledge, this is the first time it has arisen in quantum query complexity.

Formally, our result is as follows:

Theorem 1 There exists an oracle A relative to which FBQPA 6⊂ FBPPPHA

, where FBQP and
FBPP are the relation versions of BQP and BPP respectively.5

Underlying Theorem 1 is a new lower bound against AC0 circuits (constant-depth circuits com-
posed of AND, OR, and NOT gates). The close connection between AC0 and the polynomial
hierarchy that we exploit is not new. In the early 1980s, Furst-Saxe-Sipser [16] and Yao [39] no-
ticed that, if we have a PH machine M that computes (say) the Parity of a 2n-bit oracle string,
then by simply reinterpreting the existential quantifiers of M as OR gates and the universal quan-
tifiers as AND gates, we obtain an AC0 circuit of size 2poly(n) solving the same problem. It follows
that, if we can prove a 2ω(polylog n) lower bound on the size of AC0 circuits computing Parity, we

5Confusingly, the F stands for “function”; we are simply following the standard naming convention for classes of
relation problems (FP, FNP, etc).
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can construct an oracle A relative to which ⊕PA 6⊂ PHA. The idea is the same for constructing an
A relative to which CA 6⊂ PHA, where C is any complexity class.

Indeed, the relation between PH and AC0 is so direct that we get the following as a more-or-less
immediate counterpart to Theorem 1:

Theorem 2 In the unrelativized world (with no oracle), there exists a relation problem solvable in
quantum logarithmic time but not in nonuniform AC0.

The relation problem that we use to separate BQP from PH, and BQLOGTIME from AC0, is
called Fourier Fishing. The problem can be informally stated as follows. We are given oracle
access to n Boolean functions f1, . . . , fn : {0, 1}n → {−1, 1}, which we think of as chosen uniformly
at random. The task is to output n strings, z1, . . . , zn ∈ {0, 1}n, such that the corresponding
squared Fourier coefficients f̂1 (z1)

2 , . . . , f̂n (zn)2 are “often much larger than average.” Notice
that if fi is a random Boolean function, then each of its Fourier coefficients f̂i (z) follows a nor-
mal distribution—meaning that with overwhelming probability, a constant fraction of the Fourier
coefficients will be a constant factor larger than the mean. Furthermore, it is straightforward to
create a quantum algorithm that samples each z with probability proportional to f̂i (z)2, so that
larger Fourier coefficients are more likely to be sampled than smaller ones.

On the other hand, computing any specific f̂i (z) is easily seen to be equivalent to summing 2n

bits. By well-known lower bounds on the size of AC0 circuits computing the Majority function
(see H̊astad [36] for example), it follows that, for any fixed z, computing f̂i (z) cannot be in PH

as an oracle problem. Unfortunately, this does not directly imply any separation between BQP

and PH, since the quantum algorithm does not compute f̂i (z) either: it just samples a z with
probability proportional to f̂i (z)2. However, we will show that, if there exists a BPPPH machine
M that even approximately simulates the behavior of the quantum algorithm, then one can solve
Majority by means of a nondeterministic reduction—which uses approximate counting to estimate
Pr [M outputs z], and adds a constant number of layers to the AC0 circuit. The central difficulty
is that, if M knew the specific z for which we were interested in estimating f̂i (z), then it could
choose adversarially never to output that z. To solve this, we will show that we can “smuggle” a
Majority instance into the estimation of a random Fourier coefficient f̂i (z), in such a way that
it is information-theoretically impossible for M to determine which z we care about.

Our second contribution is to define and study a new black-box decision problem, called
Fourier Checking. Informally, in this problem we are given oracle access to two Boolean
functions f, g : {0, 1}n → {−1, 1}, and are promised that either

(i) f and g are both uniformly random, or

(ii) f is uniformly random, while g is extremely well correlated with f ’s Fourier transform over
Z

n
2 (which we call “forrelated”).

The problem is to decide whether (i) or (ii) is the case.
It is not hard to show that Fourier Checking is in BQP: basically, one can prepare a uniform

superposition over all x ∈ {0, 1}n, then query f , apply a quantum Fourier transform, query g, and
check whether one has recovered something close to the uniform superposition. On the other
hand, being forrelated seems like an extremely “global” property of f and g: one that would not
be apparent from querying any small number of f (x) and g (y) values, regardless of the outcomes
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of those queries. And thus, one might conjecture that Fourier Checking (as an oracle problem)
is not in PH.

In this paper, we adduce strong evidence for that conjecture. Specifically, we show that for every
k ≤ 2n/4, the forrelated distribution over 〈f, g〉 pairs is O

(
k2/2n/2

)
-almost k-wise independent. By

this we mean that, if one had 1/2 prior probability that f and g were uniformly random, and 1/2
prior probability that f and g were forrelated, then even conditioned on any k values of f and g,
the posterior probability that f and g were forrelated would still be

1

2
± O

(
k2

2n/2

)
.

We conjecture that this almost k-wise independence property is enough, by itself, to imply that an
oracle problem is not in PH. We call this the Generalized Linial-Nisan Conjecture.

Without the ±O
(
k2/2n/2

)
error term, our conjecture would be equivalent6 to a famous con-

jecture in circuit complexity made by Linial and Nisan [28] in 1990. Their conjecture stated that
polylogarithmic independence fools AC0: in other words, every probability distribution over N -bit
strings that is uniform on every small subset of bits, is indistinguishable from the truly uniform
distribution by AC0 circuits. When we began investigating this topic a year ago, even the original
Linial-Nisan Conjecture was still open. Since then, Braverman [13] (building on earlier work by
Bazzi [7] and Razborov [30]) has given a beautiful proof of that conjecture. In other words, to
construct an oracle relative to which BQP 6⊂ PH, it now suffices to generalize Braverman’s Theorem
from k-wise independent distributions to almost k-wise independent ones. We believe that this is
by far the most promising approach to the BQP versus PH problem.

Alas, generalizing Braverman’s proof is much harder than one might have hoped. To prove the
original Linial-Nisan Conjecture, Braverman showed that every AC0 function f : {0, 1}n → {0, 1}
can be well-approximated, in the L1-norm, by low-degree sandwiching polynomials: real polynomials
pℓ, pu : R

n → R, of degree O (polylog n), such that pℓ (x) ≤ f (x) ≤ pu (x) for all x ∈ {0, 1}n. Since
pℓ and pu trivially have the same expectation on any k-wise independent distribution that they
have on the uniform distribution, one can show that f must have almost the same expectation as
well. To generalize Braverman’s result from k-wise independence to almost k-wise independence,
we will show that it suffices to construct low-degree sandwich polynomials that satisfy a certain
additional condition. This new condition (which we call “low-fat”) basically says that pℓ and pu

must be representable as linear combinations of terms (that is, products of xi’s and (1 − xi)’s), in
such a way that the sum of the absolute values of the coefficients is bounded—thereby preventing
“massive cancellations” between positive and negative terms. Unfortunately, while we know two
techniques for approximating AC0 functions by low-degree polynomials—that of Linial-Mansour-
Nisan [27] and that of Razborov [29] and Smolensky [35]—neither technique provides anything like
the control over coefficients that we need. To construct low-fat sandwiching polynomials, it seems
necessary to reprove the LMN and Razborov-Smolensky theorems in a more “conservative,” less
“profligate” way. And such an advance seems likely to lead to breakthroughs in circuit complexity
and computational learning theory having nothing to do with quantum computing.

Let us mention two further applications of Fourier Checking:

(1) If the Generalized Linial-Nisan Conjecture holds, then just like with Fourier Fishing, we
can “scale down by an exponential,” to obtain a promise problem that is in BQLOGTIME but
not in AC0.

6Up to unimportant variations in the parameters
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(2) Without any assumptions, we can prove the new results that there exist oracles relative to
which BQP 6⊂ BPPpath and BQP 6⊂ SZK. We can also reprove all previous oracle separations
between BQP and classical complexity classes in a unified fashion.

To summarize our conclusions:

Theorem 3 Assuming the Generalized Linial-Nisan Conjecture, there exists an oracle A relative
to which BQPA 6⊂ PHA, and there also exists a promise problem in BQLOGTIME \ AC0. Uncondi-
tionally, there exists an oracle A relative to which BQPA 6⊂ BPPA

path and BQPA 6⊂ SZKA.

As a candidate problem, Fourier Checking has at least five advantages over the Recursive

Fourier Sampling problem of Bernstein and Vazirani [11]. First, it is much simpler to define and
reason about. Second, Fourier Checking has the almost k-wise independence property, which
is not shared by Recursive Fourier Sampling, and which immediately connects the former
to general questions about pseudorandomness against constant-depth circuits. Third, Fourier

Checking can yield exponential separations between quantum and classical models, rather than
just quasipolynomial ones. Fourth, one can hope to use Fourier Checking to give an oracle
relative to which BQP is not in PH [nc] (or PH with nc alternations) for any fixed c; by contrast,
Recursive Fourier Sampling is in PH [log n]. Finally, it is at least conceivable that the quantum
algorithm for Fourier Checking is good for something. We leave the challenge of finding an
explicit computational problem that “instantiates” Fourier Checking, in the same way that
Factoring and Discrete Logarithm instantiated Shor’s period-finding problem.

1.3 In Defense of Oracles

This paper is concerned with finding oracles relative to which BQP outperforms classical complexity
classes. As such, it is open to the usual objections: “But don’t oracle results mislead us about the
‘real’ world? What about non-relativizing results like IP = PSPACE [32]?”

In our view, it is most helpful to think of oracle separations, not as strange metamathematical
claims, but as lower bounds in a concrete computational model that is natural and well-motivated in
its own right. The model in question is query complexity, where the resource to be minimized is the
number of accesses to a very long input string. When someone gives an oracle A relative to which
CA 6⊂ DA, what they really mean is simply that they have found a problem that C machines can
solve using superpolynomially fewer queries than D machines. In other words, C has has “cleared
the first possible obstacle”—the query complexity obstacle—to having capabilities beyond those of
D. Of course, it could be (and sometimes is) that C ⊆ D for other reasons, but if we do not even
have a query complexity lower bound, then proving one is in some sense the obvious place to start.

Oracle separations have played a role in many of the central developments of both classical and
quantum complexity theory. As mentioned earlier, proving query complexity lower bounds for
PH machines is essentially equivalent to proving size lower bounds for AC0 circuits—and indeed,
the pioneering AC0 lower bounds of the early 1980s were explicitly motivated by the goal of prov-
ing oracle separations for PH.7 Within quantum computing, oracle results have played an even
more decisive role: the first evidence for the power of quantum computers came from the oracle

7Yao’s paper [39] was entitled “Separating the polynomial-time hierarchy by oracles”; the Furst-Saxe-Sipser paper
[16] was entitled “Parity, circuits, and the polynomial time hierarchy.”
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separations of Bernstein-Vazirani [11] and Simon [34], and Shor’s algorithm [33] contains an oracle
algorithm (for the Period-Finding problem) at its core.

Having said all that, if for some reason one still feels averse to the language of oracles, then
(as mentioned before) one is free to scale everything down by an exponential, and to reinterpret a
relativized separation between BQP and PH as an unrelativized separation between BQLOGTIME

and AC0.

2 Preliminaries

It will be convenient to consider Boolean functions of the form f : {0, 1}n → {−1, 1}. Throughout
this paper, we let N = 2n; we will often view the truth table of a Boolean function as an “input”
of size N . Given a Boolean function f : {0, 1}n → {−1, 1}, the Fourier transform of f is defined as

f̂ (z) :=
1√
N

∑

x∈{0,1}n

(−1)x·z f (x) .

Recall Parseval’s identity: ∑

x∈{0,1}n

f (x)2 =
∑

z∈{0,1}n

f̂ (z)2 = N.

2.1 Problems

We first define the Fourier Fishing problem, in both “distributional” and “promise” versions. In
the distributional version, we are given oracle access to n Boolean functions f1, . . . , fn : {0, 1}n →
{−1, 1}, which are chosen uniformly and independently at random. The task is to output n strings,

z1, . . . , zn ∈ {0, 1}n, at least 75% of which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 1 and at least 25% of which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 2. (Note that these thresholds are not arbitrary, but were carefully chosen to produce

a separation between the quantum and classical models!)
We now want a version of Fourier Fishing that removes the need to assume the fi’s are

uniformly random, replacing it with a worst-case promise on the fi’s. Call an n-tuple 〈f1, . . . , fn〉
of Boolean functions good if

n∑

i=1

∑

zi:|f̂i(zi)|≥1

f̂i (zi)
2 ≥ 0.8Nn,

n∑

i=1

∑

zi:|f̂i(zi)|≥2

f̂i (zi)
2 ≥ 0.26Nn.

(We will show in Lemma 8 that the vast majority of 〈f1, . . . , fn〉 are good.) In Promise Fourier

Fishing, we are given oracle access to Boolean functions f1, . . . , fn : {0, 1}n → {−1, 1}, which are
promised to be good. The task, again, is to output strings z1, . . . , zn ∈ {0, 1}n, at least 75% of

which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 1 and at least 25% of which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 2.

Next we define a decision problem called Fourier Checking. Here we are given oracle access
to two Boolean functions f, g : {0, 1}n → {−1, 1}. We are promised that either

8



(i) 〈f, g〉 was drawn from the uniform distribution U , which sets every f (x) and g (y) by a fair,
independent coin toss.

(ii) 〈f, g〉 was drawn from the “forrelated” distribution F , which is defined as follows. First
choose a random real vector v = (vx)x∈{0,1}n ∈ R

N , by drawing each entry independently
from a Gaussian distribution with mean 0 and variance 1. Then set f (x) := sgn (vx) and
g (x) := sgn (v̂x) for all x. Here

sgn (α) :=

{
1 if α ≥ 0
−1 if α < 0

and v̂ is the Fourier transform of v over Z
n
2 :

v̂y :=
1√
N

∑

x∈{0,1}n

(−1)x·y vx.

In other words, f and g individually are still uniformly random, but they are no longer
independent: now g is now extremely well correlated with the Fourier transform of f (hence
“forrelated”).

The problem is to accept if 〈f, g〉 was drawn from F , and to reject if 〈f, g〉 was drawn from U . Note
that, since F and U overlap slightly, we can only hope to succeed with overwhelming probability
over the choice of 〈f, g〉, not for every 〈f, g〉 pair.

We can also define a promise-problem version of Fourier Checking. In Promise Fourier

Checking, we are promised that the quantity

p (f, g) :=
1

N3




∑

x,y∈{0,1}n

f (x) (−1)x·y g (y)




2

is either at least 0.05 or at most 0.01. The problem is to accept in the former case and reject in
the latter case.

2.2 Complexity Classes

See the Complexity Zoo8 for the definitions of standard complexity classes, such as BQP, AM, and
PH. When we write CPH (i.e., a complexity class C with an oracle for the polynomial hierarchy),

we mean ∪k≥1CΣP
k .

We will consider not only decision problems, but also relation problems (also called function
problems). In a relation problem, the output is not a single bit but a poly (n)-bit string y. There
could be many valid y’s for a given instance, and the algorithm’s task is to output any one of them.

The definitions of FP and FNP (the relation versions of P and NP) are standard. We now define
FBPP and FBQP, the relation versions of BPP and BQP.

Definition 4 FBPP is the class of relations R ⊆ {0, 1}∗ × {0, 1}∗ for which there exists a proba-
bilistic polynomial-time algorithm A that, given any input x ∈ {0, 1}n, produces an output y such
that

Pr [(x, y) ∈ R] = 1 − o (1) ,

8www.complexityzoo.com
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where the probability is over A’s internal randomness. (In particular, this implies that for every
x, there exists at least one y such that (x, y) ∈ R.) FBQP is defined the same way, except that A
is a quantum algorithm rather than a classical one.

An important point about FBPP and FBQP is that, as far as we know, these classes do not
admit amplification. In other words, the value of an algorithm’s success probability might actually
matter, not just the fact that the probability is bounded above 1/2. This is why we adopt the
convention that an algorithm “succeeds” if it outputs (x, y) ∈ R with probability 1 − o (1). In
practice, we will give oracle problems for which the FBQP algorithm succeeds with probability
1− 1/ exp (n), while any FBPPPH algorithm succeeds with probability at most (say) 0.99. How far
the constant in this separation can be improved is an open problem.

Another important point is that, while BPPPH = PPH (which follows from BPP ⊆ ΣP
2 ), the class

FBPPPH is strictly larger than FPPH. To see this, consider the relation

R = {(0n, y) : K (y) ≥ n} ,

where we are given n, and asked to output any string of Kolmogorov complexity at least n. Clearly
this problem is in FBPP: just output a random 2n-bit string. On the other hand, just as obviously
the problem is not in FPPH. This is why we need to construct an oracle A such that FBQPA 6⊂
FBPPPHA

: because constructing an oracle A such that FBQPA 6⊂ FPPHA

is trivial and not even
related to quantum computing.

We now discuss some “low-level” complexity classes. AC0 is the class of problems solvable by
a nonuniform family of AND/OR/NOT circuits, with depth O (1), size poly (n), and unbounded
fanin. When we say “AC0 circuit,” we mean a constant-depth circuit of AND/OR/NOT gates, not
necessarily of polynomial size. Any such circuit can be made into a formula (i.e., a circuit of fanout
1) with only a polynomial increase in size. The circuit has depth d if it consists of d alternating
layers of AND and OR gates (without loss of generality, the NOT gates can all be pushed to the
bottom, and we do not count them towards the depth). For example, a DNF (Disjunctive Normal
Form) formula is just an AC0 circuit of depth 2.

We will also be interested in quantum logarithmic time, which can be defined naturally as
follows:

Definition 5 BQLOGTIME is the class of languages L ⊆ {0, 1}∗ that are decidable, with bounded
probability of error, by a LOGTIME-uniform family of quantum circuits {Cn}n such that each Cn

has O (log n) gates, and can include gates that make random-access queries to the input string
x = x1 . . . xn (i.e., that map |i〉 |z〉 to |i〉 |z ⊕ xi〉 for every i ∈ [n]).

One other complexity class that arises in this paper, which is less well known than it should be,
is BPPpath. Loosely speaking, BPPpath can be defined as the class of problems that are solvable
in probabilistic polynomial time, given the ability to “postselect” (that is, discard all runs of the
computation that do not produce a desired result, even if such runs are the overwhelming majority).
Formally:

Definition 6 BPPpath is the class of languages L ⊆ {0, 1}∗ for which there exists a BPP machine
M , which can either “succeed” or “fail” and conditioned on succeeding either “accept” or “reject,”
such that for all inputs x:

10



(i) Pr [M (x) succeeds] > 0.

(ii) x ∈ L =⇒ Pr [M (x) accepts | M (x) succeeds] ≥ 2
3 .

(iii) x /∈ L =⇒ Pr [M (x) accepts | M (x) succeeds] ≤ 1
3 .

BPPpath was defined by Han, Hemaspaandra, and Thierauf [25], who also showed that MA ⊆
BPPpath and PNP

|| ⊆ BPPpath ⊆ BPPNP
|| . Using Fourier Checking, we will construct an oracle

A relative to which BQPA 6⊂ BPPA
path. This result might not sound amazing, but (i) it is new,

(ii) it does not follow from the “standard” quantum algorithms, such as those of Simon [34] and
Shor [33], and (iii) it supersedes almost all previous oracle results placing BQP outside classical
complexity classes.9 As another illustration of the versatility of Fourier Checking, we use it
to give an A such that BQPA 6⊂ SZKA, where SZK is Statistical Zero Knowledge. The opposite
direction—an A such that SZKA 6⊂ BQPA—was shown by Aaronson [1] in 2002.

3 Quantum Algorithms

In this section, we show that Fourier Fishing and Fourier Checking both admit simple
quantum algorithms.

3.1 Quantum Algorithm for Fourier Fishing

Here is a quantum algorithm, FF-ALG, that solves Fourier Fishing with overwhelming probability
in O

(
n2
)

time and n quantum queries (one to each fi). For i := 1 to n, first prepare the state

1√
N

∑

x∈{0,1}n

fi (x) |x〉 ,

then apply Hadamard gates to all n qubits, then measure in the computational basis and output
the result as zi.

Intuitively, FF-ALG samples the Fourier coefficients of each fi under a distribution that is skewed
towards larger coefficients; the algorithm’s behavior is illustrated pictorially in Figure 1. We now
give a formal analysis. Recall the definition of a “good” tuple 〈f1, . . . , fn〉 from Section 2.1.
Assuming 〈f1, . . . , fn〉 is good, it is easy to analyze FF-ALG’s success probability.

Lemma 7 Assuming 〈f1, . . . , fn〉 is good, FF-ALG succeeds with probability 1 − 1/ exp (n).

Proof. Let 〈z1, . . . , zn〉 be the algorithm’s output. For each i, let Xi be the event that
∣∣∣f̂i (zi)

∣∣∣ ≥ 1

and let Yi be the event that
∣∣∣f̂i (zi)

∣∣∣ ≥ 2. Also let pi := Pr [Xi] and qi := Pr [Yi], where the

9The one exception is the result of Green and Pruim [24] that there exists an A relative to which BQP
A 6⊂ P

NPA

,
but that can also be easily reproduced using Fourier Checking.
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Figure 1: The Fourier coefficients of a random Boolean function follow a Gaussian distribution,
with mean 0 and variance 1. However, larger Fourier coefficients are more likely to be observed
by the quantum algorithm.

probability is over FF-ALG’s internal (quantum) randomness. Then clearly

pi =
1

N

∑

zi:|f̂i(zi)|≥1

f̂i (zi)
2 ,

qi =
1

N

∑

zi:|f̂i(zi)|≥2

f̂i (zi)
2 .

So by assumption,

p1 + · · · + pn ≥ 0.8n,

q1 + · · · + qn ≥ 0.26n.

By a Chernoff/Hoeffding bound, it follows that

Pr [X1 + · · · + Xn ≥ 0.75n] > 1 − 1

exp (n)
,

Pr [Y1 + · · · + Yn ≥ 0.25n] > 1 − 1

exp (n)
.

Hence FF-ALG succeeds with 1 − 1/ exp (n) probability by the union bound.
We also have the following:

Lemma 8 〈f1, . . . , fn〉 is good with probability 1 − 1/ exp (n), if the fi’s are chosen uniformly at
random.

12



Proof. Choose f : {0, 1}n → {−1, 1} uniformly at random. Then for each z, the Fourier coefficient
f̂ (z) follows a normal distribution, with mean 0 and variance 1. So in the limit of large N ,

E
f




∑

z:|f̂(z)|≥1

f̂ (z)2



 =
∑

z∈{0,1}n

Pr
[∣∣∣f̂ (z)

∣∣∣ ≥ 1
]
E
[
f̂ (z)2 |

∣∣∣f̂ (z)
∣∣∣ ≥ 1

]

≈ 2N√
2π

∫ ∞

1
e−x2/2x2dx

≈ 0.801N.

Likewise,

E
f




∑

z:|f̂(z)|≥2

f̂ (z)2



 ≈ 2N√
2π

∫ ∞

2
e−x2/2x2dx

≈ 0.261N.

Since the fi’s are chosen independently of one another, it follows by a Chernoff bound that

n∑

i=1

∑

zi:|f̂i(zi)|≥1

f̂i (zi)
2 ≥ 0.8Nn,

n∑

i=1

∑

zi:|f̂i(zi)|≥2

f̂i (zi)
2 ≥ 0.26Nn

with probability 1 − 1/ exp (n) over the choice of 〈f1, . . . , fn〉.
Combining Lemmas 7 and 8, we find that FF-ALG succeeds with probability 1−1/ exp (n), where

the probability is over both 〈f1, . . . , fn〉 and FF-ALG’s internal randomness.

3.2 Quantum Algorithm for Fourier Checking

We now turn to Fourier Checking, the problem of deciding whether two Boolean functions f, g
are independent or forrelated. Here is a quantum algorithm, FC-ALG, that solves Fourier Check-

ing with constant error probability using O (1) queries. First prepare a uniform superposition over
all x ∈ {0, 1}n. Then query f in superposition, to create the state

1√
N

∑

x∈{0,1}n

f (x) |x〉

Then apply Hadamard gates to all n qubits, to create the state

1

N

∑

x,y∈{0,1}n

f (x) (−1)x·y |y〉 .

Then query g in superposition, to create the state

1

N

∑

x,y∈{0,1}n

f (x) (−1)x·y g (y) |y〉 .
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Then apply Hadamard gates to all n qubits again, to create the state

1

N3/2

∑

x,y,z∈{0,1}n

f (x) (−1)x·y g (y) (−1)y·z |z〉 .

Finally, measure in the computational basis, and “accept” if and only if the outcome |0〉⊗n is
observed. If needed, repeat the whole algorithm O (1) times to boost the success probability.

It is clear that the probability of observing |0〉⊗n (in a single run of FC-ALG) equals

p (f, g) :=
1

N3




∑

x,y∈{0,1}n

f (x) (−1)x·y g (y)




2

.

Recall that Promise Fourier Checking was the problem of deciding whether p (f, g) ≥ 0.05
or p (f, g) ≤ 0.01, promised that one of these is the case. Thus, we immediately get a quantum
algorithm to solve Promise Fourier Checking, with constant error probability, using O (1)
queries to f and g.

For the distributional version of Fourier Checking, we also need the following theorem.

Theorem 9 If 〈f, g〉 is drawn from the uniform distribution U , then

E
U

[p (f, g)] =
1

N
.

If 〈f, g〉 is drawn from the forrelated distribution F , then

E
F

[p (f, g)] > 0.07.

Proof. The first part follows immediately by symmetry (i.e., the fact that all N = 2n measurement
outcomes of the quantum algorithm are equally likely).

For the second part, let v ∈ R
N be the vector of independent Gaussians used to generate f and

g, let w = v/ ‖v‖2 be v scaled to have unit norm, and let H be the n-qubit Hadamard matrix. Also
let flat (w) be the unit vector whose xth entry is sgn (wx) /

√
N = f (x) /

√
N , and let flat (Hw) be

the unit vector whose xth entry is sgn (v̂x) /
√

N = g (x) /
√

N . Then p (f, g) equals

(
flat (w)T H flat (Hw)

)2
,

or the squared inner product between the vectors flat (w) and H flat (Hw). Note that wT ·HHw =
wT w = 1. So the whole problem is to understand the “discretization error” incurred in replacing wT

by flat (w)T and HHw by H flat (Hw). By the triangle inequality, the angle between flat (w) and
H flat (Hw) is at most the angle between flat (w) and w, plus the angle between w and H flat (Hw).
In other words:

arccos
(
flat (w)T H flat (Hw)

)
≤ arccos

(
flat (w)T w

)
+ arccos

(
wT H flat (Hw)

)
.
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Now,

flat (w)T w =
∑

x∈{0,1}n

wx · 1√
N

|wx|
wx

=
1√
N

∑

x∈{0,1}n

|wx|

=

∑
x∈{0,1}n |vx|√

N ‖v‖2

.

Recall that each vx is an independent real Gaussian with mean 0 and variance 1, meaning that
each |vx| is an independent nonnegative random variable with expectation

√
2/π. So by standard

tail bounds, for all constants ε > 0 we have

Pr
v




∑

x∈{0,1}n

|vx| ≤
(√

2

π
− ε

)
N



 ≤ 1

exp (N)
,

Pr
[
‖v‖2

2 ≥ (1 + ε) N
]
≤ 1

exp (N)
.

So by the union bound,

Pr
v

[
flat (w)T w ≤

√
2

π
− ε

]
≤ 1

exp (N)
.

Since H is unitary, the same analysis applies to wT H flat (Hw). Therefore, for all constants ε > 0,
with 1 − 1/ exp (N) probability we have

arccos
(
flat (w)T w

)
≤
(

arccos

√
2

π

)

+ ε,

arccos
(
wT H flat (Hw)

)
≤
(

arccos

√
2

π

)

+ ε.

So setting ε = 0.0001,

arccos
(
flat (w)T H flat (Hw)

)
≤ arccos

(
flat (w)T w

)
+ arccos

(
wT H flat (Hw)

)

≤ 2

(
arccos

√
2

π

)
+ 2ε

≤ 1.3

Therefore, with 1 − 1/ exp (N) probability over 〈f, g〉 drawn from F ,

flat (w)T H flat (Hw) ≥ cos 1.3,

in which case p (f, g) ≥ (cos 1.3)2 ≈ 0.072.
Combining Theorem 9 with Markov’s inequality, we immediately get the following:
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Corollary 10

Pr
〈f,g〉∼U

[p (f, g) ≥ 0.01] ≤ 100

N
,

Pr
〈f,g〉∼D

[p (f, g) ≥ 0.05] ≥ 1

50
.

4 The Classical Complexity of Fourier Fishing

In Section 3.1, we gave a quantum algorithm for Fourier Fishing that made only one query to
each fi. By contrast, it is not hard to show that any classical algorithm for Fourier Fishing

requires exponentially many queries to the fi’s. In this section, we prove a much stronger result:
that Fourier Fishing is not in FBPPPH. This result does not rely on any unproved conjectures.

4.1 Constant-Depth Circuit Lower Bounds

Our starting point will be the following AC0 lower bound, which can be found in the book of H̊astad
[36] for example.

Theorem 11 ([36]) Any depth-d circuit that accepts all n-bit strings of Hamming weight n/2+1,
and rejects all strings of Hamming weight n/2, has size exp

(
Ω
(
n1/(d−1)

))
.

We now give a corollary of Theorem 11, which (though simple) seems to be new, and might be
of independent interest. Consider the following problem, which we call ε-Bias Detection. We
are given a string y = y1 . . . ym ∈ {0, 1}m, and are promised that each bit yi is 1 with independent
probability p. The task is to decide whether p = 1/2 or p = 1/2 + ε.

Corollary 12 Let U [ε] be the distribution over {0, 1}m where each bit is 1 with independent prob-
ability 1/2 + ε. Then any depth-d circuit C such that

∣∣∣∣Pr
U [ε]

[C] − Pr
U [0]

[C]

∣∣∣∣ = Ω (1)

has size exp
(
Ω
(
1/ε1/(d+2)

))
.

Proof. Suppose such a distinguishing circuit C exists, with depth d and size S, for some ε > 0 (the
parameter m is actually irrelevant). Let n = 1/ε, and assume for simplicity that n is an integer.
Using C, we will construct a new circuit C ′ with depth d′ = d + 3 and size S′ = O (nS) + poly (n),
which accepts all strings x ∈ {0, 1}n of Hamming weight n/2+1, and rejects all strings of Hamming
weight n/2. By Theorem 11, this will imply that the original circuit C must have had size

S =
1

n
exp

(
Ω
(
n1/(d′−1)

))
− poly (n)

= exp
(
Ω
(
1/ε1/(d+2)

))
.

So fix an input x ∈ {0, 1}n, and suppose we choose m bits xi1 , . . . , xim from x, with each index ij
chosen uniformly at random with replacement. Call the resulting m-bit string y. Observe that if
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x had Hamming weight n/2, then y will be distributed according to U [0], while if x had Hamming
weight n/2 + 1, then y will be distributed according to U [ε]. So by assumption,

Pr [C (y) | |x| = n/2] = α,

Pr [C (y) | |x| = n/2 + 1] = α + δ

for some constants α and δ 6= 0 (we can assume δ > 0 without loss of generality).
Now suppose we repeat the above experiment T = kn times, for some constant k = k (α, δ).

That is, we create T strings y1, . . . , yT by choosing random bits of x, so that each yi is distributed
independently according to either U [0] or U [ε]. We then apply C to each yi. Let

Z = C (y1) + · · · + C (yT )

be the number of C invocations that accept. Then by a Chernoff bound, if |x| = n/2 then

Pr

[
Z > αT +

δ

3
T

]
< exp (−n) ,

while if |x| = n/2 + 1 then

Pr

[
Z < αT +

2δ

3
T

]
< exp (−n) .

By taking k large enough, we can make both of these probabilities less than 2−n. By the union
bound, this implies that there must exist a way to choose y1, . . . , yT so that

|x| =
n

2
=⇒ Z ≤ αT +

δ

3
T,

|x| =
n

2
+ 1 =⇒ Z ≥ αT +

2δ

3
T

for every x with |x| ∈ {n/2, n/2 + 1} simultaneously. In forming the circuit C ′, we simply hardwire
that choice.

The last step is to decide whether Z ≤ αT + δ
3T or Z ≥ αT + 2δ

3 T . This can be done using
an AC0 circuit for the Approximate Majority problem (see Viola [37] for example), which has
depth 3 and size poly (T ). The end result is a circuit C ′ to distinguish |x| = n/2 from |x| = n/2+1,
which has depth d + 3 and size TS + poly (T ) = O (nS) + poly (n).

4.2 Secretly Biased Fourier Coefficients

In this section, we prove two lemmas indicating that one can slightly bias one of the Fourier
coefficients of a random Boolean function f : {0, 1}n → {−1, 1}, and yet still have f be information-
theoretically indistinguishable from a random Boolean function (so that, in particular, an adversary
has no way of knowing which Fourier coefficient was biased). These lemmas will play a key role in
our reduction from ε-Bias Detection to Fourier Fishing.

Fix a string s ∈ {0, 1}n. Let A [s] be the probability distribution over functions f : {0, 1}n →
{−1, 1} where each f (x) is 1 with independent probability 1

2 + (−1)s·x 1
2
√

N
, and let B [s] be the

distribution where each f (x) is 1 with independent probability 1
2 − (−1)s·x 1

2
√

N
. Then let D [s] =

1
2 (A [s] + B [s]) (that is, an equal mixture of A [s] and B [s]).
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Lemma 13 Suppose Alice chooses s ∈ {0, 1}n uniformly at random, then draws f according to
D [s]. She keeps s secret, but sends the truth table of f to Bob. After examining f , Bob outputs

a string z such that
∣∣∣f̂ (z)

∣∣∣ ≥ β. Then

Pr [s = z] ≥ eβ + e−β

2
√

eN
.

where the probability is over all runs of the protocol.

Proof. By Yao’s principle, we can assume without loss of generality that Bob’s strategy is deter-
ministic. For each z, let F [z] be the set of all f ’s that cause Bob to output z. Then the first step
is to lower-bound PrD[z] [f ], for some fixed z and f ∈ F [z]. Let Nf [z] be the number of inputs

x ∈ {0, 1}n such that f (x) = (−1)z·x. It is not hard to see that Nf [z] = N
2 +

√
Nf̂(z)

2 . So

Pr
D[z]

[f ] =
1

2

(
Pr
A[z]

[f ] + Pr
B[z]

[f ]

)

=
1

2




∏

x∈{0,1}n

(
1

2
+

(−1)z·x f (x)

2
√

N

)
+

∏

x∈{0,1}n

(
1

2
− (−1)z·x f (x)

2
√

N

)



=
1

2N+1

((
1 +

1√
N

)Nf [z](
1 − 1√

N

)N−Nf [z]

+

(
1 − 1√

N

)Nf [z](
1 +

1√
N

)N−Nf [z]
)

=
1

2N+1





(
1 + 1/

√
N
)(√Nf̂(z)+N)/2

(
1 − 1/

√
N
)(

√
Nf̂(z)−N)/2

+

(
1 − 1/

√
N
)(√Nf̂(z)+N)/2

(
1 + 1/

√
N
)(

√
Nf̂(z)−N)/2





=
1

2N+1

(
1 − 1

N

)N/2



(

1 + 1/
√

N

1 − 1/
√

N

)√
Nf̂(z)/2

+

(
1 − 1/

√
N

1 + 1/
√

N

)√
Nf̂(z)/2





=
1

2
√

e2N

(
ef̂(z) + e−f̂(z)

)

≥ eβ + e−β

2
√

e2N
.

Here the second-to-last line takes the limit as N → ∞, while the last line follows from the as-

sumption
∣∣∣f̂ (z)

∣∣∣ ≥ β, together with the fact that ey + e−y increases monotonically away from

y = 0.
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Summing over all z and f ,

Pr [s = z] =
∑

z∈{0,1}n

∑

f∈F [z]

Pr [f ] · Pr [s = z | f ]

=
∑

z∈{0,1}n

∑

f∈F [z]

Pr [f ] · Pr [f | s = z] Pr [s = z]

Pr [f ]

=
1

N

∑

z∈{0,1}n

∑

f∈F [z]

Pr
D[z]

[f ]

≥ eβ + e−β

2
√

eN
.

Now let D = Es [D [s]] (that is, an equal mixture of all the D [s]’s). We claim that D is
extremely close in variation distance to U , the uniform distribution over all Boolean functions
f : {0, 1}n → {−1, 1}.

Lemma 14 ‖D − U‖ ≤ e−1
2
√

2eN
.

Proof. By a calculation from Lemma 13, for all f and s we have

Pr
D[s]

[f ] =
1

2
√

e2N

(
ef̂(s) + e−f̂(s)

)

in the limit of large N . Hence

Pr
D

[f ] = E
s

[
Pr
D[s]

[f ]

]
=

1

2
√

eN2N

∑

s∈{0,1}n

(
ef̂(s) + e−f̂(s)

)
.

Clearly Ef [PrD [f ]] = 1/2N . Our goal is to upper-bound the variance Varf [PrD [f ]], which mea-
sures the distance from D to the uniform distribution. In the limit of large N , we have

E
f

[
Pr
D

[f ]2
]

=
1

4eN222N




∑

s

E
f

[(
ef̂(s) + e−f̂(s)

)2
]

+
∑

s 6=t

E
f

[(
ef̂(s) + e−f̂(s)

)(
ef̂(t) + e−f̂(t)

)]




=
1

4eN222N




∑

s
1√
2π

∫∞
−∞ e−x2/2 (ex + e−x)

2
dx

+
∑

s 6=t

[
1√
2π

∫∞
−∞ e−x2/2 (ex + e−x) dx

]2





=
1

4eN222N

[(
2e2 + 2

)
N + 4eN (N − 1)

]

=
1

22N

(
1 +

(e − 1)2

2eN

)
.

Hence

Var
f

[
Pr
D

[f ]

]
= E

f

[
Pr
D

[f ]2
]
− E

f

[
Pr
D

[f ]

]2

=
(e − 1)2

2eN22N
.
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So by Cauchy-Schwarz,

E
f

[∣∣∣∣Pr
D

[f ] − Pr
U

[f ]

∣∣∣∣

]
≤
√

Var
f

[
Pr
D

[f ]

]
=

e − 1√
2eN

· 1

2N

and

‖D − U‖ ≤ e − 1

2
√

2eN
.

An immediate corollary of Lemma 14 is that, if a Fourier Fishing algorithm succeeds with
probability p on 〈f1, . . . , fn〉 drawn from Un, then it also succeeds with probability at least

p − ‖Dn − Un‖ ≥ p − (e − 1) n

2
√

2eN

on 〈f1, . . . , fn〉 drawn from Dn.

4.3 Putting It All Together

Using the results of Sections 4.1 and 4.2, we are now ready to prove a lower bound on the constant-
depth circuit complexity of Fourier Fishing.

Theorem 15 Any depth-d circuit that solves the Fourier Fishing problem, with probability at
least 0.99 over f1, . . . , fn chosen uniformly at random, has size exp

(
Ω
(
N1/(2d+8)

))
.

Proof. Let C be a circuit of depth d and size s. Let G be the set of all 〈f1, . . . , fn〉 on which C

succeeds: that is, for which it outputs z1, . . . , zn, at least 75% of which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 1 and at

least 25% of which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 2. Suppose

Pr
Un

[〈f1, . . . , fn〉 ∈ G] ≥ 0.99.

Then by Lemma 14, we also have

Pr
Dn

[〈f1, . . . , fn〉 ∈ G] ≥ 0.99 − (e − 1) n

2
√

2eN
≥ 0.98

for sufficiently large n.
Using the above fact, we will convert C into a new circuit C ′ that solves the ε-Bias Detection

problem of Corollary 12, with ε := 1
2
√

N
. This C ′ will have depth d′ = d+2 and size S′ = O (NS).

By Corollary 12, this will imply that C itself must have had size

S = exp
(
Ω
(
1/ε1/(d′+2)

))

= exp
(
Ω
(
N1/(2d+8)

))
.

Let M = N2n, and let R = r1 . . . rM ∈ {0, 1}M be a string of bits where each rj is 1 with
independent probability p. We want to decide whether p = 1/2 or p = 1/2+ ε—that is, whether R

20



was drawn from U [0] or U [ε]. We can do this as follows. First, choose strings s1, . . . , sn ∈ {0, 1}n,
bits b1, . . . , bn ∈ {0, 1}, and an integer k ∈ [n] uniformly at random. Next, define Boolean functions
f1, . . . , fn : {0, 1}n → {−1, 1} using the first Nn bits of R, like so:

fi (x) := (−1)r(i−1)N+x+si·x+bi .

Finally, feed 〈f1, . . . , fn〉 as input to C, and consider zk, the kth output of C (discarding the other
n − 1 outputs). We are interested in Pr [zk = sk], where the probability is over R, s1, . . . , sn,
b1, . . . , bn, and k.

If p = 1/2, notice that f1, . . . , fn are independent and uniformly random regardless of s1, . . . , sn.
So C gets no information about sk, and Pr [zk = sk] = 1/N .

On the other hand, if p = 1/2 + ε, then each fi is drawn independently from the distribution

D [s] studied in Lemma 13. So by the Lemma, for every i ∈ [n], if
∣∣∣f̂i (zi)

∣∣∣ ≥ β then

Pr
fi

[zi = si] ≥
eβ + e−β

2
√

eN
.

So assuming C succeeds (that is, 〈f1, . . . , fn〉 ∈ G), we have

Pr
f1,...,fn,k

[zk = sk] ≥
1

4

(
e2 + e−2

2
√

eN

)
+

1

2

(
e1 + e−1

2
√

eN

)
≥ 1.038

N
.

So for a random 〈f1, . . . , fn〉 drawn according to Dn,

Pr
f1,...,fn,k

[zk = sk] ≥ 0.98

(
1.038

N

)
≥ 1.017

N
.

Notice that this is bounded above 1/N by a multiplicative constant.
Now let us repeat the above experiment N times. That is, for all j := 1 to N , we generate

Boolean functions fj1, . . . , fjn : {0, 1}n → {−1, 1} by the same probabilistic procedure as before,
but each time using a new Nn-bit substring of Rj of R, as well as new s, b, and k values (denoted
sj1, . . . , sjn, bj1, . . . , bjn, and kj). We then apply C to each n-tuple 〈fj1, . . . , fjn〉. Let zj be the
kth

j string that C outputs when run on 〈fj1, . . . , fjn〉. Then by the above, for each j ∈ [N ] we have

p =
1

2
=⇒ Pr

[
zj = sjkj

]
=

1

N
,

p =
1

2
+ ε =⇒ Pr

[
zj = sjkj

]
≥ 1.017

N
.

Furthermore, these probabilities are independent across the different j’s. So let E be the event
that there exists a j ∈ [N ] such that zj = sjkj

. Then if p = 1/2 we have

Pr [E] = 1 −
(

1 − 1

N

)N

≈ 1 − 1

e
≤ 0.633,

while if p = 1/2 + ε we have

Pr [E] ≥ 1 −
(

1 − 1.017

N

)N

≥ 0.638.
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It should now be clear how to create the circuit C ′, which distinguishes R ∈ {0, 1}M drawn
from U [0] from R drawn from U [ε] with constant bias. For each j ∈ [N ], generate an n-tuple
of Boolean functions 〈fj1, . . . , fjn〉 from R and apply C to it; then check whether there exists a
j ∈ [N ] such that zj = sjkj

. This checking step can be done by a depth-2 circuit of size O (Nn).
Therefore, C ′ will have depth d′ = d + 2 and size s′ = O (Ns). A technicality is that our choices
of the sji’s, bji’s, and kj ’s were made randomly. However, by Yao’s principle, there clearly exist
sji’s, bji’s, and kj ’s such that

Pr
U [ε]

[
C ′ (R)

]
− Pr

U [0]

[
C ′ (R)

]
≥ 0.638 − 0.633 = 0.005.

So in forming C ′, we simply hardwire those choices.
Combining Theorem 15 with standard diagonalization tricks, we can now prove an oracle sep-

aration (in fact, a random oracle separation) between the complexity classes FBQP and FBPPPH.

Theorem 16 FBQPA 6⊂ FBPPPHA

with probability 1 for a random oracle A.

Proof. We interpret the oracle A as encoding n random Boolean functions fn1, . . . , fnn : {0, 1}n →
{−1, 1} for each positive integer n. Let R be the relational problem where we are given 0n as
input, and succeed if and only if we output strings z1, . . . , zn ∈ {0, 1}n, at least 3/4 of which satisfy∣∣∣f̂ni (zi)

∣∣∣ ≥ 1 and at least 1/4 of which satisfy
∣∣∣f̂ni (zi)

∣∣∣ ≥ 2. Then by Lemmas 7 and 8, there exists

an FBQPA machine M such that for all n,

Pr [M (0n) succeeds] ≥ 1 − 1

exp (n)
,

where the probability is over both A and the quantum randomness. Hence Pr [M (0n) succeeds] ≥
1− 1/ exp (n) on all but finitely many n, with probability 1 over A. Since we can simply hardwire
the answers on the n’s for which M fails, it follows that R ∈ FBQPA with probability 1 over A.

On the other hand, let M be an FBPPPHA

machine. Then by the standard conversion between
PH and AC0, for every n there exists a probabilistic AC0 circuit CM,n, of size 2poly(n) = 2polylog(N),
that takes A as input and simulates M (0n). By Yao’s principle, we can assume without loss of
generality that CM,n is deterministic, since the oracle A is already random. Then by Theorem 15,

Pr
A

[CM,n succeeds] < 0.99

for all sufficiently large n. By the independence of the fni’s, this is true even if we condition on
CM,1, . . . , CM,n−1 succeeding. So as in the standard random oracle argument of Bennett and Gill
[10], for every fixed M we have

Pr
A

[CM,1, CM,2, CM,3, . . . succeed] = 0.

So by the union bound,

Pr
A

[∃M : CM,1, CM,2, CM,3, . . . succeed] = 0

as well. It follows that FBQPA 6⊂ FBPPPHA

with probability 1 over A.
If we “scale down by an exponential,” then we can eliminate the need for the oracle A, and get

a relation problem that is solvable in quantum logarithmic time but not in AC0.
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Theorem 17 There exists a relation problem solvable in BQLOGTIME but not in AC0.

Proof. In our relation problem R, the input (of size M = 2nn) will encode the truth tables of n
Boolean functions, f1, . . . , fn : {0, 1}n → {−1, 1}, which are promised to be “good” as defined in
Section 2.1. The task is to solve Promise Fourier Fishing on 〈f1, . . . , fn〉.

By Lemma 7, there exists a quantum algorithm that runs in O (n) = O (log M) time, making
random accesses to the truth tables of f1, . . . , fn, that solves R with probability 1 − 1/ exp (n) =
1 − 1/MΩ(1).

On the other hand, suppose R is in AC0. Then we get a nonuniform circuit family {Cn}n, of
depth O (1) and size poly (M) = 2O(n), that solves Fourier Fishing on all tuples 〈f1, . . . , fn〉 that
are good. Recall that by Lemma 8, a 1 − 1/ exp (n) fraction of 〈f1, . . . , fn〉’s are good. Therefore
{Cn}n actually solves Fourier Fishing with probability 1 − 1/ exp (n) on 〈f1, . . . , fn〉 chosen
uniformly at random. But this contradicts Theorem 15.

Hence R ∈ FBQLOGTIME \ FAC0 (where FBQLOGTIME and FAC0 are the relation versions of
BQLOGTIME and AC0 respectively).

5 The Classical Complexity of Fourier Checking

Section 4 settled the relativized BQP versus PH question, if we are willing to talk about relation
problems. Ultimately, though, we also care about decision problems. So in this section we consider
the Fourier Checking problem, of deciding whether two Boolean functions f, g are independent
or forrelated. In Section 3.2, we saw that Fourier Checking has quantum query complexity
O (1). What is its classical query complexity?10

It is not hard to give a classical algorithm that solves Fourier Checking using O
(√

N
)

=

O
(
2n/2

)
queries. The algorithm is as follows: for some K = Θ

(√
N
)
, first choose sets X =

{x1, . . . , xK} and Y = {y1, . . . , yK} of n-bit strings uniformly at random. Then query f (xi) and
g (yi) for all i ∈ [K]. Finally, compute

Z :=
K∑

i,j=1

f (xi) (−1)xi·yj g (yj) ,

accept if |Z| is greater than some cutoff cK, and reject otherwise. For suitable K and c, one can
show that this algorithm accepts a forrelated 〈f, g〉 pair with probability at least 2/3, and accepts
a random 〈f, g〉 pair with probability at least 1/3. We omit the details of the analysis, as they are
tedious and not needed elsewhere in the paper.

In the next section, we will show that Fourier Checking has a property called almost k-wise

independence, which immediately implies a lower bound of Ω
(

4
√

N
)

= Ω
(
2n/4

)
on its classical query

complexity (as well as exponential lower bounds on its MA, BPPpath, and SZK query complexities).
Indeed, we conjecture that almost k-wise independence is enough to imply that Fourier Checking

is not in PH. We discuss the status of that conjecture in Section 6.

10So long as we consider the distributional version of Fourier Checking, the deterministic and randomized query
complexities are the same (by Yao’s principle).
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5.1 Almost k-Wise Independence

Let Z = z1 . . . zM ∈ {−1, 1}M be a string. Then a literal is a term of the form 1±zi

2 , and a k-term is
a product of k literals (each involving a different zi), which is 1 if the literals all take on prescribed
values and 0 otherwise.

Let U be the uniform distribution over {−1, 1}M . The following definition will play a major
role in this work.

Definition 18 A distribution D over {−1, 1}M is ε-almost k-wise independent if for every k-term
C,

1 − ε ≤ PrD [C]

PrU [C]
≤ 1 + ε.

(Note that PrU [C] is just 2−k.)

Now let M = 2n+1 = 2N , and let F be the forrelated distribution over pairs of Boolean
functions f, g : {0, 1}n → {−1, 1}. That is, we sample 〈f, g〉 ∈ F by first choosing a vector
v = (vx)x∈{−1,1}n ∈ R

N of independent N (0, 1) Gaussians, then setting f (x) := sgn (vx) for all x
and g (y) := sgn (v̂y) for all y.

Theorem 19 For all k ≤ 4
√

N , the forrelated distribution F is O
(
k2/

√
N
)
-almost k-wise inde-

pendent.

Proof. As a first step, we will prove an analogous statement for the real-valued functions F (x) :=
vx and G (y) := v̂y; then we will generalize to the discrete versions f (x) and g (y). Let U ′ be the
probability measure over 〈F,G〉 that corresponds to case (i) of Fourier Checking: that is, we
choose each F (x) and G (y) independently from the Gaussian measure N (0, 1). Let F ′ be the
probability measure over 〈F,G〉 that corresponds to case (ii) of Fourier Checking: that is, we
choose each F (x) independently from N (0, 1), then set G (y) := F̂ (y) where

F̂ (y) =
1√
N

∑

x∈{0,1}n

(−1)x·y F (x)

is the Fourier transform of F . Observe that since the Fourier transform is unitary, G has the same
marginal distribution as F under F ′: namely, a product of independent N (0, 1) Gaussians.

Fix inputs x1, . . . , xK ∈ {0, 1}n of F and y1, . . . , yL ∈ {0, 1}n of G, for some K,L ≤ N1/4.
Then given constants a1, . . . , aK , b1, . . . , bL ∈ R, let S be the set of all 〈F,G〉 that satisfy the K +L
equations

F (xi) = ai for all 1 ≤ i ≤ K, (1)

G (yj) = bj for all 1 ≤ j ≤ L.

Clearly S is a (2N − K − L)-dimensional affine subspace of R
2N . The measure of S, under some

probability measure µ on R
2N , is defined in the usual way as

µ (S) :=

∫

〈F,G〉∈S
µ (F,G) d 〈F,G〉 .
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Now let
∆S := a2

1 + · · · + a2
K + b2

1 + · · · + b2
L

be the squared distance between S and the origin (that is, the minimum squared 2-norm of any
point in S). Then by the spherical symmetry of the Gaussian measure, it is not hard to see that
S has measure

U ′ (S) =
e−∆S/2

√
2π

K+L

under U ′. Our key claim is that

1 − O

(
(K + L)∆S√

N

)
≤ F ′ (S)

U ′ (S)
≤ 1 + O

(
(K + L)∆S√

N

)
.

To prove this claim: recall that the probability measure over F induced by F ′ is just a spherical
Gaussian G on R

N , and that G = F̂ uniquely determines F and vice versa. So consider the
(N − K − L)-dimensional affine subspace T of R

N defined by the K + L equations

F (xi) = ai for all 1 ≤ i ≤ K,

F̂ (yj) = bj for all 1 ≤ j ≤ L.

Then F ′ (S) = G (T ): that is, to compute how much measure F ′ assigns to S, it suffices to compute
how much measure G assigns to T . We have

G (T ) =
e−∆T /2

√
2π

K+L
,

where ∆T is the squared Euclidean distance between T and the origin. Thus, our problem reduces
to minimizing

∆F :=
∑

x∈{0,1}n

F (x)2

over all F ∈ T . By a standard fact about quadratic optimization, the minimal F ∈ T will have
the form

F (x) = α1E1 (x) + · · · + αKEK (x) + β1χ1 (x) + · · · + βLχL (x)

where

Ei (x) :=

{
1 if x = xi

0 otherwise

is an indicator function, and

χj (x) :=
(−1)x·yj

√
N

is the yth
j Fourier character evaluated at x. Furthermore, the coefficients {αi}i∈[K] , {βj}j∈[L] can

25



be obtained by solving the linear system





1 0 0 ±1/
√

N · · · ±1/
√

N

0
. . . 0

...
. . .

...

0 0 1 ±1/
√

N · · · ±1/
√

N

±1/
√

N · · · ±1/
√

N 1 0 0
...

. . .
... 0

. . . 0

±1/
√

N · · · ±1/
√

N 0 0 1





︸ ︷︷ ︸
A





α1
...

αK

β1
...

βL





︸ ︷︷ ︸
u

=





a1
...

aK

b1
...

bL





︸ ︷︷ ︸
w

Here A is simply a matrix of covariances: the top left block records the inner product between
each Ei and Ej (and hence is a K × K identity matrix), the bottom right block records the inner
product between each χi and χj (and hence is an L × L identity matrix), and the remaining two
blocks of size K × L record the inner product between each Ei and χj.

Thus, to get the vector of coefficients u ∈ R
K+L, we simply need to calculate A−1w. Define

B := I − A. Then by Taylor series expansion,

A−1 = (I − B)−1 = I + B + B2 + B3 + · · ·

Notice that every entry of B is at most 1/
√

N in absolute value. This means that, for all positive
integers t, every entry of Bt is at most

(K + L)t−1

N t/2

in absolute value. Since K +L ≪
√

N , this in turn means that every entry of I −A−1 has absolute

value O
(
1/
√

N
)
. So A−1 is exponentially close to the identity matrix. Hence, when we compute

the vector u = A−1w, we find that

αi = ai + εi for all 1 ≤ i ≤ K,

βj = bj + δj for all 1 ≤ j ≤ L,

for some small error terms εi and δj . Specifically, each εi and δj is the inner product of w, a
(K + L)-dimensional vector of length

√
∆S , with a vector every entry of which has absolute value

O
(
1/
√

N
)
. By Cauchy-Schwarz, this implies that

|εi| , |δj | = O

(√
(K + L) ∆S√

N

)

26



for all i, j. So

∆T = min
F∈T

∑

x∈{0,1}n

F (x)2

=

K∑

i=1

α2
i +

L∑

j=1

β2
j + 2

K∑

i=1

L∑

j=1

αiβj√
N

=
K∑

i=1

(ai + εi)
2 +

L∑

j=1

(bj + δj)
2 + 2

K∑

i=1

L∑

j=1

(ai + εi) (bj + δj)√
N

= ∆S ± O

(
(K + L)∆S√

N
+

(K + L)2 ∆S

N
+

(K + L)3 ∆S

N3/2

)

= ∆S

(
1 ± O

(
K + L√

N

))
,

where the fourth line made repeated use of Cauchy-Schwarz, and the fifth line used the fact that
K + L ≪

√
N . Hence

F ′ (S)

U ′ (S)
=

e−∆T /2/
√

2π
K+L

e−∆S/2/
√

2π
K+L

= exp

(
∆S − ∆T

2

)

= exp

(
±O

(
(K + L) ∆S√

N

))

= 1 ± O

(
(K + L) ∆S√

N

)

which proves the claim.
To prove the theorem, we now need to generalize to the discrete functions f and g. Here we are

given a term C that is a conjunction of K + L inequalities: K of the form F (xi) ≤ 0 or F (xi) ≥ 0,
and L of the form G (yj) ≤ 0 or G (yj) ≥ 0. If we fix x1, . . . , xK and y1, . . . , yL, we can think
of C as just a convex region of R

K+L. Then given an affine subspace S as defined by equation
(1), we will (abusing notation) write S ∈ C if the vector (α1, . . . , αK , β1, . . . , βL) is in C: that is,
if S is compatible with the K + L inequalities that define C. We need to show that the ratio
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PrF [C] /PrU [C] is close to 1. We can do so using the previous result, as follows:

PrF [C]

PrU [C]
=

∫
S∈C F ′ (S) dS∫
S∈C U ′ (S) dS

=

∫
S∈C U ′ (S)

[
1 ± O

(
(K+L)∆S√

N

)]
dS

∫
S∈C U ′ (S) dS

=

∫
S∈C

[
e−∆S/2/

√
2π

K+L
] [

1 ± O
(

(K+L)∆S√
N

)]
dS

∫
S∈C

[
e−∆S/2/

√
2π

K+L
]
dS

=
(1/2)K+L ± O

(∫
S∈C

[
e−∆S/2/

√
2π

K+L
]

(K+L)∆S√
N

dS
)

(1/2)K+L

= 1 ± 2K+L (K + L)√
N

O

(∫

S∈C

e−∆S/2

√
2π

K+L
∆SdS

)

= 1 ± K + L√
N

O

(∫

S

e−∆S/2

√
2π

K+L
∆SdS

)

= 1 ± O

(
(K + L)2√

N

)
.

Setting k := K + L, this completes the proof.

5.2 Oracle Separation Results

The following lemma shows that any almost k-wise independent distribution is indistinguishable
from the uniform distribution by BPPpath or SZK machines.

Lemma 20 Suppose a probability distribution D over oracle strings is 1/t (n)-almost poly (n)-wise
independent, for some superpolynomial function t. Then no BPPpath machine or SZK protocol can
distinguish D from the uniform distribution U with non-negligible bias.

Proof. Let M be a BPPpath machine, and let pD be the probability that M accepts an oracle
string drawn from distribution D. Then pD can be written as aD/sD, where sD is the fraction of
M ’s computation paths that are postselected, and aD is the fraction of M ’s paths that are both
postselected and accepting. Since each computation path can examine at most poly (n) bits and
D is 1/t (n)-almost poly (n)-wise independent, we have

1 − 1

t (n)
≤ aD

aU
≤ 1 +

1

t (n)
and 1 − 1

t (n)
≤ sD

sU
≤ 1 +

1

t (n)
.

Hence (
1 − 1

t (n)

)2

≤ aD/sD
aU/sU

≤
(

1 +
1

t (n)

)2

.

Now let P be an SZK protocol. Then by a result of Sahai and Vadhan [31], there exist
polynomial-time samplable distributions A and A′ such that if P accepts, then ‖A − A′‖ ≤ 1/3,

28



while if P rejects, then ‖A − A′‖ ≥ 2/3. But since each computation path can examine at most
poly (n) oracle bits and D is 1/t (n)-almost poly (n)-wise independent, we have ‖AD − AU‖ ≤ 1/t (n)
and ‖A′

D − A′
U‖ ≤ 1/t (n), where the subscript denotes the distribution from which the oracle string

was drawn. Hence

∣∣∥∥AD − A′
D
∥∥−

∥∥AU − A′
U
∥∥∣∣ ≤ ‖AD − AU‖ +

∥∥A′
D − A′

U
∥∥ ≤ 2

t (n)

and no SZK protocol exists.
We now combine Lemma 20 and Theorem 19 with standard diagonalization tricks, to obtain an

oracle relative to which BQP 6⊂ BPPpath and BQP 6⊂ SZK.

Theorem 21 There exists an oracle A relative to which BQPA 6⊂ BPPA
path and BQPA 6⊂ SZKA.

Proof. The oracle A will encode the truth tables of Boolean functions f1, f2, . . . and g1, g2, . . .,
where fn, gn : {0, 1}n → {−1, 1} are on n variables each. For each n, with 1/2 probability we
draw 〈fn, gn〉 from the uniform distribution U , and with 1/2 probability we draw 〈fn, gn〉 from the
forrelated distribution F . Let L be the unary language consisting of all 0n for which 〈fn, gn〉 was
drawn from F .

By Theorem 9, there exists a BQPA machine M that decides L on all but finitely many values
of n, with probability 1 over A. Since we can simply hardwire the values of n on which M fails, it
follows that L ∈ BQPA with probability 1 over A.

On the other hand, we showed in Theorem 19 that F is O
(
p (n)2 /2n/2

)
-almost p (n)-wise

independent for all polynomials p. Hence, by Lemma 20, no BPPpath machine can distinguish F
from U with non-negligible bias. Let En (M) be the event that the BPPA

path machine M correctly
decides whether 0n ∈ L. Then

Pr
A

[En (M)] ≤ 1

2
+ o (1) ,

and moreover this is true even conditioning on E1 (M) , . . . , En−1 (M). So as in the standard
random oracle argument of Bennett and Gill [10], for every fixed M we have

Pr
A

[E1 (M) ∧ E2 (M) ∧ · · · ] = 0.

So by the union bound,
Pr
A

[∃M : E1 (M) ∧ E2 (M) ∧ · · · ] = 0

as well. It follows that BQPA 6⊂ BPPA
path with probability 1 over A. By exactly the same argument,

we also get BQPA 6⊂ SZKA with probability 1 over A.
Since BPP ⊆ MA ⊆ BPPpath, Theorem 21 supersedes the previous results that there exist oracles

A relative to which BPPA 6= BQPA [11] and BQPA 6⊂ MAA [38].

6 The Generalized Linial-Nisan Conjecture

In 1990, Linial and Nisan [28] famously conjectured that “polylogarithmic independence fools
AC0”—or loosely speaking, that every probability distribution D over n-bit strings that is uniform
on all small subsets of bits, is indistinguishable from the uniform distribution by polynomial-size,

29



constant-depth circuits. We now state a variant of the Linial-Nisan Conjecture, not with the best
possible parameters but with weaker, easier-to-understand parameters that suffice for our applica-
tion.

Conjecture 22 (Linial-Nisan Conjecture) Let D be an nΩ(1)-wise independent distribution over

{0, 1}n, and let f : {0, 1}n → {0, 1} be computed by an AC0 circuit of size 2no(1)
and depth O (1).

Then ∣∣∣∣ Pr
x∼D

[f (x)] − Pr
x∼U

[f (x)]

∣∣∣∣ = o (1) .

After seventeen years of almost no progress, in 2007 Bazzi [7] finally proved Conjecture 22 for
the special case of depth-2 circuits (also called DNF formulas). Bazzi’s proof was about 50 pages,
but it was dramatically simplified a year later, when Razborov [30] discovered a 3-page proof. Then
in 2009, Braverman [13] gave a breakthrough proof of the full Linial-Nisan Conjecture.

Theorem 23 (Braverman’s Theorem [13]) Let f : {0, 1}n → {0, 1} be computed by an AC0

circuit of size S and depth d, and let D be a
(
log S

ε

)7d2

-wise independent distribution over {0, 1}n.
Then for all sufficiently large S,

∣∣∣∣ Pr
x∼D

[f (x)] − Pr
x∼U

[f (x)]

∣∣∣∣ ≤ ε.

We conjecture a modest-seeming extension of Braverman’s Theorem, which says (informally)
that almost k-wise independent distributions fool AC0 as well.

Conjecture 24 (Generalized Linial-Nisan or GLN Conjecture) Let D be a 1/nΩ(1)-almost
nΩ(1)-wise independent distribution over {0, 1}n, and let f : {0, 1}n → {0, 1} be computed by an

AC0 circuit of size 2no(1)
and depth O (1). Then

∣∣∣∣ Pr
x∼D

[f (x)] − Pr
x∼U

[f (x)]

∣∣∣∣ = o (1) .

By the usual correspondence between AC0 and PH, the GLN Conjecture immediately implies
the following counterpart of Lemma 20.

Suppose a probability distribution D over oracle strings is 1/t (n)-almost poly (n)-wise
independent, for some superpolynomial function t. Then no PH machine can distin-
guish D from the uniform distribution U with non-negligible bias.

And thus we get the following implication:

Theorem 25 Assuming the GLN Conjecture, there exists an oracle A relative to which BQPA 6⊂
PHA.

Proof. The proof is the same as that of Theorem 21; the only difference is that the GLN Conjecture
now plays the role of Lemma 20.

Likewise:
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Theorem 26 Assuming the GLN Conjecture for the special case of depth-2 circuits (i.e., DNF
formulas), there exists an oracle A relative to which BQPA 6⊂ AMA.

Proof. Just like in Theorem 21, define an oracle A and an associated language L using the Fourier

Checking problem. Then L ∈ BQPA, with probability 1 over the choices made in constructing A.
On the other hand, suppose L ∈ AMA with probability 1 over A. Then we claim that Fourier

Checking can also be solved by a family of DNF formulas {ϕn}n≥1 of size 2poly(n):

∣∣∣∣ Pr
〈f,g〉∼F

[ϕn (f, g)] − Pr
〈f,g〉∼U

[ϕn (f, g)]

∣∣∣∣ = Ω (1) .

But since F is O
(
k2/2n/2

)
-almost k-wise independent (by Theorem 19), such a family ϕn would

violate the depth-2 case of the GLN Conjecture.
We now prove the claim. For simplicity, fix an input length n, and let A refer to a single

instance 〈f, g〉 of Fourier Checking.11 Let P be an AM protocol that successfully distinguishes
the forrelated distribution F over 〈f, g〉 pairs from the uniform distribution U . We can assume
without loss of generality that P is public-coin [23]. In other words, Arthur first sends a random

challenge r ∈ {0, 1}poly(n) to Merlin, then Merlin responds with a witness w ∈ {0, 1}poly(n), then
Arthur runs a deterministic polynomial-time verification procedure V A (r, w) to decide whether to
accept. By the assumption that P succeeds,

∣∣∣∣ Pr
A∼D,r

[
∃w : V A (r, w)

]
− Pr

A∼D,r

[
∃w : V A (r, w)

]∣∣∣∣ = Ω (1) .

So by Yao’s principle, there exists a fixed challenge r∗ such that

∣∣∣∣ Pr
A∼D

[
∃w : V A (r∗, w)

]
− Pr

A∼D

[
∃w : V A (r∗, w)

]∣∣∣∣ = Ω (1) .

Now let QA,w be the set of all queries that V A (r∗, w) makes to A, and let CA,w (A′) be a term (i.e.,
a conjunction of 1’s and 0’s) that returns TRUE if and only if A′ agrees with A on all queries in
QA,w. Then we can assume without loss of generality that Cw := CA,w depends only on w, not on
A—since Merlin can simply tell Arthur what queries V is going to make and what their outcomes
will be, and Arthur can reject if Merlin is lying. Let W be the set of all witnesses w such that
Arthur accepts if Cw (A) returns TRUE. Consider the DNF formula

ϕ (A) :=
∨

w∈W

Cw (A) ,

which expresses that there exists a w causing V A (r∗, w) to accept. Then ϕ contains at most
2poly(n) terms with poly (n) literals each, and

∣∣∣∣ Pr
A∼D

[ϕ (A)] − Pr
A∼D

[ϕ (A)]

∣∣∣∣ = Ω (1) .

11It is straightforward to generalize to the case where Arthur can query other instances, besides the one he is trying
to solve.
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As a side note, it is conceivable that one could prove

Pr
x∼D

[ϕ (x)] − Pr
x∼U

[ϕ (x)] = o (1)

for every almost k-wise independent distribution D and small CNF formula ϕ, without getting the
same result for DNF formulas (or vice versa). However, since BQP is closed under complement,
even such an asymmetric result would imply an oracle A relative to which BQPA 6⊂ AMA.

If the GLN Conjecture holds, then we can also “scale down by an exponential,” to obtain an
unrelativized decision problem that is solvable in quantum logarithmic time but not in AC0.

Theorem 27 Assuming the GLN Conjecture, there exists a promise problem in BQLOGTIME that
is not in AC0.

Proof. In our promise problem Π = (ΠYES,ΠNO), the inputs (of size M = 2n+1) will encode pairs
of Boolean functions f, g : {0, 1}n → {−1, 1}, such that

p (f, g) :=
1

N3




∑

x,y∈{0,1}n

f (x) (−1)x·y g (y)




2

is either at least 0.05 or at most 0.01. The problem is to accept in the former case and reject in
the latter case.

Using the algorithm FC-ALG from Section 3.2, it is immediate that Π ∈ BQLOGTIME. On
the other hand, suppose Π ∈ AC0. Then we get a nonuniform circuit family {Cn}n, of depth
O (1) and size poly (M) = 2O(n), that solves Fourier Checking on all pairs 〈f, g〉 such that (i)
p (f, g) ≤ 0.01 or (ii) p (f, g) ≥ 0.05. By Corollary 10, the class (i) includes the overwhelming
majority of 〈f, g〉’s drawn from the uniform distribution U , while the class (ii) includes a constant
fraction of 〈f, g〉’s drawn from the forrelated distribution F . Therefore, we actually obtain an AC0

circuit family that distinguishes U from F with constant bias. But this contradicts Theorem 19
together with the GLN Conjecture.

6.1 Low-Fat Polynomials

Given that the GLN Conjecture would have such remarkable implications for quantum complexity
theory, the question arises of how we can go about proving it. As we are indebted to Louay
Bazzi for pointing out to us, the GLN Conjecture is equivalent to the following conjecture, about
approximating AC0 functions by low-degree polynomials.

Conjecture 28 (Low-Fat Sandwich Conjecture) For every function f : {0, 1}n → {0, 1} com-
putable by an AC0 circuit, there exist polynomials pℓ, pu : R

n → R of degree k = no(1) that satisfy
the following three conditions.

(i) Sandwiching: pℓ (x) ≤ f (x) ≤ pu (x) for all x ∈ {0, 1}n.

(ii) L1-Approximation: Ex∼U [pu (x) − pℓ (x)] = o (1).

(iii) Low-Fat: pℓ (x) and pu (x) can be written as linear combinations of terms, pℓ (x) =
∑

C αCC (x)
and pu (x) =

∑
C βCC (x) respectively, such that

∑
C |αC | 2−|C| = no(1) and

∑
C |βC | 2−|C| =

no(1). (Here a term is a product of literals of the form xi and 1 − xi.)
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If we take out condition (iii), then Conjecture 28 becomes equivalent to the original Linial-Nisan
Conjecture (see Bazzi [7] for a proof). And indeed, all progress so far on “Linial-Nisan problems”
has crucially relied on this connection with polynomials. Bazzi [7] and Razborov [30] proved
the depth-2 case of the LN Conjecture by constructing low-degree, approximating, sandwiching
polynomials for every DNF, while Braverman [13] proved the full LN Conjecture by constructing
such polynomials for every AC0 circuit.12 Given this history, proving Conjecture 28 would seem
like the “obvious” approach to proving the GLN Conjecture.

Below we prove one direction of the equivalence: that to prove the GLN Conjecture, it suffices
to construct low-fat sandwiching polynomials for every AC0 circuit. The other direction—that
the GLN Conjecture implies Conjecture 28, and hence, there is no loss of generality in working
with polynomials instead of probability distributions—follows from a linear programming duality
calculation that we omit.

Theorem 29 The Low-Fat Sandwich Conjecture implies the GLN Conjecture.

Proof. Given an AC0 function f , let pℓ, pu be the low-fat sandwiching polynomials of degree k that
are guaranteed by Conjecture 28. Also, let D be an ε-almost k-wise independent distribution over
{0, 1}n, for some ε = 1/nΩ(1). Then

Pr
x∼D

[f (x)] − Pr
x∼U

[f (x)] ≤ E
D

[pu] − E
U

[pℓ]

=
∑

C

βC E
D

[C] − E
U

[pℓ]

≤
∑

C

βC + |βC | ε
2|C| − E

U
[pℓ]

= E
U

[pu − pℓ] + ε
∑

C

|βC |
2|C|

= o (1) +
no(1)

nΩ(1)

= o (1) .

Likewise,

Pr
x∼U

[f (x)] − Pr
x∼D

[f (x)] ≤ E
U

[pu] − E
D

[pℓ]

= E
U

[pu] −
∑

C

αC E
D

[C]

≤ E
U

[pu] −
∑

C

αC − |αC | ε
2|C|

= E
U

[pu − pℓ] + ε
∑

C

|αC |
2|C|

= o (1) .

12Strictly speaking, Braverman constructed approximating polynomials with slightly different (though still suffi-
cient) properties. We know from Bazzi [7] that it must be possible to get sandwiching polynomials as well.
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7 Discussion

We now take a step back, and use our results to address some conceptual questions about the
relativized BQP versus PH question, the GLN Conjecture, and what makes them so difficult.

The first question is an obvious one. Complexity theorists have known for decades how to
prove constant-depth circuit lower bounds, and how to use those lower bounds to give oracles A
relative to which (for example) PPA 6⊂ PHA and ⊕PA 6⊂ PHA. So why should it be so much harder
to give an A relative to which BQPA 6⊂ PHA? What makes this AC0 lower bound different from
other AC0 lower bounds?

The answer seems to be that, while we have powerful techniques for proving that a function
f is not in AC0, all of those techniques, in one way or another, involve arguing that f is not
approximated by a low-degree polynomial. The Razborov-Smolensky technique [29, 35] argues this
explicitly, while even the random restriction technique [16, 39, 36] argues it “implicitly,” as shown
by Linial, Mansour, and Nisan [27]. And this is a problem, if f is also computed by an efficient
quantum algorithm. For Beals et al. [8] proved the following in 1998:

Lemma 30 ([8]) Suppose a quantum algorithm Q makes T queries to a Boolean input X ∈
{0, 1}N . Then Q’s acceptance probability is a real multilinear polynomial p (X), of degree at
most 2T .

In other words, if a function f is in BQP, then for that very reason, f has a low-degree approx-
imating polynomial! As an example, we already saw that the following polynomial p, of degree 4,
successfully distinguishes the forrelated distribution F from the uniform distribution U :

p (f, g) :=
1

N3




∑

x,y∈{0,1}n

f (x) (−1)x·y g (y)




2

. (2)

Therefore, we cannot hope to prove a lower bound for Fourier Checking, by any argument that
would also imply that such a p cannot exist.

This brings us to a second question. If

(i) every known technique for proving f /∈ AC0 involves showing that f is not approximated by
a low-degree polynomial, but

(ii) every function f with low quantum query complexity is approximated by a low-degree poly-
nomial,

does that mean there is no hope of solving the relativized BQP versus PH problem using polynomial-
based techniques?

We believe the answer is no. The essential point here is that an AC0 function can be approxi-
mated by different kinds of low-degree polynomials. For example, Linial, Mansour, and Nisan [27]
showed that, if f : {0, 1}n → {0, 1} is in AC0, then there exists a real polynomial p : R

n → R, of
degree polylog n, such that

E
x∈{0,1}n

[
(p (x) − f (x))2

]
= o (1) .
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By comparison, Razborov [29] and Smolensky [35] showed that if f ∈ AC0, then there exists a
polynomial p : F

n → F over any field F (finite or infinite), of degree polylog N , such that

Pr
x∈{0,1}n

[p (x) 6= f (x)] = o (1) .

Furthermore, to show that f /∈ AC0, it suffices to show that f is not approximated by a low-
degree polynomial in any one of these senses. For example, even though the Parity function
has degree 1 over the finite field F2, Razborov and Smolensky showed that over other fields (such
as F3), any degree-o (

√
n) polynomial disagrees with Parity on a large fraction of inputs—and

that is enough to imply that Parity/∈ AC0. In other words, we simply need to find a type
of polynomial approximation that works for AC0 circuits, but does not work for the Fourier

Checking problem. If true, Conjecture 28 (the Low-Fat Sandwich Conjecture) provides exactly
such a type of approximation.

But this raises another question: what is the significance of the “low-fat” requirement in Con-
jecture 28? Why, of all things, do we want our approximating polynomial p to be expressible as a
linear combination of terms, p (x) =

∑
C αCC (x), such that

∑
C |αC | 2−|C| = no(1)?

The answer takes us to the heart of what an oracle separation between BQP and PH would
have to accomplish. Notice that, although the polynomial p from equation (2) solved the Fourier

Checking problem, it did so only by cancelling massive numbers of positive and negative terms,
then representing the answer by the tiny residue left over. Not coincidentally, this sort of cancella-
tion is a central feature of quantum algorithms. By contrast, Theorem 29 essentially says that, if
a polynomial p does not involve such massive cancellations, but is instead more “conservative” and
“reasonable” (like the polynomials that arise from classical decision trees), then p cannot distin-
guish almost k-wise independent distributions from the uniform distribution, and therefore cannot
solve Fourier Checking. If Conjecture 28 holds, then every small-depth circuit can be approx-
imated, not just by any low-degree polynomial, but by a “conservative,” “reasonable” low-degree
polynomial—one with a bound on the coefficients that prevents massive cancellations. This would
prove that Fourier Checking has no small constant-depth circuits, and hence that there exists
an oracle separating BQP from PH.

This brings us to the fourth and final question: how might one prove Conjecture 28? In
particular, is it possible that some trivial modification of Braverman’s proof [13] would give low-fat
sandwiching polynomials, thereby establishing the GLN Conjecture?

While we cannot rule this out, we believe that the answer is no. For examining Braverman’s
proof, we find that it combines two kinds of polynomial approximations of AC0 circuits: that of
Linial-Mansour-Nisan [27], and that of Razborov [29] and Smolensky [35]. Unfortunately, neither
LMN nor Razborov-Smolensky gives anything like the control over the approximating polynomial’s
coefficients that Conjecture 28 demands. LMN simply takes the Fourier transform of an AC0

function and deletes the high-order coefficients; while Razborov-Smolensky approximates each OR
gate by a product of randomly-chosen linear functions. Both techniques produce approximating
polynomials with a huge number of monomials, and no reasonable bound on their coefficients.
While it is conceivable that those polynomials satisfy the low-fat condition anyway—because of
some non-obvious representation as a linear combination of terms—certainly neither LMN nor
Razborov-Smolensky gives any idea what that representation would look like. Thus, we suspect
that, to get the desired control over the coefficients, one will need more “constructive” proofs of
both the LMN and Razborov-Smolensky theorems. Such proofs would likely be of great interest
to circuit complexity and computational learning theory for independent reasons.
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8 Open Problems

First, of course, prove the GLN Conjecture, or prove the existence of an oracle A relative to which
BQPA 6⊂ PHA by some other means. A natural first step would be to prove the GLN Conjecture
for the special case of DNFs: as shown in Theorem 26, this would imply an oracle A relative to
which BQPA 6⊂ AMA. We have offered a $200 prize for the PH case and a $100 prize for the AM

case.13

Second, it would be of interest to prove the GLN Conjecture for classes of functions weaker than
(or incomparable with) DNFs: for example, monotone DNFs, read-once formulas, and read-k-times
formulas.

Third, can we give an example of a Boolean function f : {0, 1}n → {−1, 1} that is well-
approximated by a low-degree polynomial, but not by a low-degree low-fat polynomial? Here is a
more concrete version of the challenge: let

‖f − p‖ := E
x∈{0,1}n

[
(f (x) − p (x))2

]
.

Then find a Boolean function f for which

(i) there exists a degree-no(1) polynomial p : R
n → R such that ‖f − p‖ = o (1), but

(ii) there does not exist a degree-no(1) polynomial q : R
n → R such that ‖f − q‖ = o (1) and q can

be written as a linear combination of terms, q (x) =
∑

C αCC (x), with
∑

C |αC | 2−|C| = no(1).

Fourth, can we give an oracle relative to which BQP 6⊂ IP? What about an oracle relative to
which BQP 6= IPBQP, where IPBQP is the class of problems that admit an interactive protocol with
a BPP verifier and a BQP prover?14

Fifth, what other implications does the GLN Conjecture have? If we assume it, can we address
other longstanding open questions in quantum complexity theory, such as those discussed in Section
1.1? For example, can we give an oracle relative to which NP ⊆ BQP but PH 6⊂ BQP, or an oracle
relative to which NP ⊆ BQP and PH is infinite?

Sixth, how much can we say about the BQP versus PH question in the unrelativized world? As
one concrete challenge, can we find a nontrivial way to “realize” the Fourier Checking oracle
(in other words, an explicit computational problem that is solvable using Fourier Checking)?

Seventh, how far can the gap between the success probabilities of FBQP and FBPPPH algorithms
be improved? Theorem 15 gave a relation for which a quantum algorithm succeeds with probability
1− c−n, whereas any FBPPPH algorithm succeeds with probability at most 0.99. By changing the
success criterion for Fourier Fishing—basically, by requiring the classical algorithm to output
z1, . . . , zn such that f̂1 (z1)

2 , . . . , f̂n (zn)2 are distributed “almost exactly as they would be in the
quantum algorithm”—one can improve the 0.99 to 1/2 + ε for any ε > 0. However, improving the
constant further might require a direct product theorem for AC0 circuits solving Fourier Fishing.

13See http://scottaaronson.com/blog/?p=381
14If we let the verifier transmit unentangled qubits to the prover, then the resulting class IP

|θ〉
BQP actually equals

BQP, as recently shown by Broadbent, Fitzsimons, and Kashefi [14] (see also Aharonov, Ben-Or, and Eban [4]). It

is not known whether this IP
|θ〉
BQP = BQP result relativizes; we conjecture that it does not.
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